ASYMPTOTICALLY LINEAR PROBLEMS
DRIVEN BY FRACTIONAL LAPLACIAN OPERATORS

ALESSIO FISCELLA, RAFFAELLA SERVADEI, AND ENRICO VALDINOCI

ABSTRACT. In this paper we study a non-local fractional Laplace equation, depending
on a parameter A, with asymptotically linear right-hand side. Our main result concerns
the existence of weak solutions for this equation and it is obtained using variational and
topological methods. Namely, our existence theorem follows as an application of the Saddle
Point Theorem. It extends some results, well known for the Laplace operator, to the non-
local fractional setting.
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1. INTRODUCTION

In the literature many papers are devoted to the study of non-local fractional Laplacian
equations with superlinear and subcritical or critical growth (see [2, 4, 5, 8, 13, 14, 16,
17, 18, 19, 20, 22| and references therein). After studying this kind of problems in the
recent papers cited above, here we deal with non-local equations with asymptotically linear
right-hand side.

In the standard case of the Laplacian there is a wide literature on this topic (see, for
instance, [1] and references therein). Aim of the present work is to provide some existence
results for the non-local counterpart of such a problem, that is the equation

—Lru+q@)u=Au+ f(u) + h(x) inQ
" [ e Wb m
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2 A. FISCELLA, R. SERVADEI, AND E. VALDINOCI

where s € (0,1) is fixed, n > 2s, 2 C R" is an open, bounded set with Lipschitz boundary,
A is a real parameter, f, ¢ and h are sufficiently smooth functions and L is a general
non-local operator defined as follows:

(1.2 Liu(w) = [ (ula+y) + ule - ) - 20@) K(u)dy,

for all x € R™. Here, the kernel K : R" \ {0} — (0, +00) is a function with the properties
that

(1.3) mK € L'(R"), where m(x) = min{|z|?, 1} ;
(1.4) there exists @ > Osuch that K (z) > 0|z|~™*2%) for any = € R™\ {0};
(1.5) K(z) = K(—x) for any x € R"\ {0}.

A typical example for K is given by K(z) = |z|”""¥). In this case Lx = —(—A)* and
problem (1.1) becomes

(—A)u+ q(z)u = Au+ f(u) +h(z) inQ

u=20 in R™\ €,
where —(—A)?® is the fractional Laplace operator which (up to normalization factors) may
be defined as

(1.6)

(1.7) —(—A)u(z) = /n u(z +y) +|Z(f+;sy) — 2u(x) dy

for z € R™ (see [7] and references therein for further details on the fractional Laplacian).
Along the paper, we suppose that in equation (1.1) the function f : R — R verifies the
following assumptions:

(1.8) feC'(R)

(1.9) there exists a constant M > 0 such that |f(¢)] < M for any t € R,
while ¢, h : © — R are such that

(1.10) g€ L>®(Q), q(z) >0ae ze€Q

and

(1.11) h € L*(Q),

respectively.

When f =0 and h = 0 problem (1.1) becomes the following eigenvalue problem

—Lrgu+q(z)u=Au in Q

(1.12) { u=0 in R\ Q.
We recall that there exists a non-decreasing sequence of positive eigenvalues A for which
(1.12) admits a solution. We will study problem (1.12) in Appendix A, since, in the follow-
ing, we need some information on the eigenvalues and the eigenfunctions of —Lx + gq.

Along the paper we consider both the resonant and the non-resonant case, that is the
case when A belongs to the spectrum of the operator driving the equation and the one when
A does not, respectively. As for the resonant setting we would like to note that we are able
to treat this case only if A satisfies the following assumption (for more details see Section 5)

A is an eigenvalue of problem (1.12) such that
(1.13) all the eigenfunctions corresponding to A

have nodal set with zero Lebesgue measure.

As usual, the “nodal set” of a function e in Q is the level set {z € Q: e(z) = 0}.
Condition (1.13) is true, for instance, in the case of the fractional Laplace operator (—A)?,
when A is its first eigenvalue, since the first eigenfunction of (—A)® is strictly positive (see
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[17, Proposition 9 and Appendix A] and [21]). We also would like to note that this condition
is compatible with the classical case of the Laplace operator (which corresponds to the choice
s = 1), since in this context it is satisfied by every eigenvalue (see e.g. [6, 10]).

We think that it is a very intriguing question to establish whether or not all the eigen-
functions of problem (1.12) have their nodal sets of vanishing measure, as it happens in
the classical case of the Laplacian (i.e., to decide whether or not (1.13) is always satisfied).
The answer to this question clearly goes far beyond the scope of this paper, since it must
rely either on techniques that do not seem to have a simple counterpart for the fractional
Laplacian (such as the Carleson-type estimates or the monotonicity formulas in the vari-
ables where the fractional Laplacian is computed) or on big results that are still unknown
in this framework (for instance a Unique Continuation Principle for the fractional Laplace
equations).

Also, in the resonant case, in order to prove our existence result, we need some extra
conditions on the terms f and h. Precisely, denoting by

fi= lim f@)  and  fy= lim f(0),
t——00

t——+o0
we assume that
(1.14) fi and f, exist, are finite and such that f; > f,

and

(s I /Q o (@)de = f /Q " (z)da < /Q h(z)p(z)dz < f, /Q o~ (z)dz — f, /Q ot (2)de

for any ¢ € E) \ {0},

where ot = max{p,0} and ¢~ = max{—¢,0} denote the positive and the negative part of
the function ¢, respectively, while F) is the linear space generated by the eigenfunctions
related to A (for a precise definition of E) we refer to Section 5).

We would remark that these extra conditions on f and h are exactly the same required
in the resonant setting, when dealing with the classical Laplace operator (see [1, Section
4.4.3]). Moreover, we would point out that in (1.14) the limits f; and f, have to be different,
but the case f; < f, would work as well, with some modifications in the main arguments.
Assumption (1.15) is the classical Landesman—Lazer condition, firstly introduced in [11],
which represents one of the natural sufficient condition' given in order to obtain an existence
result in a resonant setting.

As a model for f we can take the function

1
1+ ¢2

fy=¢ +F
1 if t<0.

ift>0

1We point out that condition (1.15) is satisfied by every measurable function & which ranges in (— fi, — f,.).
Indeed, in this case,

fr < =h(z) < fi,

0 and integrating over €2

) =
f/ x)dr < — /h dm<fz/ *(z) dz .
Q
As a consequence

fr/ ()d:zn—fl/ (@) de < — / das—f—/Qh
/h dx:/ﬂh(x dm—/h “(x)dx

<—fr/9sa (x)dﬁﬁ/ﬂwx)dx,

hence, multiplying by ¢ (z

that is (1.15).
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We would like to note that, in this case, f does not satisfy the assumptions required in
[9, Theorem 1], where an asymptotically linear problem at resonance driven by a general
non-local operator was considered. Indeed, in [9] the asymptotically linear case when the
primitive of f goes to infinity was considered.

The main result of the present paper concerns the existence of weak solutions for prob-
lem (1.1). For this, first of all, we have to write the weak formulation of the problem. To
this purpose, the fractional Sobolev space H*(R"™) is not enough. This is the reason why we
work in the spaces X and X, introduced in [15] (see also [16, 17] for further properties).

The functional space X denotes the linear space of Lebesgue measurable functions from
R™ to R such that the restriction to © of any function g in X belongs to L?*(2) and

the map (z,y) — (9(z) — g(y))VK(z —y) isin L*((R" x R™)\ (CQ x CQ),dzdy) ,
(here CQ2 :=R™\ Q). Also, we denote by X the following linear subspace of X
Xo={g9eX:g=0ae inR"\Q}.

We remark that X and X are non-empty, since C3(Q2) C Xy by [15, Lemma 11].
With these two definitions and condition (1.5) we can write the weak formulation of
(1.1), given by the following problem

/ (u(z) — u(y))(p(x) — (y)) K (z — )dfvdy+/ q(z)u(z)e(z)de
Rn™ xR" Q)

(1.16) _A/ dx+/f d“’*/ﬂh( P)p(x)dr Vo € Xo

u € Xop.

Before stating our existence result, we would like to note that, in general, the trivial
function v = 0 is not a solution of problem (1.1). On the other hand, if » = 0 and
f(0) =0, then u = 0 solves the problem.

Now, we can state our main result as follows:

Theorem 1. Let s € (0,1), n > 2s and Q be an open, bounded subset of R™ with Lipschitz
boundary. Let K : R™\ {0} — (0,400) be a function satisfying (1.3)~(1.5) and let f, q and
h be three functions verifying (1.8)—(1.11).

Then, problem (1.1) admits a solution u € Xy provided either

e ) is not an eigenvalue of problem (1.12), or
e )\ is an eigenvalue of problem (1.12) satisfying (1.13) and conditions (1.14) and
(1.15) hold true.

The proof of Theorem 1 is based on variational techniques. Precisely, we will find solutions
of problem (1.1) as critical points of the Euler—Lagrange functional naturally associated with
the problem. To this purpose we will perform the Saddle Point Theorem by Rabinowitz, see
[12, Theorem 4.6]. Hence, as usual, we have to study both the compactness properties of
the functional associated with the problem and also its geometrical structure. In doing this
we need to consider separately the case when the parameter X is an eigenvalue of —Lx + ¢
and the case when it does not, namely the resonant and the non-resonant situation.

The resonant setting is more difficult to be treated than the non-resonant one. As we said
before, in order to manage this case, along the paper we will need an additional property
on the parameter A, related to the nodal set of the eigenfunctions associated with A (see
(1.13)).

In the standard case of the Laplacian, this property represents the key-point in the proof
of the existence result (see, for instance, [1, Theorem 4.4.11 and Theorem 4.4.17]). Due
to the generality of our non-local framework, it is an open problem whether or not all
the eigenfunctions of —Lg + ¢ satisfy this property. In the case of the Laplacian all the
eigenfunctions verify this condition on the nodal set and this is a direct consequence of a



ASYMPTOTICALLY LINEAR PROBLEMS DRIVEN BY FRACTIONAL LAPLACIAN 5

Unique Continuation Principle (see, for instance, [6, 10]). As far as we know, there is not
a non-local counterpart of this continuation property.

Finally, we would like to point out that the resonant assumption affects both the com-
pactness property and the geometry of the functional. For this reason, the extra assump-
tions (1.13)—(1.15) (in particular (1.13) and the Landesman-Lazer condition) will be crucial
both in proving the compactness and in showing the geometric properties possessed by the
Euler—Lagrange functional associated with problem (1.1).

Theorem 1 extends the result obtained in [1, Theorem 4.4.11 and Theorem 4.4.17] (see
also [1, Chapter 4] and references therein) in the case of the classical Laplacian operator to
a general non-local framework.

The paper is organized as follows. In Section 2 we will give some definitions related to the
functional setting we will work in. In Section 3 we will discuss the variational formulation of
the problem, while Sections 4 and 5 will be devoted to the proof of Theorem 1, respectively
in the non-resonant case and in the resonant one. Finally, in the Appendix A we will briefly
discuss the eigenvalue problem (1.12).

2. THE FUNCTIONAL ANALYTIC SETTING

Here we recall some preliminary results on the functional spaces X and Xy, whose defi-
nitions were recalled in the Introduction. The readers familiar with this topic may skip it
and go directly to Section 3. In the sequel we denote by @ = (R™ x R™) \ O, where

O=(C) x (CA CR*xR" and COQ=R"\Q.

The space X is endowed with the norm defined as

1/2
2.1) lallx = lgllz2 / @) — 9) K (@ — dzdy) ",

while we equip X with the following norm

1/2
22) oo = ( [ lot@) = oK ) dray+ [ o) o@as)
which is equivalent to the usual one defined in (2.1), as we prove in the following lemma:
Lemma 2. Let K : R"\ {0} — (0,400) be a function satisfying assumptions (1.3)—(1.5)
and let q satisfy (1.10). Then, the expression
(23)  (wv)x0,q= /Q(U(l‘) —u(y))(v(z) —v(y))K(z —y) dedy + /Q q(z)u(z)o(z)de
defines on Xo a scalar product that induces a norm, denoted with || - | x,,q, equivalent to
the usual one defined in (2.1).

Proof. Since the expression (2.3) is a sum of two scalar products, it is immediate to observe
that (-,-)x,,q is a scalar product on Xy which induces the norm defined in (2.2).

Now, we show that the norm defined in (2.2) is equivalent to the one given in (2.1). For
this, let v € Xj. It is easily seen that

loll%, , = / o) — o) PK (& — y) dzdy + / o(@) [o(2)[? da
(2.4) @ ¢
< /Q [o(#) — v@)PK (& — y) dw dy + ]l e e 102 < Cillol%

where C1 = max {1, HqHLoo(Q)} > 0.
Moreover, by [16, Lemma 6] we know that there is a constant Cy > 1 such that

oIk < Co /Q () — v(y)PK (@ — y) dedy,
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so that, by using also (1.10), we get

CZHU‘_ZX < /Q lv(z) —v(y) > K (z — y) dz dy
(2.5)
< /Q lv(z) — v(y) P K (z — y) dz dy +/Qq(x) ()2 d = ||UH§(O7q-

By combining (2.4) and (2.5) we conclude the proof. O

In the following we denote by H*(2) the usual fractional Sobolev space endowed with
the norm (the so-called Gagliardo norm)

(26) ol = lolzzcor + [

OxQ

lg(x) — g(y)?

1/2
o — e dz dy> .

We remark that, even in the model case in which K (z) = |z|~("*29) the norms in (2.1) and
(2.6) are not the same, because €2 x € is strictly contained in ). This is the reason why
the classical fractional Sobolev space is not enough for studying our problem and why we
work in the new spaces X and Xj.

For further details on the fractional Sobolev spaces we refer to [7] and to the references
therein, while for other details on X and Xy we refer to [15], where these spaces were
introduced, and also to [13, 16, 17, 18, 19, 20], where various properties of these spaces were
proved.

3. VARIATIONAL FORMULATION OF THE PROBLEM

For the proof of our main result, stated in Theorem 1, we first observe that problem (1.1)
has a variational structure. Indeed, the weak formulation of problem (1.1), given in (1.16),
represents the Euler-Lagrange equation of the functional 7 : Xg — R defined as follows

Fw =5 [ jule) = u) PR =y dedy + 5 [ ato) lute) do

=5 [ @ de = [ Fut)de— [ hepute)ds.

Q

(3.1)

where F(t) = / () dr.

0
Note that the functional 7 is well defined thanks to Lemma 2, the definition of F', as-
sumptions (1.9)—(1.11) and since Xo C L?(2) C L'(Q2) (being ©Q bounded). Moreover, J is
Fréchet differentiable at u € Xy and for any ¢ € X

T = [ (ule) =) (o0) = ) Ka = ) dody + [ aa)ut@pla)da

q
Q
i\ /Q u()p(x)dz — /Q F(u(@))p(x)dr — /Q h(z)p(z)dz.

Thus, critical points of J are weak solutions to problem (1.1), that is solutions of (1.16).
At first, we need some notation. In what follows we will denote by

)\1<)\2<...§/\k<...

the sequence of the eigenvalues of —Lf + ¢ (see problem (1.12)), while e, will be the k-th
eigenfunction corresponding to the eigenvalue A . Moreover, we will set

Priq:= {u € Xop: <“’€J’>X0,q =0 Vj= 1,...,kr}
as defined in Proposition 14 (see Appendix A), while
Hj, :=span{ei,...,ex}
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will denote the linear subspace generated by the first k eigenfunctions of —Lg + ¢ for any
ke N.

In order to prove Theorem 1 we need some preliminary lemmas.
Lemma 3. The following inequality holds true
2 2
ully, o < Mellulaqy
for allu € Hy, and any k € N.

Proof. Let u € Hy. Then, we can write

k
= Z u;e;(x)
i=1

withu; eR, 1 =1,...,k.
Since {e1,...,e,. ..} is an orthonormal basis of L?(2) and an orthogonal one of X (see
Proposition 14-vi)), by Proposition 14—iv) and v), we get

k k
Xy, q Zu2 leill g, q = D Aiwd <A uf = MellullZzq)
i=1 i=1

which gives the desired assertion. (I
Lemma 4. The following inequality holds true
2
[l g = Metrllull 720
for all u € P41 and any k € N.

Proof. If uw = 0, then the assertion is trivial, while if u € Pgyq \ {0} it follows from the
variational characterization of A\;11 given in Proposition 14—iv). (I

To conclude this section we prove the following result:

Lemma 5. Let f and h be functions verifying (1.8)~(1.9) and (1.11), respectively. Then,
there exists a positive constant C such that

/g)F(u(a:))dx%—/h(x)u(x)dx

Q

< COllullx,, 4

for allu € Xy
Proof. By (1.9), (1.11), the definition of F, the Holder inequality, Lemma 2 and [16

Lemma 6], we get

/Q F(u(z))dz + / h(z)u(z)dz

Q

<M /Q (@) o+ 1Al 2y el 2

MAQM2 |l oy + & 1l 2y Il

(3.2) .
< Cullx,y 4

for a suitable C' > 0 (here |Q| denotes the measure of Q and 7 is a positive constant). This
gives the desired assertion. O

Due to the variational nature of the problem, in order to find weak solutions for prob-
lem (1.1), in the following we will look for critical points of the functional J defined in
(3.1). In doing this we need to study separately the resonant case and the non-resonant
one, that is the case when the parameter A is an eigenvalue of the operator —Lx + ¢ and the
one where X is different from these eigenvalues, respectively. We will treat the non-resonant
case in the forthcoming Section 4 and the resonant one in the next Section 5.



8 A. FISCELLA, R. SERVADEI, AND E. VALDINOCI

4. THE NON-RESONANT CASE

In this section we will prove Theorem 1 in the case when the parameter \ appearing in
problem (1.1) is not an eigenvalue of the operator —Lx + ¢q. As we said before, the idea is
to find critical points of the functional 7, given in formula (3.1). To this purpose, we will
consider two different cases:

e )\ < A;: in this setting the existence of a solution for problem (1.1) follows from the
Weierstrass Theorem (i.e. by direct minimization);

e A > )\q: in this framework we will apply the Saddle Point Theorem (see [12]) to
the functional J. As usual, for this we have to check that the functional J has
a particular geometric structure (as stated, e.g., in conditions (I3) and (Iy) of [12,
Theorem 4.6]) and that it satisfies the Palais—Smale compactness condition (see, for
instance, [12, page 3]).

4.1. The case A < Aj. In this subsection, in order to apply the Weierstrass Theorem,
we first verify that the functional J satisfies some geometric features. For this we need a
preliminary lemma.

Lemma 6. Let A < A\ and let K : R™ \ {0} — (0,+00) satisfy assumptions (1.3)—(1.5).
Moreover, let f, q, h be functions satisfying conditions (1.8)=(1.11). Then, the functional
J verifies

J (u)

lull g, =+ [ull %, o

> 0.

Proof. By the variational characterization of A\; given in Proposition 14-7), we get
2 2
Atflullze < llullx,,q

for any u € X (of course, if u = 0, this inequality is trivial).
Hence, as a consequence of this and Lemma 5, we get

) = 5l o~ 5 [ lu@de = [ Pu@)ds = [ ha)utds

2 = .
sA=) llull%,. o —Cllullx, , if A>0
= ) .
3l o = Cllullx,. if A<0,

so that, dividing by |’U”§(0,q and passing to the limit as [|u||y, , — 400, we get the assertion,
since A < A1 by assumption. O

4.2. Proof of Theorem 1 in the non-resonant case, when A < \{. Let us note that
the map
2
u = flull, 4

is lower semicontinuous in the weak topology of Xy, while the map

u /Q F(z,u(z))dz

is continuous in the weak topology of Xy. Indeed, if {u;}jen is a sequence in Xy such
that u; — w in Xy, then, by [16, Lemma 8] and [3, Theorem IV.9], up to a subsequence,
uj converges to u strongly in L”(£2) and a.e. in € and it is dominated by some function
Ky € LY(Q) for any v € [1,2*). Here and in the following 2* is the fractional critical Sobolev
exponent given by?

2n

n—2s’

(4.1) 2% =

2Note that, when s = 1 the exponent 2* reduces to the classical critical Sobolev exponent 2, = 2n/(n—2).
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Then, by (1.8) and (1.9) it follows
F(uj(z)) = F(u(r)) ae. €
as j — +oo and
| (uj(2))] < M Juj(z)] < Mra(x) € LH(Q)
a.e. x € ) and for any j € N. Hence, by applying the Lebesgue Dominated Convergence
Theorem applied in L'(Q), we have that

as j — +oo, that is the map
U /QF(:U,u(:B))d:B

is continuous from Xy with the weak topology to R.
Moreover, again by [16, Lemma 8], also the map

u ;\/Q|u(x)|2 dm-l—/ﬂh(x)u(x) dx

is continuous in the weak topology of Xy. Hence, the functional J is lower semicontinuous
in the weak topology of Xj.

Furthermore, Lemma 6 gives the coerciveness of J . Thus, we can apply the Weierstrass
Theorem in order to find a minimum w of J on Xy. Clearly, u is a weak solution of
problem (1.1).

4.3. The case A > Aj. In this subsection we can suppose that Ay < A < Apy1 for some
k € N. This is due to the fact that the sequence of eigenvalues \; of the operator —Lx + ¢
diverges to +00 as k — 400 (see Proposition 14-iv)).

In this framework we will look for critical points of the functional 7 using the Saddle
Point Theorem. First of all, we need some preliminary lemmas.

Lemma 7. Let A € (Mg, Agt1] for some k € N. Let K : R" \ {0} — (0,+00) satisfy

assumptions (1.3)~(1.5) and let f, q and h be functions satisfying (1.8)—=(1.11). Then, the
functional J wverifies

N ()

imsup ———

2
- o, q

<0

Proof. Let u € Hy. By Lemma 3, Lemma 5 and the fact that A > 0 (being A > A\ > A; > 0)
we get

70 =3l = 5 [ Ju@)Pde~ [ Plu@)ds — [ noyute)ds

1 A 2 ~
<3 (1 ) Mol g+ Ol

So, dividing by ||u||§(0 , and passing to the limit as [lu||y, , — +0o0, we get the assertion,
since A > . O

Note that Lemma 7 holds true for any A € (A, Agy1] for some k € N and this will be
used in the resonant case of problem (1.1), that is in the case when A\ = A\g11 .

Lemma 8. Let A € (Mg, Ag+1) for some k € N. Let K : R"\ {0} — (0,400) satisfy
assumptions (1.3)~(1.5) and let f, ¢ and h be functions satisfying (1.8)—(1.11). Then, the
functional J wverifies

J (u)

>0
2
[l X, 4

lim inf
“EPk+1
llull g, g —>+o0
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Proof. Let uw € Pry1 . In this case, by Lemma 4, Lemma 5 and the positivity of A, we have

1 A ) -
> (1-— - :
700 > 5 (1 32 ) Il = €l

so that, dividing by ||u|]§<07q and passing to the limit as [lu|| y, , — 400, we get the assertion,
being A < Agy1 - O

With these preliminary results we can prove that the functional J has the geometric
structure required by the Saddle Point Theorem, according to the following result:

Proposition 9. Let A € (Mg, Apy1) for some k € N. Let K : R™\ {0} — (0, +00) satisfy
assumptions (1.3)—~(1.5) and let f, q and h be functions satisfying (1.8)—(1.11). Then, there
exist two positive constants C' and T such that

sup J(u) < -C< inf J(u).
u€Hy, u€Pg 41
lull xo, =T

Proof. By Lemma 8 it follows that for any H > 0 there exists R > 0 such that if u € Py
and [lulx, = R then J(u) > H.

On the other hand, if u € Pyyq with Hu||XM < R, by applying Lemma 5, the Holder
inequality, Lemma 2 and [16, Lemma 6] we have

A 2
J(u) > —2/Q|u($)| dx—/QF(u(:I:))dm— / h(z)u(z)dr >

Q
> —F [lullx,, g = Cllullx,,q
> _—RkR*—CR=: —C,
thanks to the fact that A > 0 (being A > A\ > A1 > 0 by Proposition 14-i)). Also, here &

is a positive constant.
So, we get

(4.2) J(u) > —-C  for any u € Pyyq.

Moreover, by Lemma 7 there exists 7' > 0 such that for any u € Hy with |[ullx, , > T
we have

(4.3) sup J(u)< sup J(u) <-C.
u€Hy, u€Hy,
lullxy, ¢=T llullxy, ¢=T
Thus, Proposition 9 follows from (4.2) and (4.3). O

Roughly speaking, Proposition 9 says that J has the geometric structure required by the
Saddle Point Theorem.

Finally, we have to show that 7 satisfies the Palais—Smale condition. To this purpose,
first of all we prove that every Palais—Smale sequence for J is bounded in Xj .

Proposition 10. Let A € (Ag, A1) for some k € N. Let K : R"\ {0} — (0,+00) satisfy
assumptions (1.3)~(1.5) and let f, q and h be functions satisfying (1.8)—(1.11). Let ¢ € R
and let {u;} .  be a sequence in Xo such that

jeN
(1.4) () < e,
and
(4.5) sup {|(T" (), )|+ @ € Xo, Ielly g =1} =0

as j — +00. Then, the sequence {u;}, y is bounded in Xo.
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Proof. We argue by contradiction and we suppose that the sequence {u;};jen is unbounded
in Xy. As a consequence, up to a subsequence, we can assume that
(4.6) HujHqu — 400 asj — +00.

Thus, there exists u € Xo such that u;/ [lu;| y, , converges to u weakly in X, that is
(4.7)

/ (, uj(x) B u;(y) ) (o(x) — o)) K (z — y) dx dy + /q(x)w¢(x)dw
R7 xR"™ “

ujllxg, g I1illx,q il x,, 4

- (u(z) —u(y))(p(r) — p(y)) K (x —y) dvdy + / q(x)ulz)p(x)d
R™ xR"™ Q

as j — +oo, for any ¢ € Xj.
Hence, by applying [16, Lemma 8] and [3, Theorem IV.9], up to a subsequence

Y 5w oin LY(R™) for any v € [1,2%)
HujHX(Lq
(4.8) Wi
I — S u ae inR"
Tole, s

as j — +oo. Here 2* is the exponent defined as in (4.1).
Furthermore, by (1. 9) (1.11) and the Hoélder inequality it follows that

/fuj dw+/ﬂh( x)p(x) dx

(M Nlell gy + 1l oy Nl 2ey) =0

u
0o [ JHXO .

H jHXO’q

as j — +oo, for any ¢ € Xy, thanks to (4.6).
So, by (4.7)-(4.9) we have
L2l [ (ute) = () (o) — () K — ) didy
(4.10) X0, iR

+ [ a@pu@e@ o= [ u@yplas

as j — +oo, for any ¢ € Xg.
Hence, by combining (4.5), (4.6) and (4.10) we get

/ (u() — u(y)) () — () K ( — y) d dy + / g(@)u(@)p(z) da = A / u(@)p () de
R xR™ Q

Q

for all ¢ € Xy and we deduce that u is a weak solution of problem (1.12).
Let us now prove that v Z 0 in Xy. Assume, by contradiction, that © = 0 in Xy. By
(4.5) with ¢ = u;/ [lu;lly, , We get

|uj(x) — uj(y)|? o) di . Juj(x)[? . Juj(z)|? .
/R"XR” K(r—y)d dy+/ﬂ<1( )i >\/Qd

i Txorq luilly, 4 lusllx, 4

/fu] o) d:c—/h(w)uj(x)d:r —0
HUJHXO q Q HujHqu
as j — +o0o. Moreover, by (1.9), (1.11) and (4.8), since u = 0, we get

ujx) uj(z)
dzx h(x)———d
/fu’ sl o JHXOq +/Q ()||uj||X0,q ’

lujlliy — NRllrz@) luillze)

(4.11)

(4.12)

<M
Tusllx, 4 lusllx, 4
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as j — 4o00.
Hence, by combining (4.11) and (4.12) it follows that

) o 2 . 2 . 2
S T 0 1 e o o Tuslx, -

so that, dividing by [[u;ly, . we get

Huj H%Q(Q) )
—5—— =0 as j — 4o0.
%, 4
This gives 1 = 0, again by (4.8) and the fact that « = 0 in Xy. Of course, this is a
contradiction and so u # 0 in Xj .
In this way we have constructed a non-trivial function u solving (1.12), but this contra-
dicts the non-resonance assumption A\, < A < Ap41 . Thus, the sequence {u;} ey is bounded
in X and this ends the proof of Proposition 10. O

Now, we can prove the following result, whose proof is quite standard and, differently
from Proposition 10, it is not affected by the resonant/non-resonant assumptions:

Proposition 11. Let A € R. Let K : R™\ {0} — (0, +00) satisfy assumptions (1.3)-(1.5)
and let f, q and h be functions satisfying (1.8)—(1.11). Let {uj}jeN be a bounded sequence in
Xo such that (4.5) holds true. Then, there exists uoo € Xo such that, up to a subsequence,

luj — toollx, , = O as j — +00.

Proof. Since {u;}jen is bounded by assumption and Xy is a reflexive space (being a Hilbert
space, by [16, Lemma 7]), up to a subsequence, there exists u~, € X such that u; converges
to uso weakly in X, that is

/ (uj(z) — uj(y))(p(z) — oY) K(z —y) dv dy + / q(z)uj(z)p(x)dr —
(4.13) R “
/ (oo (%) — Uso(y)) () — 0(y)) K (x — y) dz dy + / 4(%)uce(x)p(v)dx
R™ xR™ Q
as j — 400, for any ¢ € Xy . Moreover, by applying [16, Lemma 8] and [3, Theorem IV.9],
up to a subsequence

Uj — Uso 1n LY(R™) for any v € [1,2*

: n
Uj —> Uso  a.e. in R

as j — +oo. Again 2* is defined as in (4.1).
By (4.5) we have

T /Q 9() uj ()2 da / (1) — 145 (1)) (ttoo () — 00 () K (& — ) d ly
—/ (@)1 (&) too >dm—A/Quj<x>(uj<x>—uoo<x>)dx
= [ 7)) (05 (0) = @) = [ 1)y (0) = e ) o

as j — 400.
Also note that, by the definition of norm in Xy (see formula (2.2)), since {u;}jen is
bounded in Xg, then {u;};en does in L*(Q2). Hence, by using the Holder inequality, (1.9),

(4.15)
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(1.11) and (4.14), we get

‘A/Quj(%)(uj(m) —uoo(l'))d%'Jr/Qf(%uj(%'))(uj(w) — Uoo(z))dx
(4.16) + /Q h() (s () — oo ())da

< (Miwsl ooy + M 191 + 1] 2y ) s = ool 2y = 0

as j — +o0.
Then, by (4.13), (4.15) and (4.16) we obtain

/ i () — i () 2 K (2 — ) davdy + / o() uj () 2 da
R xR™ Q

- Jtoo (&) — ti00 ()| K (& — y) dz dy + / 4(2) oo () 2 dz,
R xR™ Q
that is
(4.17) sl o — luoollxe. g
as j — +oo.

Finally, we have that

2 2 2
[Juj — UooHXM = ||uj||X07q + HUOOHXO,q

9 /Rnxw (u;(2) — uj(y)) (oo (T) — teo (y)) K (z — y) dx dy — 2 /Q ()1 (2 )oo () daz

2
2 ueldy -2 [

R™ xR™

oe0) = ) K = ) ddy =2 | () e () =0
Q
as j — 400, again thanks to (4.13) and (4.17). This concludes the proof. O

4.4. Proof of Theorem 1 in the non-resonant case, when A > )\;. For the proof
it is enough to observe that, by Proposition 9 the functional J satisfies the geometric
assumptions required by the Saddle Point Theorem, while by Propositions 10 and 11 it
verifies the Palais—Smale compactness condition. Hence, as a consequence of the Saddle
Point Theorem, J possesses a critical point u € X, which, of course, is a weak solution of
problem (1.1).

5. THE RESONANT CASE

In this section we study problem (1.1) in presence of a resonance, namely when A is
an eigenvalue of the operator —Lx + ¢. This kind of problem is harder to solve than the
non-resonant one and we have to impose further conditions on the nonlinearities and on the
parameter appearing in the equation. Namely, we have to assume the extra conditions (1.14)
and (1.15) on f and h. Also, we need an additional condition on the parameter A, that is
A has to verify (1.13). With this respect, we would like to note that assumption (1.13) is
satisfied in the model case —Lx = (—A)®, when X is the first eigenvalue of this operator,
since its first eigenfunction is strictly positive (see [17, Proposition 9 and Appendix A] and
21)).

We also would like to remark that condition (1.13) is compatible with the standard case of
the Laplacian, since, in this setting, it is always satisfied. In fact, in this standard situation
it is well know that all the eigenfunctions are almost everywhere different from zero. This is
a consequence of a Unique Continuation Principle (see [6, 10]), which, as far as we know, it
is not available in the non-local framework. We think it could be interesting to investigate
this problem.

Without loss of generality, in the sequel we assume that for some k, m € N

(5.1) M <A=Xr1 = oo = Mopm < Mg 1
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that is we suppose that A is an eigenvalue of —Lx + ¢ with multiplicity m .

As in the non-resonant framework, here the idea is to apply the Saddle Point Theorem.
Hence, also in this case, we have to check that the functional J satisfies the Palais—Smale
condition and possesses a suitable geometric structure. The resonant assumption (5.1)
affects both these problems (i.e. the compactness and the geometric structure of the func-
tional), making the proof more difficult than in the non-resonant setting.

Let us start by proving the compactness condition. If compared with the non-resonant
case, in the resonant one the difference lies in the proof of the boundedness of the Palais—
Smale sequence. Indeed, in order to show that the Palais—Smale sequence is bounded
in Xy, here we have to use different arguments, since the ones used in the non-resonant
case are based mainly on the fact that the parameter A is not an eigenvalue of the opera-
tor —Lx+¢q. Precisely, we will argue by contradiction and we will use the Landesman—Lazer
condition (1.15), which will be fundamental for our arguments. Also, it will be crucial for
our proof the property stated in (1.13).

Proposition 12. Let X\ be as in (5.1) for some k,m € N, and verify (1.13). Let K :
R™\ {0} — (0,400) satisfy assumptions (1.3)—(1.5). Moreover, let f, g and h be functions
satisfying (1.8)~(1.11), (1.14) and (1.15). Let c € R and let {u;},;cy be a sequence in Xo
such that (4.4) and (4.5) hold true. Then, the sequence {u;}; y is bounded in Xo.

Proof. First of all, let us write u; = w; + v;, with w; € Ey and v; € E)%, where

Ey = span{eki1, ..., €ktm}

is the linear space generated by the eigenfunctions related to A = A1 (see assump-
tion (5.1)).

In order to prove Proposition 12, it is enough to show that both the sequences {w;};en
and {v;};jen are bounded in X .

Let us prove first that the sequence {v;};en is bounded in Xj. For this, note that, since
wj € Ey, then

—Lrgw; + q(x)wj = Aw;,

in the weak sense, that is for any ¢ € X

[ ) = w0) (61) — o) drdy + [ ateyus(alote) do
(5.2) R

Q
— )\/ij(m)go(x) dr =0.

Moreover, by linearity, for any ¢ € X

(5.3)
[ ()~ w5 (o) — o) dody = [ () = ws) () — (o) dody
R"xR™ R7 xR™
s ) ) (o) - o) ddy
R xR™
and
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Hence, as a consequence of (5.2)—(5.4) and (4.5) we get that for any ¢ € Xj
(5.5)
0« (T (uy), ) =

/ (w;() —w; (1)) (p() — o)) K (x — y) dudy + / o(@)w;(2)p(z)d
R xR™ Q
+/ (vj (@) = vj(y)) ((x) — o(y)) K (z — y) dz dy +/ q(z)vj(z)p(z)dz
R xR"™ Q

—A/ da:—/f e da:—/Qh(x)go(x)dx

[ (@) - @) (e) - @)Kl - pdedy+ [ a@oaloa)ds
R™ xR Q

—)\/ d:z:—/f uj(x da:—/gh(x)go(x)da:

as j — 400.

Now, assume by contradiction that ||vj||X07q — 400 as j — +00. Arguing exactly as
in the proof of Proposition 10 one shows that v;/ ||v;| y, , converges weakly in Xo to an
eigenfunction v relative to A.

Of course v € E) \ {0}, being an eigenfunction. On the other hand, since

1
vj € By = span{ey, ..., €k, €kitms1s-- -}

then v € Ey-. This leads to a contradiction since v # 0 and v € Ey N Ey = {0}. Then,
{vj},ey is bounded in X .

Now, it remains to prove that {w;} jen 18 bounded in X . Also in this case we argue by
contradiction and assume that

(5.6) lwjllx,, 4 = 00

as j — +00.

Since FE) is finite dimensional, there exists w € FE) such that, up to a subsequence,
w;/ ||ijX07q converges to w strongly in Xy as j — +oo. Moreover, by applying [16,
Lemma 8] and [3, Theorem IV.9], up to a subsequence

Y L w in L”(R") for any v € [1,2%)
Taslle, s
(5.7) w;
—w a.e. in R"
lwill x4

as j — +o0o. The exponent 2* is given in (4.1).
Note also that, since w € E) , for any ¢ € X we get

/ (w(@) — w(y)) (o) — o(y)) K (x — ) dzdy + / 4(@)w(@)p(@)de
R7 xR" Q

(5.8)
Y /Q w()p() de

that is w is an eigenfunction of problem (1.12). Hence, by (1.13), the function w is almost
everywhere different from zero, say

(5.9) w(x) #0 for any z € Q\ N,

where N’ C Q has zero Lebesgue measure.
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So, by using (5.6), (5.7), the fact that {v;};en is bounded® in X, and (5.9), for a.e. x € Q
we get

() = s () — [ w;(x) , +oo for a.e. x € {w > 0}
(5-10) uj(2) = wj(@)+v;(@) = |wjllx, g WH)J @)= {—OO for a.e. z € {w < 0}
as j — +oo.
Let us define the function fo : 2 — R as

| fr fze{w>0}
Joolw) = { fiifz e {w <0},
where f; and f, were introduced in (1.14). Note that f is well defined, thanks to (5.9).
By (1.8), (5.10) and the definition of f it follows that

f(uj(z)) = foo(z) ae. z€,

while, by (1.9), the fact that Q is bounded and the Lebesgue Dominated Convergence
Theorem we have

(5.11) f(uj) = foo in L”(Q) for any v € [1,+00)

as j — 4o00.
Hence, by combining (5.5) with ¢ = w, (5.8) with ¢ = v; and (5.11), we obtain

/foo d:r:+/Qh( 2)w(@)dz = 0,

namely, writing w(z) = w'(z) — w™ (z) and taking into account the definition of f.,

[ rewteris = f [ w s~ 4, [ v @

This contradicts assumption (1.15). Thus, the sequence {w;};jen has to be bounded in Xy
and this concludes the proof of Proposition 12. O

As a consequence of Proposition 11 (which holds true for any A € R) and Proposition 12,
the functional J has the Palais—Smale compactness property, also in the case when (1.13)
occurs.

Finally, we prove that the functional J has the geometric feature required by the Saddle
Point Theorem. As we said above, the resonance assumption affects also the proof of the
particular geometric structure of the functional J , making it more difficult than in the non-
resonant setting. Indeed, here we can not use the arguments performed in the non-resonant
framework, but we have to argue in a different way. For this, we will make use of (1.13)
and of the Landesman—Lazer condition (1.15), which will be both crucial in the proof of the
following proposition:

Proposition 13. Let A be as in (5.1) for some k,m € N, and verify (1.13). Let K :
R™\ {0} — (0,+00) satisfy assumptions (1.3)—(1.5). Moreover, let f, q and h be functions
satisfying (1.8)—(1.11), (1.14) and (1.15). Then, the functional J verifies
(5.12) inf J(u) > —o0.

uG]P’;H_l
Proof. In order to prove Proposition 13, we argue by contradiction and assume that there
exists a sequence {u]} in P41 such that

JeEN
(5'13) j(uj) — —0Q,
as j — +o0.
3We stress that the boundedness in Xo imply the convergence of v; to some v in L*(R") and a.e. — in

particular, |v(z)| # +oo for a.e. z € Q.



ASYMPTOTICALLY LINEAR PROBLEMS DRIVEN BY FRACTIONAL LAPLACIAN 17

First of all, note that, by (5.1) and the orthogonality properties of {ej,...,ex,...} (see
Proposition 14-vi)), we can write Py as follows

Pry1 = EX ® Prymia

(recall that Ey := span{egt1,. .. €ktm}) -
Then, for any j € N the function u; can be written as

(5.14) U; = Wy + vy,

with w; € E) and vj € P41, so that w; and v; are orthogonal both in X( and in L3(9),
again thanks to Proposition 14-vi).
From now on we proceed by steps.

Claim 1. The following assertion holds true:
sl g, g = 00
as j — 400.

Proof. First of all, since w; € I, note that

i\r) — wj; 2 xr — X xw-xQx: w~x2x.
/Rann‘w]() ()" K(z —y)d dy—i—/ﬂq()]]()]d )\/Q\]()|d

So, as a consequence of this, of (5.14), of the orthogonality of the w; and v;, of Lemma 4
(here applied in Pgy,,+1) and of the positivity of A, we get

Tl = 5 Il , =5 [ lus@P o= [ Fay@)de— [ hoyu;(e)da

1 1 A A
= il + 151 = Sl = 3 losla — [ Flusa))ds
— / h(z)u;(z)dx
(5.15) . \ 2 “
> - |1- v —/FU‘ZL' dm—/hxu-xdw
3 (150 Il [ Plustands = [ o)
1 A ) .
5 (17 5 Il o~ Clulg
1 A , . )
> 5 (1= 5 ) 1l = Cllllg = C sl
also thanks to Lemma 5. So, by combining (5.13) and (5.15) we get
1 A ) . )
(5.16) 3 (1= 5 ) 10l = Ol = C sl = o6

which implies necessarily that
|willx,., — Fo0 as j — +oo,
since A = A\g+1 < Agtmt1 by (5.1). Hence, Claim 1 is proved. O
Now, since F) is finite dimensional, there exists w € E) such that, up to a subsequence,
(5.17) w;/ [|wjllx,. , — w strongly in Xo

as j — +oo. Note that w # 0, since ||w|| = 1. Also, w is an eigenfunction of problem (1.12)
and so, by (1.13) w is almost everywhere different from zero, say

(5.18) w(z) #0 for any z € Q\ N,

where N’ C Q has zero Lebesgue measure.
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Moreover, by applying [16, Lemma 8] and [3, Theorem IV.9], up to a subsequence, we
also have

H lﬁj —w in LY(R") for any v € [1,2%)
ws
(5.19) P
J —w a.e. in R"
lwill x,, ¢

as j — +o0o. Again here and in the sequel 2* is the exponent given in (4.1).

Now, assume that ||v;||x,,q¢ # 0 for j sufficiently large. We will discuss the case when
lvj]lxo,q = O later on.

Again by applying [16, Lemma 8| and [3, Theorem IV.9] we can say that there exists
v € X such that, up to a subsequence

H QH}j — v in LY(R™) for any v € [1,2%)
va
(5.20) T Ko
J — v ae. in R"
103 ll x,, 4
as j — +oo.

Now, let us continue with some claims.
Claim 2. The following assertion holds true:
[w; HXo, q

— +00
0304

as j — +00.

Proof. 1f ||vj||x,,4 was bounded, then Claim 2 would follow by Claim 1. Assume that
llvjll xo,q = +00 as j — +oo. Writing (5.16) as follows

o Ll
Vs —(1-— Uy —C-Cr—== | = o
| ]HXO,q (2 ( )\k+m+1> | JHXo,q ijHXo,q

we would get necessarily that Claim 2 holds true, by assumption (5.1). This concludes the
proof of Claim 2. O

Claim 3. The following assertion holds true:

F .

Fluy (@) — w(z) foo(z) a.e.x€Q

lwillx,,
as j — +o0o, where foo : 0 = R is the function defined as

| fr oifre{w>0}

(5:21) fool) := { £ ifze {w<o0},
with f; and f, given in (1.14) and w as in (5.17) .

Proof. To prove this we first observe that
L F() F(t)

We prove the identity for f,., since the one for fl is alike. If f,. # 0, we can use de I’'Hopital
Theorem and get (5.22). On the other hand, when f, = 0, for any € > 0 there exists 7' > 0
such that |f(t)] < e for t > T. So, by (1.9) for ¢ > T it follows that

‘ ‘ /f d7'+/f dT

Passing to the limit as ¢ —+ 400 and as € — 0 we obtain (5.22) in this case too.

L =T
—
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By (5.14), Claims 1 and 2, (5.18), (5.19) and (5.20) for a.e. x € Q we get

uj(z) = wj(x) + vj(z)

(5.23) :||ijX07q< w; () N ij”Xo,q v, (x) )

ijHXo,q ”ijXo,q HUjHqu

) Tt for a.e. x € {w > 0}
—oo for ae. z € {w <0},

as j — +o0. In particular, fixed any = € Q, we have that u;(x) # 0 for large j.
Now, again by (5.14) and Claim 1, we can write

F(Uj(x)):( vile) | wyla) )F(uj@c))_

(5.24) e

By (5.22) and (5.23)
F(uj(x)) fr for ae. x € {w >0}
- _>
uj(z) fi forae. x € {w<0},
that is
F(u;(x))
()
as j — +oo, where fy is given in (5.21) (this function is well defined, thanks to (5.18)).
Moreover, by Claim 2 and (5.20) it follows that

(5.25) — foolz) ae z €

. Vi .
(5.26) v;(2) = sl o, _vj() —0 ae zeR"
lwillxg, g l1willxg, q 105llxo, 4
as j — +o00. So, by combining (5.24)—(5.26) and by using also (5.19), we get the assertion
of Claim 3. ]
Claim 4. The following assertion holds true:
F .
_Fly) — wfs in LY(Q)
lwill x4

as j — 400, where w is as in (5.17) and fo is defined as in (5.21).

Proof. Since u;/ |||y, , is bounded in Xo, as usual by applying [16, Lemma 8] and [3, The-
orem IV.9], up to a subsequence, it converges strongly in L'(Q) and there exists k € L'(Q)
such that for any j € N

e

(5.27)
Tarl .0

< k(z) ae x e

Moreover, by the orthogonality properties of v; and w; we get
lusllxo.g _ o Ivillxo.q
)
llw;llx0. 4 [w;llxo, q
so that, by Claim 2 it follows that for any j € N

luill x,, 4 <C
lwillx, q

for some positive constant C'.
As a consequence of this, (5.27) and (1.9) we get a.e. z € {2

. . U4 . _
’F(UJ(CC)M < M |u3($)| - M H ]HXOMI |UJ(.’E)| < Clﬁ:(l‘) c LI(Q)
lw;llx,, 4 lw;llx, 4 lwillxy o 15l x0. o
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for a suitable positive constant C'. Then, the Lebesgue Dominated Convergence Theorem
and Claim 3 yield the assertion of Claim 4. O

Claim 5. The following assertion holds true:

lim /Wdaz—k/h(x)wdx <0.
B\ S sl &1 S sl

Proof. First of all, note that
Yo Wity o Wi Yy 1vill x4 Sw in LX(Q)
)
Toilxes  Toillg  Twilxng  T0ilxy g @il

as j — +oo, thanks to (5.14), (5.19), (5.20) and Claim 2.
As a consequence of this and by Claim 4 and (5.21) we have

- Fu;(x)) @),
ﬁ%(ﬁwmqu+/M)wm%f>

(5.28) ]/Qﬂp dx—%léid 2)w(z)dz

:fr/Qwﬂa:)dx—fl/Qw(x)dx—i—/ﬂh(:c)w(:v)dx<0,

since (1.15) holds true. This ends the proof of Claim 5. O

Now, we can conclude the proof of Proposition 13. Indeed, arguing as (5.15) and using
(5.1), we get

) > 5 (1= 52 Il g~ [ Flustands = [ pustoyis

>\k+m+1

F . .
> — Jlw;ll ‘/'M@»m+/mmqum ,
09\ Ja llwillx,. , Q 1wl x,. 4

so that, by Claim 1 and Claim 5, we deduce

J(uj) = 400 as j — 400,
which contradicts (5.13). Hence, Proposition 13 holds true in the case when ||v;||x,, 4 7# 0
for j large enough.

Finally, it remains to consider the case when [lv;[|y, = 0 for j sufficiently large (up
to a subsequence). In this setting, using the same arguments as above, the proof can be
repeated in a simpler way. For the sake of clarity and for reader’s convenience we prefer to
give full details.

Since ||vj| Xp.q =0 for j sufficiently large, it easily follows that
(529) Vj — 0 in XO
as j — +oo. Hence, by [16, Lemma 8] and [3, Theorem IV.9] up to a subsequence

v; =0 in LY(R") for any v € [1,2%)

5.30
(530) v; -0 ae inR"
as j — +oo.
As a consequence of this and by (5.14), (5.19) and Claim 1, we get that
(5.31) Yo% %y in LY(R™) for any v € [1,27),
lwillxo.q  Nwillxo.q  llwillxo.q
so that
u;j ()

Twil —w(z) aex e
WjllXo,q
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as j — +o0o, and, for any j € N and a.e. z € ()

|y ()|

(5.32)
llw;llxo0,q

< ()

for some k, € L"(Q).
Also, again by (5.14), Claim 1, (5.19) and (5.30), we deduce that a.e. z € {2

() = 1w (Y — [an w;(x) . +oo if z € {w > 0}
(5.33)  uj(z) = wj(x) +vj(x) = ijonquijXOﬂ +vj(z) — { o ifae fw< 0},

as j — +oo, thanks to (5.18).

Hence, by (5.22) and (5.33), also in this case we get
F(uj(2))
uj()
as j — +oo, where foo is the function defined in (5.21).

Now, we have that

(5.35) F(uj<x>>:<| vyl |, w@ >Fiu((:§))

llw;llxo,q
as j — +oo, thanks to (5.14), (5.19), (5.30) and (5.34) .
Furthermore, by (1.9) and (5.32) we get that a.e. x € Q and for any j € N

(5.34) — foo(z) ae.ze)

— w(z) foo(x) ae. x €
Wil o sl o ~ ’

Flu @)l @ oy e pia),

lw;llxo.q [[w;llxo.,q
so that, using also (5.35), we obtain
F .
(5.36) F) e i L9
ijHXo,q
as j — +00.

Now, with (1.15), (5.31) (here used with v =2 < 2*) and (5.36), arguing as in Claim 5,
we can show that

lim /F(uj(w))da:—i-/h(x)uj(x)da: <0.
e \Ua Tsle "Ml

Thus, the conclusion of Proposition 13 follows as in the previous case. This ends the
proof of Proposition 13. O

Finally, we are ready to prove Theorem 1, in the resonant case.

5.1. Proof of Theorem 1 in the resonant setting. First of all, let us check the geometric
structure of the functional 7 . For this, let

I= inf J(u).

u€PL 41

By Proposition 13 and the fact that J # +o00, we have that I € R. Moreover, by Lemma 7,
there exists R > 0 such that for any u € Hj, with ||u| x,,4 = R it holds true that

Ju) <=1 <1T.
Then, as a consequence of this, we get

sup J(w)< sup J(u)<I= inf J(u),
ueHy, u€Hy, u€EPL 41
lellxg, g=R lullxg, g>R
that is J has the geometry required by the Saddle Point Theorem (see [12, Theorem 4.6]).
Finally, by Proposition 11 (which holds true for any A € R) and Proposition 12, the
functional J satisfies the Palais—Smale condition.
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Hence, we can make use of the Saddle Point Theorem in order to obtain a critical point
u € X of J. This concludes the proof of Theorem 1 in the resonant case.

APPENDIX A. AN EIGENVALUE PROBLEM FOR —Lk + ¢

This appendix is devoted to the study of the eigenvalue problem (1.12). More precisely,
we study the weak formulation of (1.12), which consists in the following problem

/ (u(x) —u(y))(p(z) — w(¥) K(r — y)dz dy + / q(x)u(z)p(z)ds
R xR"™ Q

(A1) = )\/Qu($)<,0(x)dx Ve Xo

u € Xop.

We recall that A € R is an eigenvalue of —L g + ¢ provided there exists a non-trivial solution
u € Xo of problem (A.1) and, in this case, any solution will be called an eigenfunction
corresponding to the eigenvalue .

For the proof of the next result we refer to [17, Proposition 9 and Appendix A], where
the case when ¢ = 0 was considered. The proof of [17, Proposition 9] can be easily adapted
in order to get the following result:

Proposition 14. Let s € (0,1), n > 2s, Q be an open, bounded subset of R™ and let
K : R"\ {0} — (0,400) be a function satisfying assumptions (1.3)—(1.5). Moreover, let
q:Q — R be a function verifying (1.10). Then,

(i) problem (A.1) admits an eigenvalue \y which is positive and that can be characterized

as follows
M= min ( [ )~ uo) Kz = ydzdy + [ afa) |u<x>|2dx) ,
||u\|z€2(£):1 Rt @

or, equivalently,

Sz [0(@) = u(@)* K (z —y) dody + [ q(z) [u(@)]* do

I

A2 A1 = min
(4.2) P ueXo\{o} fQ|u(alc)|2 dx

(ii) there exists a non-negative function e; € Xg, which is an eigenfunction correspond-
ing to A1, attaining the minimum in (A.2), that is ||e1][2(q) =1 and

= Ja) - )P K@= gdedy + [ o)l @) d

(iii) A1 is simple, that is if u € Xg is a solution of the following equation
/R . (u(z) — uy))(p(z) — ) K(z —y)dv dy + /Q g(2) [u(@)|* dz
7L>< n

= Al/u(az)gp(a:)dx Vo € Xo,
Q

then u = ey, with ¢ € R;
(iv) the set of the eigenvalues of problem (A.1) consists of a sequence { g}y with
0<>\1<)\2<---<)\k<)\k+1<~--
and
A — +00 as k — 4o0.
Moreover, for k € N the eigenvalues can be characterized as follows:

g1 = min ( [ o) —ul)P Ko = ey + [ o) ula)? dx) ,

u€PL 1 q
lull L2 )=
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or, equivalently,

. Jroxn [u(@) = u(y)” K(z — y)dz dy + Joa(x) u(z)]? da
(A.3) Ak+1 = min :
KB\ () o lu()? dz

)

where
Pyt = {u € Xo: (uej)y, ,=0 Vj= 1k}

(v) for any k € N there exists a function epy1 € Pry1, which is an eigenfunction
corresponding to Api1, attaining the minimum in (A.3), that is |[ep1p2q) = 1
and

et = /R lern(@) =~ en @) K@ - p)dsdy -+ /Q 4(@) lexs (@) do
TL>< n

(vi) the sequence {ex} ey of eigenfunctions corresponding to Ay is an orthonormal basis
of L*(Q) and an orthogonal basis of Xo;
(vii) each eigenvalue A\ has finite multiplicity; more precisely, if A\, is such that

Ak—1 < Ak =0 = Moth < Mttt

for some h € Ny, then the set of all the eigenfunctions corresponding to A\, agrees
with
span{eg, ..., eppn} -

For further properties of the eigenvalues and the eigenfunctions of the fractional Laplace
operator (and, in general, of non-local integrodifferential operators) we refer to [13, Propo-
sition 5], [19, Proposition 4] and [21].
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