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Abstract. In this paper we deal with two nonlocal operators, that are both well known
and widely studied in the literature in connection with elliptic problems of fractional type.
Precisely, for a fixed s ∈ (0, 1) we consider the integral definition of the fractional Laplacian
given by

(−∆)su(x) :=
c(n, s)

2

∫
Rn

2u(x)− u(x+ y)− u(x− y)

|y|n+2s
dy , x ∈ Rn ,

where c(n, s) is a positive normalizing constant, and another fractional operator obtained
via a spectral definition, that is

Asu =
∑
i∈N

ai λ
s
i ei ,

where ei , λi are the eigenfunctions and the eigenvalues of the Laplace operator −∆ in Ω
with homogeneous Dirichlet boundary data, while ai represents the projection of u on the
direction ei .

Aim of this paper is to compare these two operators, with particular reference to their
spectrum, in order to emphasize their differences.
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1. Introduction

Recently in the literature a great attention has been devoted to the study of nonlocal
problems driven by fractional Laplace type operators, not only for a pure academic interest,
but also for the various applications in different fields. Indeed, many different problems
driven by the fractional Laplacian were considered in order to get existence, non-existence
and regularity results and, also, to obtain qualitative properties of the solutions.

In particular, two notions of fractional operators were considered in the literature, namely
the integral one (which reduces to the classical fractional Laplacian, see, for instance, [7, 8,
9, 10, 14, 15, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33] and references therein) and the

Key words and phrases. Fractional Laplace operator, Laplace operator, eigenvalues and eigenfunctions.
2010 AMS Subject Classification: 35R09, 45K05, 35R11, 26A33.
The first author was supported by the MIUR National Research Project Variational and Topological

Methods in the Study of Nonlinear Phenomena, while the second one by the MIUR National Research
Project Nonlinear Elliptic Problems in the Study of Vortices and Related Topics and the FIRB project A&B
(Analysis and Beyond). Both the authors were supported by the ERC grant ε (Elliptic Pde’s and Symmetry
of Interfaces and Layers for Odd Nonlinearities).

1



2 R. SERVADEI AND E. VALDINOCI

spectral one (that is sometimes called the regional, or local, fractional Laplacian, see, e.g.
[2, 4, 5, 6, 35] and references therein).

For any fixed s ∈ (0, 1) the fractional Laplace operator (−∆)s at the point x is defined
by

(1.1) (−∆)su(x) :=
c(n, s)

2

∫
Rn

2u(x)− u(x+ y)− u(x− y)

|y|n+2s
dy ,

where c(n, s) is a positive normalizing constant1 depending only on n and s .
A different operator, which is sometimes denoted by As, is defined as the power of

the Laplace operator −∆ , obtained by using the spectral decomposition of the Laplacian.
Namely, let Ω be a smooth bounded domain of Rn, and let λk and ek , k ∈ N, be the
eigenvalues and the corresponding eigenfunctions of the Laplacian operator −∆ in Ω with
zero Dirichlet boundary data on ∂Ω, that is{

−∆ek = λkek in Ω
ek = 0 on ∂Ω ,

normalized in such a way that ‖ek‖L2(Ω) = 1 . For any s ∈ (0, 1) and any u ∈ H1
0 (Ω) with

u(x) =
∑
i∈N

ai ei(x) , x ∈ Ω ,

one considers the operator

(1.2) Asu =
∑
i∈N

ai λ
s
i ei .

Aim of this paper is to compare the two previous definitions of fractional Laplace opera-
tors. First of all, we would like to note that these two fractional operators (i.e. the ‘integral’
one and the ‘spectral’ one) are different (in spite of some confusion that it is possible to
find in some of the existent literature in which the two operators are somehow freely in-
terchanged). Indeed, the spectral operator As depends on the domain Ω considered (since
its eigenfunctions and eigenvalues depend on Ω), while the integral one (−∆)s evaluated at
some point is independent on the domain in which the equation is set.2

Of course, by definition of As, it is easily seen that the eigenvalues and the eigenfunctions
of As are respectively λsk and ek , k ∈ N , that is the s-power of the eigenvalues of the
Laplacian and the very same eigenfunctions of the Laplacian, respectively.

On the other hand, the spectrum of (−∆)s may be less explicit to describe. We refer to
[28, Proposition 9 and Appendix A], [23, 24], [25, Proposition 5] and [30, Proposition 4] for
the variational characterization of the eigenvalues and for some basic properties.

A natural question is whether or not there is a relation between the spectrum of As and
(−∆)s and, of course, between the respective eigenfunctions. In the present paper, by using
the classical regularity theory for the eigenfunctions of the Laplace operator −∆ and some
recent regularity results for the fractional Laplace equation (see [22, 23, 24, 32]), we will
show that the eigenfunctions of As and (−∆)s are different (for more details see Section 2).
In particular, we will show that the eigenfunctions of (−∆)s are, in general, no better than
Hölder continuous up to the boundary, differently from the eigenfunctions of As (i.e. of the
classical Laplacian) that are smooth up to the boundary (if so is the domain).

1Different definitions of the fractional Laplacian consider different normalizing constants. The constant
c(n, s) chosen here is the one coming from the equivalence of the integral definition of (−∆)s and the one
by Fourier transform (see, e.g., [7] and [10, (3.1)–(3.3) and (3.8)]) and it has the additional properties that
lim
s→1−

(−∆)su = −∆u and lim
s→0+

(−∆)su = u (see [10, Proposition 4.4]).

2Also, the natural functional domains for the operators (−∆)s and As are different, but this is a minor
distinction, since one could consider both the operators as acting on a very restricted class of functions for
which they both make sense - e.g., C∞0 (Ω).
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Furthermore, with respect to the eigenvalues of As and (−∆)s, we will prove that the
first eigenvalue of (−∆)s is strictly less than the first one of As. To this purpose we will
use some extension results for the fractional operators As and (−∆)s (see [7, 34]).

Summarizing, the results given in this paper are the following:

Theorem 1. The operators (−∆)s and As are not the same, since they have different
eigenvalues and eigenfunctions. In particular:

• the first eigenvalues of (−∆)s is strictly less than the one of As;
• the eigenfunctions of (−∆)s are only Hölder continuous up to the boundary, dif-

ferently from the ones of As that are as smooth up the boundary as the boundary
allows.

For further comments on similarities and differences between the operators As and (−∆)s

for s = 1/2 see [13, Remark 0.4].
The paper is organized as follows. Section 2 is devoted to a comparison between the

eigenfunctions of As and (−∆)s. In Section 3 we deal with the spectrum of the two fractional
operators we are considering. Section 4 is devoted to the extension of the operator As, while
in Section 5 we discuss the relation between the first eigenvalues of As and (−∆)s .

2. A comparison between the eigenfunctions of As and (−∆)s

This section is devoted to some remarks about the eigenfunctions of the operators As and
(−∆)s. Precisely, we will consider the following eigenvalue problems in a smooth bounded
domain Ω ⊂ Rn, with Dirichlet homogeneous boundary data, driven, respectively, by As
and (−∆)s,

(2.1)

{
Asu = λu in Ω
u = 0 on ∂Ω

and

(2.2)

{
(−∆)su = λu in Ω
u = 0 in Rn \ Ω .

Note that in (2.2) the boundary condition is given in Rn \Ω and not simply on ∂Ω, due
to the nonlocal character of the operator (−∆)s .

In what follows we will denote by ek,As and ek, s , k ∈ N , the k–th eigenfunction of As
and (−∆)s, respectively.

Taking into account the definition of As, it is easily seen that its eigenfunctions ek,As ,
k ∈ N , are exactly the eigenfunctions of the Laplace operator −∆, i.e.

ek,As = ek .

Also, since ek ∈ C∞(Ω) ∩ Cm(Ω) for any m ∈ N (see, for instance, [11]), then

(2.3) ek,As ∈ C∞(Ω) ∩ Cm(Ω) .

Of course, constructing the eigenfunctions of (−∆)s is more difficult. In spite of this, we
have some regularity results for them. Precisely, denoting by δ(x) = dist(x, ∂Ω), x ∈ Rn,
by [22, Theorems 1.1 and 1.3] and [30, Proposition 4], we have that

ek, s/δ
s
|Ω ∈ C

0,α(Ω) for some α ∈ (0, 1) ,

namely ek, s/δ
s
|Ω has a continuous extension to Ω which is C0,α(Ω) . In particular, ek, s is

Hölder continuous up to the boundary.
Aim of this section will be to show that the Hölder regularity is optimal for the eigen-

functions ek, s of (−∆)s . To this purpose, first of all we recall the notion of Poisson kernel
of fractional type and, then, we discuss the optimal regularity of the eigenfunctions ek, s .
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2.1. Poisson kernel of fractional type. Here we recall the notion of Poisson kernels of
fractional type and their relation with the Dirichlet problem (see [20, Chapter I]).

First of all, for any r > 0, x ∈ Br (that is the ball of radius r centered at the origin)
and y ∈ Rn \Br, we define

Pr(x, y) := co(n, s)

(
r2 − |x|2

|y|2 − r2

)s
1

|x− y|n
,

with co(n, s) > 0. It is known (see [20, Appendix]) that, for any fixed x ∈ Br the function

I(x) :=

∫
Rn\Br

Pr(x, y) dy

is constant in x. Therefore, we normalize co(n, s) in such a way that3

(2.4)

∫
Rn\Br

Pr(x, y) dy = 1 .

The function Pr plays the role of a fractional Poisson kernel, namely if g ∈ C(Rn)∩L∞(Rn)
and

(2.5) ug(x) :=


∫
Rn\Br

Pr(x, y) g(y) dy if x ∈ Br

g(x) if x ∈ Rn \Br ,
then ug is the unique solution of

(2.6)

{
(−∆)sug = 0 in Br
ug = g outside Br .

For this, see [20, 33].

2.2. Optimal regularity for the eigenfunctions of (−∆)s. In this subsection we prove
that the C0, α-regularity of the eigenfunctions ek, s is optimal. Precisely, we show that, in
general, the eigenfunctions of (−∆)s need not to be Lipschitz continuous up to the boundary
(i.e. the Hölder regularity is optimal).

For concreteness, we consider the case

(2.7) n > 2s ,

the domain Ω := Br and the first eigenfunction e1, s (normalized in such a way that
‖e1, s‖L2(Rn) = 1 and e1, s > 0 in Rn , see [28, Proposition 9 and Appendix A]) of (−∆)s in
Br, i.e.

(2.8)

{
(−∆)se1, s = λ1, se1, s in Br
e1, s = 0 in Rn \Br .

We prove that

Proposition 2. The function e1, s given in (2.8) is such that

e1, s 6∈W 1,∞(Br) .

Proof. The proof is by contradiction. We suppose that e1, s ∈ W 1,∞(Br) and so e1, s ∈
W 1,∞(Rn), that is

(2.9) |e1, s(x)|+ |∇e1, s(x)| 6M, x ∈ Rn

for some M > 0.
From now on, we proceed by steps.

Step 1. The function e1, s is spherically symmetric and radially decreasing in Rn .

3More explicitly, one can choose co(n, s) := Γ(n/2) sin(πs)/π(n/2)+1, see [20, pages 399–400].
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Proof. For this, since e1, s > 0 in Rn, we consider its symmetric radially decreasing re-
arrangement e?1, s (see, e.g., [19, Chapter 2] for the basics of such a rearrangement). We

observe that e?1, s vanishes outside Br , since so does e1, s. Moreover, we recall that the L2-
norm is preserved by the rearrangement, while the fractional Gagliardo seminorm decreases,
see, e.g. [1, 3, 21]. Then, by this and since λ1, s is obtained by minimizing the fractional
Gagliardo seminorm under constraint on the L2-norm for functions that vanish outside Br
(see [28, Proposition 9]), we conclude that the minimum is attained by e?1, s (as well as by

e1, s).
Since λ1, s is a simple eigenvalue (see [28, Proposition 9 and Appendix A]), it follows that

e?1, s = e1, s and Step 1 is proved. �

Now, let Q be the fractional fundamental solution given by

Q(x) := c1(n, s)|x|2s−n , x ∈ Rn \ {0} .

Here the constant c1(n, s) > 0 is chosen in such a way that (−∆)sQ is the Dirac’s delta δ0

centered at the origin (see, e.g., [20, page 44] for the basic properties of fractional funda-
mental solutions).

We define

(2.10) ṽ(x) := λ1, sQ ∗ e1, s(x) = λ1, sc1(n, s)

∫
Rn
|y|2s−ne1, s(x− y) dy , x ∈ Rn

and

(2.11) v(x) := e1, s(x)− ṽ(x) , x ∈ Rn .

First of all, notice that ṽ > 0 in Rn, since λ1, s > 0 , Q > 0 and e1, s > 0 in Rn .

Step 2. The function ṽ is spherically symmetric and radially decreasing in Rn.

Proof. Indeed, if R is a rotation, we use Step 1 and the substitution ỹ := Ry to obtain for
any x ∈ Rn

ṽ(x) = λ1, sc1(n, s)

∫
Rn
|y|2s−ne1, s(x− y) dy =

= λ1, sc1(n, s)

∫
Rn
|y|2s−ne1, s

(
R(x− y)

)
dy

= λ1, sc1(n, s)

∫
Rn
|ỹ|2s−ne1, s(Rx− ỹ) dỹ = ṽ(Rx),

that shows the spherical symmetry of ṽ.
As for the fact that ṽ is radially decreasing in Rn, we take ρ > 0 and define

(2.12) v?(ρ) := −
(
λ1, sc1(n, s)

)−1
ṽ(0, . . . , 0, ρ) = −

∫
Rn
|y|2s−ne1, s(−y′, ρ− yn) dy,

where we used the notation y = (y′, yn) ∈ Rn−1 × R for the coordinates in Rn.
The goal is to show that for any ρ > 0

(2.13) v′?(ρ) > 0.

For this, first note that

v?(ρ) = −
∫
Rn∩{|ρ−yn|6r}

|y|2s−ne1, s(−y′, ρ− yn) dy

−
∫
Rn∩{|ρ−yn|>r}

|y|2s−ne1, s(−y′, ρ− yn) dy

= −
∫
Rn∩{|ρ−yn|6r}

|y|2s−ne1, s(−y′, ρ− yn) dy ,
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since
{
|ρ − yn| > r

}
⊆
{
|(−y′, ρ − yn)| > r

}
and e1, s vanishes outside Br . Also, since

the function e1, s is spherically symmetric and radially decreasing in Rn by Step 1, we
write e1, s(x) = −E(|x|) with E′ > 0 in R+ . Thus,

v?(ρ) =

∫
Rn∩{|ρ−yn|6r}

|y|2s−nE(|(−y′, ρ− yn)|) dy

and so

(2.14) v′?(ρ) =

∫
Rn∩{|ρ−yn|6r}

|y|2s−nE′(|(−y′, ρ− yn)|) ρ− yn
|(−y′, ρ− yn)|

dy .

Now, let us consider the following change of variables

(2.15)

{
ỹ′ := y′

ỹn := 2ρ− yn .

First of all, note that if ỹn − ρ > 0 , then −ỹn 6 2ρ− ỹn 6 ỹn, so that

(2ρ− ỹn)2 6 ỹ2
n

and ∣∣(ỹ′, 2ρ− ỹn)
∣∣ =

√
|ỹ′|2 + (2ρ− ỹn)2 6

√
|ỹ′|2 + ỹ2

n = |ỹ| .
As a consequence of this and recalling that n > 2s, we obtain that

(2.16)
∣∣(ỹ′, 2ρ− ỹn)

∣∣2s−n > |ỹ|2s−n .
Therefore, by (2.15) and (2.16) we get∫

Rn∩{06ρ−yn6r}
|y|2s−nE′(|(−y′, ρ− yn)|) ρ− yn

|(−y′, ρ− yn)|
dy

=

∫
Rn∩{06ỹn−ρ6r}

∣∣(ỹ′, 2ρ− ỹn)
∣∣2s−nE′(|(ỹ′, ρ− ỹn)|) ỹn − ρ

(|(ỹ′, ρ− ỹn)|
dỹ

>
∫
Rn∩{06ỹn−ρ6r}

|ỹ|2s−nE′(|(ỹ′, ρ− ỹn)|) ỹn − ρ
(|(ỹ′, ρ− ỹn)|

dỹ ,

due to the fact that E′ > 0 in R+ .
Hence, recalling (2.14), we get

v′?(ρ) =

∫
Rn∩{|ρ−yn|6r}

|y|2s−nE′(|(−y′, ρ− yn)|) ρ− yn
|(−y′, ρ− yn)|

dy

=

∫
Rn∩{06ρ−yn6r}

|y|2s−nE′(|(−y′, ρ− yn)|) ρ− yn
|(−y′, ρ− yn)|

dy

+

∫
Rn∩{06yn−ρ6r}

|y|2s−nE′(|(−y′, ρ− yn)|) ρ− yn
|(−y′, ρ− yn)|

dy

>
∫
Rn∩{06ỹn−ρ6r}

|ỹ|2s−nE′(|(ỹ′, ρ− ỹn)|) ỹn − ρ
(|(ỹ′, ρ− ỹn)|

dỹ

+

∫
Rn∩{06ỹn−ρ6r}

|ỹ|2s−nE′(|(−ỹ′, ρ− ỹn)|) ρ− ỹn
|(−ỹ′, ρ− ỹn)|

dy

= 0 ,

due to the fact that |(ỹ′, ρ− ỹn)| = |(−ỹ′, ρ− ỹn)| . Hence, (2.13) is proved.
Then, by (2.12), the spherical symmetry of ṽ and the fact that λ1, s and c1(n, s) are

positive constants, we get that ṽ is radially decreasing in Rn. This concludes the proof of
Step 2 . �

Next step will exploit assumption (2.9) taken for the argument by contradiction.



ON THE SPECTRUM OF TWO DIFFERENT FRACTIONAL OPERATORS 7

Step 3. The function ṽ is such that

ṽ ∈W 1,∞(B2r) .

Proof. To check this, we observe that for any x ∈ Rn

ṽ(x) = λ1, sc1(n, s)

∫
Rn
|y|2s−ne1, s(x− y) dy = λ1, sc1(n, s)

∫
Br(x)

|y|2s−ne1, s(x− y) dy ,

since e1, s vanishes outside Br by (2.8). Here, Br(x) denotes the ball of radius r centered
at x .

Now, we notice that if x ∈ B2r then Br(x) ⊂ B3r. As a consequence, recalling also (2.9),
we obtain that for any x ∈ B2r

|ṽ(x)|+ |∇ṽ(x)| 6 λ1, sc1(n, s)

∫
Br(x)

|y|2s−n
(
|e1, s(x− y)|+ |∇e1, s(x− y)|

)
dy

6 λ1, sc1(n, s)M

∫
B3r

|y|2s−n dy,

which is finite (being s > 0). Hence, Step 3 is established. �

Now we can conclude the proof of Proposition 2 .
For this, note that, from (2.9) and Step 3, we get

v = e1, s − ṽ ∈W 1,∞(B2r) ,

i.e. there exists M̃ > 0 such that

(2.17) |v(x)− v(y)| 6 M̃ |x− y|

for any x, y ∈ B2r .
Also, by (2.10) and the choice of Q

(−∆)sṽ = λ1, se1, s ∗ (−∆)sQ = λ1, se1, s ∗ δ0 = λ1, se1, s

and so, by (2.8) and (2.11)

(−∆)sv = (−∆)se1, s − (−∆)sṽ = λ1, se1, s − λ1, se1, s = 0

in Br. Therefore, we can reconstruct v by its values outside Br via the fractional Poisson
kernel, that is, for any x ∈ Br,

(2.18) v(x) =

∫
Rn\Br

Pr(x, y)v(y) dy ,

for this see (2.5) and (2.6) .
Since (2.11) holds true and e1, s = 0 outside Br, by (2.18) we deduce

(2.19)

v(x) =

∫
Rn\Br

Pr(x, y)v(y) dy

=

∫
Rn\Br

Pr(x, y)e1, s(y) dy −
∫
Rn\Br

Pr(x, y)ṽ(y) dy

= −
∫
Rn\Br

Pr(x, y)ṽ(y) dy.
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By (2.11), (2.17), (2.18) and (2.19) we get

(2.20)

∣∣∣ ∫
Rn\Br

Pr(x, y)ṽ(y) dy − ṽ(0, . . . , 0, r)
∣∣∣

=

∣∣∣∣∣−
∫
Rn\Br

Pr(x, y)v(y) dy + v(0, . . . , 0, r)− e1, s(0, . . . , 0, r)

∣∣∣∣∣
=

∣∣∣∣∣
∫
Rn\Br

Pr(x, y)v(y) dy − v(0, . . . , 0, r)

∣∣∣∣∣
= |v(0, . . . , 0, r)− v(x)|

6 M̃ |(0, . . . , 0, r)− x|
for any x ∈ Br.

If in (2.20) we take x := (0, . . . , 0, r − ε) ∈ Br for a small ε ∈ (0, r) , recalling (2.4), we
deduce that

(2.21)

M̃ε = M̃ |(0, . . . , 0, r)− x|

>

∣∣∣∣∣
∫
Rn\Br

Pr(x, y)ṽ(y) dy − ṽ(0, . . . , 0, r)

∣∣∣∣∣
=

∣∣∣∣∣
∫
Rn\Br

Pr(x, y)
(
ṽ(y)− ṽ(0, . . . , 0, r)

)
dy

∣∣∣∣∣
= co(n, s)

∫
|y|>r

(
r2 − |x|2

|y|2 − r2

)s
ṽ(0, . . . , 0, r)− ṽ(y)

|x− y|n
dy

= co(n, s)
(
r2 − |x|2

)s ∫
|y|>r

ṽ(0, . . . , 0, r)− ṽ(y)(
|y|2 − r2

)s|x− y|n dy
> co(n, s) r

s (r − |x|)s
∫
|y|>r

ṽ(0, . . . , 0, r)− ṽ(y)(
|y|2 − r2

)s(|y′|2 + |yn − r + ε|2
)n/2 dy

= εs
∫
|y|>r

fε(y) dy ,

where

fε(y) := co(n, s) r
s ṽ(0, . . . , 0, r)− ṽ(y)(
|y|2 − r2

)s(|y′|2 + |yn − r + ε|2
)n/2 .

We remark that fε(y) > 0 for any |y| > r, since

(2.22) ṽ(0, . . . , r) > ṽ(y) for any |y| > r ,

thanks to Step 1. Moreover

lim
ε→0+

fε(y) = co(n, s) r
s ṽ(0, . . . , 0, r)− ṽ(y)(
|y|2 − r2

)s(|y′|2 + |yn − r|2
)n/2 .

So, we divide by εs the inequality obtained in (2.21) and we use Fatou’s Lemma: we conclude
that

0 = lim inf
ε→0+

M̃ε1−s > lim inf
ε→0+

∫
|y|>r

fε(y) dy

= co(n, s) r
s

∫
|y|>r

ṽ(0, . . . , 0, r)− ṽ(y)(
|y|2 − r2

)s(|y′|2 + |yn − r|2
)n/2 dy .

This and (2.22) yield that ṽ(y) is constantly equal to ṽ(0, . . . , 0, r) for any |y| > r, so that,
in particular, if x? := (0, . . . , 2r) we have that

(2.23) ∂nṽ(x?) = 0 .
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On the other hand, by (2.10),

1

λ1,sc1(n, s)
∂nṽ(x?) =

∂

∂xn

∫
Br

|x− z|2s−ne1,s(z) dz

∣∣∣∣
x=x?

= (2s− n)

∫
Br

|x? − z|2s−n−2(x?n − zn)e1,s(z) dz

= (2s− n)

∫
Br

(
|z′|2 + |2r − zn|2

)(2s−n−2)/2
(2r − zn)e1,s(z) dz ,

which is strictly negative, by (2.7). This is a contradiction with (2.23) and hence Proposi-
tion 2 is proved. �

3. The spectrum of As and (−∆)s

In this section we focus on the spectrum of the operators As and (−∆)s. In what follows,
we will denote by

0 < λ1 < λ2 6 . . . 6 λk 6 . . .

the divergent sequence of the eigenvalues of the Laplace operator −∆ in Ω with Dirichlet
homogeneous boundary data, while by λk,As the sequence of eigenvalues of problem (2.1)
and, finally, by λk, s the eigenvalues of (2.2) .

By definition of As, it easily follows that the eigenvalues λk,As are exactly the s–power
of the ones of the Laplacian, that is

(3.1) λk,As = λsk , k ∈ N .
As for λk, s, we refer to [28, Proposition 9 and Appendix A], [25, Proposition 5] and

[30, Proposition 4] for their variational characterizations and some basic properties. In
particular, we recall that for k ∈ N

(3.2) λk, s =
c(n, s)

2
min

u∈Pk, s\{0}

∫
Rn×Rn

|u(x)− u(y)|2

|x− y|n+2s
dx dy∫

Ω
|u(x)|2 dx

,

where
P1, s = X0(Ω) :=

{
u ∈ Hs(Rn) s.t. u = 0 a.e. in Rn \ Ω}

and

(3.3) Pk, s :=
{
u ∈ X0(Ω) s.t. 〈u, ej,s〉X0(Ω) = 0 ∀j = 1, . . . , k − 1

}
, k > 2

with

〈u, v〉X0(Ω) =

∫
Rn×Rn

(
u(x)− u(y)

)(
v(x)− v(y)

)
|x− y|n+2s

dx dy .

In what follows we will show that As and (−∆)s have different eigenvalues. Of course,
at this purpose we will use properties (3.1) and (3.2), but the main ingredient will be the
extension of the operator As, carried on in the forthcoming Section 4.

4. One-dimensional analysis

In this section we perform an ODE analysis related to the extension of the operator As ,
as it will be clear in the forthcoming Section 5 .

This analysis is not new in itself (see also [7, Section 3.2] and [34, Section 3.1]): similar
results were obtained, for instance, in [34] by using a conjugate equation and suitable special
functions such as different kinds of Bessel and Hankel functions. Here, we use an elementary
and self-contained approach.

Given a ∈ (−1, 1) in what follows we denote by W 1,2
a (R+) the following Sobolev space

W 1,2
a (R+) :=

{
g ∈W 1,1

loc (R+) :

∫
R+

ta|g(t)|2 dt < +∞ and

∫
R+

ta|ġ(t)|2 dt < +∞
}
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endowed with the norm

(4.1) ‖g‖
W 1,2
a (R+)

:=

(∫
R+

ta|g(t)|2 dt+

∫
R+

ta|ġ(t)|2 dt
)1/2

.

Here, as usual, we used the notation R+ := (0,+∞) . We also denote by W 1,2
1,a (R+) the

closure, with respect to the norm in (4.1), of the set of all functions g ∈ C∞(R+)∩C0(R+)
with bounded support and g(0) = 1.

It is useful to point out that W 1,2
a (R+) and W 1,2

1,a (R+) are contained in a classical Sobolev

space. Precisely, denoting by W 1,p((0, κ)), p > 1 and κ > 0 , the classical Sobolev space
endowed with the norm

‖g‖W 1,p((0,κ)) =
(
‖g‖pLp((0,κ)) + ‖ġ‖pLp((0,κ))

)1/p
,

the following result holds true:

Lemma 3. Fix a ∈ (−1, 1) and κ > 0. Then,

W 1,2
a (R+) ⊆W 1,p((0, κ))

for any p ∈
[
1, a∗

)
, with

a∗ =

{
2/(a+ 1) if a ∈ (0, 1)

2 if a ∈ (−1, 0] .

Moreover, there exists Cκ > 0 such that

‖g‖W 1,p((0,κ)) 6 Cκ‖g‖W 1,2
a (R+)

for any g ∈W 1,2
a (R+) .

Proof. Let a ∈ (−1, 1), g ∈ W 1,2
a (R+) and p ∈

[
1, a∗

)
. We use the Hölder Inequality with

exponents 2/(2− p) and 2/p (note that both these exponents are greater than 1, thanks to
the choice of p) to see that

‖g‖pLp((0,κ)) =

∫ κ

0
t−pa/2tpa/2|g(t)|p dt

6

[∫ κ

0
t−pa/(2−p) dt

](2−p)/2 [∫ κ

0
ta|g(t)|2 dt

]p/2
=

[
2− p

2− p(1 + a)
κ(2−p(1+a))/(2−p)

](2−p)/2 [∫
R+

ta|g(t)|2 dt
]p/2

< +∞ ,

again since p < a∗ .
A similar inequality holds if we replace g with ġ, and this proves the desired result. �

Hence, as a consequence of Lemma 3, the functions in W 1,2
1,a (R+) are uniformly continuous

in any interval, by the standard Sobolev embedding, and have a distributional derivative
which is well-defined a.e.

Now, for any λ > 0 and any g ∈W 1,2
1,a (R+), we consider the functional

Gλ(g) :=

∫
R+

ta
(
|g(t)|2 dt+ λ|ġ(t)|2

)
dt .

The minimization problem of Gλ is described in detail by the following result:

Theorem 4. There exists a unique gλ ∈W 1,2
1,a (R+) such that

(4.2) mλ := inf
g∈W 1,2

1,a (R+)
Gλ(g) = Gλ(gλ),

that is, the above infimum is attained.
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Moreover, gλ ∈ C∞(R+) ∩ C0(R+) and it satisfies

(4.3)


g̈λ(t) +

a

t
ġλ(t)− λgλ(t) = 0 for any t ∈ R+

gλ(0) = 1,

and

(4.4) lim
t→0+

taġλ(t) = −m1λ
(a+1)/2.

Finally,

(4.5) gλ(t) ∈ [0, 1] and ġλ(t) 6 0 for all t ∈ R+ and lim
t→+∞

gλ(t) = 0.

Proof. By plugging a smooth and compactly supported function in Gλ, we see that mλ ∈
[0,+∞), so we can take a minimizing sequence gj in W 1,2

1,a (R+), that is a sequence gj such
that

Gλ(gj)→ mλ

as j → +∞ .
In particular, Gλ(gj) 6 mλ + 1. As a consequence of this, ‖gj‖W 1,2

a (R+)
is bounded

uniformly in j . Hence, there exists gλ ∈ W 1,2
1,a (R+) such that gj → gλ weakly in W 1,2

1,a (R+)
as j → +∞ . Also, for any k ∈ N, k > 2, we have that

C̃k

∫ k

1/k

(
|gj(t)|2 + |ġj(t)|2

)
dt 6

∫ k

1/k
ta
(
|gj(t)|2 + |ġj(t)|2

)
dt 6 mλ + 1 ,

where C̃k = (1/k)a if a > 0, while C̃k = ka if a < 0 . Namely, ‖gj‖W 1,2([1/k,k]) is bounded
uniformly in j.

Now, we perform a diagonal compactness argument over the index k. Namely, we take
an increasing function φk : N → N and we use it to extract subsequences. We have a
subsequence gφ2(j) that converges a.e. in [1/2, 2] to gλ with ġφ2(j) converging to ġλ weakly

in L2([1/2, 2]) as j → +∞. Then, we take a further subsequence gφ3(φ2(j)) that converges

a.e. in [1/3, 3] to gλ with ġφ3(φ2(j)) converging to ġλ weakly in L2([1/3, 3]) as j → +∞.
Iteratively, for any k ∈ N, we get a subsequence gφk◦...φ2(j) that converges a.e. in [1/k, k] to

gλ with ġφk◦···◦φ2(j) converging to ġλ weakly in L2([1/k, k]) as j → +∞.
Hence we look at the diagonal sequence gj := gφj◦···◦φ2(j). By construction gj converges

to gλ a.e. in R+ as j → +∞ and therefore, by Fatou Lemma,

(4.6) lim inf
j→+∞

∫
R+

ta|gj(t)|2 dt >
∫
R+

ta|gλ(t)|2 dt.

On the other hand, by the weak convergence of ġj to ġλ in L2([1/k, k]) as j → +∞, we have

that ġλ ∈ L2([1/k, k]) and so ψ(t) := taġλ(t) is also in L2([1/k, k]), which gives

lim
j→+∞

∫ k

1/k
ġj(t)ψ(t) dt =

∫ k

1/k
ġλ(t)ψ(t) dt ,

that is

lim
j→+∞

∫ k

1/k
taġj(t)ġλ(t) dt =

∫ k

1/k
ta|ġλ(t)|2 dt
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for any k ∈ N, k > 2 . As a consequence of this, we obtain that

(4.7)

0 6 lim inf
j→+∞

∫ k

1/k
ta|ġj(t)− ġλ(t)|2 dt

= lim inf
j→+∞

(∫ k

1/k
ta|ġj(t)|2 dt+

∫ k

1/k
ta|ġλ(t)|2 dt− 2

∫ k

1/k
taġj(t) · ġλ(t)

)
dt

= lim inf
j→+∞

∫ k

1/k
ta|ġj(t)|2 dt−

∫ k

1/k
ta|ġλ(t)|2 dt

for any k ∈ N, k > 2 .
By (4.6), (4.7) and the positivity of λ we get

mλ = lim
j→+∞

Gλ(gj)

= lim
j→+∞

(∫
R+

ta|gj(t)|2 dt+ λ

∫
R+

ta|ġj(t)|2 dt
)

> lim inf
j→+∞

(∫
R+

ta|gj(t)|2 dt+ λ

∫ k

1/k
ta|ġj(t)|2 dt

)

>
∫
R+

ta|gλ(t)|2 dt+ λ

∫ k

1/k
ta|ġλ(t)|2 dt

for any k ∈ N, k > 2 . By taking k → +∞, we deduce that mλ > Gλ(gλ). This proves
that the infimum in (4.2) is attained at gλ. The uniqueness of the minimizer is due to the
convexity of the functional Gλ. This completes the proof of (4.2) .

Now, notice that, since gλ ∈W 1,2
1,a (R+), then gλ(0) = 1 and gλ ∈W 1,p((0, κ)) for any p ∈

[1, a∗) and any κ > 0, by Lemma 3. Hence, it is uniformly continuous on (0, κ) for any
κ > 0, by the standard Sobolev embedding, and so it can be extended with continuity at 0,
that is the function gλ ∈ C0(R+) .

Moreover, by taking standard perturbation of the functional Gλ at gλ + εφ, with φ ∈
C∞0 (R+) and ε ∈ R small, one obtains that

(4.8)

∫
R+

ta
(
gλ(t)φ(t) + λġλ(t)φ̇(t)

)
dt = 0 .

Hence, gλ satisfies weakly an ODE and so gλ ∈ C∞(R+) by uniformly elliptic regularity
theory (see for instance4 [16, Theorem 8.10]). Moreover, integrating by parts in (4.8) it
easily follows that gλ solves problem (4.3) .

Now, we prove (4.4). For this, it is convenient to reduce to the case λ = 1, by noticing

that if g(λ)(t) := g(t/
√
λ), we have that

Gλ(g(λ)) = λ(a+1)/2G1(g)

and therefore

(4.9) mλ = λ(a+1)/2m1 and gλ(t) = g1(t/
√
λ).

Let us fix φ ∈ C∞0 ([−1, 1]) with φ(0) = 1 and let

γ(t) := ta
(
g1(t)φ(t) + ġ1(t)φ̇(t)

)
.

By the Cauchy–Schwarz Inequality, we have that∫
R+

γ(t) dt 6 G1(g1)G1(φ) < +∞,

4In further detail, gλ satisfies [16, Equation (8.2)] with n = 1, aij = a11 = λta, bi = b1 = 0, ci = c1 = 0,
d = ta and this equation is uniformly elliptic in bounded domains separated from 0: so we can apply [16,
Theorem 8.10] with f = 0 and obtain that gλ ∈W k,2(b1, b2) for any b2 > b1 > 0 and any k ∈ N .
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so that γ ∈ L1(R+). Therefore, by the absolute continuity of the Lebesgue integral, for any
fixed ε > 0 there exists δε > 0 such that if 0 < t1 < t2 < δε then∫ t2

t1

γ(τ) dτ < ε.

As a consequence, the function

Γ(t) :=

∫ +∞

t
γ(τ) dτ

is uniformly continuous in (0, 1) and therefore it may be extended with continuity at 0 as
follows

Γ(0) =

∫ +∞

0
γ(τ) dτ =

∫ +∞

0
τa
(
g1(τ)φ(τ) + ġ1(τ)φ̇(τ)

)
dτ.(4.10)

By (4.3) with λ = 1 it is easy to see that for any t ∈ R+

tag1(t) =
d

dt

(
taġ1(t)

)
.

So, by this and recalling that φ(0) = 1 and φ(t) = 0 if t > 1, we get

(4.11)

Γ(0) =

∫ 1

0
τa
(
g1(τ)φ(τ) + ġ1(τ)φ̇(τ)

)
dτ

=

∫ 1

0

[
d

dτ

(
τaġ1(τ)

)
φ(τ) + τaġ1(τ)φ̇(τ)

]
dτ

= lim
t→0+

∫ 1

t

d

dτ

(
τaġ1(τ)φ(τ)

)
dτ

= − lim
t→0+

taġ1(t)φ(t)

= − lim
t→0+

taġ1(t).

Note that the computation carried on in (4.11) has also shown that the above limit exists.
Now, to compute explicitly such limit, we consider the perturbation

g1,ε := (g1 + εφ)/(1 + ε)

with ε ∈ R small. First of all, notice that g1,ε = g1 + εφ− εg1 + o(ε) and so

|g1,ε|2 = |g1|2 + 2εg1φ− 2ε|g1|2 + o(ε) ,

and similarly if we replace g1,ε with ġ1,ε. It follows that

G1(g1,ε) = G1(g1) + 2ε

∫
R+

τa
(
g1(τ)φ(τ)− |g1(τ)|2 + ġ1(τ)φ̇(τ)− |ġ1(tτ)|2

)
dt+ o(ε) .

Then, the minimality condition implies that∫
R+

τa
(
g1(τ)φ(τ)− |g1(τ)|2 + ġ1(τ)φ̇(τ)− |ġ1(τ)|2

)
dτ = 0 .

Hence, by this, (4.10) and the definition of m1 we deduce

0 =

∫
R+

τa
(
g1(τ)φ(τ)− |g1(τ)|2 + ġ1(τ)φ̇(τ)− |ġ1(τ)|2

)
dτ

=

∫
R+

τa
(
g1(τ)φ(τ) + ġ1(τ)φ̇(τ)

)
dτ −

∫
R+

τa
(
|g1(τ)|2 + |ġ1(τ)|2

)
dτ

= Γ(0)−m1.

This and (4.11) prove (4.4) for λ = 1. In general, recalling (4.9), we obtain

lim
t→0+

taġλ(t) = λ−1/2 lim
t→0+

taġ1(tλ−1/2) = λ(a+1)/2 lim
t→0+

(tλ−1/2)aġ1(tλ−1/2) = −m1λ
(a+1)/2,
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thus establishing (4.4) for any λ > 0.
Now, let us prove (4.5) For this we first observe that G1(|g1|) = G1(g1), which implies,

by the uniqueness of the minimizer, that g1 = |g1| and so g1 > 0 in R+.
We start showing that

(4.12) ġ1 6 0 in the whole of R+.

By contradiction, if g1 was increasing somewhere, there would exist t2 > t1 > 0 such that
0 6 g1(t1) < g1(t2). Let b :=

(
g1(t1) + g1(t2)

)
/2 ∈

(
g1(t1), g1(t2)

)
. Notice that there exists

t3 > t2 such that g(t3) = b: otherwise, by continuity, we would have that g(t) > b > 0 for
any t > t2 and so, using that a ∈ (−1, 1),

G1(g1) >
∫ +∞

t2

ta|g1(t)|2 dt > b2
∫ +∞

t2

ta dt = +∞,

which is against our contraction.
Having established the existence of the desired t3, we use the Weierstrass Theorem to

obtain t? ∈ [t1, t3] in such a way that

g1(t?) = max
t∈[t1,t3]

g1(t) .

Note that, by definition of b,

g1(t?) > g1(t2) > b > g1(t1) .

Hence, t? 6= t1 and also t? 6= t3, being g1(t3) = b . Thus, t? is an interior maximum for g1.
Accordingly ġ1(t?) = 0 and g̈1(t?) 6 0. Thus, by (4.3),

0 = g̈1(t?) +
a

t?
ġ1(t?)− g1(t?) 6 0 + 0− b = −b < 0.

This is a contradiction and it proves (4.12).
A consequence of (4.12) is also that g1(t) 6 g1(0) = 1 for any t ∈ R+. Moreover, it

implies that the limit
` := lim

t→+∞
g1(t) ∈ [0, 1]

exists. Necessarily, it must be
` = 0 .

Otherwise, if ` > 0, it would follow that g(t) > `/2 for any t > to, for a suitable to > 0 .
This yields that (using also that a ∈ (−1, 1))

G1(g1) >
∫ +∞

to

ta|g1(t)|2 dt > (`/2)2

∫ +∞

to

ta dt = +∞,

which is against our contraction. All these considerations imply (4.5) for λ = 1, and thus
for any λ > 0, thanks to (4.9). �

5. A relation between the first eigenvalue of As and that of (−∆)s

This section is devoted to the study of the relation between the first eigenvalue of As and
of (−∆)s, that is between λ1, As and λ1, s . Precisely, in this framework our main result is
the following:

Proposition 5. The relation between the first eigenvalue of (−∆)s and the one of As is
given by

λ1, s < λ1, As .

Proof. Let us take a := 2s− 1 ∈ (−1, 1) and for any (x, t) ∈ Ω× R+, set

E1(x, t) := gλ1(t)e1(x),

where the setting of Theorem 4 is in use, λ1 is the first eigenvalue of the Laplacian −∆ and
e1 = e1, As is the first eigenfunction of the operator As (see Section 2).
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Notice that E1 may be thought as an extension of e1 in the half-space Rn × R+ that
vanishes in (Rn \Ω)×R+ . However, we point out that E1 does not verify div(∇E1) = 0 in
the whole of Rn × R+ .

Also, note that the function E1 ∈ C∞(Ω×R+)∩C(Ω× R+) , since e1 ∈ C∞(Ω)∩Cm(Ω)

for any m ∈ N (see formula (2.3)) and gλ1 ∈ C∞(R+) ∩ C0(R+) by Theorem 4 . Also,

lim
t→0+

ta∂tE1(x, t) = lim
t→0+

taġλ1(t)e1(x) = −m1λ
(a+1)/2
1 e1(x) ,

thanks to (4.4).
Furthermore, since Gλ1(gλ1) is finite by Theorem 4, we have that

L1(R+) 3 ta|gλ1(t)|2 + ta|ġλ1(t)|2 > 2ta|gλ1(t)ġλ1(t)|

and, therefore, there exists a diverging sequence of R for which

(5.1) lim
R→+∞

Ra|gλ1(R)ġλ1(R)| = 0 .

Now, note that, using5 the definition of E1, the fact that e1 is the first eigenfunction of
−∆ (for this see Section 2), for any (x, t) ∈ Ω× R+ we have

(5.2)

ta|∇E1(x, t)|2 = div
(
taE1(x, t)∇E1(x, t)

)
− ata−1E1(x, t)∂tE1(x, t)

− taE1(x, t)∆E1(x, t)

= div
(
taE1(x, t)∇E1(x, t)

)
− ata−1E1(x, t)ġλ1(t)e1(x)

− taE1(x, t)gλ1(t)∆xe1(x)− taE1(x, t)g̈λ1(t)e1(x)

= div
(
taE1(x, t)∇E1(x, t)

)
− ata−1E1(x, t)ġλ1(t)e1(x)

+ λ1t
aE1(x, t)gλ1(t)e1(x)− taE1(x, t)g̈λ1(t)e1(x)

= div
(
taE1(x, t)∇E1(x, t)

)
+ taE1(x, t)e1(x)

(
− at−1ġλ1(t) + λ1gλ1(t)− g̈λ1(t)

)
= div

(
taE1(x, t)∇E1(x, t)

)
,

thanks to (4.3) .
By (5.2) and the Divergence Theorem, we have that

(5.3)

∫∫
Ω×R+

ta|∇E1(x, t)|2 dx dt = lim
R→+∞

∫∫
Ω×(0,R)

ta|∇E1(x, t)|2 dx dt

= lim
R→+∞

∫∫
Ω×(0,R)

div
(
taE1(x, t)∇E1(x, t)

)
dx dt

= lim
R→+∞

∫
Ω

(
taE1(x, t)∂tE1(x, t)

)
|t=R −

(
taE1(x, t)∂tE1(x, t)

)
|t=0 dx ,

5We remark that here ∇ is the vector collecting all the derivatives, both in x and it t. Similarly,
∆ = ∆x + ∂2

t .
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since for any t ∈ R+, E1(·, t) = 0 on ∂Ω, being e1 = 0 outside Ω . Hence, by (5.3) and using
again the definition of E1 we deduce that∫∫

Ω×R+

ta|∇E1(x, t)|2 dx dt

= lim
R→+∞

∫
Ω

[(
taE1(x, t)∂tE1(x, t)

)
|t=R −

(
taE1(x, t)∂tE1(x, t)

)
|t=0

]
dx

= lim
R→+∞

∫
Ω

[
RaE1(x,R)∂tE1(x,R)−

(
taE1(x, t)∂tE1(x, t)

)
|t=0

]
dx

= lim
R→+∞

∫
Ω

[
Ragλ1(R)ġλ1(R)|e1(x)|2 −

(
tagλ1(t)ġλ1(t)|e1(x)|2

)
|t=0

]
dx

= lim
R→+∞

∫
Ω

(
Ragλ1(R)ġλ1(R)|e1(x)|2 + m1λ

(a+1)/2
1 |e1(x)|2

)
dx

= lim
R→+∞

(
Ragλ1(R)ġλ1(R) + m1λ

(a+1)/2
1

)
‖e1‖2L2(Ω)

= m1λ
(a+1)/2
1

= m1λ
s
1 ,

thanks to (4.4), the fact that gλ(0) = 1, (5.1) and the choice of a . As a consequence,

(5.4)

inf
U∈C(Rn×R+)
‖U(·,0)‖

L2(Ω)
=1

U(·,0)=0 outside Ω

∫∫
Rn×R+

ta|∇U(x, t)|2 dx dt 6
∫∫

Rn×R+

ta|∇E1(x, t)|2 dx dt

=

∫∫
Ω×R+

ta|∇E1(x, t)|2 dx dt

= m1λ
s
1 ,

since E1(·, t) = e1(·)gλ(t) = 0 in Rn \ Ω for any t ∈ R+ .
Now, we use a result in [7] to relate the first term in (5.4) to λ1, s (which, roughly speaking,

says the optimal U is realized by the so called a-harmonic extension of u := U(·, 0)). Namely,
by [7, formula (3.7) and its proof at page 1250] and [10, Proposition 3.4], we get

inf
U∈C(Rn×R+)
‖U(·,0)‖

L2(Ω)
=1

U(·,0)=0 outside Ω

∫∫
Rn×R+

ta|∇U(x, t)|2 dx dt = m1 inf
u∈C(Rn)
‖u‖

L2(Ω)
=1

u=0 outside Ω

∫
Rn
|ξ|2s|û(ξ)|2 dξ

= m1
c(n, s)

2
inf

u∈C(Rn)
‖u‖

L2(Ω)
=1

u=0 outside Ω

∫∫
Rn×Rn

|u(x)− u(y)|2

|x− y|n+2s
dx dy,

> m1
c(n, s)

2
min

u∈X0(Ω)
‖u‖

L2(Ω)
=1

∫∫
Rn×Rn

|u(x)− u(y)|2

|x− y|n+2s
dx dy

= m1 λ1, s ,

thanks also to the variational characterization of λ1, s given in (3.2). Here û denotes the
Fourier transform of u .

Thus,

inf
U∈C(Rn×R+)
‖U(·,0)‖

L2(Ω)
=1

U(·,0)=0 outside Ω

∫∫
Rn×R+

ta|∇U(x, t)|2 dx dt > m1λ1, s.

This and (5.4) give that

λ1, s 6 λ
s
1.
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We claim that the strict inequality occurs. If, by contradiction, equality holds here, then
it does in (5.4), namely

E1 ∈ arg min

 inf
U∈C(Rn×R+)
‖U(·,0)‖

L2(Ω)
=1

U(·,0)=0 outside Ω

∫∫
Rn×R+

ta|∇U(x, t)|2 dx dt

 .

We remark that such minimizers are continuous up to Rn × R+, and they solve the associ-
ated elliptic partial differential equation in Rn × R+, see [12]: in particular E1 would solve
an elliptic partial differential equation in Rn × R+ and it vanishes in a nontrivial open set
(just take a ball B outside Ω and consider B × (1, 2)).

As a consequence of this and of the Unique Continuation Principle (see [18]), E1 has to
vanish identically in Ω × R+ and so, by taking t → 0+, we would have that e1(x) = 0 for
any x ∈ Ω (here we use also the fact that gλ1(0) = 1 by (4.3)). This is a contradiction and
it establishes that λ1, s < λs1 = λ1,As . �

Our main result, i.e. Theorem 1, is now a direct consequences of Propositions 2 and 5.
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