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ABSTRACT. Understanding the statistical properties of the aperiodic planar Lorentz gas stands
as a grand challenge in the theory of dynamical systems. Here we study a greatly simplified but
related model, proposed by Arvind Ayyer and popularized by Joel Lebowitz, in which a scatterer
configuration on the torus is randomly updated between collisions. Taking advantage of recent
progress in the theory of time-dependent billiards on the one hand and in probability theory on
the other, we prove a vector-valued almost sure invariance principle for the model. Notably, the
configuration sequence can be weakly dependent and non-stationary. We provide an expression
for the covariance matrix, which in the non-stationary case differs from the traditional one. We
also obtain a new invariance principle for Sinai billiards (the case of fixed scatterers) with time-
dependent observables, and improve the accuracy and generality of existing results.
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1. INTRODUCTION

Recall that having infinitely many fixed scatterers in a periodic configuration in R? and a particle
moving in the exterior of the scatterers, the particle being in free motion up to elastic collisions
with the scatterers, is a model often called the planar periodic Lorentz gas. For example, if the
configuration is invariant under the translations of Z2, the model corresponds to Sinai billiards on
the two-dimensional torus. Under certain assumptions, including that the free path of the particle
is uniformly bounded from above and below, many statistical limit results are accordingly known
to hold true. A planar aperiodic Lorentz gas is obtained by relaxing the periodicity assumption
on the scatterer configuration. For example, one can begin with a periodic configuration, shift
each scatterer by a small amount, independently of the others, and fix the resulting configuration
for good. Understanding the statistical properties of the particle trajectories in this case is an
outstanding problem in modern dynamics. A source of major difficulties is the phenomenon or
re-collisions: The billiard particle could hit the same scatterer infinitely many times and, because
of that, the scatterer configuration seen by the particle at a given time depends in a complicated
way on the history of the billiard trajectory. On the other hand, if the configuration has temporal
randomness — say it is refreshed randomly and independently of the past after each collision — the
situation is simpler. Yet, little if anything is presently known even in that setting. The motivation
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of this paper is to improve the state of the affairs. To that end, we are going to analyze a model
of Sinai billiards with random scatterers, in which the configuration is randomly updated between
collisions.

Consider, then, the following random billiard table on a two-dimensional torus obtained by
identifying the opposite sides of the unit square. First, a disk of radius R is placed on the torus
with its center located at the corner of the disk, after which it is fixed for good. We will refer to
this disk as the “gray disk” in the future. Next, another disk of radius R, called the “white disk”,
is placed on the torus at a random location so that its center is within distance € from the center
of the square; see Figure 1. We will assume throughout that the “no-overlap” conditions

max(R,R+¢) <1 and I:z—l—R—l—a€<\/L§

hold. Given such a triple (R, R, ), the strict inequalities guarantee a uniform positive lower bound
on the distance between the disks, regardless of the centering of the white disk.

The rules of the dynamics on the table are as follows. Consider a particle traveling with unit
speed in the complement of the disks on the surface of the torus. If the particle hits the white disk,
it bounces elastically off the inert boundary of the disk and continues its motion with unit speed,
as illustrated in Figure 1. If, on the other hand, the particle hits the gray disk instead, it behaves
in exactly the same way, but the location of the white disk is refreshed randomly, so that its center
remains within distance € from the center of the square. Finally, corresponding to the sides of the
original unit square, there are four “transparent walls” (the opposite pairs of which are identified)
terminating on the gray disk. If the particle meets a transparent wall, it simply passes through.
However, if it makes a “clean pass” in that it avoids hitting the gray walls at the two ends of the
transparent wall in question, see Figure 2 and its caption, the location of the white disk is again
refreshed randomly. In brief, the dynamics is that of ordinary billiards, except that the location
of the white disk is refreshed randomly each time the particle hits the gray disk or makes a clean
pass through a transparent wall.

FiGURE 1. The random billiard table. A two-dimensional torus is obtained by
identifying the opposite sides of the unit square shown. The gray disk of radius R
is fixed for good with its center at the corner. The white disk has a fixed radius R
and a random center within distance € from the center of the square. The random
centering is refreshed after each collision with the gray disk or a clean pass through
a transparent wall; see text for details.

Notice that the no-overlap conditions with their strict inequalities yield a uniform positive lower
bound on length of the free path of the particle. It will be necessary to bound the length of the
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FIGURE 2. A velocity vector corresponding to a “clean pass” through a transparent
wall. A pass is clean if the segment of unit length parallel to the velocity vector and
centered at the point of crossing does not intersect the gray disk.

free path (between successive collisions with a disk) from above. To that end, we introduce the
so-called “finite horizon” conditions on the geometry of the disks that we will assume to be in
effect at all times. With the aid of Figure 3, it is easy to verify that the condition

R > ﬁ
guarantees there is no diagonal passage along which the particle could escape without ever colliding
with a disk. On the other hand, the condition

R+R—-e>1

guarantees there is neither vertical nor horizontal passage; the white disk will then, in any allowed
position, contain the smaller centered disk shown in Figure 3. In fact, under these conditions the
free path is uniformly bounded above.

FIGURE 3. The finite horizon assumption. If the gray disk has radius R > ﬁi’

the diagonal passage is blocked. Given R, the white disk blocks the horizontal and

vertical passages if it contains the centered dashed disk of radius % - R.

Of course, if the above conditions are satisfied for some value of ¢, given R and R, they remain
satisfied for any smaller value of € as well. The idea is that R and R are considered fixed once
and for all and, for all sufficiently small values of ¢, the statistical properties of the motion of the
particle can be analyzed.

To the author’s knowledge, the problem studied here was initially proposed by Arvind Ayyer,
after which it got rather widely advocated inside the mathematical physics community by Joel
Lebowitz. It was also put forward in [1], and the recent [17] mentions a reminiscent model due to
Lebowitz. So far, no results on it seem to have been published in the literature. This is somewhat
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surprising, given its relation to the aperiodic Lorentz gas and the fact that the stochastic stability
properties of a similar model were studied already in [28]. For a toy version of the model, some
theorems were obtained in [1] and [2]. See also [23,14] for related models. Below we prove a
fairly sophisticated limit result for the model, namely the almost sure invariance principle for
vector-valued observables. Instead of providing the precise statement here, let us formulate a
“pre-theorem”, which captures the essence:

Pre-theorem. There exists a Brownian motion B such that the unfolded planar trajectory' of
the particle, for a typical initial condition, for a typical sequence of scatterer configurations, is
approximated by a sample path of B.

As the aim of the paper is to demonstrate a phenomenon, above all, we have not shied away
from making convenience assumptions on the geometry at the expense of generality. See, however,
Remark 3 on some immediate generalizations of no extra cost.

The analysis below relies on several standard constructions in the theory of dispersing billiards.
These include homogeneous local stable and unstable manifolds, together with a good understand-
ing of their properties, among others. In particular, the random-scatterer model we consider here
differs from the classical Sinai billiards in which the configuration of scatterers remains forever
fixed. The excellent book [6] contains a detailed account of the classical theory and the paper [26]
the necessary uniform time-dependent generalizations. (Also [18,25] might interest the reader,
although the setup there is simpler than in [26].) It is also necessary to make the observation that,
although a billiard map is traditionally defined as the first-return map of the billiard flow to the
solid boundary of the domain in question, the theory extends without difficulty to cover (flat or
curved) transparent walls as cross sections [11,12]. For the sake of clarity, we will not dwell on
these quite involved but well-understood constructions here, instead referring the interested reader
to the references cited. The mandatory deviation from this occurs when we introduce the billiard
maps: They need to be defined with due care, for the presence of flat (here transparent) walls does
have the tendency to render the billiard maps non-uniformly hyperbolic. In our case the system
remains uniformly hyperbolic by a careful choice of the cross section. Other than that, the focus
in the present paper is solely on establishing the estimates required to prove the desired invariance
principle.

An almost sure invariance principle for Sinai billiards (fixed scatterers) was first obtained for
scalar-valued observables in [5, 6, 15] and for vector-valued ones in [16]. The approach in the
present paper — which in particular applies to the setting of fixed configurations of those works
— is based on verifying the conditions of [8] on the characteristic function of the vector-valued
process. As the title suggests, the latter paper has been tailored for dynamical systems specifically
with the transfer operator formulation in mind. For billiard models the spectral method [7] is
quite cumbersome and abstract due to the well-known issue of singularities, on top of the presence
of a contracting direction. Already the contracting direction would typically involve studying the
transfer operator on a Banach space of distributions, as in the case of Anosov systems. Here we
take an alternative route, providing sufficient information on the characteristic function via strong
bounds on correlation functions. In this sense, our work is related to [24] and [5]. The fact that
we succeed in doing so also underlines the possibility of implementing [8] in situations where the
operator setup may be impractical or out of reach.

IBetween two successive times when the scatterer configuration is updated, the particle experiences a displace-
ment which has a natural representation as a plane vector. Summing these yields a trajectory in the plane.
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Let us point out that an almost sure invariance principle for vector-valued observables is a sig-
nificant improvement compared to the case of scalar-valued observables. Although it is a standard
and straightforward trick to deduce a multi-dimensional central limit theorem, where convergence
takes place in distribution, from the corresponding one-dimensional result using the Cramér—Wold
theorem, the same cannot be said about almost sure invariance principles.

How the paper is organized. In Section 2 we give a mathematical description of the model.
Once the necessary concepts have been introduced, we present the main results of the paper in
Section 3. There we also discuss the approach used in its proof. Section 4 is devoted to the
technical preliminaries that are required for the analysis of the problem. In Section 5 we prove the
main results by establishing sufficient bounds on certain correlation functions and by analyzing
the structure of the covariance matrix.

2. MATHEMATICAL DESCRIPTION OF THE MODEL

In this section we describe the model in full detail so that the main theorem can be formulated
in the next section.

2.1. The free zone condition. In addition to the no-overlap and finite horizon conditions, we
assume the “free zone” condition
(1—2R)2 — R(1 — 2R)
R+e< - =L
2(1 - R)

on (R, R,¢). By elementary geometrical computations, the free zone condition can equivalently be
stated as follows:

Given the triple (R, R, ), the white disk does not intersect any chord originating
from a transparent wall and terminating on a piece of the gray disk at the end of
the same transparent wall, in any possible location of the white disk.

This is clarified in Figure 4. The role of the free zone condition is one of convenience, and it could
be done away with. As our objective is not to be as general as possible (see Introduction), we
choose to keep it. Under the free zone condition, it will be obvious to the reader that the billiard
trajectory will never hit the white disk more than once between successive returns to the cross
section M to be defined below.

In what follows, we will assume that the triple (R, R, ¢) has been fixed so that all the conditions
introduced so far hold.

2.2. The cross section. Here we define the cross section, M, of the “full” billiard flow phase
space with respect to which we are eventually going to define the billiard maps. The cross section
itself will be independent of the location of the white disk. For that reason the white disk will not
enter the discussion at this stage.

We begin by labeling the non-random walls I'y, ... I's of the domain as shown in Figure 5. The
boundary of the gray disk forms the four solid walls I'; with an odd index ¢, and the other four
with an even index are the transparent walls. The walls are “closed” in that they contain their
endpoints. As customary, let the position r on a wall be parametrized by arclength and denote by
@ the clockwise angle relative to the normal vector of the wall pointing into the domain. Facing in
the direction of the normal vector, the value of r increases from left to right. Then any unit vector



6 MIKKO STENLUND

FIGURE 4. The free zone condition. The straight lines are tangent to the gray disk.
The white disk is not allowed to enter the region with a light gray shading. The
distance from the center of the square to the latter region is L.

based on any of the walls and pointing into the domain corresponds, in a one-to-one manner, to
an element x = (r, ) of the disjoint union

er—%%

The melit\ioned cross section, M, of the billiard flow phase space will be obtained by deleting
a part of M as follows. Pick an arbitrary transparent wall I';, ¢ even, and consider an arbitrary
point » = (r, ) € I'; x [~F, 7] representing a velocity vector on I';. If 2 corresponds to a crossing
which does not yield a clean pass (see Figure 2) as described in the Introduction, we delete x from
the coordinate rectangle I'; x [—7, 7]. Such values of z are illustrated in Figure 5. The remaining

parts of the coordinate rectangle form a region reminiscent of a rhombus, whose closure we denote
by M;. We have thus defined

M; STy x [=3,5], ieven.

On solid walls we include all velocity vectors, thereby setting
M; =Ty x[-F,5], iodd.

Finally, the cross section itself is defined as

8
M=][MicM
i=1

In plain words, each collision with the gray disk marks a return to M, in that the post-collision
velocity vector is an element of M. On the other hand, a crossing of a transparent wall is a return
to M if and only if it yields a clean pass (see Figure 2). Thus, the three crossings of I's shown in
Figure 5 are not returns to M.

It is clear (see Figure 5) that there exists a constant d > 0 such that

cosp>d if xz=(r,¢) € Mison a transparent wall. (1)

Indeed, the interpretation of the above discussion is that the particle is stopped (x € M) at a
crossing of a transparent wall only when the crossing angle is sufficiently far from being parallel
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(depending on position) to the transparent wall. In the opposite case the particle is allowed to
pass through without registering a return.

F1GURE 5. The cross section M of the billiard flow phase space does not contain
the shown vectors on I'g, because they correspond to “immediate” collisions (dots
on the solid walls) with the gray disk. Deleting all such points from the coordinate
rectangle leaves us with the white rhombus-like region Mg C M (sketched above),
corresponding to all clean passes through the transparent wall (Figure 2).

2.3. The billiard maps. Let c denote the position vector of the center of the white disk relative
to the center of the square. Given any c and ¢ > 0, we will throughout the text denote by
Bs(c) the d-neighborhood of c¢. We say that c is admissible, if ¢ € B.(0). Having defined the
cross section M C .//\/\l, the billiard map F¢ is defined simply as the first return map from the
cross section M to itself of the billiard flow ®. corresponding to the white disk centered at c. If
T. : M — R stands for the return time function, then
F. = (I)Z“c M — M.

The map F, is called admissible if ¢ is admissible. Notice that, due to the geometry, T.(x) is
defined and uniformly bounded above for all x € M. Also F¢(z) is well defined, save for relatively
few values of x for which the billiard trajectory starting from x meets a corner point, resulting in
conflicting candidates for the value of F,(z), one on each of the three walls meeting at the corner.
The conflict is resolved by identifying the three values. Such exceptional values of x are examples
of singularities, and we will come back to their role shortly. For now, it is harmless to ignore them.

It will be technically beneficial to view the map F. in a different way. Namely, notice that the
billiard trajectory between any z € M and its image F.(z) € M either misses the white disk
completely or hits it precisely once. Now, let F be the billiard map which, in addition to M,
counts collisions with the white disk as returns. More precisely, let M* be the enlarged cross
section M* = M II I'* x [—7/2,7/2], where I'* is a parametrization of the boundary of the white
disk. The parametrization can be fixed in such a way that M™* is independent of ¢, and this is
what we do. Then F} : M* — M* is the first return map to M?* of the billiard flow, defined in a
fashion similar to F,. Next, let n. : M* — {1,2} be the smallest number of returns to M* which
yields a return to M, i.e.,

ne(z) =min{n >1: (F)"(z) e M}, ze M".
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It is clear that n.(z) = 2 if z € M and the billiard trajectory connecting = to F(z) experiences a
collision with the white disk. Otherwise n.(z) = 1. With these definitions,

Fe = (FQ)"|m-

Figure 6 illustrates the situation.

FI1GURE 6. The action of the billiard map F, corresponding to the white disk being
centered at c. We have 2/ = F.(z) and y' = F¢(y). On the other hand, 2’ = F}(z)
and 2" = F} (') = Fe(z2).

We will use the shorthand notation {n. = n} = { € M* : ne(x) = n} with n = 1,2. Notice
that
M ={n, =1} U{n. =2}
and
{ne =2} = (F) "M\ M) c M (2)

hold true by construction, and that
F:({ne=2}) C {n.=1}.

2.4. Invariant measure. We may interpret any x € M as the velocity vector of a billiard particle.
Reversing the direction of the velocity to its opposite amounts to mapping x to another point
Z(x) € M. It is easy to check that the map Z is an involution on M, i.e., it is bijective (taking
the earlier identifications at the corners into account) and Z? is the identity map of M.

Picking an arbitrary element y € M, it is possible to trace the billiard trajectory leading to y
backwards, by following the trajectory starting from Z(y) forwards. By construction, the latter will
eventually “make a return” to M, precisely at F.(Z(y)). Reversing the direction of the velocity
once more, we obtain the element v = Z(F.(Z(y))) € M. It is clear that F.(z) = y and that z
is the unique preimage of y. This is to say that the billiard map F, : M — M is bijective, the
inverse billiard map being given by

F'=ToF,oT. (3)
It is also a standard fact that F, = ®Ie preserves the probability measure
dp(r, p) = M~ cos o drdy

on M, where M = [ mCospdrde is the normalizing factor, for all admissible ¢. (This is a
consequence of the general fact that Hamiltonian flows preserve the Liouville measure.) We point
out that both of these properties fail generically if the cross section is constructed on the boundaries
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of moving scatterers; see [26] for examples. (The failure of invariance of u has been overlooked
in [28].) This is the first of the two fundamental reasons we defined the cross section M in
the specific way that we did, and resorted to using non-moving transparent walls. The second
fundamental reason is related to guaranteeing uniform hyperbolicity of the maps F, as explained
in Section 4.2; see Remark 7 in particular.

3. MAIN RESULTS
Given a sequence (c,),>0 of admissible centerings, we write
Fu(@) = Ful(Cn)nzo0,®) = Fe,_, 0+ 0 Fey(2), reM, (4)

for short, with the convention that Fj is the identity map idxs of M. The R%valued almost sure
invariance principle has to do with approximation of the sums

[y

n—1

A,-((cj)jzo,x) = Zf(ci,.ﬂ((cj)jzo,x)), n >0,

1=0

n—

Il
=)

(2
suitably scaled, by Brownian paths in R¢, given an R%valued observable f together with a ran-
dom sequence of admissible centerings c,, of the white disk. The strength of the statement is in
that the approximation converges almost surely (contrasting the weak invariance principle which
only guarantees that the finite-dimensional distributions converge.) Our result will concern, pos-
sibly non-stationary, random sequences (c,)n>0, where the random variables ¢, can be weakly
dependent. Before stating the theorem, we introduce the assumptions on the sequences (c;,)n>0-

First, we recall a notion of weak dependence from probability theory. Suppose a probability space
and two sub-sigma-algebras 2 and B are given. The so-called maximal correlation coefficient of
2 and ‘B is given by

p(A,B) = sup{| Corr (f,9)| : f € L*(A;R), g € L*(B;R)}.
It can be shown [4,29] that

|E(f9) — E(f) E(9)]
1fll2llgll2

(Here L?(2(;R) is the space of real-valued, 2-measurable, square-integrable functions, etc.) Note
that the supremum in (5) is taken over complex-valued functions and that 0 < p(A,B) < 1.
Consider next a random sequence (X,,),>o and the probability space of its trajectories. For n >
m > 0, let §' be the sub-sigma-algebra generated by the variables X,,,..., X,,. The so-called
rho-mixing coefficients are

p(AB) = sup{ c feL*(A;C), g€ Lz(‘B;(C)} : (5)

p(k) = sup p(5, o), k> 0.

n>0

The sequence (X,,)n>0, Or its probability distribution, is called rho-mizing, if limy_. p(k) = 0.
Obviously, a sequence of independent random variables is rho-mixing with p(k) = 0 for & > 1.
More generally, the same is true of M-dependent sequences, for any M € N. A stationary Markov
chain is rho-mixing if it has the L?-spectral-gap property, and in this case p(k) tends to zero
exponentially [22]. Moreover, if a Markov chain, stationary or not, satisfies p(kg) < 1 for some
ko > 1, then p(k) tends to zero exponentially [22,4].

Given ¢ > 0 and a probability distribution P of the random sequence (c,),>o on (B.(0))N
endowed with the product Borel sigma-algebra §, our first assumption is the following.
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(A1) P is exzponentially rho-mizing. That is, there exist ¢ > 0 and B > 0 such that
p(k) < Be™*,  k>0.

Assumption (A1) is sufficient in the stationary case. In order to deal with non-stationary
sequences, we impose a further condition which holds automatically in the stationary context. It

is related to the concept of asymptotic mean stationarity (see, e.g., [9] and the proof of Lemma 2
— 1 k—1
- = %k £4j=0
shifted sequences, tend to a measure P which is (necessarily) stationary. Here and below, o is the

left shift on (B.(0))".
Given a measurable function g : (B.(0))Y — R, let us introduce the shorthand notation

below), which means that the measures Py (67),P, k > 1, obtained by averaging over

=7 Y Blgoal), k=1 ©

where E is the expectation relative to P. Our second assumption is the following.

(A2) For any bounded measurable function g, there exists a number (g) € R such that limy_,o(g)r =
(9)oo- There exist sequences (Cy,)m>0 and (1g)k>0 of positive numbers with ry — 0 such that, for
any m > 0 and any bounded F'-measurable function gy,

[{gm © 7V = (gm)oo| < Crnti lgmlloe, k=1, >0, (7)
Finally, for any B > 0, there exists a constant Dz > 0 such that

B 1llogn
Dglogn
E Cm Tn—m e—ﬁm S ﬁTg (8>
m=0

holds whenever n > 3 'logn (so that Thn_g-110gn ON the left side makes sense).

We make the remark about assumption (A2) that if (g,, o o), and (g,,)x converge as k — oo,
they obviously converge to the same limit (Lemma 20) for all £ > 0, but (7) is needed for a uniform
rate of convergence and (8) for the rate to be sufficiently fast.

We are in position to state our main result. As usual, also our billiard maps have singularities
consisting of a finitely many smooth curves in M. For a (non-random) c, denote by S, the
singularity set of Fi; see Section 4.1. For later convenience, we switch to writing w = (wy,)n>0 for a
realization of the random sequence (c,,),>o. That is, w, denotes the realized position of the center
of the white disk at time n.

Theorem 1. There exists a number € > 0 such that the following assumptions have the following
CONSEQUENCES.

~ Assumptions: Let P be a probability distribution on (B.(0))N satisfying (A1) and (A2). Write
P=P®uand E(-) = [(-)dP. Let Qo C B.(0) be a measurable set with P((%)Y) = 1. Let
f:00x M —R? (any d > 1) be a bounded measurable function such that, for all c € Qy, f(c,x)
is defined for p-almost-every x € M and [f(c,z)dpu(z) = 0. Let the maps f(c, -), ¢ € Qo, be
uniformly piecewise Holder continuous in the sense that there exist v > 0 and Cy > 0 for which

’f(cv :E) - f(C7 y)’ < Cf d(ma y)'y
for all x,y in the same component of M\ S, for all c € Qy. Denote Ay, (w,x) = f(wk,}"k (w, x))
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- Consequences:
(1) The formula

= lim — Z/AO@)AO o'w, ) dP(w, )

kﬂoo

+Z hOOkZ/ (Ag® A, + A, ®Ag) (0w, z) dP(w, z)

—
yields a well-defined, symmetric, semi-positive-definite, d x d matriz X2,

(2) The matriz X% is the limiting covariance of % S0—s Ay That is,

JL%ﬁ(ZAk@ZAk):

k=0

(3) The random variables \/Lﬁ ZZ;& Ay converge in distribution, as n — oo, to a centered R9-

valued normal random variable with covariance 2.

(4) Given any \ > }L, there exists a probability space together with two R%-valued processes

AY) >0 and (B,,),>o0 on it, for which the following statements are true:
(A7 )n> > g
(a) (Ap)n>0 and (Af)n>o have the same distribution.

(b) The random wvariables B,,, n > 0, are independent, centered, and normally distributed
with covariance 2.

(c) Almost surely, | 310 Az — ST By| = o(n?).

Item (3) of the theorem is called the averaged central limit theorem and item (4) the vector-valued
almost sure invariance principle with limiting covariance ¥? and error exponent X\. The “almost
surely” in item (c) refers to the probability space on which the processes (A} ),>o and (B,,),>0 are
defined. Since ZZ;& B, has the interpretation of the location of an R%valued Brownian motion
at time n, the result is indeed about Brownian approximations of the sequences (Zz;é Ap)n>o-
Accordingly, [27,3,20] discuss several implications of the almost sure invariance principle, and [10]
shows that the almost sure central limit theorem is among them.

Note that the centerings c,, in the theorem could for example be drawn independently, from the
same distribution; the distribution could be uniform in the disk of radius €, which in a sense corre-
sponds to maximal randomness, or it could be a delta-distribution corresponding to a completely
fixed white disk as in Sinai billiards.

Regarding the regularity condition imposed on the observable, the inter-return flight time and
vector displacement of the particle lifted to the plane both satisfy it [6].

The expression for the limiting covariance in (9) is quite remarkable in that it applies to the
non-stationary case. In addition to the expectations with respect to the distribution P = P ® p,
the terms in the infinite series entail averaging over the trajectories (ow)s>o of the sequences w
under the left shift o. In the stationary case the averaging is redundant and the expression of the
covariance simplifies to the well-known series E(Ag ® Ag) +> - E(Ag® A, + A, @ Ag). The
matrix X2 can be degenerate for a given observable f. To characterize such a situation, we prove
the next lemma in Section 5.6, following the classical works of Robinson [21] and Leonov [13].

A

2As is customary, given a sequence (@n)n>0, the notation a,, = o(n*) means that lim,, ., n"*a, = 0.
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Lemma 2. Let f and X2 be as in Theorem 1. Denote by ® the skew-product map defined as
O(w,r) = (ow,F,,(x)). The matriz ¥? is degenerate if and only if there exists a (constant)
vector v € R? and a measurable function g : (Q)N x M — R such that, for all j > 0, the map
(w,z) = g(c/w,x) belongs to L*(P), limy_.o ¢ Z;:é [1g(c?w, z)|* dP(w, x) < oo, and the identity
vIf = g—go® holds except on a measurable set E C (Qo)N x M which is asymptotically negligible
in the sense that limy_.. Z;:é P(c™E) =0.

Remark 3. Theorem 1 does not depend on the assumption that the scatterers are disk-shaped. The
same proof continues to work for more general, strictly convex, shapes of the fixed “gray” scatterer
and the moving “white” scatterer having at least C3-smooth boundaries, because [26] applies to
such geometric objects just the same. Of course, it is still necessary that the free path length
between the solid scatterers is uniformly bounded from above and below by positive numbers. (This
was gquaranteed by the no-overlap and finite horizon conditions above.) In order not to have to
upgrade the proof, the billiard trajectory should also not hit the white scatterer more than once (or,
a bit more generally, a uniformly bounded number of times) between successive returns to the cross
section M. (This was quaranteed by the free zone condition.) The last thing one has to make sure
of is the preservation of uniform hyperbolicity despite the transparent walls by a suitable choice
of M; between successive returns involving one to a transparent wall, the flight time and the angle
of the velocity at the transparent wall should be uniformly bounded. (This followed from the clean
pass condition; see (1).) Finally, besides just translations, rotations as well as changes to the shape
of the white scatterer can be allowed, provided they are uniformly sufficiently small, because [20]
applies equally to that scenario. We leave the formulation to the reader.

The next result concerning fized scatterer configurations (Sinai billiards) and random observables
can be deduced from the very same proof as Theorem 1, simply switching to the familiar cross
section N\ corresponding to returns of the billiard flow to the solid boundaries of the scatterers.
Since the cross section to be used is clear from the beginning, we formulate the theorem in a rather
general geometry (not assuming circular boundaries). We also assume a very modest amount
of regularity of the observables, namely dynamical Holder continuity in the stable and unstable
directions separately. (In particular, “ordinary” Holder continuity suffices. See Section 5.1 and
Remark 10 there for a discussion of dynamical Holder continuity.)

Theorem 4. Consider a Sinai billiard on the two-dimensional torus with strictly conver scatterers
having C®-smooth boundaries. Assume the free path length is bounded from above and below by
positive numbers. Let F': N' — N denote the usual billiard map; see the paragraph above. Let Qg
be an index set, d > 0 a fized integer, and £ : Qy x N — R? a bounded measurable map with
the property that (each vector component of) the map f(wy, -) : N — R% is dynamically Hélder
continuous on homogeneous local stable and unstable manifolds, with uniform parameters for all
wo € Q. Let P be a probability distribution on the space ()Y of sequences w satisfying (A1)
and (A2). Denote Ay(w,z) = f(wg, F¥(z)), k > 0. Also write P =P ® p and E(-) = [(-)dP.
Then the consequences listed in Theorem 1 and Lemma 2 hold.

The author is unaware of other limit theorems for Sinai billiards with time-dependent (here
random) observables. Turning to the special case of a fixed observable (that is, €y contains a
single element), the above theorem enlarges the class of observables for which a weak or almost
sure invariance principle is known [5,15,16]; the central limit theorem for the same class was proved
in [24]. A virtue of the result is that, besides being quite large, the class of observables in question
is convenient to work with when it comes to the study of statistical properties; see discussion
below. In addition, Theorem 4 greatly improves the best known error exponent for scalar-valued
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observables (from % + e to % + €) as well as for vector-valued observables in all dimensions d > 2
(from Zg—ii + € again to 1 +€) [16].

Giving a separate proof of Theorem 4 would be pointless, because that would amount to repeat-
ing the exact proof of Theorem 1 with the simplification that the map and the function spaces
would no longer depend on time. Accordingly, it is also possible to formulate a more elaborate
(albeit general) version of Theorem 1, in which the observables belong to time-dependent spaces
of dynamically Holder continuous functions (see Section 5.1); after all, the proof itself is written
precisely for such spaces. But for the sake of a more intelligible statement, and to stress what is
really relevant and new, we offer Theorem 1 in its current form.

The proof of Theorem 1 benefits from a condition formulated recently by Gouézel under which
the vector-valued almost sure invariance principle holds for a sequence of random variables. We
will recall the condition in Section 5.4. Gouézel’s proof relies on a sophisticated variation of a
classical blocking argument, in which the marginals of the random process are grouped into blocks
separated by a time gap of length k. His condition quantifies a sufficient rate for two blocks to
become independent, as their separation k increases, for the vector-valued almost sure invariance
principle to hold.

The strategy of verifying Gouézel’s condition in the proof of Theorem 1 involves a mixture of
ideas related to [24,26]. Viewing the model under study in a way amenable to analysis, including
how we defined the cross section M and the billiard maps F; on it, is also very much part of the
method. (See Section 4 for more on the importance of setting up the problem carefully.) In the first
reference, [24], the author enlarged the function spaces considered in [6] by relaxing the regularity
assumptions. To include less reqular observables in the analysis of the statistical properties of
billiards turned out to be fruitful for proving limit theorems. It was shown that, for observables
in these enlarged spaces, a pair correlation bound alone implies the central limit theorem. In the
present paper we take advantage of similar large spaces, but this time in a time-dependent setup,
and prove bounds on correlation functions which imply Gouézel’s condition for the invariance
principle. The theory of time-dependent billiards has been developed in [26] to the stage that the
existence and uniformity of hyperbolic structures, for example, can be taken for granted in the
analysis to follow, given the deliberate way in which we defined the cross section M and the billiard
maps F.. Whereas the general paper [26] did not focus on random compositions of billiard maps
let alone on their limit theorems, the latter form exactly the goal we are now shooting for.

4. PRELIMINARIES

In this section we introduce some concepts and facts that enter the proof of Theorem 1. We are
not going to present proofs or new results, save for Lemma 6. Due to the slightly unusual choice
of M, we need to verify the uniform hyperbolicity of the maps F, — in the form of Lemma 6 —
by hand. After this has been achieved, we are immediately in position to apply the machinery of
time-dependent billiards developed in [26].

4.1. Singularities. Like in the case of classical billiards, the maps F, have singularities. The
qualitative behavior of a billiard map changes in arbitrarily small neighborhoods of its singularities.
Given a centering c, we call

e = F (OM) U (FO)7H(OM™\ OM)

the singularity set of F.. The first member of the union corresponds to those values of x € M for
which the billiard trajectory from x to F.(z) either hits an endpoint of a wall (corner); meets the
gray disk or a transparent wall tangentially; or crosses a transparent wall in such a way that it is a
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return to M, but there are arbitrarily small perturbations of the trajectory which are not returns
to M. The second member of the union corresponds to those x € M for which the trajectory
meets the white disk tangentially. We point out that (2) yields (F})~'(OM* \ OM) C M, which
is to say that S as defined above is a subset of M as it should.

The reader will notice that

Se = (Felam)THOM) U (FZ|a) ™ (Fe [ meam) ~H(OM),

which is a convenient way of viewing the singularity set. The interpretation is that the second
member of the union corresponds to “secondary” singularities — singularities as first seen from
the white disk and then pulled back to M.

The singularity set S¢ C M consists of piecewise smooth curves with uniformly bounded negative
slopes. (In fact, they are stable curves, i.e., curves S whose tangent spaces 1S, © € S, are
contained in the respective stable cones C: as defined below.) The smooth curves, or branches,
either terminate on other branches in the interior of M, or they extend all the way to the boundary
of M, and every branch is a part of a path of branches reaching from one part of the boundary
to another, as is well known. When c varies, the singularity set S, varies in a continuous manner:
Its topology can change in that new branches can appear and existing ones can disappear, and
the branches generally undergo deformations, but S is contained in an arbitrarily small tubular
neighborhood of Sz provided c is in a sufficiently small neighborhood of ¢. Moreover, the number
of branches is uniformly bounded from above. See [26] for more on time-dependent singularity
sets. In particular, it is possible to prove [26] that

Lemma 5. Given an admissible ¢ and a compact subset E C M\ Sz, there exists 6 > 0 such that
the maps (c,x) — Fe(x) and (¢, z) — D, F. are uniformly continuous on E x Bs(€).

The map (c,z) — Fe(x) is thus continuous on the set {(c,z) € B.(0) x M : x € M\ S.}.

We can extend the concept of singularities for sequences of billiard maps in a natural way.
Suppose, then, that cy and c; are given centerings. The set

SCO,Cl - SCO U Fc_ol(SQ)

is the singularity set of the composition F, o F.,. More generally, given a (finite or infinite)
sequence (ci)i]i_ol, we can define inductively, for 1 < n < N, the singularity set of the composition

Fe, ,o0---0F as

Cn—1
Sco,.‘.,cnfl - Sco U F(;)I(Scl,..‘,cnfl)-

The importance of these sets lies in the fact that the actual billiard trajectory from z to F., _, o
.-+ 0 F¢,(z) meets a singularity at some point if and only if x € S, ¢, ;-

Going backward in time, similar singularity sets can be defined for the compositions (F., , o

.-+ 0 Fg,)~'. We denote them S,

Cn—1"

4.2. Uniform hyperbolicity. Let x = (r,p) € M be arbitrary. We denote by Kgray and Kyhite
the curvature of the boundary of the gray and the white disk, respectively. If z is on a solid wall
(of the gray disk), define

A7) = Kgray and  b(z) = Figay + . (10)
On the other hand, if x is on a transparent wall, define
d coS ¢
a(m) = F and b(.ﬁlﬂ') = _— s (11)

Kmin
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where Kmin = MiN(Kgray, Kwhite). Note that b(z) is strictly positive by (1). In fact, there exists
constants @i, and by. such that

0 < amin < a(z) < b(2) < bypax < 00
for all z € M.

Lemma 6. For any admissible c, the unstable cones
Ce ={(dr,dp) € TuM : a(z) < dp/dr <b(z)}, zeM,
are invariant for F. and the stable cones
C;=A{(dr,dy) e T,M : —a(z) < dp/dr < —b(z)}, zeM,

are invariant for F_'. There erists constants C > 0 and A > 1 such that, given n > 1 admissible
centerings Cq, ..., Cn_1, the bound

Do (Fe,y 0+ -0 Feg) v]| = CA™[Jv]]

holds for all v € C¥ and for all v € M\ Se,....c,_,, and the bound
1Dz (Fe,, 0+ 0 Foy) " v]| = CA™|Jo
holds for all v € Cs and for all x € M\ S;*

05-+Cn—1"

The lemma states that the maps are uniformly hyperbolic with common families of unstable
and stable cones and with a uniform minimal expansion rate in the cones. We are therefore in a
setting to which the time-dependent analysis that was carried out in [26] applies directly.

Proof of Lemma 6. Consider a point z1 = (ry,¢1) € M* and set g = (ro, o) = (F¥) "' (z,) € M*
which corresponds to a straight flight from zg to z; (possibly passing through a transparent wall
in a way which does not constitute a return to M). We have [6]
COS 1

Ccos o *
To + Vo+ko

Vl =K1+ (12)
Here 7y is the path length from zg to x1, k; = k(x;) is the curvature of the wall at z;, Vy is the
slope of a tangent vector (dr,dy) at zo and V) is the slope of the corresponding tangent vector at
x1 obtained via the tangent map. Observe that, by our conventions of defining the cross section,
we have the uniform bounds

0 < Timin < 70 < Tiax < 00. (13)

First, we see that the “positive” unstable cones {(dr,dy) € T,M* : 0 < dyp/dr < oo}, z € M*,
are invariant for F. In fact, the image of a “positive” tangent vector at x, satisfies

cos
k1 <V < K+ o

Tmin
We wish to improve the lower bound on V; in the case k; = 0, i.e., when x; is on a transparent
wall and in M. In this case z(, defined above, is necessarily on a solid wall. Thus, kg > Kpin > 0
and

COSpo 1 .
VO + Ko Kmin
Recalling (1), we have cos p; > d, so that, by (12) and (13),

v cospr d
1= -
COS ¥o 1
TO + VOJ"KO TmaX + RKmin
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Let us extend the definition of C¥ from € M to all x € M* by defining a(z) and b(z) as in (10)
for x € M*\ M. By the above analysis, we conclude that F} preserves the obtained cones C¥,
r e M*.

Finally, suppose = is a general element of M and set x; = F.(x) € M. Then the billiard
trajectory from z to x; can be broken into straight legs, the last one of which is from xy, =
(F*)~'(x;) € M* to z;. Since each of the legs preserves the cones C% r € M?* the map F,
preserves the cones C¥, x € M.

Coming to the stable cones, we resort to a time-reversal argument. Recall the expression (3) of
the inverse billiard map F, ! in terms of the involution Z. As can be checked, the derivative D,Z
equals either (§ %) or ('Y) depending on whether z is on a solid or a transparent wall, re-

spectively. Using the obvious identity D,Z(C;) = Cf,y and the above fact that F. preserves the
unstable cones, one confirms that ' indeed preserves the stable cones.

Next, we prove the uniform expansion property of the compositions F,, , o---o F,, on unstable
vectors. The complementary statement concerning stable vectors and compositions of inverse
maps is similar. To that end, fix a yo € M and denote y, = Fe,_, 0 -0 Fe (yo) € M for
1 <k <n. Weassume yy ¢ Sc..c, .- Also fix an unstable vector dy, € C;jo and denote
dyg = Dy, (Fe,_, 00 F¢,)dyp for 1 < k < n. The billiard trajectory from y, to v, can be broken
into at most 2n straight legs: Given 1 <k <n, yp = F¢,_, (yx—1) equals either F;  (F¥  (yx—1)) or
F}  (yx-1) depending, respectively, on whether the trajectory from y,_; to y involves a collision
with the white disk or not. Thus, we obtain collision points z; € M*, 0 < 57 < m, where
n <m < 2n. Of course, ()7L, has (yx)i—y as an ordered subsequence, with z¢ = yo and z,,, = Y.
Likewise, we get a sequence of tangent vectors dz;, 0 < j < m, so that dz¢ = dy, and dz,, = dy,.

The billiard maps F¢ of the extended cross section M* satisfy, by well-known [6] formulas,

ldzjall, ) TjVj t A
1]l CoS
Here || - ||, is the so-called p-metric of the tangent space, V; refers to the slope of dz;, k; to the

curvature of the boundary at z; = (r}, ¢;), and 7; to the length of the straight leg from x; to x ;1.
Since dz; € C3, we have

d .
l925lle Sz with A =14 rpan, > 1.
[l

Since the Euclidean metric is related to the p-metric by the formula

d
||d$|| — H pr /1+V2,
COSs

we have
[ dynll _ [ldzmll _ [|dzm]lp [[dza([p cospo /14 V5,
Idyoll  [[dzoll  [|dz1lp [[dzollp cos om /1 + V2’
where
|da1 ], cos o _ cos po + 10(Vo + ko) o _TminGmin (14)
[dzollp /1 +V2 V1+V2 VAN
Therefore
dyn
| dy., || > CA™ > CA

[[dyoll
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with
C _ _1 TminQmin 1 + CL2 .
which proves the lemma. 0]

Remark 7. Notice in the proof that if the image point x1 was on a transparent wall, k1 = 0, and
if in that case it was possible for cospy to be arbitrarily small in contrast to (1), then (12) would
result in arbitrarily small values of the slope Vy of the image tangent vector. Subsequently, we
would not obtain a positive lower bound ani, in (11). Even worse, if it was possible for cos gy to
be arbitrarily small when xq is on a transparent wall, we would not obtain a positive lower bound
in (14), nor the uniform expansion rate A > 1 in Lemma 6. These facts constitute the second
fundamental reason, alluded to in Section 2, why we defined the cross section M in the specific
way, ruling out small values of the cosine on transparent walls.

4.3. Homogeneous local stable manifolds. In order to control distortion effects of dispersing
billiard maps, it is traditional to introduce so-called homogeneity strips. In our case,

H, = {(ne)eM* :1/2—-k?<p<n/2—(k+1)7?}
H, = {(rnp)eM* : —a/2+(k+1)2<p<-—m/2+k%}

for all integers k > kg, where kg is a sufficiently large uniform constant. We also set
Ho = {(r,p) € M* : —m/2+ ki <o <m/2—ky*}.

Without going into any detail, if F(z) and FZ(y) belong to the same homogeneity strip, then
roughly speaking the derivatives D, F} and D, F; are comparable. By (1), we may assume that &
is so large that each component M, with i even (transparent wall) involves just one such strip,
namely H.

Suppose that (c,),>0 is a sequence of admissible centerings. We say that two points = and y
in M* are separated if they lie either in different connected components of M* or in different
homogeneity strips of the same component. Recall the notation in (4). Given a pair (z,y) €
M x M, the future future separation time si(x,y) = s4((Cp)n>0;x,y) of z and y is defined as
follows. If 2 and y are separated, s, (x,y) = 0. Otherwise s, (z,y) is the smallest integer n > 1
such that either Fy  (F,—1(x)) and F  (Fn-1(y)), or F,(z) and F;,(y), are separated. (The first
alternative takes into account the possibility that the trajectories land on different homogeneity
strips on the white disk, or that only one of them hits the white disk, before making a return to

Let (c,)n>0 be an infinite sequence of admissible centerings. A connected smooth curve W is
called a local stable manifold, if the following hold for every n > 0: (i) F,(WW) is connected and
homogeneous, (i) T,(F,(W)) C C: for every x € F,(W), and (iii) similar statements hold for
Fe,((Fn.(W))). (Item (iii) takes into account the possibility that the curve hits the white scatterer
before returning to M.) The local stable manifolds are absolutely continuous with uniform bounds
on the Jacobian, the key factor behind it being the uniform hyperbolicity discussed before. By the
same token, they contract at a uniform exponential rate (Lemma 6). Notice that, by definition,
two points on the same homogeneous local stable manifold never separate, so that their future
separation time is infinite. It turns out that this is a defining property of homogeneous local stable
manifolds. See [26] for more on local stable manifolds in the time-dependent setting.
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4.4. Exponential loss of memory. Given any admissible centering c, classical theory of billiards
shows that the map F,, corresponding to the fized center c, is ergodic and mizing with respect to
the invariant measure pu.

For the compositions (4) of such maps with time-dependent centerings c,,, the analysis carried
out in [26] is directly applicable. The main result of that paper can be stated in the present context
as follows:

Theorem 8. There exists € > 0 such that the following holds. Let p' be a probability measure on
M, with a strictly positive, %—Hélder continuous density p' with respect to the measure . Given
v >0, there exist 0 < 0, <1 and C, > 0 such that

for all sequences (c,)22, of admissible centerings and all vy-Hélder continuous f: M — R. The
constant C., = C,(p') depends on the density p* through the Holder constant of log p*, while 6,
does not depend on pt.

Noting that [, fo F,du' = [, fd(F.).«u', the theorem states that the push-forward measure
(F)«pt converges at a uniform exponential rate to y, in a properly understood weak sense. In
particular, recalling that mixing can be formulated as correlation decay (see Theorem 11), when
applied to constant sequences ¢, = ¢, n > 0, the above theorem yields a uniform exponential
mixing rate for Holder continuous observables, for all fixed admissible maps Fr.

Theorem 8 has a pre-eminent role in the proof of Theorem 1. In truth, we will need a slightly
refined version of it (Lemma 12) which allows for the measure pu' to be supported on a single
“unstable” curve. Nevertheless, it seems appropriate to introduce the above formulation as a key
ingredient of the theory.

< Ol fll +1£1,)07, n =0,

5. THE PROOF

The proof of Theorem 1 — as is usually the case with billiard proofs — is rather technical.
In order to keep the paper in manageable proportions, we will need to assume that the reader
has a working knowledge of billiard techniques. Nevertheless, the flow of the argument should be
accessible to a nonspecialist. For background on billiards, we refer to the excellent textbook [6]
and, on the time-dependent theory, to the paper [26].

The proof will proceed as follows. In Section 5.1 we introduce some notations and define the
spaces of observables. In Section 5.2 we obtain uniform, exponentially decaying, bounds on pair
correlation functions for observables in those spaces. In Section 5.3 we extend the result to multiple
correlation functions. Using the multiple correlation bounds, we can control the characteristic
function of the process, and thus verify Gouézel’s condition for the vector-valued almost sure
invariance principle. This is done in Section 5.4. In the non-stationary case, we also need a bound
on the converge rate of the covariance, which is obtained in Section 5.5. Finally, Lemma 2 on the
(non-)degeneracy of the limiting covariance is proved in Section 5.6.

5.1. Some definitions. Here we will denote by

Q = (B.(0))"
the space of bi-infinite sequences of admissible centerings. Elements of ) are denoted by w =
(wi)iez, where each w; is thus an admissible centering inside the disk B.(0). The usual left shift is

denoted by o, i.e.,
0:Q—Q: (ow); =wi1 VieZ.
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For technical reasons, we will work with bi-infinite sequences, although the sequences (F,,);>o is
what we are eventually interested in.
Given a sequence w € 2, we will use notation such as

fn(”?'):Fwnflo"'ono(') and fn+m,n+1(wa'>:-7:m(anwa')a
as well as

Fillw, )= (Fo,_,0--0F,)"(-) and F L. (w -)=F(c"w, ")

n n

for n,m > 0. We use the convention that F, ,+1 = idy throughout. The notation is consistent
with that, given w, the maps F,, and F,{mni1(w, -) describe the transformations from time n to
time n + 1 and to time n + m, respectively.

Let

Py (w) = (W-i- (W)a)aeA+ (w)

be the measurable partition of M consisting of the homogeneous local unstable manifolds corre-
sponding to the past (...,w_o,w_1) and

P- (w) = (W— (W)a)aeA_ (w)

the measurable partition of M consisting of the homogeneous local stable manifolds corresponding
to the future (wo,ws,...). Also set

P (w) = Py(0"w), n € Z.
We often write P\ (w) = (Wﬂl(w))ae AP () Where

.Agf) (w) =AL(0c"w) and Wj([”a(w) =Wy o(0"w),
or simply
P = (W)

aeA(i”)

when there is no danger of confusion about the sequence w. Note that, for any n € Z, PJ(FnH)(w)

is a refinement of the partition F,,, ('PJ(:L) (w)), obtained by cutting the elements of the latter into

maximal homogeneous components. Similarly, P (w) is a refinement of F;! (PSR—H)(CU)).

Recall that, given a one sided sequence (wp,ws, ...) and two points x,y € M, we have defined
the future separation time of x and y in Section 4.3. The definition obviously extends to two-sided
sequences w € 2 and depends only on w;, i > 0. We write s, (w;z,y) for the future separation
time. Similarly, the past separation time s_(w;z,y) is defined going backward in time, via the
inverse maps F 1, F;' o F 1 ... and it depends only on w;, i < 0.

Given a sequence w and a number ¥ € (0,1), we say that a function f : M — C is dynamically
Holder continuous on the homogeneous local unstable manifolds associated to w with rate ¢, if

there exists a real constant K > 0 such that

f(z) — fy)| < Ko+ @mv)

holds for all z,y € W, , and all @ € A,. The smallest possible such constant K is denoted
K. (w;9, f). The class of such functions is a vector space, which we denote H, (w;#). Similarly,
a function g : M — C is called dynamically Holder continuous on the homogeneous local stable
manifolds associated to w with rate 9, if there exists a real constant K > 0 such that

l9(z) — g(y)| < Ky my)
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holds for all z,y € W_, and all « € A_. The smallest possible such constant K is denoted
K_(w;¥, f). The class of such functions is a vector space, which we denote H_(w; ).

The above function spaces generalize similar spaces of [24] to the time-dependent setting, whereas
the spaces of [24] generalize those of [5]. In particular, ordinary Hélder continuous functions are
dynamically Holder continuous:

Lemma 9. There exists a uniform constant C' > 0 such that the following holds. Given &y € B.(0),
v >0 and Ay > 0, suppose f: M — C is a bounded function that satisfies

[f(@) = fy)| < Apd(z,y)
for all x and y belonging to the same homogeneous component of M\ Sg,. (Here d(-, ) is the
Euclidean distance in M.) Then f € Hy(w; A7) N H_(w; A7) with

K (w; A7, f) <max(A;C7, 2] flloo) A and K_(w; A7, f) < A;CTAY,
for all w € Q with wy = wy.

Proof. Let D be the maximal diameter of the homogeneous components of M. Suppose w satisfies
wy = wo. For any x,y € Wy, and o € A, CAN"d(z,y) < d(F,(w,z), Fr(w,y)) < Dif 0 <
n < si(w;z,y). This follows from the uniform hyperbolicity (Lemma 6). We then arrive at
d(x,y) < CAA=*+@=9) with the uniform constant C' = DC~!. We either have s, (w;z,y) > 1 or
sy (w;z,y) = 1. In the first case, z and y belong to the same homogeneous component of M\ S,,
so the assumed Holder continuity of f yields |f(x) — f(y)| < Ap(CAA=*+“=¥))7 In the second
case, |f(x) — F(y)| < 2/|flloe = 2/ flocA” (A77)*+@i=¥)  The claim concerning H (w; A™7) follows
Assume now that x,y € W_ , and a € A_, instead. By similar reasoning, d(x,y) < CAA=-(@izy),
Forward images of homogeneous local stable manifold do not, by construction, meet smgularlty
curves, so that W_ , belongs to a single homogeneous component of M\ Sg,. Thus, |f(z)—f(y)| <
A f(CAA (wsz, y)) O

Remark 10. All of the above applies when the billiard map does not depend on time (fized scat-
terers). In that case the partitions P+ are defined by the given scatterer configuration instead of a
sequence, and the same is true of the separation times s+ as well as the function classes H.

5.2. Pair correlation bounds. We say that w € () has a saturating past, if there exists an 75 < 0
such that w; = w;, for all i < 7y. Denote by (g C 2 the set of all sequences in €2 with a saturating
past. Notice that
J(Qsat) - Qsata

that is, the left shift of a sequence with a saturating past has a saturating past. The class {2, Will
be needed in place of €2 because of Lemma 13; see the remark after it.

The next result gives an exponential upper bound on pair correlation functions for observables
of the type introduced above.

Theorem 11. For a sufficiently small € > 0, there exist uniform constants C, > 0, C' > 0,
C > 0 and x > 0 such that, for every 9+ € (0,1), every w € Qu, every n > 0, and every pair
)€ Hy(w;¥y) x Ho(0"w; ),

‘/f goFn(w )dﬂ—/fd,u/gdu‘

< [ fllooB—(0"w; 0, g) (B0 ))""* + 2G| fllllgllow €™/ + 2K (w; 0, [l glloo 037"
Here B_(0"w;9_, g) = C||gllee + K_(c"w;¥_, g)9=" and 0(9_) = max((, 191/2) (0,1).
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Recalling Lemma 9, we point out that the previous applies to the special case of “ordinary”
Holder continuous observables and yields an exponential rate of pair correlation decay for them.

As we will see later on, Theorem 11 is surprisingly strong in that it implies a bound on multiple
correlation functions, which is seemingly much more general a result. To understand how this is
possible, one has to appreciate two aspects of Theorem 11. First, it involves carefully designed and
sufficiently large classes of observables. Second, the bound is completely explicit in regard to its
dependence on the observables f and g. In conjunction with Lemma 15 below, Theorem 11 thus
becomes a very useful tool for proving limit results.

7 =g—/gdu,
we have

/f-gofmm(ww) /fdu/gdu /fof )0 Formnir(w, -)du

for any fixed w. As w is fixed for the rest of the proof, we will often omit it from the notation.
Using the partition PJ(F")7 the measure p disintegrates into a probability measure A on .AS:L ) and

Proof of Theorem 11. Denoting

a system of conditional probability measures ya on the partition elements WJ(F"; such that

/hdu / /n)hdy(”d)\ ()

holds for any Borel measurable function h : M — C. We can thus write the above identity as

/f-gofn+mdu—/fdu/gdu=11+Iz

where

I = / / foF - foF L dv™ | - go Fpymmir dv” dA™(a)
a0 e e

I = / foF tdu™| . / G0 Frvmmpr Av™ [ dA™ (a).
AQ [ Iwin Wit

Let us bound I; first. Because each Vc(yn) is a probability measure,

|I| <sup sup (fofrjl(x)—fof;l(y)) -/\g\du.

ASZL) z,Y€ Win;

and

For any a € AS? ) there exists a B € A, such that for any pair of points z,y € I/Vj(an)Y we have
FiHx), F (y) € W, g. Therefore,

1 (@3 F (0, ), F () 2
Since f € H,(w;v,), we obtain the bound
[f o F (@) — fo Frl(y)| < Ko (w; by, f)Om,
for all z,y € W, ,, for all @ € A;. Now sup|g| < 2sup |g| yields
(11| < 2sup [g| K (w; 9, )V (15)
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Coming to I, notice that

L] < suplf] - /

(n)
'A+

/ go ./Tn+m7n+1 dl/&n) d)\(n) (O{) (16)
Wi

The following result is at the heart of bounding ;. Recall that ¢ is the upper bound on the
displacement of the center of the white disk from the center of the unit square.

Lemma 12. For a sufficiently small ¢ > 0, there exist uniform constants C' > 0, x >0, and { > 0
such that, for every w, every ¥_ € (0,1), and every g € H_(o™™w;9_),

(n)
< B_ (0™ w9, g) (0(9_))" eV (17)

/ (n) 9 ° Frymmn+1 d’/c(xn)
w

+,0

1

for all « € A™(w) and all n,m > 0. Here B_(o"""w;¥_,g) = C||gllco + K_(6"w;d_, g) ¥
and 8(0_) = max(¢,9"?) € (0,1).

We remark that the above lemma is a statement of statistical memory loss starting from an
initial measure supported on a single unstable curve. This is the strong version of Theorem &
hinted at in the last paragraph of Section 4.4.

Proof of Lemma 12. This follows directly from the time-dependent coupling argument in [26] as
we now explain. In [26] we proved the analogous statement for “ordinary” Holder continuous
observables g. Here we just need to check that the estimate one obtains for g € H_ (o™ "™w;9_) is
the one appearing in (17). Because

= n
/ n 90 Frimmn+1 dyc(x ) = / n
W—&-,a W+

)
N

go ‘/Tn—l—m,n-‘,—l dyén) - / go fn—l—m,n-l—l d,LL,
M

the desired bound is related to the convergence of the push-forward (fn+m7n+1)*l/én) to the (invari-
ant) measure p with increasing m in a weak sense. It is shown in [26] that there exists a uniform

constant xy > 0 such that, for m’ = [X|log |Wﬂ| ], the measure (.7-"n+m/,n+1)*l/én) is “proper” in
the sense of [26]. (The terminology originated in [5] and the references therein.) Moreover, the
measure f is readily proper. It is therefore certainly enough to show that

/g © fn+m,n+m’+1 d'ul - /g © fn+m,n+m’+1 d,u2 S B_ (O,n+mw; 197,Q> (9(197))m7m’ (18>

for any two proper measures p! and p?.

We recall from [26] that, for each m > m’ + 1, two proper measures p* (i = 1,2) can be decom-
posed as ,ui[(mfm,) i Z][(:T?fm/)/ 2l ﬂ; Here ,ui[(mfm,) /9] are the measures that remain uncoupled
after [(m —m')/2] steps (counting from time n + m’). Provided € > 0 is small enough, we can
assume that they satisfy N%(mfm/)/z] (M) = lu%(mfm/)/ﬂ (M) < C¢™ ™ for uniform constants C' > 0

and ¢ € (0,1). Therefore,

’/g o Frimntm/+1 dﬂl - /g © Frtmmtm/+1 dﬂz‘

[(m—m')/2]
<Ollgle¢™™ + 3
j=0

/g © fn+m,n+m’+1 dﬂjl - /9 © fn+m,n+m’+1 dﬂ? :
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On the other hand, the measures (Fpym/tjmtm 1)+ (i = 1,2) are coupled: Both measures
are supported on a family (called a “magnet”) of homogeneous local stable manifolds W, o

corresponding to the future (wWy4m/+j, Wntm/+j+1- .- ), in such a way that their masses on each such
local stable manifold agree. In particular fij(M) = f3(M). Notice that, for each pair of points

z,y in the same local stable manifold W, . .,

|g o fn+m,n+m’+j+1(x> —go fn+m,n+m’+j+1 (y)|

<K (0”+mw- v_,9g) 1982+m(]:"+man+m’+j+1(I)yfn+m,n+m’+j+1(y))
—_ - bl - —

/s
mim/ 7j+s’z+"b + (l’,y)

<K (0"wi 0, )9 < K_(o™Mwi 0, g)9m T,

because g € H_ (0™ ™w; ). Since Y-, fi5(M) = 1, it then follows that
[(m—m')/2]

m’)
2
j=0

/g o Fn+m,n+m/+1 dﬂ; - /g © ‘7:n+m,n+m’+1 dﬂ?

[(m—m/)/2]
<K (0"™Mwid_g) > A M) < K (o™i, g) 0T () m
=0
We refer the interested reader to [26] for a detailed construction of the coupling used above.
Combining the obtained estimates yields (18), which was to be shown. 0

In order for Lemma 12 to yield a useful bound on the inner integral in (16), we need to assume
m > X}log |WJ(:"LH in the exponent appearing in (17). Thus, for a fixed value of m, the partition

element VVJ(:LC)y should not be too short. The following lemma provides a tail estimate on the
prevalence of short partition elements.

Lemma 13. There exists a uniform constant C, > 0 such that the following holds. If w € gy,

then the factor measure X of the measure p relative to the partition PJ(FR) (w) satisfies
Ao e A Wi < 0} <Gt (19)
for all £ > 0 and for alln > 0.

It is possible to prove that, for small €, (19) holds for all n € Z and all w € Q 2 Qg (starting
from a generalization of Theorem 5.17 of [6]). However, since the proof is long and technical, we
resort to the weaker assertion given in Lemma 13, which is perfectly sufficient for our needs.

Proof of Lemma 15. Denoting Z = [, (W =1 dA™) () for all n € Z, it can be shown using the
+ 2

uniform growth lemma in the time-dependent setting (see [26]) that there exist uniform constants

Cp > 0 and ¥, € (0,1) such that Z"") < 1C,(1 + ¥2ZW) holds for all i € Z, all n > 0, and

all sequences w € Q. Under the saturating past condition (w € Qgy), w; = w;, holds for all

i < g, for some 7o, and it is an exercise in the theory of billiards [6] that Z(0) < co (because the

relevant partition 735:0) corresponds to the homogeneous unstable manifolds of the fixed map Fwi0)~
Observing that Pl — PJ(fO) for all i < iy, we thus obtain Z(otm) < %Cp(l + 19;0+m_i2(i°)) for all
i <o and all m > 0. Taking the limit i — —o0, we see in particular that Z < %Cp for all n > 0.
Markov’s inequality now yields the result: A {a € AT) ; |WJ(rni| <} <2 < Ol O
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We are in position to finish the bound (16) on I,. For any ¢ € (0, 1], the decomposition
AP = {a e A W > u{ae AY W < 0},
in conjunction with Lemmas 12 and 13, yields
L] < sup |f] - B- (0" "w; -, g) (0(0-))" X5 A o € AT < WG| > ¢}
+sup |f] - sup[g| - A{a € AL+ (W] < ¢}
< sup |f|- B_(o" w; 0, g) (0(9_))" X5 4 sup | f| - sup |g] - Cpl

For any m > 0, we set £ = £(m) = e”"™/?X_ 5o that x|log ¢| = m/2. Since sup|g| < 2sup|g|, we get
the final bound

|| < sup|f|- B_(c™""w;9_, g) (0(9_))™? + 2C, sup | f| sup |g] e~ ™/?X. (20)

Collecting (15) and (20), we arrive at

’/f-gofnmdu—/fdu/gdu‘

<l B (o™ wi 0, g) (0(0-))™ +2C; | fllocllglloo €™ + 2| gllso Kt (w3 9, f) 9.

Considering separately the two cases m = n and m = n + 1, and replacing n + m by n in the end,
the bound claimed by the theorem follows. This finishes the proof of Theorem 11. ([l

5.3. Multiple correlation bounds. As mentioned already, the function spaces introduced above
have a special structure. The following lemmas reveal an important facet of that structure. It
will serve as the stepping stone from pair correlation bounds to multiple correlation bounds, and
eventually to the invariance principle.

Lemma 14. Letw € Q, ¢ € (0,1), and n > 1 be fized. For all f € Hi(w;¥) and g € H_(0"w; V),
we have

foF Hw, ) € Hy(o"w;¥) and goFn(w, )€ H_(w;¥)
with
K (0"w;¥, foF N (w, ) < Ky(w;d, /)" and K_(w;9,90 Fulw, ) < K_(0"w; 9, g) 9",

Proof. Suppose z,y € W_, for some a € A_. Then F,,(w, ), F,(w,y) € an% for some 3 € A",

which in particular means that s_(c"w; F,(w, z), Fp(w,y)) = n + s_(w;z,y). In other words, for
g € H_(0"w; ),

19(Fn(w, ) — g(Fulw,y))| < K_(6"w; 9, g) 9" 95~ =),

Since x,y and « were arbitrary, the claim for g o F,(w, - ) follows.

The proof for f o F.'(w, -) is very similar. Suppose z,y € Wi"; for some o € .AS:L ). Then
Fo (w,x), FH(w,y) € W, g for some 8 € Ay, which implies s, (w; F, (w,z), F,  (w,y)) =n+
sy (0"w;x,y). Thus, for f € H,y(w;),

w0, 2)) = FE @, )] < Ko (w39, f) 9 97 m),
The lemma now follows. O

As a corollary, we get the following result.
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Lemma 15. Let w € Q, n > 0, and Oy,... Y, € (0,1) be fized. We set 9 = maxo<i<n ;. If
fi € Hi(o'w;9;) and || filleo < 00 for 0 < i < n, then the function

f=11fe P )
i=0
belongs to Hy(o"w; V) with
Ky (o"wid, f) < Z (H ||fj||oo) K+(in;19i,fz‘)79?_i~
=0 \j#i
Similarly, if g; € H_(c'w; ;) and ||gi|leo < 00 for 0 < i < n, then the function

g=]lgieFiw, )

=0
belongs to H_(w; V) with

K (wid,9) =) (HHQJHOO) (0'w; Vs, g:) U
=0 \j#i
Proof. Consider some « € .A(f) and two points x,y € Win; Notice that f(z) — f(y) equals

Z(]:[fj(f;}+1(w,x))) Lfi(Fola(w,2)) = fi( Futia(w,y) (H fi(Frji(w, y>)>

=0 \j=0 Jj=i+1
Because F, | (w, ) = F,1(0'w, - ), Lemma 14 yields f; o F, !, (w, -) € Hy(0"w; ;) with
K (0"w; 0y, fio Frpy(w, ) < Ky (o'w; 0, fi) 07

Therefore,
@)= fF)l <) (H HfjHOO> Ko (ohw; 05, f;) on—i g "),
=0 \j#i
The proof of the other part is similar, and we omit it. O

We are now ready to turn to bounding multiple correlation functions. The following theorem
gives a rather general and explicit bound. We record it for completeness, as it is interesting in its
own right. A special case (Corollary 17) admitting a much tidier expression for the upper bound
will be sufficient for the purpose of proving the main result of the paper.

Theorem 16. For a sufficiently small € > 0, there exist uniform constants C, >0, C' >0, ¢ > 0,
and x > 0 such that the following holds. Let w € Qg, n >0, m >0, k>0, Vyp...,04, € (0,1)
and V_q...,0_,, € (0,1) all be fized. We set V4 = maxo<i<n, Uy, and V_ = maxo<j<m V_;. As-
sume that f; € Hy(0'w; 9y ,) and || filleo < 00 for 0 <i < n, as well as gnyxri € H_ (" w;d_ ;)
and ||gnik+illoo < 00 for 0 <i < m. Denote

F = Hfiofi(wa ) and G = Hgn+k+io n+k+z’(wa ) (21)

1=0
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Then

‘/FGdu—/qu/Gdu <

{CH |9n+h+illoo + <Z (H Hgn+k+jHoo) K_(o" Uiy Gntiors) ﬁzz) 791}
i=0

i=0 \ j#i

n 1o /4 n m - .
' <H HszOO> (max(( Y ))k +  2C, (H ||fz||oo> (H ||gn+k+i||oo> e~ h/ax
i=0 - -
+ 2 (Z (H ||f]||00> K—l—(giw;ﬁ-‘r,i ) fz 19” Z> (H ||gn+k+z||oo> k/2 1

i=0 \j#i

Proof. Notice the simple identity
E(w7fn_l(w7 ')):fn_,ilJrl(wv ')a 0<:<n.

Let us then define the functions

f=FoF Y(w,) :ﬁfiofiilﬂ(% +)

i=0
and -
=Go ~7:n+k( )= Hgn+k+i 0 Fotktimtht1(w, - ).
By invariance of the measure p, B
[ Foan= [ P ,0) G w0 duto)
— [ P @ 0) GO P () )

= [ 10 g Fatineo.0) (o).

/qu:/fdu and /Gdu:/gdu,
/FGdu /qu/Gdu /f 90 Fusknrr(w, - )dp — /fdu/gdu

Observing that Figni1(w; -) = Fr(o"w; - ), we wish to apply Theorem 11 next, and thus
bound the right side of the above expression. To do so, we need to prove that f € H,(c"w;v,)
and g € H_(o"(0"w);v_). By assumption, f; € H,(o'w;d, ;) for 0 < i < n, and the first claim
follows immediately from Lemma 15 with

For the same reason,

so that

Ki(o"widi f) <Y (H Hfjuoo) Ky (o'w; 0y, f) 0 (22)

i=0 \ j#i
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On the other hand, g = [[;", gn+rti © Fi(6" *w, - ). By the assumption of the theorem, g, ki €
H_(o' (0" w);9_;) for 0 < i < m. Thus, according to Lemma 15, the function g is indeed in
H_(ck(o™w);9_) with

K _(o"(o"w);9-,9) < Z <H Hgn+k+j”oo> K (0" w9 79n+k+i)19i—,i- (23)

i=0 \j#i
Now, Theorem 11 yields the bound

‘/FGd,u /qu/Gdu ‘/fgofkaw.du /fdu/gd,u‘

< [ fllooB- (0" Fws; 9, 9) (B(9-)** +2C, || fllllgllow €™/ + 24 (0"w; 0, [l g oo 957

< (H ||fz||oo> {CH lgn+i+illoo + K- (0™ Fwi 9, g) 191} (0(0-))"*

=0
+ 26, <H ||fz||oo) (H||9n+k+i||oo> TN LK (o wi Dy, f) (HHgn-i-k-HHOO) VAo
i=0 i=0
Inserting (22), (23), and 0(9_) = max((, 191,/2) € (0,1) proves the theorem. O

Now, we specialize to the actual case of interest, which is related to proving convergence of the
characteristic function of the vector-valued process in Theorem 1. Thus, below, the functions f;
and ¢,.xy; are going to be uniformly bounded by 1, as well as have the same rate and the same
constant in the dynamical Holder continuity conditions, as follows.

Corollary 17. For a sufficiently small € > 0, there exist uniform constants C, > 0, C' >0, ¢ > 0,
and x > 0 such that the following holds. Let w € Qge, m >0, m >0,k >0,9 € (0,1), and K >0
be fized. Assume that f; € Hi(c'w;d) with K (c'w;9, f;) < K and ||fillee < 1 for 0 < i < n,
as well as guiryi € H_(o"*w;9) with K_(o" ™ w0, gpirys) < K and ||gnsrsilloe < 1 for
0<i<m. With F and G as in (21), we have the bound

|Cov, (F,G)| = ‘/FGdu—/Fd,u/Gdu‘ < ANF,

1/4

where A = C +2C, + 3K(1 —9)7'97 > 0 and X = (max({, 9"/, e71/%)) 7" € (0,1).

Proof. From Theorem 16, we easily obtain

|Cov, (F,G)| < {C’ + K Z ' 79—1} (maX(C, 191/2))l<:/4 n 20pg—k/4x + 2K Z gn—igh/2—1
G =0
The result follows from this, because Y ;" =Y " 9" < (1 — )L O

Notice that the above multiple correlation bounds were deduced directly from the pair correlation
bound in Theorem 11.

5.4. Characteristic function bounds. Let us emphasize that our pair and multiple correlation
bounds hold for all sequences w € (), without any statistics required on the sequences. We will
show below that an application of the bounds on mixing, asymptotically mean stationary, random
sequences yields the vector-valued almost sure invariance principle.

The next theorem follows when [8] is applied to the special case of bounded processes.
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Theorem 18 (Gouézel [8]). Let d be a positive integer and consider a sequence (A, )n>o of R9-
valued random variables which is centered and bounded. Given integers n > 0, m > 0, 0 < b; <

by < -+ < byimer, k>0, and vectors ty, ..., tupm € R?, set
m bjr1—1+k
XE =3t A, (24)
j=n i=bj+k

for brevity. Now, suppose there exist constantst >0, C > 0, and ¢ > 0 such that
0) (k) . (0) (k) C(n+m)
‘E( X X, n+m> — E(ele’n>E<e‘Xn+lvn+m>‘ <Ce "1+ max |bjy — b (25)
- 1<j<ntm '’ J
holds for all choices of the numbers n, m, b;, k > 0, and all vectors t; satisfying |t;] < t.

(1) If (A,)n>0 is stationary, there exists such a symmetric, semi-positive-definite, d x d matriz 3?
that the statements (2)—(4) listed as consequences in Theorem 1 hold true.

(IT) If (A,)n>0 is non-stationary, and if there exists such a d x d matriz X2 that, for any o > 0,

l+n—1 l+n—1
sup n “||E A, ® A, | —n¥?|| < 26
is satisfied, then items (3) and (4) in Theorem 1 hold true. (Here || - || denotes matriz norm.)

Denote ;. = (B.(0))N and let P be a probability distribution on it, as in the statement of
Theorem 1. Notice that we can embed €2, in {2, canonically: Given a sequence w € ) , we
identify it with the sequence w € (g, given by w; = w; for all « > 0 and ©; = wy for all i < 0.
For this reason, we will not make an explicit distinction with one- and two-sided sequences in
the following argument. (That is, w € € is picked randomly according to P and fixed, after
which it is augmented to an element of (), still denoted w, which is then used in the subsequent
computations.)

In our application of Theorem 18, given w € Q,, we set A, (w,z) = f(w,, Fn(w,z)) and define

X (w,2) as in (24). Notice that we can write

bpy1—1

F(w,x):exp<1X() w x) H filwi, Fi(w, x)),

i=b1
where f;(w;, z) = exp(it; - f(w;, x)) with 7 € {1,...,n} chosen so that b; < i < bj4y. Similarly,

bn+m+1 - 1+k

G(wa $) = eXp(inz’i)l,n+m(wu JJ)) = H gi(wi7 f:i(w7 $)),

7;:bn«l»l +k

where g;(w;, x) = exp(it; - f(w;, z)) with j € {n+1,...,n+m} chosen so that b;+k <i < bj1; +k.
Thus, our goal is to show that the covariance of F' and GG with respect to the measure P ® p has
a uniform upper bound like the right side of (25). Notice already that

Covee, (F,G) = / Cov, (F,G) dP + Covyp ( / Fdu, / G du) . (27)

Both (w,z) — f(w,,z) and (w,x) — F,(w,z) are measurable for every n > 0. (The first one
of the two is an assumption, and the second is a consequence of the continuity statement after



AN INVARIANCE PRINCIPLE FOR BILLIARDS WITH RANDOM SCATTERERS 29

Lemma 5.) In particular, (w,z) — F(w,z) and (w,z) — G(w,z) are measurable and absolutely
bounded by 1. Thus, all the integrals (including the covariances) in (27) are defined.

Owing to the Holder continuity assumption on f, Lemma 9 shows that there exist constants
¥ € (0,1) and K > 0 such that, for every i > 0, every vector component of the function f(w;, -)
belongs to H_(o'w; ) N H, (0'w; ) and

£ (wi, x) — f(wi,y)| < Ko@) Ve ye W vVaeAY.

“_m

(In each condition we either choose “+” everywhere or everywhere.) Assuming [t;| < ¢ for all

j > 1, the bound |e* — €| < |a — b| for a,b € R implies

| filwi, ®) — filws, y)|, |gi(ws, ©) — gi(wi, y)| < t[E(wi, z) — F(wi, y)l-

We can thus apply the multiple correlation bound of Corollary 17, defining K = ¢tK. The small
formal difference that here the product in the expression of F' starts from time b; instead of 0 is
abolished by regarding momentarily f; = 1 for eachi = 0,...,b;—1. Consequently, | Cov, (F,G)| <
AN with the uniform, non-random, constants A and \. In particular,

‘ / Cov, (F,G) d]P‘ < ANF

 The maps F : w— [F(w,-)dp and G : w — [G(w, -)dp are measurable. What is more,
F(w) only depends on w; with b; < i < b,y1, while G(w) only depends on w; with b, + k <

i < bpymi1 — 1+ k. Hence, if the sequence (w;);>o is random and Sg, with 0 < a < b integers,
n+1_1_

stands for the sigma-algebra generated by (w;)?_,, then F(w) and G(w) are, respectively, g5

i=a’

and §7° . ;-measurable complex-valued random variables. By the rho-mixing assumption (A1),
and the fact that |F| <1 and |G| < 1, the identity in (5) yields

|Covp (F,G)| < p(k) < Be™.
By (27), we conclude that, in the notation of Theorem 18,
|Covpe, (F,G)| < AN 4 Be™*

holds uniformly for all choices of the numbers n, m, b;, k > 0, and of the vectors t; satisfying
|t;| < t. The obtained bound is obviously stronger than Gouézel’s condition (25). Hence, the proof
of Theorem 1 in the stationary case is complete.

5.5. Convergence to limiting covariance. In this section we establish uniform convergence to
a limiting covariance matrix, which is needed in the non-stationary case; see (26). We denote

l+n—1

Sie= Y A, and S, =S,
k=t

Lemma 19. The matriz 32 in (9) is well defined. It satisfies the bound in (26), for any a > 0.

Proof. By p-invariance,

E(Sns ® Spys) = / / (Sh ® Sy) (0w, z) du(z) AP(w).



30 MIKKO STENLUND

For any w,

/(Sn®S )(w, +)dp

n—1
= /Ak@Ak ) dp+ Z /A ®Ak‘|‘Ak®A)( ) dp
k=0 0<j<k<n—1
n—1
= /A0®A0 ofw, ) du + Z /A0®Ak i+ Ak 3®A0)(0]w ) du
k=0 0<j<k<n—1
n—1 n—1 n—1-m
= /A0®A0 Ddp+ Y0 Y /A0®A + A, ®A) (0w, ) dpu.
Jj=0 m=1 j=0
Denoting
Vo) = [ (A0 ® Ao)(2) du(o)
and

Vi(w) = /(Ao ® Ap 4+ Ay ® Ag) (w, ) dp(z), m>1,

as well as using the notation introduced in (6), we thus have

n—1l—-m n—1

3
,ﬁ

E(Sy¢ ® Suy) = Z E(Vmoo™) =Y (n—m)(Vmoohnm
m=0 j=0 m=0
n—1 n—1
=n (Voo m — Z m (Vo0 pm
m=0 m=0
By Theorem 11, there exist C' > 0 and 3 > 0 such that
sup ||V (w)|| < Ce ™™™ m > 0. (28)

wey

Therefore, ||(V,, o c)x|| < Ce™P™ for all m, ¢ > 0 and k > 1, which yields

n—1
Z m (V00" m
m=0

n—1 o)
< C’Zme_ﬁm < C’Zme‘ﬁm =,
f— —

or

<C', (>0,n>1. (29)

E(Sn,f ® Sn,ﬂ) —n Z <Vm o 0-£>n—m

Notice that V,, is bounded and §j'-measurable. By assumption (A2), there exist the limits
(Vin)oo = klim (Vyoa', ¢>0, m>0.

Recall that in (9) we have claimed that the desired covariance matrix is given by

o0

2= (Vi)eo (30)

m=0

Certainly by (28) the series on the right converges in norm and yields a well-defined matrix.
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Lemma 20. For any bounded and F-measurable function g : (B.(0))Y — R,
¢
(800 ) = (8)y €20, m=0.

Proof. We only check the claim for ¢ = 1, the general case being similar. Clearly g o ¢ is bounded
and measurable (§ being the product Borel sigma-algebra), and

1
<g°‘7>k:_<g>k:E(E(gOU)—E(g))—>0 as k — oo.
Since (g o o) — (g0 7)o, the claim follows. O

Continuing with (29), if 87tlogn < n,

—_

B~ llogn—1 n—1

3

(Voo um= Y. (Voo hum+ Y. (Vmoohum
m=0 m=0 m=B"1logn
where
n—1 n—1 C 00
$ om0 5 emeC3om
m=£"1logn m=F"1logn m=0

In other words, we have shown that

B~ ogn—1

E(Su®Sne)—n Y (Vmoo')um|<2C, B 'logn <n.

m=0

Next, recalling (30) and Lemma 20, we decompose

B tlogn—1 00 B~ Hogn—1
Z <Vm o 0-£>n—m - 22 - Z <Vm>oo + Z <<Vm o Ue>n—m - <Vm>oo> .
m=0 m=B"1logn m=0

The middle term on the right can be bounded using again (28). Indeed,

[ee] o0 Cl

> Vale| <O 3, e

m=0B"1logn m=0B"1logn "
Hence, using assumption (A2), we can compute
B~ llogn—1
E(Sne ® Sne) — n=2]| <3¢ +n|| S (<vm 00 — <vm>oo)
m=0
B tlogn—1 B~ togn—1
<3C"+n Y Cotnem [Vl €3C7+Cn Y Corpeme ™™
m=0 m=0

< 3C"+ CDglogn, B l1ogn < n.
Finally, (29) yields also the crude bound

n—1

»2 Z (V0 cré>n_m

m=0

< 2C'(1+ B logn), B~ logn > n.

|E(Sn,e ® Snp) —nX?|| < C'+n < C'+n(||Z2||+ ")
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Collecting the bounds in the two regimes 37 !logn < n and 7' logn > n, we see that there exists
a constant C” > 0 such that

|E(S, ® S,) — n¥?|| <3C"+ C"logn, n>1.
This finishes the proof of Lemma 19. O
An application of Lemma 19 with part (IT) of Theorem 18 finishes the proof of Theorem 1. [

Remark 21. Related to the special case of Theorem /, the above proof contains the interesting
fact that a pair correlation bound (for a well-chosen class of dynamically Hélder observables) alone
implies the vector-valued almost sure invariance principle for Sinai billiards with fized scatterers.
This extends the analogous result of [24] about the central limit theorem for Sinai billiards. Before
that, the otherwise classical central limit theorem for Sinai billiards had been obtained via the new
method of multiple (as opposed to just pair) correlation bounds in [5,6]. The author has learned that
also Péne [19] has proved the central limit theorem for Sinai billiards using correlation functions
without, however, pursuing finer limit theorems.

5.6. Proof of Lemma 2. Let us write P, for the probability measure on ((B.(0))",§) given
by Pr(A) = £ S0 P(077A) for all A € F. By assumption (A2), P(4) = (1a)r — (la)eo as
k — oo. The Vitali-Hahn—Saks theorem now states that the map P: § — [0,1] : A — (14)s is a
probability measure. The measure PP is called the stationary mean of P, which is justified by the
simple but crucial observation made in Lemma 20 of the preceding section that P — unlike P —
is invariant for the left shift o. Because pu is invariant for each of the billiard maps, the measure
P = P® i is therefore invariant for the skew-product map ® defined in the statement of the lemma.
Observe that, writing E for the expectation relative to P, (9) reads

32 =E(Ag®Ag) + > E(Ag® A, + A, @ Ag). (31)
m=1
Here A, (w,z) = f(wp, Fn(w,z)) = £f(P"(w,z)) with the understanding that f(w,z) = f(w, x).
The following is a complementary result to Lemma 19. Tt compares the covariance of the sum
S, = ZZ:OI A; = Z;:Ol_f o ®’, computed with respect to P instead of P, to nX2. Taking advantage
of the ®-invariance of P yields a match better than what one would naively infer from (26):

Lemma 22. There exists a constant C' > 0 such that

sup ||E(S, ® S,,) — n¥?|| < C". (32)
n>0
Proof. We start with the elementary identity
n—1
E(S, ®8,) =nE(Ag® Ag) + > (n—m)E(Ag® A, + Ay, ® Ay),
m=1

which is where we need invariance. Recalling (31), we have

o0

E(S, ®8,) —nX’ =) a,(m)E(A;® A, + Ay @ Ag)
m=1
where a,(m) = —m for 1 <m < n and a,(m) = —n for m > n. Because |a,(m)| < m,

[E(S, ©8,) —nZ?|| <) m||E(A) @ A + Ay @ Ay

m=1
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In the notation of Section 5.5,

k—
_ 1
B(Ag® A + Ay ® Ag) = lim ZE(Vm o).
/=0

The uniform bound in (28) yields ||E(V,, o o%)|| < Ce ™™ and hence the result. O

Recall the p-average of f vanishes identically. Given a vector v € R, we define f, = v'f. Since
vI(A,QA)Vv=VvI(A, @A, )v=Ff 00" f,0d®" for all m,n >0, (32) gives

Varp [ > fy o @ | —nv S| = |[vI(E(S, ®S,) — nE?)v| < C'|v|? (33)

uniformly for n > 1.

Suppose X2 is degenerate. In other words, there exists a vector v € R? such that X?v = 0. By
the bound above, Varp (ZZ;& fvo (IJk) < C'|v|? uniformly. Owing to the ®-invariance of P, we can
therefore apply [13, Lemma 1] (see also [21]) and conclude that f, must be an L?*(P)-coboundary.
In other words, there exists g € L?(P) such that f, = g — g o ® holds P-almost-everywhere. Since

k—1
1 ;
l9l:e) = Jim 3 3 [ lg(o, ) dP(w, o) (34)
j=0

the claim of the lemma in one direction follows.

To prove the claim in the other direction, suppose f, =g —go <I> for some g that satisfies the
condition given in the lemma. Then g € L?(P) by (34), and >, ' fy 0@ = g — go®" holds
P-almost-everywhere. This immediately gives

n—1

Varg [ Y fuo @ | =g — g0 @725, < 49/l
k=0

Combining the bound with (33) we get vIX2v < n~!(C'|v|? + 4Hg|]%2(p)) for all n > 1, which is
only possible if 32 is degenerate in the direction of v. This completes the proof of Lemma 2. O
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