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ABSTRACT. Consider the operator

H = −∆ + pω − V,

where pω is the potential of the Andersson type and V ≥ 0 is a function
that decays slowly at the infinity. We study the rate of accumulation of
eigenvalues of H to the bottom of the essential spectrum.

1. STATEMENT OF THE MAIN RESULT

The question we study is rooted in two different areas of mathematics: the
spectral theory of differential operators and the theory of percolations. We
begin with a discussion of the topics that are more important for the Cwikel-
Lieb-Rozenblum and Lieb-Thirring estimates.

Let Ej be the negative eigenvalues of the operator

−∆− V (x), V ≥ 0.

Then ∑
j

|Ej|γ ≤ C

∫
Rd
V d/2+γdx, d ≥ 3, γ ≥ 0.

The constant C in the latter inequality depends on γ and d. If γ = 0, this
inequality is called Cwikel-Lieb-Rozenblum estimate (see [1], [5], [6] and
[11]). If γ > 0, then it is called the Lieb-Thirring bound [8].

These inequalities are generalized to the case when the operator −∆ is
replaced by −∆ + p(x), where p is any positive bonded function. However,
it is expected that V might decay at the infinity slower than in the case p = 0.
In the present paper, we study spectral properties of the Schrödinger operator

H = −∆ + pω − V,

where pω is a positive random potential of the form

pω =
∑
n∈Zd

ωnχ(x− n), ωn ≥ 0,
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V ≥ 0 is a decaying real valued function and ωn are independent identically
distributed random variables. Here χ is the characteristic function of the unit
cube [0, 1)d.

As it is known, the negative spectrum of H is discrete, i.e. consists of iso-
lated eigenvalues λj < 0, possibly accumulating to zero. In [10], Molchanov
and Vainberg studied the question how fast should V ≥ 0 decay at the infin-
ity in order that H had at most finite number of negative eigenvalues. It turns
out that it is true for potentials decaying faster than c ln−2/d |x|. More pre-
cisely, operators with potentials of the form V = c ln−2/d |x| (here |x| > 1)
have finite number of negative eigenvalues if c > 0 is sufficiently small, and
the number of eigenvalues is infinite if c is sufficiently large. We shall try to
answer the question how fast do these eigenvalues accumulate to zero in the
case when V decays at the infinity in a very slow manner. Our assumptions
on ωn will be the following

Prob{ωn = 0} = q < 1,

Prob{ωn = 1} = 1− q,
(1.1)

which implies that pω(x) takes only two values: zero and one. For simplicity,
we assume that

(1.2) q < (3d − 2)−1

This assumption is needed because of the following reason. Consider the
largest connected domain where pω(x) = 0 containing the cube [0, 1)d. No-
tice that this domain might be empty and the probability of the event that this
domain is not empty equals q. We might ask a more subtle question: what is
the probability that this set contains n cubes? It turns out that it can be esti-
mated by C

(
q(3d− 2)

)n
, so under assumption (1.2) this probability tends to

zero as n→∞.
One should mention that we understand the notion of connectedness in a

somewhat different way, compared to how it is usually done. We consider
two different cubes of the form [0, 1)d + n connected to each other if their
closures have at least one common point. It is clear that in this case the
distance between their centers is less or equal to

√
d, where d is the dimension

of the space Rd.
The following lemma (cf [10]) plays a key role in the proof of Theorem 1.1

Lemma 1.1. Let Ω be an open domain with a smooth boundary having a
bounded curvature smaller than k0 > 0. Let W be a positive function such
that W (x) = 1 if dist(x, ∂Ω) ≤ 1/2. Then the lowest eigenvalue µ0 of the
operator

−∆ +W

with the Neumann boundary condition on ∂Ω satisfies the inequality

(1.3) µ0 ≥
ν

|Ω|2/d



EIGENVALUE ESTIMATES 3

where the constant ν > 0 is independent of the domain Ω.

Let us formulate our main result which deals with the case when

(1.4) V (x) =
v0

lns |x|
, |x| > 1, 0 < s < 2/d.

One of the consequences of the theorem formulated below is that all eigen-
value sums of the form ∑

j

|λj|γ =∞, γ > 0,

are divergent if s < 2/d, while it is known that H has only finite num-
ber of eigenvalues if s > 2/d. This is an unusual transition from ”finite”
to ”infinite”, for it would be natural to expect that an intermediate case∑

j |λj|γ <∞ occurs at least for some s ≥ 2/d. Perhaps, we should seek for
the key to this puzzle by studying carefully the case s = 2/d where a similar
transition takes place when and we change the coefficient v0.

Theorem 1.1. Let V be given by (1.4) and let q satisfy the condition (1.2).
Then the negative eigenvalues λj of the operator H satisfy
(1.5)∑
j

exp
(
− v

1/s
0 d

|λj|1/s
+

α

|λj|d/2
)
<∞ for α < −2−1νd/2 ln(q(3d − 2)),

and

(1.6)
∑
j

e−τ |λj |
−1/s

=∞ for τ < v
1/s
0 d.

Proof. First, let us prove (1.5). Decompose the whole space Rd into the
disjoint union of the layers

Ωn = {x ∈ Rd : en < |x| ≤ en+1}
Note that

V (x) ≤ v0n
−s x ∈ Ωn.

According to Lemma 1.1 we should pay attention to the domains Ω ⊂ Ωn

where pω(x) = 0 and
ν

|Ω|2/d
≤ v0n

−s.

Consequently, such domains should contain not less than

N(n) =
(
ν/v0

)d/2
nsd/2

cubes of the form [0, 1)d + j where j ∈ Zd.
Let x ∈ Ωn be a fixed point. Then the probability of the event that x

belongs to a connected domain Ω(x), having the volume not smaller than
N(n) and consisting only of points where pω = 0, is not bigger than

C
(
q(3d − 2)

)N(n)
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(here the constant C already depends on q but is independent of n).
It is clear that Ω(x) is empty with probability larger than 1 − C

(
q(3d −

2)
)N(n). Therefore different domains Ω(x) are separated form each other by

very large regions. It turns out that one can estimate the distance between
two different non-empty domains Ω(x) and Ω(x′) using the Borel-Cantelli
lemma.

Indeed, let us decompose Ωn into the union of disjoint cubes Qj whose
volume equals

|Qj| =
(
q(3d − 2)

)−2−1N(n)

.

Note that the number of such cubes in Ωn does not exceed

(1.7)
|Ωn|
|Qj|

≤ edn(
q(3d − 2)

)−2−1N(n)

Then the probability that a cube of this size contains m non-empty domains
Ω(x) is not larger than

C
(
q(3d − 2)

)2−1N(n)m

.

Now choose

m = m(n) :=
2(1 + ε)dn

N(n) ln(1/q(3d − 2))
, ε > 0.

Then the probability that there exists at least one cube Qj ⊂ Ωn containing
not less than m(n) non-empty ”clearing” domains Ω(x) is not bigger than
Ce−nεd.

Since
∑

n e
−nεd < ∞, we obtain that the sum of these probabilities over

set all possible indexes n > 1 is convergent. According to Borel-Cantelli
lemma, this implies that there exist such an index n0 that all cubes Qj ⊂ Ωn

contain less than m(n) non-empty clearing domains Ω(x) as soon as n > n0.
Now we need to know how large can Ω(x) be. It was proven by Molchanov

and Vainberg in [10], that

|Ω(x)| < c ln |x|, for |x| > R(c, ω)

for any c > c0 = −d/ ln((3d − 2)q). In particular, if Ω(x) ⊂ Ωn, then

(1.8) |Ω(x)| < c(n+ 1), for |x| > R(c, ω).

We are going to apply the standard trick imposing the Neumann conditions on
the boundary of each cube of the form [0, 1)d+ j, j ∈ Zd. The eigenvalues of
the resulting orthogonal sum of operators will be lower than the eigenvalues
of the original operator. On the other hand, without loss of generality we can
assume that the operator −∆ − V on the cube

(
[0, 1)d + j

)
∈ Ωn has only

one negative eigenvalue. This eigenvalue equals

(1.9) λ = −v0n
−s.

It is actually true, if n is sufficiently large.
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Consequently, according to (1.7), (1.8) and (1.9), we obtain∑
j

e−τ/|λj |
γ

eα/|λj |
β ≤

∑
n

Cedn(c0 + ε)(n+ 1)m(n)(
q(3d − 2)

)−2−1N(n)
e−τ/|v0n

−s|γeα/|v0n
−s|β

Choosing sγ = 1 and τ/vγ0 = d, we obtain that∑
j

e−τ/|λj |
γ

eα/|λj |
β ≤

∑
n

C(c0 + ε)(n+ 1)m(n)(
q(3d − 2)

)−2−1N(n)
eα/|v0n

−s|β

This series converges if β = d/2 and α < −2−1νd/2 ln(q(3d − 2)). This
proves (1.5).

Let us now prove (1.6). Again, we decompose the whole space Rd into the
disjoint union of the layers

Ωn = {x ∈ Rd : en < |x| ≤ en+1}

and note that on each such layer V (x) admits the following estimate

V (x) ≥ v0(n+ 1)−s, ∀x ∈ Ωn.

Since we are going to establish an estimate of a different type, instead of
Lemma 1.1 which says that the lowest eigenvalue can not be too small, we
will use a different fact claiming that it can not be too large. This fact is
needed only for the case when the domain is a cube, which makes things
even simpler, because the eigenvalues of the Laplace operator on a cube are
computed explicitly. Indeed, let µ1 be the lowest eigenvalue of the Laplace
operator with Dirichlet boundary conditions on the boundary of the cubeQ =
[0, L)d (Obviously, |Q| = Ld in this case). Then

µ1 = ν1L
−2 = ν1|Q|−2/d,

where ν1 = π2d.
Our method is rather rough because we will ignore the shape of the clear-

ings domains, i.e. domains consisting of x such that pω(x) = 0, and we will
pay attention only to the cubes Ω ⊂ Ωn where pω(x) = 0 and

(1.10)
ν1

|Ω|2/d
≤ v0(n+ 1)−s.

Only on such cubes, the operator −∆− V might have negative eigenvalues.
Relation (1.10) is a restriction on the size of Ω that allows one to estimate the
number of elementary cubes the form [0, 1) + j, j ∈ Zd that are contained in
Ω. Namely, (1.10) implies that

|Ω| ≥
(
ν1/v0

)d/2
(n+ 1)sd/2.

However, in order to estimate the size of the lowest eigenvalue of the operator
−∆ − V on Ω, we need to consider slightly bigger domains. In order to do
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that, we introduce

N1(n) :=
(

(1− ε)−1ν1/v0

)d/2
(n+ 1)sd/2, ε ∈ (0, 1).

Note that if Ω contains N1(n) cubes of the form [0, 1) + j, j ∈ Zd, then not
only (1.10) holds, but the lowest eigenvalue λ of ∆− V on the cube Ω ⊂ Ωn

satisfies the estimate

(1.11) λ ≤ −εv0(n+ 1)−s.

Now we will find cubes Qj , that are likely to contain at least one set Ω of
the size |Ω| = N1(n) having the property that pω(x) = 0 for all x ∈ Ω. These
cubes will be sufficiently large and they will have the same volume:

|Qj| = q−(1+δ)N1(n), δ > 0.

Moreover, Qj will not intersect each other, which means that we can decom-
pose Ωn into the union of disjoint cubes Qj Note that the number of sets Qj

in Ωn does not exceed the quantity

(1.12)
|Ωn|
|Qj|

≤ C0e
dn

q−(1+δ)N1(n)
.

The probability that a fixed cube Qj does not contain a smaller cube Ω of the
size |Ω| = N1(n) consisting of points x at which pω(x) = 0 is not larger than(

1− qN1(n)
)|Qj |/N1(n)

≤ exp
(
−q
−δN1(n)

N1(n)

)
.

Due to (1.22), the probability that there exists at least one Qj in Ωn having
the property described above is not larger than

C exp
(
−q
−δN1(n)

N1(n)

)
edn.

Since ∑
n

exp
(
−q
−δN1(n)

N1(n)

)
edn <∞

we conclude that no such Qj ⊂ Ωn exist if n is sufficiently large. Put it
differently, all cubes Qj contain smaller cubes Ω of the size |Ω| = N1(n) on
which pω = 0.

If we impose the Dirichlet conditions on boundary of each set Ω, then the
spectrum of the resulting operator is lifted up. Therefore, it is sufficient to
prove that the corresponding eigenvalue sum diverges for the operator with
such boundary conditions. On the other hand we know that the lowest eigen-
value of ∆− V on Ω ⊂ Ωn satisfies (1.21). Which implies that

e−τ |λ|
−1/s ≥ e−τ(εv0)−1/s(n+1)
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Since ε can be chosen as close to 1 as we wish, we can assume that
τ(εv0)

−1/s < (1 − δ0)d where δ0 is a sufficiently small number. Conse-
quently,

e−τ |λ|
−1/s ≥ e−d(n+1)(1−δ0)

Therefore the eigenvalue sum in (1.6) can be estimated by∑
j

e−τ |λj |
−1/s ≥

∑
n

e−d(n+1)(1−δ0) |Ωn|
|Qj|

≥∑
n

e2
−1dδ0(n+1) =∞.

The proof is completed. �

Let us formulate our next result which deals with the case when

(1.13) V (x) =
v0

ln2/d |x|
, |x| > 1.

Molchanov and Vainberg [10] proved that H has finitely many negative
eigenvalues if

dv
d/2
0

νd/2 ln(1/q(3d − 2))
< 1.

The results of the same paper say that the number of negative eigenvalues
of H is infinite, if v0 > 0 is sufficiently large. Therefore we are going to
consider only the case when

(1.14)
dv

d/2
0

νd/2 ln(1/q(3d − 2))
> 1.

Theorem 1.2. Let V be given by (1.13) and let q satisfy the condition (1.2).
Assume that ν in Lemma 1.1 fulfills the condition (1.14) Then the negative
eigenvalues λj of the operator H satisfy

(1.15)
∑
j

exp
(α− vd/20 d

|λj|d/2
)
<∞ for α < −2−1νd/2 ln(q(3d − 2)).

Moreover, if

v0 > 2π2d1−2/d ln2/d(
1

q
),

then

(1.16)
∑
j

e−τ |λj |
−d/2

=∞ for τ < 2−d/2v
d/2
0

(
d−

(2π2d

v0

)d/2
ln

1

q

)
.

Proof. First, let us prove (1.15). Again, as before, we decompose the whole
space Rd into the disjoint union of the layers

Ωn = {x ∈ Rd : en < |x| ≤ en+1}
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Note that
V (x) ≤ v0n

−2/d x ∈ Ωn.

According to Lemma 1.1 we should pay attention to the domains Ω ⊂ Ωn

where pω(x) = 0 and
ν

|Ω|2/d
≤ v0

n2/d
.

Consequently, such domains should contain not less than

N(n) =
(
ν/v0

)d/2
n

cubes of the form [0, 1)d + j where j ∈ Zd.
Let x ∈ Ωn be a fixed point. Then the probability of the event that x

belongs to a connected domain Ω(x), having the volume not smaller that
N(n) and consisting only of points where pω = 0, is not bigger than

C
(
q(3d − 2)

)N(n)

(here the constant C already depends on q but is independent of n).
It is clear that Ω(x) is empty with probability larger than 1 − C

(
q(3d −

2)
)N(n). Therefore different domains Ω(x) are separated form each other by

very large regions. It turns out that one can estimate the distance between
two different non-empty domains Ω(x) and Ω(x′) using the Borel-Cantelli
lemma.

Indeed, let us decompose Ωn into the union of disjoint cubes Qj whose
volume equals

|Qj| =
(
q(3d − 2)

)−2−1N(n)

.

Note that |Qj| < edn/2 and the number of such cubes in Ωn does not exceed
the ratio

(1.17)
|Ωn|
|Qj|

≤ edn(
q(3d − 2)

)−2−1N(n)

Then the probability that a cube of this size contains m non-empty domains
Ω(x) is not larger than

C
(
q(3d − 2)

)2−1N(n)m

.

Now choose

m :=
2(1 + ε)dn

N(n) ln(1/q(3d − 2))
=

2(1 + ε)dv
d/2
0

νd/2 ln(1/q(3d − 2))
, ε > 0.

Under conditions of Theorem 1.2, we have m > 2. Then the probability that
there exists at least one cube Qj ⊂ Ωn containing not less than m non-empty
”clearing” domains Ω(x) is not bigger than Ce−nεd.
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Since
∑

n e
−nεd < ∞, we obtain that the sum of these probabilities over

the set of all possible indexes n > 1 is convergent. According to Borel-
Cantelli lemma, this implies that there exist such an index n0 that all cubes
Qj ⊂ Ωn contain less than m non-empty clearing domains Ω(x) as soon as
n > n0.

Now we need to know how large can Ω(x) be. It was proven by Molchanov
and Vainberg in [10], that

|Ω(x)| < c ln |x|, for |x| > R(c, ω)

for any c > c0 = −d/ ln((3d − 2)q). In particular, if Ω(x) ⊂ Ωn, then

(1.18) |Ω(x)| < c(n+ 1), for |x| > R(c, ω).

We are going to apply the standard trick imposing the Neumann conditions on
the boundary of each cube of the form [0, 1)d+ j, j ∈ Zd. The eigenvalues of
the resulting orthogonal sum of operators will be lower than the eigenvalues
of the original operator. On the other hand, without loss of generality we can
assume that the operator −∆ − V on the cube

(
[0, 1)d + j

)
∈ Ωn has only

one negative eigenvalue. This eigenvalue equals

(1.19) λ = −v0n
−2/d.

It is actually true, if n is sufficiently large.
Consequently, according to (1.17), (1.18) and (1.19), we obtain∑
j

e−τ/|λj |
γ

eα/|λj |
β ≤

∑
n

Cedn(c0 + ε)(n+ 1)m(n)(
q(3d − 2)

)−2−1N(n)
e−τ/|v0n

−2/d|γeα/|v0n
−2/d|β

Choosing γ = d/2 and τ = dv
d/2
0 , we obtain that∑

j

e−τ/|λj |
γ

eα/|λj |
β ≤

∑
n

C(c0 + ε)(n+ 1)m(n)(
q(3d − 2)

)−2−1N(n)
eα/|v0n

−s|β

This series converges if β = d/2 and α < −2−1νd/2 ln(q(3d − 2)). This
proves (1.15).

Let us now prove (1.16). Again, we decompose the whole space Rd into
the disjoint union of the layers

Ωn = {x ∈ Rd : en < |x| ≤ en+1}
and note that on each such layer V (x) admits the following estimate

V (x) ≥ v0(n+ 1)−2/d, ∀x ∈ Ωn.

Since we are going to establish an estimate of a different type, instead of
Lemma 1.1 which says that the lowest eigenvalue can not be too small, we
will use a different fact claiming that it can not be too large. This fact is
needed only for the case when the domain is a cube, which makes things
even simpler, because the eigenvalues of the Laplace operator on a cube are
computed explicitly. Indeed, let µ1 be the lowest eigenvalue of the Laplace
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operator with Dirichlet boundary conditions on the boundary of the cubeQ =
[0, L)d (Obviously, |Q| = Ld in this case). Then

µ1 = ν1L
−2 = ν1|Q|−2/d,

where ν1 = π2d.
Our method is rather rough because we will ignore the shape of the clear-

ings domains, i.e. domains consisting of x such that pω(x) = 0, and we will
pay attention only to the cubes Ω ⊂ Ωn where pω(x) = 0 and

(1.20)
ν1

|Ω|2/d
≤ v0

(n+ 1)2/d
.

Only on such cubes, the operator −∆− V might have negative eigenvalues.
Relation (1.10) is a restriction on the size of Ω that allows one to estimate the
number of elementary cubes the form [0, 1) + j, j ∈ Zd that are contained in
Ω. Namely, (1.10) implies that

|Ω| ≥
(
ν1/v0

)d/2
(n+ 1).

However, in order to have a nice estimate for the size of the lowest eigenvalue
of the operator −∆ − V on Ω, we need to consider slightly bigger domains.
In order to do that, we introduce

N1(n) :=
(

2ν1/v0

)d/2
(n+ 1).

Note that if Ω contains N1(n) cubes of the form [0, 1) + j, j ∈ Zd, then not
only (1.20) holds, but the lowest eigenvalue λ of ∆− V on the cube Ω ⊂ Ωn

satisfies the estimate

(1.21) λ ≤ −2−1v0(n+ 1)−2/d.

Now we will find cubes Qj , that are likely to contain at least one set Ω of
the size |Ω| = N1(n) having the property that pω(x) = 0 for all x ∈ Ω. These
cubes will be sufficiently large and they will have the same volume:

|Qj| = q−(1+δ)N1(n), δ > 0.

Moreover, Qj will not intersect each other, which means that we can decom-
pose Ωn into the union of disjoint cubes Qj Note that the number of sets Qj

in Ωn does not exceed the quantity

(1.22)
|Ωn|
|Qj|

≤ C0e
dn

q−(1+δ)N1(n)
.

Observe that this quantity grows with the growth of n. The probability that
a fixed cube Qj does not contain a smaller cube Ω of the size |Ω| = N1(n)
consisting of points x at which pω(x) = 0 is not larger than(

1− qN1(n)
)|Qj |

≤ exp
(
−q−δN1(n)

)
.
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Due to (1.22), the probability that there exists at least one Qj in Ωn having
the property described above is not larger than

C exp
(
−q−δN1(n)

)
edn.

Since ∑
n

exp
(
−q−δN1(n)

)
edn <∞

we conclude that no such Qj ⊂ Ωn exist if n is sufficiently large. Put it
differently, all cubes Qj contain smaller cubes Ω of the size |Ω| = N1(n) on
which pω = 0.

If we impose the Dirichlet conditions on boundary of each set Ω, then the
spectrum of the resulting operator is lifted up. Therefore, it is sufficient to
prove that the corresponding eigenvalue sum diverges for the operator with
such boundary conditions. On the other hand we know that the lowest eigen-
value of ∆− V on Ω ⊂ Ωn satisfies (1.21). Which implies that

e−τ |λ|
−d/2 ≥ e−τ(2

−1v0)−d/2(n+1)

Due to the conditions of the theorem, we can assume that

τ(2−1v0)
−d/2 < d− (1 + δ) ln(

1

q
)
(2ν1

v0

)d/2
− ε

where ε > 0 is a sufficiently small but positive number. Consequently,

e−τ |λ|
−d/2 |Ωn|
|Qj|

≥ eεn

Therefore the eigenvalue sum in (1.16) can be estimated by∑
j

e−τ |λj |
−d/2 ≥

∑
n

eεn =∞.

The proof is completed. �

Theorem 1.2 implies that ∑
j

|λj|γ =∞

if v0 > 0 is sufficiently large, while the number of negative eigenvalues of H

N(V ) := #{ j : λj < 0 } <∞
is finite if v0 is sufficiently small. This transition from ”finite” to ”infinite”
is somewhat unusual. It does not let us to agree that this result is complete.
That is why we formulate the following question

Question: Are there parameters v0 > 0 and γ > 0 such that the series∑
j

|λj|γ <∞
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converges, while
N(V ) =∞ ?

We remind the reader that, in the multi-dimensional situation, the sharp
borderline between the cases N(V ) < ∞ and N(V ) = ∞ is not yet estab-
lished in terms of the values of v0. Therefore, it is better to start solving this
problem in the case d = 1 (see, for instance, the paper [4] which deals with
the quantity N(V )).
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