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Abstract. We consider the Cauchy problem for linear moment partial dif-

ferential equations with constant coefficients in two complex variables. We
construct an integral representation of the solution of this problem and study

its analyticity. As a result we derive a characterisation of multisummable

formal solutions of the Cauchy problem.

1. Introduction

We study the initial value problem for a general linear moment partial differential
equation with constant coefficients in two complex variables t, z

P (∂m1,t, ∂m2,z)u(t, z) = 0, ∂jm1,tu(0, z) = ϕj(z) for j = 0, . . . , n− 1,(1)

where P (λ, ζ) is a polynomial in variables (λ, ζ) of degree n with respect to λ, ∂m1,t

and ∂m2,z denote the formal moment differentiations, and the Cauchy data ϕj(z)
are analytic functions in a complex neighbourhood of the origin.

The formal m-moment differentiation ∂m,z was introduced recently by Balser
and Yoshino [8] as the linear operator on the space of power series defined by

∂m,z

( ∞∑
j=0

ujz
j

m(j)

)
:=

∞∑
j=0

uj+1z
j

m(j)
,

where m(u) is a moment function (see Definitions 5 and 6).
This concept generalises the usual and fractional differentiation. Indeed, for

m(u) = Γ(1+u) the operator ∂m,z coincides with the usual differentiation ∂z. Hence
for m1(u) = m2(u) = Γ(1 + u), (1) is the initial value problem for a linear partial
differential equation with constant coefficients. Moreover, for p ∈ N and m(u) =
Γ(1 + u/p) the operator ∂m,z is closely related to the 1/p-fractional differentiation

∂
1/p
z (see Remark 3).

Such a general approach to PDEs is especially useful in the theory of Borel

summability, since the formal power series û(t, z) =
∑∞
j=0

uj(z)
m1(j) t

j satisfies (1) if

and only if its k-Borel transform v(s, z) =
∑∞
j=0

uj(z)
m1(j)Γ(1+j/k)s

j satisfies the same

equation with the m1-moment differentiation ∂m1,t replaced by the m̃1-moment
differentiation ∂m̃1,s, where m̃1(u) = m1(u)Γ(1 + u/k). In that way the question
about summability of formal solution of (1) is reduced to the question about analytic
continuation properties of solution of the same equation with m1(u) replaced by
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m̃1(u). For that reason we are concerned with the study of analytic continuation
properties of solutions to general moment partial differential equations.

In the paper we construct a formal solution û of (1) and study its Gevrey as-
ymptotic properties. In the case when the formal solution û is convergent, its sum
u is an analytic solution of (1) defined in a complex neighbourhood of the origin.
The main result establishes the relation between analytic continuation properties
of u and the Cauchy data ϕj (j = 0, . . . , n− 1). As a corollary we characterise the
multisummable formal solution of (1) in terms of analytic continuation properties
and growth estimates of the Cauchy data.

We proceed as follows. We represent P (λ, ζ) in the form

P (λ, ζ) = P0(ζ)(λ− λ1(ζ))n1 · · · (λ− λl(ζ))nl ,

where P0(ζ) is a polynomial and λ1(ζ), . . . , λl(ζ) are the characteristic roots of
multiplicity n1, . . . , nl (n1 + · · · + nl = n) respectively. However a formal solution
of (1) may be not uniquely defined. To avoid this inconvenience, we choose the
normalised formal solution û, which satisfies also

(∂m1,t − λ1(∂m2,z))
n1 · · · (∂m1,t − λl(∂m2,z))

nl û = 0,

where λ1(∂m2,z), . . . , λl(∂m2,z) are the moment pseudodifferential operators (see
Definition 8).

Next we show that û =
∑l
α=1

∑nα
β=1 ûαβ with ûαβ being the formal solution of

(2) (∂m1,t − λα(∂m2,z))
β ûαβ = 0.

We prove that the Gevrey order of ûαβ depends on the order qα of the pole of
λα(ζ) at infinity and depends on the orders k1, k2 of moment functions m1, m2

respectively.
In the case when 1/k1 = q/k2, the formal solution ûαβ of (2) is convergent. Hence

its sum uαβ is an analytic solution of (2) defined in a complex neighbourhood of
the origin. Using an integral representation of solution uαβ we find the connection
between analytic continuation properties of uαβ and the Cauchy data.

In the case when 1/k1 < q/k2, we characterise (q/k2 − 1/k1)−1-summable solu-
tions of (2) in terms of analytic continuation properties of the Cauchy data.

Finally, returning to the formal solution û of (1), we describe multisummable
solutions of (1) in terms of ϕj (j = 0, . . . , n− 1).

In the last section the above results are extended to the inhomogeneous moment
equations

P (∂m1,t, ∂m2,z)û = f̂ , ∂jm1,tû(0, z) = ϕj(z) for j = 0, . . . , n− 1,(3)

where the inhomogeneity f̂(t, z) is a formal power series with respect to t.
In general, a formal solution of (3) may also be not unique, but it is uniquely

determined by every formal power series ĝ satisfying P0(∂m2,z)ĝ = f̂ , since there
is exactly one formal solution of (3) satisfying also the moment pseudodifferential
equation

(∂m1,t − λ1(∂m2,z))
n1 · · · (∂m1,t − λl(∂m2,z))

nl û = ĝ.

We find the formal solution û of (3) determined by ĝ. As in the homogeneous case

we show that û =
∑l
α=1

∑nα
β=1 ûαβ , where ûαβ satisfies

(4) (∂m1,t − λα(∂m2,z))
β ûαβ = ĝαβ
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for some formal series ĝαβ connected with ĝ. Expressing the formal solution ûαβ in
terms of ĝ, we calculate the Gevrey order of ûαβ . We also get the characterisation
of analytic continuation properties and summability of ûαβ in terms of ĝ. And
lastly, the multisummable solutions of (3) are also expressed in terms of ĝ.

The present paper is a generalisation of [14, 16], where the characterisation of
multisummable solutions of homogeneous and inhomogeneous linear PDEs with
constant coefficients was given. The inspiration for our study was the paper of
Balser and Yoshino [8], where the notion of moment differentiation was introduced
and the Gevrey order of formal solutions of general inhomogeneous linear moment
PDEs with constant coefficients was determined. Finally, let us point out that
the summability of formal solutions of homogeneous linear PDEs with constant
coefficients was studied by Balser [1, 3], Balser and Miyake [7], Ichinobe [9], Lutz,
Miyake and Schäfke [10], Malek [11], Michalik [12, 14, 15] and Miyake [17]. The
inhomogeneous case was investigated by Balser [4], Balser and Loday-Richaud [6],
Balser, Duval and Malek [5] and Michalik [13, 16].

2. Notation, Gevrey formal power series and Borel summability

We use the following notation. The complex disc in Cn with a centre at the
origin and a radius r > 0 is denoted by Dn

r := {z ∈ Cn : |z| < r}. To simplify
notation, we write Dr instead of D1

r . If the radius r is not essential, then we write
it Dn (resp. D) for short.

A sector in a direction d ∈ R with an opening ε > 0 in the universal covering

space C̃ of C \ {0} is defined by

S(d, ε) := {z ∈ C̃ : z = reiθ, d− ε/2 < θ < d+ ε/2, r > 0}.

Moreover, if the value of opening angle ε is not essential, then we write Sd for short.
We denote by Ŝd the set Sd ∪D.

By O(G) we understand the space of analytic functions on a domain G ⊆ Cn.
The Banach space of analytic functions on Dr, continuous on its closure and
equipped with the norm ‖ϕ‖r := max

|z|≤r
|ϕ(z)| is denoted by E(r).

The space of formal power series

û(t, z) =

∞∑
j=0

uj(z)t
j with uj(z) ∈ E(r)

is denoted by E(r)[[t]]. Moreover, we set E[[t]] :=
⋃
r>0

E(r)[[t]].

In this section we also recall some definitions and fundamental facts about the
Gevrey formal power series and Borel summability. For more details we refer the
reader to [2].

Definition 1. A function u ∈ O(S(d, ε)×Dr) is of exponential growth of order at
most K > 0 as t→∞ in S(d, ε) if and only if for any r1 ∈ (0, r) and any ε1 ∈ (0, ε)
there exist A,B <∞ such that

max
|z|≤r1

|u(t, z)| < AeB|t|
K

for every t ∈ S(d, ε1).

The space of such functions is denoted by OK(S(d, ε)×Dr). We also write OK(Ŝd×
D) for the space OK(Sd ×D) ∩ O(Ŝd ×D).
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Analogously, a function ϕ ∈ O(S(d, ε)) is of exponential growth of order at most
K > 0 as z → ∞ in S(d, ε) if and only if for any ε1 ∈ (0, ε) there exist A,B < ∞
such that

|ϕ(z)| < AeB|z|
K

for every z ∈ S(d, ε1).

The space of such functions is denoted by OK(S(d, ε)). We also set OK(Ŝd) :=

OK(Sd) ∩ O(Ŝd).

Definition 2. Let s ≥ 0. A formal power series

û(t, z) :=

∞∑
j=0

uj(z)t
j with uj(z) ∈ E(r)(5)

is called a Gevrey formal power series in t of order s if its coefficients satisfy

max
|z|≤r

|uj(z)| ≤ ABjΓ(1 + sj) for j = 0, 1, . . .

with some positive constants A and B.
The set of Gevrey formal power series in t of order s over E(r) is denoted by

E(r)[[t]]s. We also set E[[t]]s :=
⋃
r>0

E(r)[[t]]s.

Definition 3. Let k > 0 and d ∈ R. A formal series û ∈ E[[t]]1/k defined by (5) is
called k-summable in a direction d if and only if its k-Borel transform v satisfies

v(s, z) :=

∞∑
j=0

uj(z)
sj

Γ(1 + j/k)
∈ Ok(Ŝd ×D).

The k-sum of û(t, z) in the direction d is represented by the Laplace transform of v

uθ(t, z) :=
1

tk

∫ ∞(θ)

0

e−(s/t)kv(s, z) dsk,

where the integration is taken over any ray eiθR+ := {reiθ : r ≥ 0} with θ ∈
(d− ε/2, d+ ε/2).

We are now ready to define multisummability in some multidirection.

Definition 4. Let k1 > · · · > kn > 0. We say that a real vector (d1, . . . , dn) ∈ Rn
is an admissible multidirection if and only if

|dj − dj−1| ≤ π(1/kj − 1/kj−1)/2 for j = 2, . . . , n.

Let k = (k1, . . . , kn) ∈ Rn+ and let d = (d1, . . . , dn) ∈ Rn be an admissible
multidirection. We say that a formal power series û given by (5) is k-summable in
the multidirection d if and only if û = û1 + · · · + ûn, where ûj is kj-summable in
the direction dj for j = 1, . . . , n.

3. Moment methods

In this section we recall the notion of moment summability methods introduced
by Balser [2].

Definition 5 (see [2, Section 5.5]). A pair of functions em(z) and Em(z) is said to
be kernel functions of order k (k > 1/2) if they have the following properties:
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1. em(z) ∈ O(S(0, π/k)), em(z)/z is integrable at the origin, em(x) ∈ R+ for
x ∈ R+ and em(z) is exponentially flat of order k in S(0, π/k)

(i.e. ∀ε>0∃A,B>0 such that |em(z)| ≤ Ae−(|z|/B)k for z ∈ S(0, π/k − ε)).
2. Em(z) ∈ Ok(C) and Em(1/z)/z is integrable at the origin in S(π, 2π−π/k).
3. The connection between em(z) and Em(z) is given by the corresponding

moment function m(u) of order k as follows. The function m(u) is defined
in terms of em(z) by

(6) m(u) :=

∫ ∞
0

xu−1em(x)dx for Reu ≥ 0

and the kernel function Em(z) has the power series expansion

(7) Em(z) =

∞∑
j=0

zj

m(j)
for z ∈ C.

Observe that in case k ≤ 1/2 the set S(π, 2π − π/k) is not defined, so the
second property in Definition 5 can not be satisfied. It means that we must define
the kernel functions of order k ≤ 1/2 and the corresponding moment functions in
another way.

Definition 6 (see [2, Section 5.6]). A function em(z) is called a kernel function
of order k > 0 if we can find a pair of kernel functions em̃(z) and Em̃(z) of order
pk > 1/2 (for some p ∈ N) so that

em(z) = em̃(z1/p)/p for z ∈ S(0, π/k).

For a given kernel function em(z) of order k > 0 we define the corresponding moment
function m(u) of order k > 0 by (6) and the kernel function Em(z) of order k > 0
by (7).

Remark 1. Observe that by Definitions 5 and 6 we have

m(u) = m̃(pu) and Em(z) =

∞∑
j=0

zj

m(j)
=

∞∑
j=0

zj

m̃(jp)
.

Remark 2 (see [2, Section 5.5]). If m(u) is a moment function of order k then the
moments m(n) are of the same order as Γ(1 + n/k). It means that there exist
constants c, C > 0 such that

cjΓ(1 + j/k) ≤ m(j) ≤ CjΓ(1 + j/k) for j ∈ N.

The most important examples of kernel functions of order k > 0 with corre-
sponding moment functions are given by

• em(z) = kzke−z
k

• m(u) = Γ(1 + u/k)
• Em(z) =

∑∞
j=0 z

j/Γ(1 + j/k) =: E1/k(z), where E1/k is the Mittag-Leffler

function of index 1/k.

The next proposition provides a method for the construction of new moment func-
tions.

Proposition 1 (see [2, Theorem 31]). Let two kernel functions emj (z) of orders
kj, with corresponding moment functions mj(u), be given. Then there is a unique
kernel function em(z) of order k = (1/k1 + 1/k2)−1 with corresponding moment
function m(u) = m1(u)m2(u).
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By Remark 2 and by the general theory of moment summability (see [2, Sec-
tion 6.5 and Theorem 38]) we may characterise the Gevrey order and the Borel
summability of formal power series as follows

Proposition 2. Let m(u) be a moment function of order k, û(t, z) =
∑∞
n=0 un(z)tn

be a formal power series with coefficients un(z) ∈ O(D) and v(s, z) :=
∑∞
n=0

un(z)
m(n) s

n.

Then

• û is a Gevrey series of order 1/k if and only if v ∈ O(D2).

• û is k-summable in a direction d (d ∈ R) if and only if v ∈ Ok(Ŝd ×D).

4. Moment operators

In this section we recall the notion of moment differential operators constructed
recently by Balser and Yoshino [8]. We also introduce the concept of moment pseu-
dodifferential operators, which generalise the pseudodifferential operators defined
in [14, 15].

Definition 7. For every moment functions m1(u) and m2(u) the linear operators
∂m1,t, ∂m2,z : C[[t, z]]→ C[[t, z]] defined by

∂m1,t

( ∞∑
j=0

uj(z)

m1(j)
tj
)

:=

∞∑
j=0

uj+1(z)

m1(j)
tj

and

∂m2,z

( ∞∑
j=0

ũj(t)

m2(j)
zj
)

:=

∞∑
j=0

ũj+1(t)

m2(j)
zj

are called the moment differential operators ∂m1,t and ∂m2,z.

Moreover, the right-inversion operators ∂−1
m1,t, ∂

−1
m2,z : C[[t, z]]→ C[[t, z]] given by

∂−1
m1,t

( ∞∑
j=0

uj(z)

m1(j)
tj
)

:=

∞∑
j=1

uj−1(z)

m1(j)
tj

and

∂−1
m2,z

( ∞∑
j=0

ũj(t)

m2(j)
zj
)

:=

∞∑
j=1

ũj−1(t)

m2(j)
zj

are called the moment integration operators ∂−1
m1,t and ∂−1

m2,z.

Remark 3. Observe that

• For m1(j) = Γ(1 + j), the operator ∂m1,t coincides with the usual differen-
tiation ∂t.
• For m1(j) = Γ(1 + j/k) (k > 0), the operator ∂m1,t satisfies

(∂m1,tu)(t1/k, z) = ∂
1/k
t (u(t1/k, z)),

where ∂
1/k
t is the Caputo fractional derivative of order 1/k (see also [16,

Definition 5 and Remark 1]) defined by

∂
1/k
t

( ∞∑
j=0

uj(z)

Γ(1 + j/k)
tj/k

)
:=

∞∑
j=0

uj+1(z)

Γ(1 + j/k)
tj/k.
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By the end of this section we assume that em(z) and Em(z) are kernel functions
of order k > 0 with a corresponding moment function m(u).

The moment differential operator ∂m,z is well-defined for every ϕ(z) ∈ O(D). In
addition, we have the following integral representation of ∂m,zϕ(z).

Proposition 3. Let ϕ ∈ O(Dr). Then for every |z| < ε < r and n ∈ N we have

(8) ∂nm,zϕ(z) =
1

2πi

∮
|w|=ε

ϕ(w)

∫ ∞(θ)

0

ζnEm(zζ)
em(wζ)

wζ
dζ dw,

where θ ∈ (− argw − π
2k ,− argw + π

2k ).

Proof. Since ϕ ∈ O(Dr), we see that

ϕ(z) =

∞∑
j=0

ϕ(j)(0)

j!
zj =

∞∑
j=0

∂jm,zϕ(0)

m(j)
zj for |z| < r.

Hence, by the Cauchy integral formula

∂jm,zϕ(0) =
m(j)

j!
ϕ(j)(0) =

m(j)

2πi

∮
|w|=ε

ϕ(w)

wj+1
dw for ε < r.

By the definition of moment functions we have

m(j)

wj+1
=

∫ ∞
0

yj−1 em(y)

wj+1
dy

y=ζw
=

∫ ∞(θ)

0

ζj
em(ζw)

ζw
dζ with θ = − argw.

Moreover, since em(z) is exponentially flat of order k for arg z ∈ (− π
2k ,

π
2k ), we may

replace the direction θ = − argw by any direction θ ∈ (− argw− π
2k ,− argw+ π

2k ).
It means that

∂jm,zϕ(0) =
1

2πi

∮
|w|=ε

ϕ(w)

∫ ∞(θ)

0

ζj
em(ζw)

ζw
dζ dw

and consequently for |z| < ε we have

ϕ(z) =

∞∑
j=0

∂jm,zϕ(0)

m(j)
zj =

1

2πi

∮
|w|=ε

ϕ(w)

∫ ∞(θ)

0

em(ζw)

ζw

∞∑
j=0

ζjzj

m(j)
dζ dw

=
1

2πi

∮
|w|=ε

ϕ(w)

∫ ∞(θ)

0

Em(ζz)
em(ζw)

ζw
dζ dw.

Since

(9) ∂nm,zEm(ζz) = ∂nm,z

∞∑
j=0

ζjzj

m(j)
=

∞∑
j=0

ζj+nzj

m(j)
= ζnEm(ζz),

we finally obtain (8). �

The formula (8) motivates the introduction of moment pseudodifferential opera-
tors on the space of analytic functions. To this end, let λ(ζ) be an analytic function
for |ζ| > |ζ0| of polynomial growth at infinity. By (9) we may define

λ(∂m,z)Em(ζz) := λ(ζ)Em(ζz).

Hence we have
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Definition 8. A moment pseudodifferential operator λ(∂m,z) is defined by

(10) λ(∂m,z)ϕ(z) :=
1

2πi

∮
|w|=ε

ϕ(w)

∫ ∞(θ)

ζ0

λ(ζ)Em(ζz)
em(ζw)

ζw
dζ dw

for every ϕ ∈ O(D), where θ ∈ (− argw − π
2k ,− argw + π

2k ).

Since λ(ζ) is a holomorphic function for |ζ| > |ζ0| and is of polynomial growth
at infinity, the left-hand side of (10) is a well-defined analytic function in a complex
neighbourhood of the origin.

Definition 9. We define a pole order q ∈ Q and a leading term λ ∈ C \ {0} of λ(ζ)
as the numbers satisfying the formula

lim
ζ→∞

λ(ζ)

ζq
= λ.

Sometimes we write it also λ(ζ) ∼ λζq.

We have the following estimation

Lemma 1. Let ϕ ∈ O(D). Then there exist r > 0 and A,B < ∞ such that for
every moment pseudodifferential operator λ(∂m,z) we have

sup
|z|<r

|λ(∂m,z)ϕ(z)| ≤ |λ|ABqΓ(1 + q/k), where λ(ζ) ∼ λζq.

Proof. Since λ(ζ) ∼ λζq, we may assume that |λ(ζ)| ≤ 2|λ||ζ|q for |ζ| > |ζ0|. Hence,
by the definition of kernel functions we have∣∣∣ ∫ ∞(θ)

ζ0

λ(ζ)Em(ζz)
em(ζw)

ζw
dζ
∣∣∣ ≤ ∫ ∞

|ζ0|
2|λ|sqA1e

b1|z|ksk A2e
−b2|w|ksk

s|w|
ds

≤ 2|λ|A1A2

|w|

∫ ∞
0

sq−1e(b1|z|k−b2|w|k)sk ds

σ=sk

≤ 2|λ|A1A2

k|w|

∫ ∞
0

σq/k−1e(b1|z|k−b2|w|k)σ dσ ≤ |λ|ÃB̃q Γ(1 + q/k)

|w|(b2|w|k − b1|z|k)q/k
.

We choose r > 0 such that b2ε
k − b1rk > b2ε

k/2. Then for z ∈ Dr we have

|λ(∂m,z)ϕ(z)| ≤ 1

2π

∮
|w|=ε

|ϕ(z)||λ|ÃB̃q Γ(1 + q/k)

|w|(b2|w|k − b1|z|k)q/k
d|w|

≤ |λ|ÃB̃q Γ(1 + q/k)

ε(b2εk/2)q/k
1

2π

∮
|w|=ε

|ϕ(z)| d|w| ≤ |λ|ABqΓ(1 + q/k).

�

5. Formal solutions

In this section we study formal solutions of the initial value problem for a general
linear moment partial differential equation with constant coefficients{

P (∂m1,t, ∂m2,z)u = 0

∂jm1,tu(0, z) = ϕj(z) ∈ O(D) for j = 0, . . . , n− 1,
(11)

where

P (λ, ζ) = P0(ζ)λn −
n∑
j=1

Pj(ζ)λn−j
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is a general polynomial of two variables, which is of order n with respect to λ.
If P0(ζ) 6= const. then a formal solution of (11) is not uniquely determined. To

avoid this inconvenience we shall choose some special solution which is called a
normalised formal solution (see also Balser [3] and Michalik [14]). To this end we
factorise the moment differential operator P (∂m1,t, ∂m2,z) as follows

P (∂m1,t, ∂m2,z) = P0(∂m2,z)(∂m1,t − λ1(∂m2,z))
n1 · · · (∂m1,t − λl(∂m2,z))

nl

=: P0(∂m2,z)P̃ (∂m1,t, ∂m2,z)

where λ1(ζ), . . . , λl(ζ) are the characteristic roots of P (λ, ζ) = 0 with multiplicity
n1, . . . , nl (n1 + · · ·+ nl = n) respectively.

Since λj(ζ) are algebraic functions, they are also holomorphic for sufficiently
large ζ (say, for |ζ| > |ζ0|) and of polynomial growth at infinity. It means that the
moment pseudodifferential operators λj(∂m2,z) are well defined.

Now we are ready to define the uniquely determined normalised solution of (11).

Definition 10. A formal solution û of (11) is called a normalised formal solution if

and only if û is also a solution of the pseudodifferential equation P̃ (∂m1,t, ∂m2,z)û =
0.

Our aim is to study the normalised formal solution of (11). We begin by describ-
ing the formal solution of simple moment pseudodifferential equation

(∂m1,t − λ(∂m2,z))
βu = 0

∂jm1,tu(0, z) = 0 (j = 0, . . . , β − 2)

∂β−1
m1,tu(0, z) = λβ−1(∂m2,z)ϕ(z) ∈ O(D).

(12)

The trivial verification shows that

Lemma 2. A formal solution û of (12) is given by

(13) û(t, z) =

∞∑
j=β−1

(
j

β − 1

)
λj(∂m2,z)ϕ(z)

m1(j)
tj .

Next, we have

Proposition 4. If û is a formal solution of
P̃ (∂m1,t, ∂m2,z)û = 0

∂jm1,tû(0, z) = 0 (j = 0, . . . , n− 2)

∂n−1
m1,tû(0, z) = ϕ(z) ∈ O(D),

(14)

then û =
∑l
α=1

∑nα
β=1 ûαβ with ûαβ being a formal solution of

(∂m1,t − λα(∂m2,z))
β ûαβ = 0

∂jm1,tûαβ(0, z) = 0 (j = 0, . . . , β − 2)

∂β−1
m1,tûαβ(0, z) = λβ−1

α (∂m2,z)ϕαβ(z),

(15)

where ϕαβ(z) := dαβ(∂m2,z)ϕ(z) ∈ O(D) and dαβ(ζ) is some holomorphic function
of polynomial growth.

Proof. Observe that the formal solution û of (14) is given by

(16) û(t, z) =

∞∑
j=0

qj(∂m2,z)ϕ(z)
tj

m1(j)
,
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where qj(ζ) are the solutions of the difference equations

P0(ζ)qj(ζ) =

n∑
k=1

Pk(ζ)qj−k(ζ) for j ≥ n

with the initial conditions q0(ζ) = q1(ζ) = · · · = qn−2(ζ) = 0 and qn−1(ζ) =
1. Since the solutions qj(ζ) are rational functions, it follows that the moment
pseudodifferential operators qj(∂m2,z) are well defined. Moreover, according to the
theory of difference equations, we have

(17) qj(ζ) =

l∑
α=1

min{j+1,nα}∑
β=1

cαβ(ζ)
j!

(j + 1− β)!
λjα(ζ),

where cαβ(ζ) are holomorphic functions of polynomial growth for sufficiently large
|ζ| and λα(ζ) are the characteristic roots of multiplicity nα. Combining (16) and
(17) we obtain

û(t, z) =

l∑
α=1

nα∑
β=1

cαβ(∂m2,z)

∞∑
j=β−1

j!

(j + 1− β)!
λjα(∂m2,z)

tj

m1(j)
ϕ(z).

It means that û =
∑l
α=1

∑nα
β=1 ûαβ , where

ûαβ(t, z) = cαβ(∂m2,z)

∞∑
j=β−1

j!

(j + 1− β)!
λjα(∂m2,z)

tj

m1(j)
ϕ(z).

Bt Lemma 2, the formal power series ûαβ is a solution of (15) with dαβ(ζ) =
(β − 1)!cαβ(ζ). �

We generalise the above result as follows

Theorem 1. If û is a normalised formal solution of (11) then û =
∑l
α=1

∑nα
β=1 ûαβ

with ûαβ being a formal solution of
(∂m1,t − λα(∂m2,z))

β ûαβ = 0

∂jm1,tûαβ(0, z) = 0 (j = 0, . . . , β − 2)

∂β−1
m1,tûαβ(0, z) = λβ−1

α (∂m2,z)ϕαβ(z),

where ϕαβ(z) :=
∑n−1
j=0 dαβj(∂m2,z)ϕj(z) ∈ O(D) and dαβj(ζ) are some holomor-

phic functions of polynomial growth.

Proof. Applying the principle of superposition of solutions of linear equation in the
same way as in [14, Remark 2] and repeating the proof of Proposition 4, we obtain
the assertion. �

The next lemma allows us the study of solutions of moment equations in the
case when the moment function m1(u) is of order k1 ≤ 1/2. We have

Lemma 3. Let m1(u) and m2(u) be moment functions of orders k1 > 0 and k2 > 0

respectively, p ∈ N and k̃1 := k1p > 1/2. Then m̃1(u) := m1(u/p) is a moment

function of order k̃1. Moreover, û = û(t, z) is a formal solution of{
P (∂m1,t, ∂m2,z)û = 0
∂km1,tû(0, z) = ϕk(z), k = 0, . . . , n− 1.

(18)
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if and only if v̂(t, z) := û(tp, z) is a formal solution of
P (∂pm̃1,t

, ∂m2,z)v̂ = 0,

∂jm̃1,t
v̂(0, z) = ϕk(z) for j = kp, k = 0, . . . , n− 1,

∂jm̃1,t
v̂(0, z) = 0 for j = 1, . . . , np− 1 and p 6 | j.

(19)

Proof. By Definition 6 and Remark 1 we see that m̃1(u) = m1(u/p) is a moment

function of order k̃1. Moreover, observe that the formal power series û(t, z) =∑∞
j=0

uj(z)
m1(j) t

j is a formal solution of (18) if and only if the coefficients uj(z) satisfy

conditions uj(z) = ϕj(z) for j = 0, . . . , n− 1 and

P0(∂m2,z)uj(z) =

n∑
k=1

Pk(∂m2,z)uj−k(z) for j ≥ n.

On the other hand

v̂(t, z) =

∞∑
k=0

uk(z)

m1(k)
tkp =

∞∑
n=0

uk(z)

m̃1(kp)
tkp =

∞∑
j=0

vj(z)

m̃1(j)
tj ,

where vj(z) =

{
0 j 6= kp
uk(z) j = kp

. Hence the coefficients uj(z) satisfy the above

conditions if and only if vj(z) =

{
0 j 6= kp, j < np
ϕk(z) j = kp, j < np

and

P0(∂m2,z)vj(z) =

n∑
k=1

Pk(∂m2,z)vj−kp(z) for j ≥ np.

Moreover, the coefficients vj(z) satisfy the above conditions if and only if v̂ is a
formal solution of (19). �

6. Gevrey estimates

In this section we study the Gevrey order of formal solution û of (11), which
depends on the orders k1, k2 of moment functions m1(u), m2(u) respectively, and
depends on the pole orders qα of the characteristic roots λα(ζ) (α = 1, . . . , l). First,
we consider the simple moment pseudodifferential equation (12). We have

Proposition 5. We assume that û is a formal solution of (12) and q is a pole
order of λ(ζ). We have

• If 1/k1 < q/k2 then û is a Gevrey series of order q/k2 − 1/k1 with respect
to t.

• If 1/k1 = q/k2 then u ∈ O(D2).

• If 1/k1 > q/k2 then u ∈ O
k1k2
k2−qk1 (C×D).

Proof. We estimate the coefficients of the formal solution û(t, z) =
∑∞
j=0 uj(z)t

j of

(12). By Lemmas 1 and 2 we have

|uj(z)| =
(

j

β − 1

)
|λj(∂m2,z)ϕ(z)|

m1(j)
≤ ABj Γ(1 + jq/k2)

Γ(1 + j/k1)
for z ∈ D.

Hence û is a Gevrey series of order q/k2−1/k1 for 1/k1 < q/k2, a convergent series
in a complex neighbourhood of the origin for 1/k1 = q/k2 and an entire function
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for 1/k1 > q/k2. In the last case, by the properties of the Mittag-Leffler function
(see [2, p. 234]), we have

|u(t, z)| ≤
∞∑
j=0

ABj
Γ(1 + jq/k2)

Γ(1 + j/k1)
|t|j ≤

∞∑
j=0

ABj
|t|j

Γ(1 + j(1/k1 − q/k2))

≤ AE1/k1−q/k2(B|t|) ≤ ÃeB̃|t|
k1k2
k2−qk1 ,

where E1/k1−q/k2 is the Mittag-Leffler function of index 1/k1 − q/k2. �

Combining Theorem 1 and Proposition 5 we obtain

Theorem 2. Let û be a normalised formal solution of (11) with the decomposition

û =
∑l
α=1

∑nα
β=1 ûαβ constructed in Theorem 1 and let qα be a pole order of λα(ζ)

for α = 1, . . . , l. Then a formal series ûαβ is characterised as follows:

• If 1/k1 < qα/k2 then ûαβ is a Gevrey series of order qα/k2 − 1/k1 with
respect to t.
• If 1/k1 = qα/k2 then uαβ ∈ O(D2).

• If 1/k1 > qα/k2 then uαβ ∈ O
k1k2

k2−qαk1 (C×D).

7. Analytic solutions

In this section we study the convergent solutions u of (12). Therefore by Propo-
sition 5 we assume that 1/k1 ≥ q/k2, where k1, k2 are orders of moment functions
m1(u), m2(u) respectively, and q is a pole order of λ(ζ). We find a characterisation
of analytic continuation property of u in terms of the Cauchy data ϕ.

First, we introduce the following integral representation of solution.

Lemma 4. Let u be a solution of (12) and 1/k1 ≥ q/k2. Then u is analytic in
some complex neighbourhood of the origin and is given by
(20)

u(t, z) =
tβ−1

(β − 1)!
∂β−1
t

1

2πi

∮
|w|=ε

ϕ(w)

∫ ∞(θ)

ζ0

Em1
(tλ(ζ))Em2

(ζz)
em2

(ζw)

ζw
dζ dw

with θ ∈ (− argw − π
2k2

,− argw + π
2k2

).

Proof. Since 1/k1 ≥ q/k2, by Proposition 5 the solution u is analytic in some
complex neighbourhood of the origin. To show that the inner integral on the
right-hand side of (20) is convergent, observe that by Definitions 5 and 6 there

exist constants Ai and bi (i = 1, 2, 3) such that |Em1
(tλ(ζ))| ≤ A1e

b1|t|k1 |ζ|k1q ,

|Em2
(ζz)| ≤ A2e

b2|ζ|k2 |z|k2 and |em2
(ζw)| ≤ A3e

−b3|ζ|k2 |w|k2 . Hence, for fixed
w ∈ C \ {0} such that |z| is small relative to |w| and for |t| < a|w|q with some
fixed a > 0, we have∣∣∣ ∫ ∞(θ)

ζ0

Em1
(tλ(ζ))Em2

(ζz)
em2

(ζw)

ζw
dζ
∣∣∣ ≤ ∫ ∞

|ζ0|
Ãe−b̃s

k2 |w|k2 ds <∞.

It means that the right-hand side of (20) is a well-defined holomorphic function in
some complex neighbourhood of the origin. To show (20), observe that by Lemma
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2 and by (10) we have

u(t, z) =

∞∑
j=β−1

(
j

β − 1

)
λj(∂m2,z)ϕ(z)

m1(j)
tj =

tβ−1

(β − 1)!
∂β−1
t

∞∑
j=0

λj(∂m2,z)ϕ(z)

m1(j)
tj

=
tβ−1

(β − 1)!
∂β−1
t

∞∑
j=0

tj

m1(j)

1

2πi

∮
|w|=ε

ϕ(w)

∫ ∞(θ)

ζ0

λj(ζ)Em2
(ζz)

em2(ζw)

ζw
dζ dw

=
tβ−1

(β − 1)!
∂β−1
t

1

2πi

∮
|w|=ε

ϕ(w)

∫ ∞(θ)

ζ0

∞∑
j=0

tjλj(ζ)

m1(j)
Em2(ζz)

em2(ζw)

ζw
dζ dw.

�

In the next crucial lemma we use the integral representation (20) of solution u
to find its analytic continuation.

Lemma 5. Let 1/k1 = q/k2, q = µ/ν with relatively prime numbers µ, ν ∈ N,
K > k1 and let u be a solution of{

(∂m1,t − λ(∂m2,z))
βu = 0

∂jm1,tu(0, z) = ϕj(z) ∈ O(D) (j = 0, . . . , β − 1).

If ϕj ∈ OqK(Ŝ(d+arg λ)/q+2kπ/µ) for k = 0, . . . , µ − 1 and j = 0, . . . , β − 1, then

u ∈ OK(Ŝd+2nπ/ν ×D) for n = 0, . . . , ν − 1.

Proof. First, we consider case k1 > 1/2. By the principle of superposition of solu-

tions of linear equations we may assume that u satisfies (12) with ϕ ∈ OqK(Ŝ(d+arg λ)/q+2kπ/µ)
for k = 0, . . . , µ − 1. So, by Lemma 4, u is given by (20). Next, observe that the
function

(21) t 7→
∫ ∞(θ)

ζ0

Em1(tλ(ζ))Em2(ζz)
em2

(ζw)

ζw
dζ,

which is holomorphic on {t ∈ C : |t| < a|w|q}, can be also analytically continued to
the set

(22) {t ∈ C̃ : (arg t+ 2kπ + arg λ)/µ 6= (argw + 2nπ)/ν for every k, n ∈ Z}.

Indeed, we may replace a direction θ in (21) by θ̃ satisfying the following conditions

•

arg t+ 2kπ + arg λ+ q arg θ̃ ∈
( π

2k1
, 2π − π

2k1

)
for some k ∈ Z

(in this case, by Definition 5, we have Em1(tλ(ζ))→ 0 as ζ →∞, arg ζ = θ̃),
•

argw + 2nπ + arg θ̃ ∈
(
− π

2k2
,
π

2k2

)
for some n ∈ Z

(in this case, by Definitions 5 and 6, there exists ε > 0 such that∣∣∣Em2
(ζz)em2

(ζw)

ζw

∣∣∣ ≤ e−ε|ζ|k2 as ζ →∞, arg ζ = θ̃).

Since q = k2/k1 = µ/ν, these requirements may be together satisfied under the
condition that (arg t+ 2kπ+ arg λ)/µ 6= (argw+ 2nπ)/ν for every k, n ∈ Z. There-
fore the function (21) can be analytically continued to the sectors (22) and has the
exponential growth of order at most k1 there.
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To estimate u, fix z such close to the origin, that arg(w−z) ≈ argw along a circle
|w| = ε. Repeating the proof of Theorem 3.1 in [7], we split this circle into 2µ arcs
γ2k and γ2k+1 (k = 0, . . . , µ − 1), where γ2k extends between points of argument

(d+arg λ)/q+2kπ/µ± δ̃/3 and γ2k+1 extends between (d+arg λ)/q+2kπ/µ+ δ̃/3

and (d+arg λ)/q+2(k+1)π/µ−δ̃/3 mod 2π. Finally, since ϕ ∈ O(S((d+arg λ)/q+

2kπ/µ, δ̃)), we may deform γ2k into a path γR2k along the ray argw = (d+arg λ)/q+

2kπ/µ − δ̃/3 to a point with modulus R (which can be chosen arbitrarily large),

then along the circle |w| = R to the ray argw = (d + arg λ)/q + 2kπ/µ + δ̃/3 and
back along this ray to the original circle. So, we have

u(t, z) =
tβ−1

(β − 1)!
∂β−1
t u1(t, z) +

tβ−1

(β − 1)!
∂β−1
t u2(t, z),

where

u1(t, z) :=

µ−1∑
k=0

1

2πi

∮
γR2k

ϕ(w)

∫ ∞(θ)

ζ0

Em1
(tλ(ζ))Em2

(ζz)
em2

(ζw)

ζw
dζ dw

and

u2(t, z) :=

µ−1∑
k=0

1

2πi

∮
γ2k+1

ϕ(w)

∫ ∞(θ)

ζ0

Em1
(tλ(ζ))Em2

(ζz)
em2

(ζw)

ζw
dζ dw.

Note that R may be chosen arbitrarily large and the function (21) is analytic on
{t ∈ C : |t| < a|w|q} (we assume that |z| is small relative to |w|). Hence, one
can find δ > 0 such that u1 is analytically continued to S(d + 2nπ/ν, δ) × Dr for
n = 0, . . . , ν − 1. Estimating this integral we see that it is of exponential growth of
order at most K as t→∞.

Moreover, since the function (21) is analytically continued into the region (22),
we see that u2 is also analytically continued to S(d + 2nπ/ν, δ) × Dr for n =
0, . . . , ν − 1 and is of exponential growth of order at most k1 as t→∞.

Hence also u is analytically continued to S(d+2nπ/ν, δ)×Dr for n = 0, . . . , ν−1
and is of exponential growth of order at most K as t→∞.

In case k1 ≤ 1/2 there exists p ∈ N such that k̃1 := pk1 > 1/2. By Lemma 3,
v(t, z) := u(tp, z) is a solution of

(∂pm̃1,t
− λ(∂m2,z))

βv = 0,

∂npm̃1,t
v(0, z) = ϕn(z) ∈ OqK(Ŝ(d+arg λ)/q+2kπ/µ) for n = 0, . . . , β − 1

∂jm̃1,t
v(0, z) = 0 for j = 1, . . . , βp− 1 and p 6 | j,

where m̃1(u) = m1(u/p) is a moment function of order k̃1 > 1/2.
By Theorem 1 we have v = v0 + · · ·+ vp−1, where vj (j = 0, . . . , p− 1) satisfy{

(∂m̃1,t − ei2jπ/pλ1/p(∂m2,z))
βvj = 0,

∂nm̃1,t
vj(0, z) = ϕ̃jn(z) ∈ OqK(Ŝ(d+arg λ)/q+2kπ/µ) for n = 0, . . . , β − 1.

Applying the first part of the proof to the above equation we obtain vj(t, z) ∈
OpK(Ŝ(d+2jπ)/p+2nπ/(pν) ×D) for j = 1, . . . , p. It means that u(t, z) = v(t1/p, z) ∈
OK(Ŝd+2nπ/ν ×D). �

To show that the sufficient condition for analytic continuation of u given in
Lemma 5 is also necessary, we need the following auxiliary lemmas.
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Lemma 6. We assume that 1/k1 = q/k2. Then u ∈ O(D2) satisfies the equation

(23) (∂m1,t − λ(∂m2,z))u = 0

if and only if u is a solution of the equation

(24) (∂m2,z − λ−1(∂m1,t))u = 0.

Proof. Since the equations (23) and (24) are symmetric, we only need the implica-
tion one way. To this end, we assume that u satisfies (23). It means, by Lemma 4,
that

u(t, z) =
1

2πi

∮
|w|=ε

ϕ(w)

∫ ∞(θ)

ζ0

Em1
(tλ(ζ))Em2

(ζz)
e(ζw)

ζw
dζ dw

for some ϕ ∈ O(D). Hence, by the definition of the pseudodifferential operator
λ−1(∂m1,t) we have

λ−1(∂m1,t)u(t, z) =
1

2πi

∮
|w|=ε

ϕ(w)

∫ ∞(θ)

ζ0

λ−1(λ(ζ))Em1(tλ(ζ))Em2(ζz)
e(ζw)

ζw
dζ dw

=
1

2πi

∮
|w|=ε

ϕ(w)

∫ ∞(θ)

ζ0

Em1
(tλ(ζ))ζEm2

(ζz)
e(ζw)

ζw
dζ dw = ∂m2,zu(t, z).

So u satisfies also (24). �

Repeating the proof of Lemma 6 in [15], we generalise the last result as follows

Lemma 7. We assume that 1/k1 = q/k2. Then u ∈ O(D2) satisfies the equation

(∂m1,t − λ(∂m2,z))
βu = 0

if and only if u satisfies the equation

(∂m2,z − λ−1(∂m1,t))
βu = 0.

Now we can state the main result of the paper

Theorem 3. Let us assume that u is a solution of (12), 1/k1 = q/k2 and q = µ/ν
with relatively prime numbers µ, ν ∈ N. Then for every K > k1 and d ∈ R we have

ϕ ∈ OqK(Ŝ(d+arg λ)/q+2kπ/µ) for k = 0, . . . , µ− 1

if and only if

u ∈ OK(Ŝd+2nπ/ν ×D) for n = 0, . . . , ν − 1.

Proof. (=⇒) The implication is given by Lemma 4.

(⇐=) By Lemma 7, the function u satisfies

(∂m2,z − λ−1(∂m1,t))
βu = 0

with the initial conditions ∂jm2,zu(t, 0) = ψj(t) ∈ OK(Ŝd+2nπ/ν) for n = 0, . . . , ν−1

and j = 0, . . . , β − 1. Observe that, if λ(ζ) ∼ λζq then λ−1(τ) ∼ λ−1/qτ1/q.

By Lemma 5 with replaced variables, we conclude that if ψj(t) ∈ OK(Ŝd+2nπ/ν)

for n = 0, . . . , ν − 1 and j = 0, . . . , β − 1 then u(t, z) ∈ OqK(D × Ŝθk), where
θk = (d+ 2kπ/ν)/q − arg(λ−1/q) = (d+ arg λ)/q + 2kπ/µ for k = 0, . . . , µ− 1. In

consequence, ϕ(z) = u(0, z) ∈ OqK(Ŝ(d+arg λ)/q+2kπ/µ) for k = 0, . . . , µ− 1. �
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8. Summable and multisummable solutions

In this section we characterise the summable formal solutions û of (12) in terms of
the Cauchy data ϕ. Next, we also give a similar characterisation of multisummable
normalised formal solutions of general equation (11).

Proposition 6. Let us assume that û is a formal solution of (12), 1/k1 < q/k2,
q = µ/ν with relatively prime numbers µ, ν ∈ N, K = (q/k2 − 1/k1)−1 and d ∈ R.
Then û is K-summable in directions d + 2nπ/ν for n = 0, . . . , ν − 1 if and only if

ϕ ∈ OqK(Ŝ(d+arg λ)/q+2kπ/µ) for k = 0, . . . , µ− 1.

Proof. By Lemma 2 and Proposition 2, û is K-summable in directions d + 2nπ/ν
(n = 0, . . . , ν − 1) if and only if

v(t, z) :=

∞∑
j=β−1

(
j

β − 1

)
λj(∂m2,z)ϕ(z)

m1(j)m(j)
tj ∈ OK(Ŝd+2nπ/ν ×D) (n = 0, . . . , ν − 1)

with some moment function m(u) of order K. By Proposition 1, we see that

m̃1(u) := m1(u)m(u) is a moment function of order k̃1 := (1/k1 + 1/K)−1 = k2/q.
It means, by Lemma 2, that v is a solution of

(∂m̃1,t − λ(∂m2,z))
βv = 0

∂jm̃1,t
v(0, z) = 0 (j = 0, . . . , β − 2)

∂β−1
m̃1,t

v(0, z) = λβ−1(∂m2,z)ϕ(z) ∈ O(D).

Hence, by Theorem 3, v ∈ OK(Ŝd+2nπ/ν × D) for n = 0, . . . , ν − 1 if and only if

ϕ ∈ OqK(Ŝ(d+arg λ)/q+2kπ/µ) for k = 0, . . . , µ− 1. �

Now we return to the general equation (11). For convenience we assume that

(25) P (λ, ζ) = P0(ζ)

ñ∏
α=1

lα∏
β=1

(λ− λαβ(ζ))nαβ ,

where λαβ(ζ) is the characteristic root with a pole orders qα ∈ Q for α = 1, . . . , ñ
and β = 1, . . . , lα. Without loss of generality we may assume that there exist
exactly N pole orders of the characteristic roots, which are greater than k2/k1, say
k2/k1 < q1 < · · · < qN <∞ and let Kα > 0 be defined by Kα := (qα/k2 − 1/k1)−1

for α = 1, . . . , N .
By Theorem 1, the normalised formal solution û of (11) is given by

û =

ñ∑
α=1

lα∑
β=1

nαβ∑
γ=1

ûαβγ

with ûαβγ satisfying
(∂m1,t − λαβ(∂m2,z))

γ ûαβγ = 0

∂jm1,tûαβγ(0, z) = 0 for j = 0, . . . , γ − 2

∂γ−1
m1,tûαβγ = λαβ(∂m2,z)ϕαβγ(z),

where ϕαβγ(z) =
∑n−1
j=0 dαβγj(∂m2,z)ϕj(z) ∈ O(D) and dαβγj(ζ) are holomorphic

functions of polynomial growth at infinity.
Hence, by Proposition 6, we have
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Theorem 4. Under the above conditions with qα = µα/να with relatively prime
numbers µα, να ∈ N for α = 1 . . . , N , the normalised formal solution û of (11)
is (K1, . . . ,KN )-summable in multidirections (d1 + 2n1π/ν1, . . . , dN + 2nNπ/νN )
(nα = 0, . . . , να − 1, α = 0, . . . , N) if and only if

ϕ ∈ OqαKα(Ŝ(dα+arg λαβ)/qα+2nαπ/µα)

for every nα = 0, . . . , µα − 1, β = 1, . . . , lα and α = 1, . . . , N .

9. Inhomogeneous equations

In the last section we generalise the above results to the inhomogeneous case. To
this end we consider the Cauchy problem for general inhomogeneous linear moment
partial differential equation with constant coefficients{

P (∂m1,t, ∂m2,z)ũ =
ˆ̃
f

∂jm1,tũ(0, z) = ϕj(z) ∈ O(D) for j = 0, . . . , n− 1,
(26)

where
ˆ̃
f(t, z) ∈ E[[t]] and P (λ, ζ) is a polynomial in (λ, ζ), of degree n ∈ N with

respect to λ. In other words

P (λ, ζ) = P0(ζ)λn −
n∑
j=1

Pj(ζ)λn−j = P0(ζ)
(
λn −

n∑
j=1

P̃j(ζ)λn−j
)
,

where P0(ζ), . . . , Pn(ζ) are polynomials and P̃j(ζ) := Pj(ζ)/P0(ζ) (j = 1, . . . , n)
are rational functions.

Following [16], without loss of generality we may assume that the Cauchy data
ϕj vanish. Indeed, after substitution

u(t, z) := ũ(t, z)−
n−1∑
j=0

ϕj(z)

m1(j)
tj

we reduce the Cauchy problem (26) to{
P (∂m1,t, ∂m2,z)u(t, z) = f̂(t, z)

∂jm1,tu(0, z) = 0 for j = 0, . . . , n− 1,
(27)

where

f̂(t, z) :=
ˆ̃
f(t, z)− P (∂m1,t, ∂m2,z)

n−1∑
j=0

ϕj(z)

m1(j)
tj ∈ E[[t]].

Using the pseudodifferential operators defined by (10) we have

P (∂m1,t, ∂m2,z) = P0(∂m2,z)
(
∂nm1,t −

n∑
j=1

P̃j(∂m2,z)∂
n−j
m1,t

)
=: P0(∂m2,z)P̃ (∂m1,t, ∂m2,z).

Observe that, if P0(∂m2,z) 6= const. then the Cauchy problem (27) is not uniquely
determined. In the homogeneous case this problem was solving by the choice of
normalised formal solution. In the inhomogeneous case the formal solution is de-
termined by the formal power series ĝ(t, z) ∈ E[[t]] (see also [8] and [16]), which
satisfies the equation

P0(∂m2,z)ĝ = f̂ .
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For a given ĝ there is exactly one formal solution û of the Cauchy problem{
P̃ (∂m1,t, ∂m2,z)û = ĝ

∂jm1,tû(0, z) = 0 for j = 0, . . . , n− 1,
(28)

which is also a solution of (27) and is called a formal solution of (27) determined
by ĝ.

In the next proposition we find the formal solution û. We have

Proposition 7. A formal solution û of (27) determined by ĝ is given by

(29) û(t, z) =

∞∑
j=0

(∂−1
m1,t)

j+1qj(∂m2,z)ĝ(t, z),

where qj(ζ) are solutions of the difference equation

qj(ζ) =

n∑
k=1

P̃k(ζ)qj−k(ζ) for j ≥ k

with the initial conditions q0(ζ) = · · · = qn−2(ζ) = 0 and qn−1(ζ) = 1

Proof. Since qj(ζ) are rational functions, they are of polynomial growth at infin-
ity and they are holomorphic for sufficient large |ζ|. Hence the pseudodifferential
operators qj(∂m2,z) are well defined.

To finish the proof, it is sufficient to show that the formal series given by (29) is
a solution of (28). To this end observe that (∂m1,t)

j û(0, z) = 0 for j = 0, . . . , n− 1
and

P̃ (∂m1,t, ∂m2,z)û(t, z) = P̃ (∂m1,t, ∂m2,z)
( ∞∑
j=n−1

(∂−1
m1,t)

j+1qj(∂m2,z)ĝ(t, z)
)

=

∞∑
j=n−1

(∂−1
m1,t)

j−n+1qj(∂m2,z)ĝ(t, z)−
n∑
k=1

∞∑
j=n−1

(∂−1
m1,t)

j−n+1+kP̃k(∂m2,z)qj(∂m2,z)ĝ(t, z)

=

∞∑
j=n−1

(∂−1
m1,t)

j−n+1qj(∂m2,z)ĝ(t, z)−
∞∑
j=n

n∑
k=1

(∂−1
m1,t)

j−n+1P̃k(∂m2,z)qj−k(∂m2,z)ĝ(t, z)

=

∞∑
j=n−1

(∂−1
m1,t)

j−n+1qj(∂m2,z)ĝ(t, z)−
∞∑
j=n

(∂−1
m1,t)

j−n+1qj(∂m2,z)ĝ(t, z)

= qn−1(∂m2,z)ĝ(t, z) = ĝ(t, z).

�

Now we consider the simple inhomogeneous moment pseudodifferential equation{
(∂m1,t − λ(∂m2,z))

βu(t, z) = ĝ(t, z)

∂jm1,tu(0, z) = 0, j = 0, . . . , β − 1.
(30)

The direct calculation shows that

Lemma 8. The formal solution û of (30) is given by

û(t, z) =

∞∑
j=β−1

(
j

β − 1

)
(∂−1
m1,t)

j+1λj−β+1(∂m2,z)ĝ(t, z).
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Next, using Proposition 7 and the factorisation of operator P̃ (∂m1,t, ∂m2,z), we
obtain the following decomposition of solution of (27) determined by ĝ .

Theorem 5. Let û be a formal solution of (27) determined by ĝ and

P̃ (∂m1,t, ∂m2,z) = (∂m1,t − λ1(∂m2,z))
n1 · · · (∂m1,t − λl(∂m2,z))

nl .

Then û =
∑l
α=1

∑nα
β=1 ûαβ, where ûαβ is a formal solution of{
(∂m1,t − λα(∂m2,z))

β ûαβ(t, z) = ĝαβ(t, z)

∂jm1,tûαβ(0, z) = 0 for j = 0, . . . , β − 1
(31)

and ĝαβ(t, z) = dαβ(∂m2,z)ĝ(t, z) for some holomorphic function dαβ(ζ) of polyno-
mial growth.

Proof. By Proposition 7 the formal solution of (27) determined by ĝ is given by

û(t, z) =

∞∑
j=0

(∂−1
m1,t)

j+1qj(∂m2,z)ĝ(t, z),

where

qj(ζ) =

l∑
α=1

min{j+1,nα}∑
β=1

cαβ(ζ)
j!

(j + 1− β)!
λjα(ζ),

cαβ(ζ) are holomorphic functions of polynomial growth for sufficiently large |ζ|
(see Section 5 in [14] for more details) and λα(ζ) are the characteristic roots of
multiplicity nα.

It means that û =
∑l
α=1

∑nα
β=1 ûαβ , where

ûαβ =

∞∑
j=β−1

j!

(j + 1− β)!
(∂−1
m1,t)

j+1λjα(∂m2,z)cαβ(∂m2,z)ĝ(t, z).

By Lemma 8, ûαβ is a formal solution of (31) with

ĝαβ(t, z) = dαβ(∂m2,z)ĝ(t, z) and dαβ(ζ) = (β − 1)!cαβ(ζ)λβ−1
α (ζ).

�

Now we are ready to study the Gevrey order of formal solution to inhomogeneous
equation. First we consider the simple equation (30). We have

Proposition 8. Let û be a formal solution of (30) determined by a Gevrey series
ĝ ∈ E[[t]]s of order s ≥ 0 and let q be a pole order of λ(ζ). Then û is a Gevrey

series of order max{ qk1−k2k1k2
, s} with respect to t.

Proof. Since

ĝ(t, z) =

∞∑
n=0

gn(z)

m1(n)
tn with gn(z) ∈ E(r)

is a Gevrey series of order s ≥ 0, there exist A,B <∞ such that

max
|z|≤r

|gn(z)| ≤ ABnΓ(1 + (s+ 1/k1)n) for n = 0, 1, . . .(32)
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By Lemma 8 we have

û(t, z) =

∞∑
j=β−1

(
j

β − 1

)
(∂−1
m1,t)

j+1λj−β+1(∂m2,z)ĝ(t, z)

=

∞∑
j=β−1

(
j

β − 1

)
λj−β+1(∂m2,z)

∞∑
n=0

gn(z)

m1(n+ j + 1)
tn+j+1

k=n+j+1
=

∞∑
k=β

tk

m1(k)

k−1∑
j=β−1

(
j

β − 1

)
λj−β+1(∂m2,z)gk−j−1(z)

=:

∞∑
k=β

uk(z)tk

m1(k)
.

Now, by Lemma 1 and by (32), we obtain the estimate

|uk(z)| ≤
k−1∑
j=β−1

(
j

β − 1

)
|λj−β+1(∂m2,z)gk−j−1(z)|

≤ ÃB̃k
k−1∑
j=β−1

Γ(1 + jq/k2)Γ(1 + (k − j − 1)(s+ 1/k1))

for z ∈ Dr. Hence there exist C,D <∞ such that

sup
|z|<r

|uk(z)| ≤ CDKΓ(1 + k(s̃+ 1/k1)) for k = 0, 1, . . . ,

where s̃ = max{ qk1−k2k1k2
, s}. �

By Theorem 5 and Proposition 8, we obtain the Gevrey estimates for solutions
of (27), which improve the result of Balser and Yoshino [8]. Namely we have

Theorem 6. Let û be a formal solution of (27) determined by a Gevrey series

ĝ ∈ E[[t]]s of order s ≥ 0 and let û =
∑l
α=1

∑nα
β=1 ûαβ be a decomposition of solution

constructed in Theorem 5. Then ûαβ is a Gevrey series of order max{ qαk1−k2k1k2
, s}

with respect to t, where qα ∈ Q is a pole order of the characteristic root λα(ζ).

Immediately by Lemma 8 and Proposition 8 we obtain the characterisation of
analytic continuation properties of convergent solutions of (30) in terms of inhomo-
geneity ĝ.

Proposition 9. We assume that 1/k1 = q/k2, ĝ ∈ E[[t]]0 is a convergent power
series and u is a solution of (30). Then u is analytic in some complex neighbourhood

of the origin. Moreover, for every K > k1 and d ∈ R we have û ∈ OK(Ŝd ×D) if
and only if ĝ satisfies condition

∞∑
j=β−1

(
j

β − 1

)
(∂−1
m1,t)

j+1λj−β+1(∂m2,z)ĝ(t, z) ∈ OK(Ŝd ×D).

Using Lemma 8 and Proposition 9 we characterise the summable formal solutions
û of (30) in a similar way to Proposition 6.
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Proposition 10. We assume that û is a formal solution of (30), 1/k1 < q/k2,

ĝ(t, z) =
∑∞
n=0

gn(z)
m1(n) t

n ∈ E[[t]]s for some s ∈ [0, q/k2−1/k1], K = (q/k2−1/k1)−1

and d ∈ R. Then û is K-summable in a direction d if and only if the coefficients
gn(z) (n ∈ N) of ĝ satisfy condition

∞∑
j=β−1

(
j

β − 1

)
(∂−1
m̃1,t

)j+1λj−β+1(∂m2,z)

∞∑
n=0

gn(z)

m̃1(n)
tn ∈ OK(Ŝd ×D),

where m̃1(u) = m1(u)m(u) and m(u) is a moment function of order K.

Proof. By Lemma 8 an Proposition 2, û is K-summable in a direction d if and only
if v(t, z) ∈ OK(Ŝd ×D), where

v(t, z) =

∞∑
j=β−1

(
j

β − 1

)
λj−β+1(∂m2,z)

∞∑
n=0

gn(z)

m1(n+ j + 1)m(n+ j + 1)
tn+j+1

=

∞∑
j=β−1

(
j

β − 1

)
(∂−1
m̃1,t

)j+1λj−β+1(∂m2,z)

∞∑
n=0

gn(z)

m̃1(n)
tn

with m̃1(u) = m1(u)m(u) and m(u) being a moment function of order K. �

We generalise the last result to formal solutions of (27). To this end, in a similar
way to the homogeneous case we assume that P (λ, ζ) is given by (25) and there
exist exactly N pole orders of the characteristic roots of P (λ, ζ), which are greater
than k2/k1, say k2/k1 < q1 < · · · < qN < ∞ and let Kα = (qα/k2 − 1/k1)−1 for
α = 1, . . . , N .

By Theorem 5, the normalised formal solution û of (27) is given by

û =

ñ∑
α=1

lα∑
β=1

nαβ∑
γ=1

ûαβγ ,

with ûαβγ satisfying{
(∂m1,t − λαβ(∂m2,z))

γ ûαβγ = ĝαβγ
∂jm1,tûαβγ(0, z) = 0 for j = 0, . . . , γ − 1,

where ĝαβγ = dαβγ(∂m2,z)ĝ(t, z) for some holomorphic functions dαβγ(ζ) of poly-
nomial growth at infinity.

Hence, by Proposition 10, we have

Proposition 11. Under the above conditions the formal solution û of (27) deter-

mined by a convergent formal series ĝ(t, z) =
∑∞
n=0

gn(z)
m1(n) t

n ∈ E[[t]]0 is (K1, . . . ,KN )-

summable in a multidirection (d1, . . . , dN ) if and only if the coefficients gn(z) (n ∈
N) of ĝ satisfy conditions

∞∑
j=γ−1

(
j

γ − 1

)
(∂−1
m1α,t)

j+1λj−γ+1
αβ (∂m2,z)

∞∑
n=0

gn(z)

m̃1α(n)
tn ∈ OKα(Ŝdα ×D),

where m̃1α(u) = m1(u)m̃α(u) and m̃α(u) is a moment function of order Kα, for
every β = 1, . . . , lα and α = 1, . . . , N .
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