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On g—Gevrey asymptotics for singularly perturbed
g—difference-differential problems with an irregular singularity

Alberto Lastra, Stéphane Malek

November 28, 2011

Abstract

We study a g—analog of a singularly perturbed Cauchy problem with irregular singularity
in the complex domain which generalizes a previous result by S. Malek in [11]. First, we con-
struct solutions defined in open g—spirals to the origin. By means of a ¢—Gevrey version of
Malgrange-Sibuya theorem we show the existence of a formal power series in the perturbation
parameter which turns out to be the g—Gevrey asymptotic expansion (of certain type) of the
actual solutions.

Key words: g—Laplace transform, Malgrange-Sibuya theorem, g—Gevrey asymptotic expan-
sion, formal power series. 2010 MSC: 35C10, 35C20.

1 Introduction

We study a family of g-difference-differential equations of the following form

S—1
(1) etd2 X (e, qt, 2) + 05 X (e,t,2) = Z bi(e, 2)(tag) "0+ (08 X) (e, t, 247 ™1H),
k=0

where ¢ € C such that |g| > 1, mgy, m1 are positive integers, by(e,z) are polynomials in
z with holomorphic coefficients in € on some neighborhood of 0 in C and o, is the dilation
operator given by (0,X)(€,t,2) = X(€,qt,z). As in previous works [12], [14], [9], the map
(t,2) — (g™0kt, zqg~™1k) is assumed to be a volume shrinking map, meaning that the modulus
of the Jacobian determinant |g|™0*~™1.k is less than 1, for every 0 < k < S — 1.

In [11], the second author studies a similar singularly perturbed Cauchy problem. In this
previous work, the polynomial bg(e, z) := Zselk bis(€)z® is such that, for all 0 < k < S —1, I,
is a finite subset of N = {0, 1,...} and bgs(€) are bounded holomorphic functions on some disc
D(0,7p) in C which verify that the origin is a zero of order at least mg . The main point on these
flatness conditions on the coefficients in by (e, z) is that the method used by M. Canalis-Durand,
J. Mozo-Ferndndez and R. Schéifke in [3] could be adapted so that the initial singularly perturbed
problem turns into an auxiliary regularly perturbed g—difference—differential equation with an
irregular singularity at ¢ = 0, preserving holomorphic coefficients by (we refer to [11] for the
details). These constricting conditions on the flatness of b(e, ) is now omitted, so that previous
result is generalized. In the present work we will not only make use of the procedure considered
in [3] but also of the methodology followed in [13]. In that work, the second author considers a
family of singularly perturbed nonlinear partial differential equations such that the coefficients



appearing possess poles with respect to € at the origin after the change of variable t — ¢/e. This
scenary fits our problem.

In both, the present work and [13], the procedure for locating actual solutions relies on the
research of certain appropriate Banach spaces. The ones appearing here may be regarded as
g—analogs of the ones in [13].

In order to fix ideas we first settle a brief summary of the procedure followed. We consider
a finite family of discrete ¢—spirals (U;q~N)7ez in such a way that it provides a good covering
at 0 (Definition 3).

We depart from a finite family, with indices belonging to a set Z, of perturbed Cauchy
problems (33)+(34). Let I € Z be fixed. Firstly, by means of a non-discrete g—analog of
Laplace transform introduced by C. Zhang in [21] (for details on classical Laplace transform we
refer to [1],[5]), we are able to transform our initial problem into auxiliary equation (9) (or (21)).

The transformed problem fits into certain Cauchy auxiliary problem such as (9)4(10) which
is considered in Section 2. Here, its solution is found in the space of formal power series in
z with coefficients belonging to the space of holomorphic functions defined in the product of
discrete g—spirals to the origin in the variable ¢ (this domain corresponds to U;g™™ in the
auxiliary transformed problem) times a continuous g—spiral to infinity in the variable 7 (V[q]R+
for the auxiliary equation). Moreover, for any fixed € and regarding our auxiliary equation, one
can deduce that the coefficients, as functions in the variable 7, belong to the Banach space of
holomorphic functions in V7¢®+ subject to ¢—Gevrey bounds

|W6(€ | < C18'HPe Mlog? |7/€| i AIBQ’ 7€ Vight

*) lq

for positive constants Cy,C, M, H, A; > 0, where the index of the coefficient considered is (3 (see
Theorem 1).

Also, the transformed problem fits into the auxiliary problem (21)+(22), studied in detail
in Section 3. In this case, the solution is found in the space of formal power series in z with
coefficients belonging to the space of holomorphic functions defined in the product of a punctured
disc at 0 in the variable € times a punctured disc at the origin in 7. For a fixed ¢, the coefficients
belong to the Banach space of holomorphic functions in D(0, po) \ {0} such that

Wh(e,7) < CLBtH? M8 T/l |e|=CF1g =M 1 € D(0, po) \ {0}

for positive constants C1,C, M, H, A; > 0 when f is the index of the coefficient considered (see
Theorem 2).

From these results, we get a sequence (Wé )gen consisting of holomorphic functions in the
variable 7 so that g—Laplace transform can be applied to its elements. In addition, the function

e
(2) 1(et,2) ZC/\ Wﬁ €, €t)
820 ﬁ

turns out to be a holomorphic function defined in U;g™N x 7 x C which is a solution of the

initial problem. Here, 7 is an adequate open half g—spiral to 0 and A; corresponds to certain
g—directions for the g—Laplace transform (see Proposition 1). The way to proceed is also
followed by the authors in [6] and [7] when studying asymptotic properties of analytic solutions
of g—difference equations with irregular singularities.

It is worth pointing out that the choice of a continuous summation procedure unlike the
discrete one in [11] is due to the requirement of Cauchy’s theorem on the way.



At this point we own a finite family (X7)sez of solutions of (33)+(34). The main goal is to
study its asymptotic behavior at the origin in some sense. Let p > 0. One observes (Theorem 3)
that whenever the intersection Uy N Uy is not empty we have

(3) X1(e,t,2) — Xpi(e,t,2)] < Crexo8°Id

for positive constants C1, A and for every (e,t,2) € (Urg N NUpq™) x T x D(0, p). Equation
(3) implies that the difference of two solutions of (33)+(34) admits g—Gevrey null expansion of
type A >0 at 0 in Uy N Uy as a function with values in the Banach space Hy , of holomorphic
bounded functions defined in 7 x D(0, p) endowed with the supremum norm. Flatness condition
(3) allows us to establish the main result of the present work (Theorem 7): the existence of a
formal power series

X() = Y. The ey i)

k>0

formal solution of (1), such that for every I € Z, each of the actual solutions (2) of the problem
(33)+(34) admits X as its g—Gevrey expansion of a certain type in the corresponding domain
of definition.

The main result heavily rests on a Malgrange-Sibuya type theorem involving ¢—Gevrey
bounds, which generalizes a result in [11] where no precise bounds on the asymptotic appears. In
this step, we make use of Whitney-type extension results in the framework of ultradifferentiable
functions. Whitney-type extension theory is widely studied in literature under the framework
of ultradifferentiable functions subject to bounds of their derivatives (see for example [4], [2])
and also it is a useful tool taken into account on the study of continuity of ultraholomorphic
operators (see [19],[20],[10]). It is also worth saying that, although g—Gevrey bounds have been
achieved in the present work, the type involved might be increased when applying an extension
result for ultradifferentiable functions from [2].

The paper is organized as follows.

In Section 2 and Section 3, we introduce Banach spaces of formal power series and solve auxiliary
Cauchy problems involving these spaces. In Section 2, this is done when the variables rely in a
product of a discrete g—spiral to the origin times a g—spiral to infinity, while in Section 3 it is
done when working on a product of a punctured disc at 0 times a disc at 0.

In Section 4 we first recall definitions and some properties related to g—Laplace transform
appearing in [21], firstly developed by C. Zhang. In this section we also find actual solutions
of the main Cauchy problem (33)+(34) and settle a flatness condition on the difference of two
of them so that, when regarding the difference of two solutions in the variable €, we are able
to give some information on its asymptotic behavior at 0. Finally, in Section 6 we conclude
with the existence of a formal power series in € with coefficients in an adequate Banach space
of functions which solves in a formal sense the problem considered. The procedure heavily rests
on a g—Gevrey version of Malgrange-Sibuya theorem, developed in Section 5.

2 A Cauchy problem in weighted Banach spaces of Taylor series

M, A1, C > 0 are fixed positive real numbers throughout the whole paper.
Let U,V be nonempty bounded open sets in C* := C \ {0} and let ¢ € C* such that |¢| > 1.
We define

U N={eqmeC:ecUneN} , Vi ={rd eC:7eV,leR,l>0}.



We assume there exists M; > 0 such that |7 4+ 1| > M for all 7 € V¢®+ and also that the
distance from the set V' to the origin is positive.

Definition 1 Let € € Uq™™ and B € N. Eﬁﬁqu denotes the vector space of functions v €
O(Vg®+) such that

._ A2
U\T = su
PO ges = s iz |2 o

is finite.
Let 6 > 0. H(e,0,Vq®+) denotes the complex vector space of all formal series v(t,z) =
2550 v(7)2" /B! belonging to O(V¢™+)[[2]] such that

||U(Tvz)”(e,57vqk+ = ZH?)B HﬁquR+ 5' < o0.
B>0

It is straightforward to check that the pair (H(e, 6, Vq®+), HH(6 5qu+)) is a Banach space.

We consider the formal integration operator d;! defined on O(V¢®+)[[z]] by
o;t =Y () e OV g*H)[[2]].
B>1

Lemma 1 Let s,k,mi,my € N, § >0, ¢ € Uqg™N. We assume that the following conditions
hold:

(4) m; <C(k+s) , ma>2(k+s)A;.

Then, there exists a constant C1 = C1(s, k,m1, me, V,U,C, A1) (not depending on € nor 4)
such that

(5) |

Cl5k+s H

z° <Z>ml 8;kv(7, zq~™?)

€

(e6Va™+) 2y

for every v € H(e, 5, V&+).

Proof Let v(r,2) = Y o va(7) 3 € O(Vg®+)[[2]]. We have that

T\Nm1 __ _ T\ B 1 2
L IS S Dorco SR .
= (% wavin) || G\ BB
T\ B! 1 55
(6) = - UB—(k-i—s)(T) ma(B—s H 31
,8>Zk+s 6) (B=8)tqm28=s)||g s B!

Taking into account the definition of the norm ||-[| 5 1=, , we get
| o . =
€ B G =) g5 ||y oy (B 5)!
vg_ T —C(B—(k+s)) | € |Clk+s)—m
(7) sup {’ 5—o+)(7)| ‘ 1},
TeV '+

‘Al (B—(k+s))? |q‘p(ﬁ)

T

€

eMlogQ‘f‘ ;



with p(8) = A18% — A1(B — (k + )% — ma(B — s). From (4) we derive |¢/7]|CF+s)—m <
(Cy/Cy)CE+)=m1 for every € € Ug™N and 7 € V¢®+, where 0 < Cy := min{|7| : 7 € V} and
0 < Cy := max{|e| : e € U}. Moreover,

p(ﬁ) = (Q(k + 8)A1 — mg)ﬁ — (]6 + 8)2A1 + mas,

for every 8 € N. Regarding condition (4) we obtain the existence of C'; > 0 such that

C(k+s)—m
®) o g < e,
T
for every 7 € V¢®+ and 8 € N. Inequality (5) follows from (6), (7) and (8):
s({T mi —k —m B' 56
‘ z (;) az U(T7 zq 2) (67&qu+ = 1 Z Hvﬁ (k+s) )HB—(k-‘rS),e,VqR+ (IB — S)‘ E
B>k+s
§8—(k+s)
<1 D 0 sk (D5 s s)cvgis '
- - s),€, _ |

a

Lemma 2 Let F(e,7) be a holomorphic and bounded function defined on Uq™™ x V¢®+. Then,

there exists a constant Co = Co(F,U, V) > 0 such that
1P 1)em, gy < Co e Al gvrgio

for every e € Uq™N, every § > 0 and all v. € H(e, 5, Vg®+).

Proof Direct calculations regarding the definition of the elements in H (e, d, V¢®+) allow us to
conclude when taking Cy := max{|F(e, )| : e € Uqg™N,7 € Vig®+}. O

Let S > 1 be an integer. For all 0 < k < S — 1, let mg, my1 be positive integers and
b(€,2) = > ger, brs(€)z” be a polynomial in 2z, where Ij; is a finite subset of N and bys(€) are

holomorphic bounded functions on D(0,rg). We assume Ug—N C D(0,79)).
We consider the following functional equation

S—1

bi (e, z) m & m
9) (e,7,2) kzz ot D) T Ok (OZW ) (e, T, zq~ ")
with initial conditions
(10) (IW)(e,7,0) = Wj(e,7) , 0<j<S—1,

where the functions (e,7) — W;(e, 7) belong to O(Uq N x Vg&+) for every 0 < j < S — 1.
We make the following
Assumption (A) For every 0 < k < S —1 and s € Ij, we have

mo’kSC(S—k—FS) R mlykZQ(S—kﬁ-S)Al.



Theorem 1 Let Assumption (A) be fulfilled. We also make the following assumption on the
initial conditions in (10): there exist a constant A > 0 and 0 < M < M such that for every
0<j<S5-1

’ ’
€

(11) IW(e,7)| < AeMloe

for all 7 € Vg®+, e € Uqg™N. Then, there exists W(e,7,2) € O(Uq™N x V¢®+)[[2]] solution of
(9)+(10) such that if W (e, 7,2) = 3 550 Wﬁ(é,T)%f, then there exist Co > 0 and 0 < § < 1 such
that -

|2A15
)

lq

B rios .
(12) [Wia(e,7)] §025!< ) ‘I‘ MIog?| 2] =8 g g
€
for every e € Uqg™™ and 7 € Vg®+.

Proof Let e € Ug™N. We define the map A, from O(V¢®+)][[2]] into itself by

T

1

3 b 3

(13) A (W (r,2)) = %Tmo’k (FSW) (7, 2¢7™1%) + O we (7, 27 ™1k) |,
k=0

where w(T, z) := E]S:_[)l Wj(G,T)%. In the following lemma, we show the restriction of A, to
a neighborhood of the origin in H (e, §, V¢®+) is a Lipschitz shrinking map for an appropriate
choice of 6 > 0.

Lemma 3 There exist R > 0 and 6 > 0 (not depending on €) such that:

1. HAE(W(T, z))H( SV < R for every W(r,z) € B(0,R). B(0,R) denotes the closed ball
67 b q
centered at 0 with radius R in H(e, 8,V q®+).

Wﬂ%hm—&mwwb

1
(6 Va*+) = 2 (6. VgR+)

for every Wi, Wy € B(0, R).

Proof Let R>0and 0 <d <1.
For the first part we consider W (7, z) € B(0,R) C H(e,d,V¢®+). Lemma 1 and Lemma 2
can be applied so that

|4V 2))

(e,8,V¢™+)

n

-1
(14) < Z Z ]]W\;ls [016S—k+s
k=0 s€l}

with Mys = sup.cpg-n |brs(€)] < 0o, s € I, 0 < k < S — 1. Taking into account the definition
of H(e,8,Vg®+) and (11) we have

W(T, 2)

T\™M0.k _
2 (5)™ dbwelr zqmm)

+| |
(,0,Vg™+) (,6,Vg*+)

S—1—k Zj+s

o . T\ ™Mo,k W
(€O VP+) Z (Z) k(€ T)W
=0 (e8.V ™)

T\ ™0,k 1 _
zs(;) D7 we (T, 2q” ")




S—1—k
{ (Wi (€, 7)| ‘z
E sup

mo,kC(j+s)}| |A1(j+s)2 o7t
q

j=0 TEVH+ €M10g2|€| € W
(15)
Sk lq ’A1(3+s) §i+s ) og? A
<A Z WmaX{e_(M_M) 0g*(#) pmo,k=C(i+s) . o < 0,0<j+k<S—1,s€l}
, g™
7=0
< ACY,

for a positive constant CY.
We conclude this first part from an appropriate choice of R and ¢ > 0.
For the second part we take Wy, Wa € B(0, R) C H (e, d, V¢®+). Similar arguments as before

yield
Mks S—k+s
E Fy VqR+ Z Z C 6

An adequate choice for § > 0 allows us to conclude the proof. O

HAe(Wl) — A (Ws) Wy — W

(e0,Vg*+)

We choose constants R, as in the previous lemma.
From Lemma 3 and taking into account the shrinking map theorem on complete metric spaces,
we guarantee the existence of W,(7, z) € H (e, o, V¢®+) which is a fixed point for A, in B(0, R),
it is to say, ||[We(r, z)|| < R and A (W(T,2)) = W(r, 2).

Let us define

(,6,V¢™+)

(16) We(r,z) = GQSWE(T, 2) + we(T, 2).

If we write We(r,2) = 2550 W (T )@ and We(T,2) = > 550 Wp(T )% then we have that
Wsise=Ws, for B> 0and W, (1) = W;(e,7),0<j < S — 1.

From HWE(T, Z)H(eéquﬂ < R we arrive at HW@GHBE VRt < Rp! (%)B for every 8 > 0. This
implies

~ /8 cp .
‘WB,E(T” < Rp! <;> )Z‘ 6M10g2‘€‘|q’_14152’
€

for every 8> 0 and 7 € V¢i*+.

This is valid for every e € Ug™N. We define W (e, 7, 2) := We(7, 2) and Wp(e, 7) := Wg (1)
for every (¢,7) € Uqg N x V¢®+, z € C and B > S. From (16), it is straightforward to prove that
Wi(e,m,2) =3 559 Wﬂ(E,T)%B! is a solution of (9)+(10).

Moreover, holomorphy of Wy in U g N x Vg®+ for every B > 0 can be deduced from the
recursion formula verified by the coefficients:

W, b mo.k T/,
(17) '”S &) Z > kh1<61>7m0k hhfiﬁfi’h?, h>0.
k=0 h1+ho=h,h1 €I}, (7 + 1)emor hylgm.

This implies W3(e, 7) is holomorphic in Ug™ x V¢®+ for every 8 € N.

It only rests to prove (12). Upper and lower bounds for the modulus of the elements in
Uq~™ and V¢®+ respectively and usual calculations lead us to assure the existence of a positive
constant Ry > 0 such that

|q[>415
5

N 8 s ]
(18) (We(e, )| = [Wp—s,e(T)| < R ! < ) E‘ M 022 || ~A16?,



for every 5 > S, and for every € € Uqg™" and 7 € V¢®+. This concludes the proof for 8 > S.
Hypothesis (11) leads us to obtain (18) for 0 < k£ < .S — 1. O

Remark: If s > 0 for every s € I, 0 < k < S — 1, then for every R > 0, there exists small
enough d > 0 in such a way that Lemma 3 holds.

3 Second Cauchy problem in a weighted Banach space of Taylor
series

This section is devoted to the study of the same equation as in the previous section when the
initial conditions are of a different nature. Proofs will only be sketched not to repeat calculations.

Let 1 < pp and U C C* a bounded and open set with positive distance to the origin. Dpo
stands for D(0, po) \ {0} in this section. M, A;,C remain the same positive constants as in the
previous section.

Definition 2 Let rg > 0, ¢ € D(0,70) \ {0} and 8 € N. E?
functions v € O(D,,) such that

denotes the vector space of
7€7DP0

|7

L A1p?
T 8 (Cllri=ry [
0

is finite. Let § > 0. Ha(e, 0, qu) stands for the wvector space of all formal series v(1,z) =
> 550 v(T)27 /B! belonging to O(D,,)[[2]] such that

5B
[0(7,2) (e 5.00,) = Z |UB(T)’5767DPOE =
520 '

It is straightforward to check that the pair (Ha(e, 9, Dpo), | - \(6 5Dp0)) s a Banach space.

Lemma 4 Let s,k,mi,ma2 € N, 6 > 0 and e € D(0,r9) \ {0}. We assume that the following
conditions hold:

(19) m; <C(k+s) , ma>2(k+s)A;.

Then, there exists a constant Ch = C1(s, k,ml,mg,Dpo, U) (not depending on € nor &) such
that

s (T\™ & —m k+s .
z <7> 0, "u(r,zq”™?) <Cid ’U(Tvz)‘(e,(sppo)?

20 .
( ) € (e,é,DPO)

for every v € Ha(e, 0, Dpo).

Proof Let v(7,2) € O(D,,)[[2]]. The proof follows similar steps as in Lemma 1. We have

(576:DP0 ) - Z

B>k+s

T\ Bl 1 &°
o) v () g 5 g

m
2 (z) ' a;’%(r, zq~™?)
€

6767Dp0 /8!
From the definition of the norm |-, b, We get
’Cy 0

el 1

™ A1(B=(k+8))? | ,1p(B)
()™ s g et | d

B!
SRRCERIL
B7E7DP() :




10

X sup

|U —(k+s ( )‘ — S m S)—
: { B—(k+s) |€|C(6 (k+s)) P 1|€|C(kz+ ) ml7
TEDp,

eM log? |7 /¢

with p(3) = A18% — A1(B — (k+5))? — ma(B — s). Identical arguments as in Lemma 1 allow us
to conclude. O

Lemma 5 Let F(e,7) be a holomorphic and bounded function defined on (D(0,r9)\ {0}) x D
Then, there exists a constant Cy = Co(F) > 0 such that

|F(€7 T)U6(7_7 Z)’(g,&,DpO) < 02 |U6(T’ Z)|(e,5,Dp0)
for every e € D(0,70) \ {0}, every § > 0 and every v. € Ha(e, 8, D,y).

Let S, 79, Mgk, m1; and by as in Section 2 and pg > 0. We consider the Cauchy problem
= bi (€, 2) & m
(21) (e,7,2) kzz (ot Demon Tk (W) (€, T, 2q~ ")
with initial conditions
(22) (IW)(e,7,0) = Wi(e,7) , 0<j<S—1,
where the functions (e, 7) — W;(e, 7) belong to O((D(0,70)\{0}) x D,,) for every 0 < j < §—1.

Theorem 2 Let Assumption (A) be fulfilled. We make the following assumption on the initial
conditions (22): there exist constants A >0 and 0 < M < M such that

(23) Wi(e, )| < AeMIog’[2]

for every 7 € D,y, € € D(0,19) \ {0} and 0 < j < S — 1. Then, there exists W (e, 7,2) €
O((D(0,70) \ {0}) x D,)[[2]] solution of (21)+(22) such that if W (e, T, 2) = 2550 WB(E,T)%[?,
then there exist C3 > 0 and 0 < 6 < 1 such that

2A18 B .
(24) [Wal(e, )| < Csp! <’q‘5> || ~CBeM gl jg -8 B>,

for every e € D(0,79) \ {0} and T € D,,.

Proof The proof of Theorem 1 can be adapted here so details will be omitted.
Let € € D(0,79) \ {0} and 0 < 0 < 1. We consider the map A from O(D,,)[[2]] into itself
defined as in (13) and construct w¢(7, z) as above. From (23) we derive

T\ Mo,k
3 k —
Z(E) O we(T, 2q” ")

(6’57[)/30)

Sk |e|C+s)
= > sup [Win(e,7)]

j=0 TEDp,
(25) < AGY,

T §its

Miog®[ 5] e

mo,k| ’Al(]+$)2

Jlgmw
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for a positive constant C; not depending on € nor 4.

Lemma 4, Lemma 5 and (25) allow us to affirm that one can find R > 0 and § > 0 such that
the restriction of A to the disc D(0, R) in Ha(€,d, Dp,) is a Lipschitz shrinking map. Moreover,
there exists We(7, z) € Ha(e, 6, D,,) which is a fixed point for A¢ in B(0, R).

% N s = .

If we put We(7,2) = >_ 550 Wa,e(7) 5y, then one gets |Wﬂ’€‘5757bp0 < Rp! (%)6 for § > 0. This
implies

. 1\”? . )
[Wa.e(r)| < RB! (a) el ~CPeM gm0, 5 > 0,7 € Dy

The formal power series

B

Wie, T,z ZWg Se(T —i—weTz ZWBeT—
8>S B3>0

turns out to be a solution of (21)+(22) verifying that Wp(e, 7) is a holomorphic function in
(D(0,70) \ {0}) x D,, and the estimates (24) hold for § > 0.
O

4 Analytic solutions in a small parameter of a singularly per-
turbed problem

4.1 A g—analog of the Laplace transform and ¢—asymptotic expansion

In this subsection, we recall the definition and several results related to the Jacobi Theta function
and also a g—analog of the Laplace transform which was firstly developed by C. Zhang in [21].
Let ¢ € C such that |¢| > 1.
The Jacobi Theta function is defined in C* by

.%') _ qun(nfl)/an7 x e C*.

ne”

From the fact that the Jacobi Theta function satisfies the functional equation z¢®(z) = ©(qx),
for z # 0, we have

m(m+1)

(26) O(@"r)=q 2z a2mO(z), z€C,z#0

for every m € Z. The following lower bounds for the Jacobi Theta function will be useful in the
sequel.

Lemma 6 Let 6 > 0. There exists C > 0 (not depending on §) such that
log® [«

(27) |O(x)| > Cde?loslal x|z,

for every x € C* such that |1 + zq*| > & for all k € Z.

Proof Let 6 > 0. From Lemma 5.1.6 in [18] we get the existence of a positive constant C; such
that [©(z)| > C1604/(|z|) for every x € C* such that |1 + xq®| > § for all k € Z. Now,

1) n _n(n 1) n
CHEIES N 2 max|q| ||
neL
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Let us fix |z|. The function

f(t) =exp (—;t(t —1)log|q| + tlog ]m\)

2
takes its maximum value at ¢y = i))i'\;l‘ + 1 with f(to) = Cs exp(éoig”fl'l)ml/z, for certain Cy > 0.
Taking into account that

_n=n _ (L) —tg)? _1
max g™ [of* > f(lto]) = F(to)lal™ = = f(to)lal 72,
one can conclude the result. Here |-| stands for the entire part. m

Corollary 1 Let § > 0. For any £ € (0,1) there exists Ce¢ = C¢(0) > 0 such that

¢log? |x|

(28) ‘@(:L‘)‘ > Cge 2loglal |

for every x € C* such that |1 + zq*| > 6, for all k € Z.

From now on, (H, ||-||;) stands for a complex Banach space.
For any Ae Cand § >0

A
R = C*: |14+ —| > 4,Vk € R}.
A,q,0 {Z € ‘ + qu| >0, € }

The following definition corresponds to a g—analog of Laplace transform and can be found in [21]
when working with sectors in the complex plane.

Proposition 1 Let 6 > 0 and po > 0. We fix an open and bounded set V' in C* such that
D(0,p0) NV # 0. Let A € D(0,p0) NV and f be a holomorphic function defined in D, with
values in H such that can be extended to a function F' defined in D,, U V®+ and

(29) IF(z) | < CreM el e D, UV,

for positive constants C1 > 0 and 0 < M < m'
Let mq = log(q) [[,,50(1 — ¢ " ! and put

1 [N F(€) dE

A — -
(30) [’q;lF(Z) - 7q Jo @(g) 5 )

where the path [0,00]] is given by t € (—00,00) = ¢'A. Then, Eq’\;lF defines a holomorphic
function in Ry 45 and it is known as the q—Laplace transform of f following direction [)].

Proof
Let K € Ry 4,5 be a compact set and z € K. From the parametrization of the path [0, co)]

we have /ooA F(¢) %_1 ( OoLt)\)dt
oo e (m)”

)5

w
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Let 0 < & < 1 such that 0 < M < 210g|q‘ and let t € R. We have w = q satisfies |1+ ¢*w| > §
for every k € Z. Corollary 1 and (29) yield

00 t) S M log? |qt )| 00 Erloglz| 7r_ & 2
/ % dt < / - ——dt < L1/ gt A Toslal M o) 108 10 gy,
o (%) H %0 C, o7TTal o8 10"/ -

for a positive constant L;. There exist 0 < A < B such that A < |z| < B for every z € K, so
that the last term in the chain of inequalities above is upper bounded by

_10g|>\‘/10g|Q| E1log A =7 §1 2|t
Ll/ [t | Testal” M zTosTar) 08710 A gy

o

00 ° _
+ I / (gt A| Tastar M~ zmod ) 108 la' Al gy
—log|A|/ log q]
The result follows from this last expression. O
Remark: If we let M = , then E 1 F will only remain holomorphic in Ry 45N D(0,71) for
2 log 21log [q] 1qs

certain 1 > 0.
In the next proposition, we recall a commutation formula for the g—Laplace transform and
the multiplication by a polynomial.

Proposition 2 Let V' be an open and bounded set in C* and D(0, po) such that VND(0, po) # 0.
Let ¢ a holomorphic function on V¢®+ U D, with values in the Banach space (H, ||-||g) which

satisfies the following estimates: there exist C1 > 0 and 0 < M < 2log|q‘ such that

(31) p(z)|ly < CreM g™l e D, uVRs,

Then, the function m¢(t) = T7¢ (1) is holomorphic on V¢®+ U Dpo and satisfies estimates in the
shape above. Let A € VN D(0,pg) and § > 0. We have the following equality

L1 (me)(t) = tL,¢(qt)

for everyt € Ry 45

Proof It is direct to prove that m¢ is a holomorphic function in V¢®+ U Dpo and also that ma¢
verifies bounds as in (31). From (26) we have O(x) = 20(z/q), v € C*, so

oA m oA
Chatma)y = - [ OIOE L [T g

\_/

Tq @(%) g Tq @(%)
L[ 6(¢) \
> g = tL), 7
m o™ T @
for every t € R 4.6 D

4.2 Analytic solutions in a parameter of a singularly perturbed Cauchy prob-
lem

The following definition of a good covering firstly appeared in [18], p. 36.
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Definition 3 Let I = (11, 12) be a pair of open intervals in R each one of length smaller than
1/4 and let Uy be the corresponding open bounded set in C* defined by

Ur={e’™g" e C*:u e I1,v € I}
Let T be a finite family of tuple I as above verifying
1. Urer(Urg™™) = v\ {0}, where v is a neighborhood of 0 in C, and
2. the open sets Urq™™, I € T are four by four disjoint.
Then, we say (Urq~N)1ez is a good covering.

Definition 4 Let (Urq™N) ez be a good covering. Let § > 0. We consider a family of open
bounded sets {(Vi)rez, T} in C* such that:

1. There exists 1 < pg with Vi N D(0,po) # 0, for all I € T.
2. For every I € T and 7 € Vig®, |7+ 1] > 6.
3. Foreveryl €eZ,te T, ¢, € Ur and A\, € VN D(0, po), we have

v

for every r € R.
4. |t| <1 for everyt € T.
We say the family {(Vi)rez, T} is associated to the good covering (Urq N)rer.

Let S > 1 be an integer. For every 0 < k < S — 1, let mg, m1 be positive integers and
bi(€,2) = Zsé]k bis(€)z® be a polynomial in z, where Ij is a subset of N and by (€) are bounded
holomorphic functions on some disc D(0,79) in C, 0 < rg < 1. Let (Urg N)rer be a good
covering such that Urq™ C D(0,rg) for every I € T.

Assumption (B): 1

M < .
2log|q|

Definition 5 Let pg > 1 such that V N D(0,pg) # 0. Let A, M > 0 such that M < M and
(6,7) = Wi(e,T) a bounded holomorphic function on (D(0,79) \ {0}) x D,, verifying

‘W(é, 7_)| < A6M10g2 |T/6|’

for every (e,7) € (D(0,79) \ {0}) x D,,. Assume moreover that W (e, T) can be extended to an
analytic function (e,7) — Wyv(e,7) on Ug™N x (Vg®+ U D,,) and

(32) (W (e, 7)) < AeM 108 [7/el,

for every (e,7) € Ug™N x (Vg®+ U D,,). We say that the set {W, Wiy, po} is admissible.
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Let Z be a finite family of indices. For every I € Z, we consider the following singularly
perturbed Cauchy problem

S—1

(33) etdd X (e, qt,z) + 02 Xy (e, t,2) = Z bi(e, 2)(tog) ™0+ (9% X7) (e, t, 2g~ ™)
k=0

with by as in (9), and with initial conditions

(34) (OLX1)(6,t,0) = ¢ri(et) , 0<j<S-—1,

where the functions ¢y ;(e,t) are constructed as follows. Let {(Vi)rez, T} be a family of open
sets associated to the good covering (U;q N)rez. For every 0 < j < S —1 and I € T, let
{W;,Wu, v, j,po} be an admissible set. Let A\; be a complex number in V; N D(0, pp). We can
assume that 79 < 1 < |A\7|. If not, we diminish r( as desired. We put

¢I,j (67 t) = £<>1\,Il (T — WULVI,]'(Q 7'))(57 gt)

Lemma 7 The function (e,t) — ¢r (€, t), constructed as above, turns out to be holomorphic
and bounded on Urq ™ x T for every I € T and all 0 < j < S — 1.

Proof Let ] € Z and 0 < j < S — 1. From (32), one has
(35) ‘WUI V]](E 7_)’ < AeMlog |7/€ _AeMlog e \|7_| 2M log €| Mlog \7’|

for every (e,7) € Urg™™ x (Vig®+ U D,,). Let ¢ € Urg™ and M < M; < 2log|q‘ Then, (35)

can be upper bounded by A exp(M;log? |7]), for some A = A(e) > 0. Estimates in (29) holds
so that Proposition 1 can be applied here. The third item in Definition 4 derives holomorphy of
¢[7j on U[qfN x T.

We now prove boundness of ¢y ; in its domain of definition. One has

|¢17.] (67 t)| £ . WU17V17] (E Et ‘ ‘ﬁq 1 +WUI’VI’j(6’ Et ‘ ‘Eq 1 —WUI)VI).]'(€7 Et) ’

for every (e,t) € Urg™™ x T, where

A
ﬁq;Il,-Q—WULVLj (€, et) =

log(q) /OO Wu, vy, (€, qs)\f)d
u 0 @(@)

€t

log(q) S (€, 4° A1)
A _ log(q UV (6 AT
Eq;11WU17VI7j7—(67 et) = e /OO I®I(qs>\[) ds

et
We only give bounds for the first integral. The estimates for the second one can be deduced
following a similar procedure.

Let 0 < ¢ < 1 such that M < From Corollary 1 and (32) we deduce

210g|q\
U] 2
22 W e e)| < LB / vigle @A) Nog(a)|A /oo eMost e/
g1+ VULV ~ myl s/\1> malCe Jo %q‘z”
e 2log |q|
< |1fg(‘g|A o) og? | 21| Gt elosy/eliosls
Tqlte

0 y I 210162 (M—-—&
X/ 62(M 2log\q|)10g lq|s 6(M 210g‘ql)log\q|10g|>\1/e\seglog|t|sd5SCj’
0
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for some C'; > 0 which does not depend on € nor ¢. O

The following assumption is related to technical reasons appearing in the proof of Lemma 7
and Theorem 3. B
Assumption (C): There exist a,a2 > 0, 0 < &,& < 1 such that

3
C.1 S
(G 2log |q|
§ Ca1
(C.2) 5 Mlog |q| Yy > 0,
2
c3  Gay ¢ < A

201 4Zlog|q| (%gm B M)

Next remark clarifies availability of these constants for a posed problem.

Remark: Assumptions (A), (B) and (C) strongly depend on the choice of ¢ whose modulus
must rest near 1. For example, these assumptions on the constants are verified when taking
loglg| =1/16, M =1, Ay =5,C =1,& =1/2, £ =1/2, a1 = 1, ag = 4. Then, next theorem

provides a solution for the equation
et@?XI(e, qt,z) + 8§X1(e, t,z) = (bog(e) + b01(6)z)t2X[(6, ¢*t, 2q730) + bio(€)td, X (e, qt, 210,
with bog, bo1, b1g being holomorphic functions near the origin.

Theorem 3 Let Assumption (A) be fulfilled by the integers mq j,myy, for 0 <k < S —1 and
also assumptions (B) and (C) for M,A;,C. We consider the problem (33)+(34) where the
initial conditions are constructed as above. Then, for every I € I, the problem (33)+(34) has a
solution Xj(e,t,2) which is holomorphic and bounded in Urg™™ x T x C.

Moreover, for every p > 0, if I,I' € T are such that Urg N NUpq ™™ # (0 then there exists a
positive constant C1 = Cy(p) > 0 such that

X1(e,t,2) — Xpi(e,t,2)] < Cre™ x5l (e, 4,2) € (Urg NN Upg™) x T x D(0, p),

with % = (1 — E)(%gm — M) with &,€ chosen as in Assumption (O).

Proof Let 0 > 0 and I € Z. We consider the Cauchy problem (21) with initial conditions
(0IW)(e,7,0) = Wj(e,7) for 0 < j < S — 1. From Theorem 2 we obtain the existence of
a unique formal solution W(e,7,2) = > 5 Wﬂ(E,T)i € O((D(0,70) \ {0}) x D,)[[2]] and

B
positive constants C3 > 0 and 0 < d; < 1 such that
2A15 /@ r
(36) Ws(e,7)] < Csﬁ!<m51> e =M Ejg = g > 0,

for (e,7) € (D(0,70) \ {0}) x D,,.

Moreover, from Theorem 1 we get that the coefficients Ws(e,7) can be extended to holo-
morphic functions defined in Urg™ x V;¢®+ and also the existence of positive constants Cy and
0 < d2 < 1 such that

‘2A15

)

T

cpB T
37) Wte,r)| < Capt(12 MR |2l jg - 5>,

€
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for (e,7) € Urg™™ x Vig®+

We choose A\; € V7 N D(0, pp). In the following estimates we will make use of the fact that
le] < |Ar] for every € € D(0,79 \ {0}). Proposition 1 allows us to calculate the g—Laplace
transform of W3 with respect to 7 for every 8 > 0, ﬁ’\l 1 (W3)(e, 7). It defines a holomorphic
function in Urg™N x R, q,6- From the fact that {(VI)IGZ, T} is chosen to be a family associated
to the good covering (Urq~);ez we derive that the function

(€,1) — L5 (Ws)(e, et)

is a holomorphic and bounded function defined in U;g™" x 7. We can define, at least formally,
B
(38) 1(et,2) = ZE (Wpg) Eet)ﬁl’
>0

in O(Urq™N x T)[[2]]- If X;(e,t,2) were a holomorphic function in U;q™ x T x C, then Propo-
sition 2 would allow us to affirm that (38) is an actual solution of (33)+(34). In order to end the
first part of the proof it rests to demonstrate that (38) defines in fact a bounded holomorphic
function in Uyq~™ x T x C. Let (¢,t) € Urg™N x T and 3 > 0. We have

Lo Wa(e, e)| < [L3h , Wale, et)] + L5 _Wi(e,et)],

where

1  Wi(e, ¢ A 1 0 W(e, ¢\
LY Whle,et) = Og(‘”/o SO dN) y o (e et) = Og(Q)/ sl dAr)

1,—
Tq o(%3") B T S O(L3L)

We now establish bounds for both integrals.

> Wﬁ(e? qs)‘f)
o(5)

€t

|log q
‘ﬂ'q| 0

A
1£41,+Wale et)] <

Let 0 < £ <1 as in Assumption (C). From (37) and (28), the previous integral is bounded by

2415\ B | sy, |CP Mlog? CAr|
oga [ Ot (A5) [ [ Mo g
Imql o glog? |20 | ’
Ce exp(* g7 —)
2 &
_ Noga| Gy, (104157 |\, e [T o526 | 2
T mgl G\ 02 € Elog? L2 |
! exp( 2log lq] )

Let a1, a2 as in Assumption (C.2) and (C.3).
From (ais — az2B3)? > 0 and 4. in Definition 4, the previous inequality is upper bounded by

(39) _A/ ’ ‘ Bs 210g|q\)10g2\>\1/6|€((2M10g|Q|*§)log|)\1/5|+§10g|,5|)5d87
where 0 < BB = § — Mlog|q| — 5zt and
24,5\ B cp CagB?  glog?|t| €log|rp/ellog]t|
A= “|0g|(]|8125 (’q|5 > ﬁ ‘ |_A162+ 231 e 210gg\qtl e : 1oIg|q\ :
Tql L 2 €
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The previous integral is uniformly bounded for e € D(0,79) \ {0} and ¢ € T from hypotheses
made on these sets. The expression in (39) can be bounded by

|logq| C4 (q|2A15>ﬁ
|mq| Ct 02

2 |©P

€

2a1 e 2loglq| g log [q]

(M= 5oy ‘)logQ\)\I/e” |—A152+C@252 _¢log?|t| Elog|\p/el log 1]
e og |q q

for an appropriate constant C% > 0.
The function s — s78e=2198"(s) takes its maximum at s = ¢75/(2%) go each element in the
image set is bounded by e(18)?/(4a) Taking this to the expression above we get

2Als /3 Cag 5 252
’£q1+W5(6, et)] < H‘Og’q‘ C ﬁ' (q| > |q’7Al/62+ 20, +4log\q|(€?(2[foglq\) M)
Tq

for certain CY > 0
Assumption (C.3) applied to the last term in the previous expression allows us to deduce
that the sum

|21

(40) 1Lk Wa(e et)| o 4

B>0

converges in the variable z uniformly in the compact sets of C.
We now study E;‘;IL_WIB(E, et). We have

(G qs>\1)
9)\1

Ilogfﬂ

Vo Wa(e, et)| < ds.

q;1,—

From (24) and (28) the previous integral is bounded by

ds.

24,8

| log q] /0 C35!<|q|61 ) el

|7TQ| —00 510@2‘(151&]
Cge 2log |q|

Similar calculations as in the first part of the proof resting on Assumption (C) can be followed
so that the series

B
(41) > Lo Wile, et)%

B=0

is uniformly convergent with respect to the variable z in the compact sets of C, for (e,t) €
Urg™N x 7. We will not enter into detail not to repeat calculations.

The estimates (40) and (41) imply convergence of the series in (38) for every z € C. Bound-
ness of the g—Laplace transform with respect to € is guaranteed so the first part of the result is
achieved.

Let I,I' € T such that Ui g NN Upg™ # 0 and p > 0. For every (e,t,2) € (Ug N N
Upq™N) x T x D(0, p) we have

&)
(42) Xi(e.t.2) = Xp(ert2)| € 3 1L Waleret) — Ly Wle,et)| .

820
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We can write

1 1 Wil Wil(e, €) de Wi(e, ) d€
(43) L3 W(e, )= Lo Wi(e, et) T /M eg/et _/ O¢/et) ¢ +/73—74@(€/6t)5)

where the path 7 is given by s € (0,00) — ¢°A7, 72 is given by s € (0,00) — ¢°Apr, 73 is
s € (—00,0) — ¢°Ar and 74 is s € (—00,0) — ¢°Apr.

Without loss of generality, we can assume that |A;| = |Ap|.

For the first integral we deduce

SAI

‘ g/tdﬁ‘_“ ,/ \Wﬁquz)\ds

Similar estimates as in the first part of the proof lead us to bound the right part of previous
inequality by

Cy’ (Iq!%s) ‘ﬁ‘Cﬁ‘q|—A162+§T‘?62€(Mfﬁg‘q|)10g2|/\1/6|
C’g Ja € ’
for certain CY' > 0. For any £ € (0,1) we have
CQﬂQ
CcB = —¢ — __
A ﬂeg(M_m)bgzp\l/q ge%(ﬁglq\*w, 3> 0.
€
This yields
(44)
A c? 2
/ Wp(e, qs)\l)‘ é”5|<|CJ|2AIS>B‘q|( 1+ 2@1 4glog|q\<%g\q\—M))ﬂ 6(1—5)(M_ﬁg|q\)10g2‘)\1/6|‘
o) "= ¢
ga! et

We choose ¢ as in Assumption (C).

The integral corresponding to the path 2 can be bounded following identical steps.

We now give estimates concerning vy — 4. It is worth saying that the function in the
integrand is well defined for (¢,7) € (D(0,70) \ {0}) x D,, and does not depend on the index
I € 7. This fact and Cauchy Theorem allow us to write for any n € N

Ws(e,§) d§
r, ©/et) & 7
where I'y, = yp1 + 795 — Vn,2 — n,3 is the closed path defined in the following way: s € [—n,0] —

Tn,1(8) = A1¢° 5 is the arc of circunference from A to Ay, s € [—n,0] — yp2(s) = Apg® and
Yn,3 is the arc of circunference from A;¢™" to Apg™". Taking n — oo we derive

. Wg(e,§) ds . Wg(e, &) dE Wp(e, §) d€
_ Wele,£)de _ IR Y .
) 0=l | S(eja) ¢ folo/ s OE]e) € folo/ O(¢/et) €

Usual estimates lead us to prove that

(46) lim Wple,§) d

), e €

Moreover,

. Wl(e, &) de Wpg(e, §) d
47 lim =
(47) Jm [ i B € Lo St
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From (45), (46) and (47) we obtain

[ Megi [ Wkt
vs—a O(E/€t) & O(&/et) 0 @(ﬁ)

where 0; = arg(\), p = arg(\pr). Taking into account Definition 4 and (36) we derive the
modulus of the last term in the previous equality is bounded by

M log?
length(’%)of’)ﬂ'(m‘QAlS) ‘ ’—Cﬁ € ) ’ | —A182
Ce TosTal
2A18
e R
01
2A18 - _
<C§B,(|Q| ' ) e =B EM o) 108% el | — 412, (1=E) (M~ gy Tog® Il
< 5
for adequate positive constants Cs, C. From standard estimates we achieve
@) | [ M) <oy (M g 0 1 i gt
Y3—74 Jet) & 01

From (42), (43), (44), (48) and Assumption (C.3) we conclude the existence of a positive
constant C] > 0 such that

a 2
A4S ¢ )52

2A18
| 291 4E 108 |al (gyagyey — M)

5 %

)ﬁ|qr<

‘X](EtZ) X[/(6t2‘<0125'<‘q
B=>0

Xe(l—E)(M—ﬁg‘q‘)logQ |€|p7'(: < Cle(l—g)(M—ﬁgm) log? \5\7

for every (e,t,2) € (Urg N NUpg ™) x T x D(0, p), with 6y = min{dy, da}.

5 A g—Gevrey Malgrange-Sibuya type theorem

In this section we obtain a g—Gevrey version of the so called Malgrange-Sibuya theorem which
allows us to reach our final main achievement: the existence of a formal series solution of problem
(33)+(34) which asymptotically represents the actual solutions obtained in Theorem 3, meaning
that for every I € Z, X7 admits this formal solution as its ¢—Gevrey asymptotic expansion in
the variable e.

In [11], a Malgrange-Sibuya type theorem appears with similar aims as in this work. We
complete the information there giving bounds on the estimates appearing for the g—asymptotic
expansion. This mentioned work heavily rests on the theory developed by J-P. Ramis, J. Sauloy
and C. Zhang in [18].

In the present work, although g—Gevrey bounds are achieved, the ¢g—Gevrey type involved
will not be preserved, suffering an increase on the way.

The nature of the proof relies in the one concerning classical Malgrange-Sibuya theorem for
Gevrey asymptotics which can be found in [16].

Let H be a complex Banach space.
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Definition 6 Let U be a bounded open set in C* and A > 0. We say a holomorphic function
f:UqN = H admits f = Y om0 fn€" € H[[€]] as its q— Gevrey asymptotic expansion of type A
in Uq™N if for every compact set K C U there exist Cy, H > 0 such that

N
Hf(e) D G
n=0

H_ 1 q (N+1)|7 — Y

for every e € Kq~ V.
The following proposition can be found, under slight modifications in Section 4 of [18].

Proposition 3 Let A > 0 and U C C* be an open and bounded set. Let f : Uqg™N — H be a
holomorphic function that admits a formal power series f € H[e]] as its g— Gevrey asymptotic
expansion of type A in Uq™™N. Then, if f(k) stands for the k—th formal derivative off for every
k € N, we have that f* admits f(k) as its q— Gevrey asymptotic expansion of type A in Uq™N.

Proposition 4 Let A >0 and f: Uqg™N — H a holomorphic function in Ug™Y. Then,

i) If f admits 0 as its qg— Gevrey expansion of type A, then for every compact set K C U
there exists Ch > 0 with

11 2
Hf(€)||H < Ope a7ogldl log Iel’

N

for every e € Kq— and every a > A.

ii) If for every compact set K C U there exists C1 > 0 with

11 2
Hf(ﬁ)”H < Oy AZiogldl log Ielj

for every € € Kq N then f admits 0 as its g— Gevrey asymptotic expansion of type @ in
Uq™N, for every a > A.

Proof Let C1, H, A > 0 and € € C*. The function

lo A
G(z) = Cy exp(log(H)z + g|2q\w2 + (z+ 1) log |¢])
reaches its minimum for x > 0 at zg = %W. We deduce both results from standard
calculations. O

Definition 7 Let (UrqgN) ez be a good covering at 0 (see Definition 3), and grr - Ug NN
Upqg™N — H a holomorphic function in Urg ™ N Upq™N for I,1' € T when the intersection is
not empty. The family (g1,1)(1,1yez2 15 @ g— Gevrey H—cocycle of type A > 0 attached to a good
covering (Urq~N) ez if the following properties are satisfied:

1. g1, admits 0 as its g— Gevrey asymptotic expansion of type A >0 on Urg NN Upg™N for
every (I,I') € T.

2. grr(e) = —gr.i(e) for every (I,I'Y € Z, and e € Urg N NUpg ™.

8. We have gy 1 (€) = g1 (€) + gr 17(€) for alle € Urg N NUpg NNUmg™, I,I' 1" € T.
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Let p > 0 and 7 C C* be an open and bounded set. Hy , stands for the Banach space of
holomorphic and bounded functions in 7 x D(0, p) with the supremum norm.

Proposition 5 Let p > 0. We consider the family (X(e,t,z))rer constructed in Theorem 3.
Then, the set of functions (g1,r(€))1,1ez2 defined by

grr(e) == (t,2) € T x D(0,p) — X (e, t,2) — Xp(e,t, 2)
for I,I' € T is a q— Gevrey Hr ,-cocycle of type A for every

A > A= — 1 = — 1 ,
(1= ) (grmr — M)2loglgl (1 €)(§ — 2M log]ql)

attached to the good covering (Urq™N)jez.

Proof The first property in Definition 7 directly comes from Theorem 3 and Proposition 4. The
other two are verified by construction of the cocycle. O

We recall several definitions and an extension result from [2] which will be crucial in our work.

Definition 8 A continuous increasing function w : [0,00) — [0,00) is a weight function if it
satisfies

() there exists k > 1 with w(2t) < k(w(t) + 1) for allt > 0,

(B) [7° 2l dt < o,

(v) lim¢so0 L?Tgtl)t =0,

(5) ¢t w(el) is conver.
The Young conjugate associated to ¢, ¢* : [0,00) — R is defined by
¢*(y) == sup{ay — ¢(z) : © > O}.

Definition 9 Let K be a nonempty compact set in R2. A jet on K is a family F = (f%)aen2
where f* : K — C is a continuous function on K for each oo € N2,

Let w be a weight function. A jet F' = (f%),en2 on K is said to be a w— Whitney jet (of
Roumieu type) on K if there exist m >0 and M > 0 such that

[0} 1 *
I licam = __swp @) exp(— 6" (mla) < M,

and for every | € N, a € N? with |a| <1 and z,y € K one has

|x _ y|l+1—|a|

[(ESE=E exp(%qb*(m(l +1))),

where (RLF)a(y) == fo(9) — Sjaspizt 2/ @)y — )P

(RLF)aly)l < M

Eqwy(K) denotes the linear space of w—Whitney jets on K.
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Definition 10 Let K C R? be a nonempty compact set and w a weight function in K. A
continuous function f : K — C is w — C* in the sense of Whitney in K if there exists a
w— Whitney jet on K, (f*)genz such that fO0) = f.

For an open set Q € R? we define

Eruy () :={f € C™(Q) : VK € Q, K compact ,Im >0, || f[| ¢ 1/, < 00}

The following result establishes conditions on a weight function so that a jet in S{w}(K ) can
be extended to an element in Eg,y (R?).

Theorem 4 (Corollary 3.10, [2]) For a given weight function w, the following statements
are equivalent:

1. For every nonempty closed set K inR? the restriction map sending a function f € Efwy (R2)
to the family of derivatives of f in K, (f|x)aenz € Eqwy(K) is a surjective map.

2. w is a strong weight function, it is to say,

lim lim cw(?)
e—0+ t—oow(et)

=0.

Let k1 = ﬁglﬂ' We consider the weight function defined by wq(t) = ki log?(t) for t > 1 and
wo(t) = 0 for 0 < ¢ < 1. As the authors write in [2], the value of a weight function near the
origin is not relevant for the space of functions generated in the sequel.

The following lemma can be easily verified.

Lemma 8 wq is a weight function.

Under this definition of wy we have

2

x
—— x>0} =loglqly®, y>0.
4log|q| ) 4

Do (Y) = sup{zy — duy (z) : & = 0} = sup{wy —

The spaces appearing in Definition 9 concerning this weight function are the following: for
any nonempty compact set K C R?, Efwoy (K) is the set of wo-Whitney jets on K, which consists
of every jet F' = (f%),en2 on K such that there exist m € N, M > 0 with

@) < Mg,z e KaeN
and such that for every I € N and o € N? with |a| < [ we have

|z — |l

m 2
(+1—al)! g

(RLF)a(y)] < M , T,y € K.

We derive that g, (/) consists of the Whitney jets on K such that there exist C1, H > 0
with
la|?
(49) f(@)] < CLH|g|* >, 2 e K,a e N?,
and for every z,y € K and all | € N,a € N? with |a| <1

2 . l+1—|o¢‘
l < 1 AL |z — g '
(50) (BeF)aly)| < Cill'lal"s (o
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Theorem 5 wq is a strong weight function so that Theorem 4 holds.

Proof

1 2
lim lim ew(t) = lim lim w = lim e =
=0t t=oo w(et) 0+ t—oo kylog?(et) =0+
Od

Remark: A continuous function f which is wg — C® in the sense of Whitney on a compact
set K is indeed C* in the usual sense in Int(K) and verifies ¢—Gevrey bounds of the same type.
Moreover, we have

Fa,y) = ooy f(x,y),

for every k = (k1,k2) € N and (z,y) € Int(K).
Next result is an adaptation of Lemma 4.1.2 in [18]. Here, we need to determine bounds in
order to achieve a g—Gevrey type result.

Lemma 9 Let U be an open set in C* and f : Ug™N — H a holomorphic function with f =
> h>0 ane € Hl[e]] being its q-Gevrey asymptotic expansion of type A > 0 in Uq~™N. Then, for
any n € N, the family 0" f(€) of n—complex derivatives of f satisfies that for every compact set
K CU and k,m € N with k < m, there exist Cy, H > 0 such that

2 _ m+1—k
< Curjg oy o

AR
Ok flea) = 3 P ea — )" mr =R

(51) o
h=0

H

for every eq, e € Kg N U {0}. Here, we write dLf(0) = lla; for 1 € N.

Proof We will first state the result when ¢, = 0. Indeed, we prove in this first step that the
family of functions with ¢—Gevrey asymptotic expansion of type A > 0 in a fixed g—spiral is
closed under derivation. Proposition 3 turns out to be a particular case of this result.
Let m € N, K be a compact set in U and consider another compact set K; such that K C K; C
U. We define
P — I f(0) -
Rm(e) =€ " 1(f(€)_2676h)a €€ Kq Na

h!
h=0

where 07 f(0) denotes the limit of 0" f(e) for € € K¢~ tending to 0. Then we have that

m o op
(52) Ocf(e) = Z Oc i‘(()) he" 1 4 (8. Ry (€)™ + (m + 1) Ry (€)e™.
h=1 '

2
g%

(m+1)!

Moreover, from Definition 6, there exist C; H > 0 such that ||R,,(¢)|| < CH™
ee Kiqg V.

for every

Lemma 10 (Lemma 4.4.1 [18]) There exists p > 0 such that D(e,ple]) € K1q7N for every
ec KqN.

Cauchy’s integral formula and ¢g—Gevrey expansion of f guarantee the existence of a positive
constant C > 0 such that

|0c R (€) || g < CgHmL—, ee KqgV,

2
!
(m +1)! ple]
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This yields the existence of C'5 > 0 such that

m—1 gnh+1
o - Y e

h=0

< OB ()l [e] + (m 4 1) [ Rn (€)1
H

m2
|t T
m!

< CL AT ee Kg V.
An induction reasoning is sufficient to conclude the proof for every m > 0.

We now study the case where ¢, # 0 and only give details for £ = 0. For £ > 1 one only
has to take into account that the derivatives of f also admit ¢—Gevrey asymptotic expansion of
type A and consider the function 9% f.

If €, # 0 we treat two cases:
If le, — ep] < plep|, then [eq, €] is contained in Kjq~
formula.

If |eq — €] > plep|, then we bear in mind that the result is obvious when f is a polynomial
and write f(e) = €™ Ry, () + p(e) where p(e) = Y, 82}];(0) ¢". So, it is sufficient to prove (51)
when f(€) := €™ Ry, (¢). The result follows from g—Gevrey bounds for |05 Ry, k =0, ...,n
and usual estimates. O

N'and we conclude from Cauchy’s integral

The following lemma generalizes Lemma 6 in [11].

Lemma 11 Let f: Uq™N — H be a holomorphic function having f(e) = > hsoane € H[[e]] as
its g— Gevrey asymptotic expansion of type A >0 on Uq™N. Let K C U be a compact set. Then,
the function (e1,€2) — ¢(e1 +ie2) = f(e1,€2) is a wg — C> function in the sense of Whitney on
the compact set

K' ={(e1,e2) € R? : €] +ieg € Kqg N U{0}}.

Proof We consider the set of functions (qb(kl’k?))(kl,kQ)eNz defined by

(53) pkrka) = jh2ghithe £y - (ky, k) € N2, (e1,60) € K.

From Lemma 9, function f satisfies bounds as in (51). Written in terms of the elements in
(¢(k1’k2))(k1,k2)eNQ we have the existence of C1, H > 0 such that for every (ki, k2) € N2, m >0

m—|(k1,k2)|

1
i@¢(k1’k2)($1, y)— Y

¢(k1+h17k2+h2) (1.27 y2)

ika+ha )
p=0  hitha=p v
m—+1—|(k1,k2)|
p‘ h1 :ho ho m Ami2 H(l’l _$27y1 _y2)||R2
X 1 — T2 2 Y1 — Y2 < ClH q 2
h1!h2!( ) ( ) H | | (m+1—|(k‘1,k‘2)|)!

for (z1,y1), (z2,y2) € K'. Expression (49) can be directly checked from (53) and (51) for €, =0
and m = k. This yields the set (¢(k1’k2))(,€1,k2)€N2 is an element in 0y (K') O

}
Next result allows us to glue together a finite number of jets in £,y (K), for a given compact
set K.

Theorem 6 [[8]. Theorem I1.1.3] Let K1, K be compact sets in R2. The following statements
are equivalent:
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i. The sequence
0— g{wo}(Kl U KQ) SN g{wo}(Kl) D g{wo}(Kg) i) g{wo}(Kl N Kg) —0

is exact. ﬂ'(f) = (f‘K17f’K2) and 5(f7g) = f’KﬂWKz - g‘KlﬂKg'

ii. Let fi € Equey (K1) and fa € gy (K2) be such that fi(x) = fa(x) for every x € K1 N Ka.
The function f defined by f(x) = fi(x) if x € K1 and f(x) = fa(x) if x € Ky belongs to
5{w0}(K1 U KQ)

wi. If K1 N Ko # () then there exist Az, Ay > 0 such that
M(Ag dist(fl), Kin KQ)) < A4M(di5t(l‘, KQ)),

for every x € Ky. Here, M denotes the function given by M(0) = 0 and M(t) =
inf,ent" M, fort > 0. dist(x, K) stands for the distance from x to the set K.

Corollary 2 [[18], Lemma 4.5.6] Given K1, Ky nonempty compact sets in C*, if we put K; =
{(e1,€2) € R? : €1 +iex € Kjg N U{0}}, 7 = 1,2, then the previous theorem holds for K1 and
K.

As the authors remark in [18], condition ¢ii) in the previous result is known as transversality
condition which is more constricting than Lojasiewicz’s condition (see [15]).

Next proposition is devoted to show that the cocycle constructed in Proposition 5 splits in
the space of wy — C*° functions in the sense of Whitney. Whitney-type extension results on
Efwo} (K) (Theorem 4 and Theorem 5) will play an important role in the following step.

Proposition 6 Let (UrqN)7ezr be a good covering and let (91,07(6))(1,1ez2 be the g—Gevrey
Hr ,-cocycle of type A constructed in Proposition 5. We choose a family of compact sets K C
Ur for I € I, with Int(K;) # 0, in such a way that Urer(K;q™N) is U \ {0}, where U is a
neighborhood of 0 in C.

Then, for all I € Z, there exists a wg — C*® function fr(e1,ez) in the sense of Whitney on
the compact set A; = {(e1,e2) € R? : €1 +ieg € Krq N U{0}}, with values in the Banach space
H7 ,, such that

(54) gr.r (€1 +ie2) = fr(er,e2) — fr(er, e2)

for all 1,I' € T such that AN Ap # 0 and, for every (e1,e2) € AN Ap.

Proof The proof follows similar arguments as Lemma 3.12 in [18] and it is an adaptation of
Proposition 5 in [11] under g—Gevrey settings.

Let I,I' € 7 such that A; N Ay # (. From Lemma 11, we have the function (ej,e2) —
g1, (€1 +i€2) is a wg — C* function in the sense of Whitney on A; N Ap. In the following we
provide the construction of f; for I € Z verifying (54).

Let us fix any I € Z. We consider any wg — C* function in the sense of Whitney on A;. By
definition of the good covering (Urq™");ez the following cases are possible:

Case 1: If there is at least one I’ € Z, I # I', such that A;NAp #Qbut A;NAp N A =0
for every I"” € T with I” # I' # I, then we define ey j/(e1,€2) = fr(e1, €2) + g1 (€1 + iez) for
every (€1,€2) € AfNAp. erp is a wy —C™ function in the sense of Whitney in Ay N Ap. From
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Theorem 4 and Theorem 5, we can extend ey v to a wo — C* function in the sense of Whitney
on Ay . This extension is called f;r. We have

gr,rr(e1 +iez) = fr(er,e2) — fr(er,e2), (e1,€2) € AfNAp.

Case 2: There exist two different I’ I” € T with I’ # I # I"” such that Ay N Ap N Apr # (.
We first construct a wy — C*> function in the sense of Whitney on Ay, fr (€1, €2), verifying

(55) g],[/(q + iez) = f[/(ﬁl, 62) — f[(el, 62), (61, 62) e ArnNAp.

We define 6]7]//(61, €2) = fr(e, 62)+g[71// (e1+ieg) for every (€1,€2) € AfN A and 61/7]//(61, €) =
fr(eir,e2) + g (€1 + iea) whenever (e1,€2) € Ap N Apr. From (55) we have e pv(€e1,€2) =
er (€1, €2) for every (e1,e2) € AN Ap N Apr. From this, we can define

ern(e1, €2) i= er(er,e2) if (e1,€2) € AfNAp
I 1,€2) - 6[/7]//(61,62) if (61,62) c AI’ ﬂAI”-

From Theorem 6 and Corollary 2 we deduce e~ (€1, €2) can be extended to a wy — C* function
in the sense of Whitney in Ajyv, fru(€1,€2). It is straightforward to check, from the way fr»
was constructed, that fr/(ei,e2) = fr(e1, €2) + gr.r7 (€1 + iea) when (e1,€2) € Ay N Ay and also
frr(e1,€2) = fr(er,e2) + g]"]//(él + ieg) for (e1,e2) € Ap N Apn.

These two cases solve completely the problem since nonempty intersection of four different
compacts in (Ar)sez is not allowed when working with a good covering. The functions in (f7)rez
satisfy (54). |

6 Existence of formal series solutions and ¢—Gevrey expansions

In the current section we set the main result in this work. We establish the existence of a
formal power series with coefficients belonging to Hy , which asymptotically represents the
actual solutions found in Theorem 3 for the problem (33)4(34). Moreover, each actual solution
turns out to admit this formal power series as ¢g—Gevrey expansion of a certain type in the
q—spiral where the solution is defined.

The following lemma will be useful in the following. We only sketch its proof. For more
details we refer to [17].

Lemma 12 Let U be an open and bounded set in R%2. We consider h € C*°(U) (in the classical
sense) verifying bounds as in (49) and (50) for every (e1,€e2) € U. Let g be the solution of the
equation

1 . .
(56) Oezq(€1, €2) 1= 5(861 +i0c,)g(€1 +ie2) = h(er,€2), (€1,€2) € U.
Then g also verifies bounds such as those in (49) and (50) for (e1,€2) € U.

Proof Let hi be any extension of the function h to R? with compact support which preserves
bounds in (49) and (50) in R?. We have

g(er,€2) := —1/ Mdfd% (€1,€2) €U

T Jr2 T — €
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solves (56). Here, € = (e1,€2), x = (§,n) and d€dn stands for Lebesgue measure in z—plane.
Bounds in (49) for the function g come out from

aoél-i-olzg 1 oortaz hi 1

I == déd
el De? (€1, €2) 7 Jre O€]10e? (x)a: —€ Sdn,

for every a = (a1, a2) € N? and (€1, €2) € U, and from the fact that the function z = (z1,z2)
1/|z| is Lebesgue integrable in any compact set containing 0.

On the other hand, g satisfies estimates in (50) from Taylor formula with integral remainder.
O

We now give a decomposition result of the functions X; constructed in Theorem 3. The
procedure is adapted from [11] under ¢—Gevrey settings. For every I € Z, we write X(e) :
UrgN — Hy , for the holomorphic function given by X;(e€) := (¢, 2) — X(e, t, 2).

Proposition 7 There exists a wg—C*> function u(e1, €2) and a holomorphic function a(e; +1i€2)
defined on the neighborhood Int(UrezAr) of 0 such that

(57) X[(El + i€2) = f[(el, 62) + u(el, 62) + CL(€1 + i62>, (61, 62) c [nt(A[),

for every I € T.

Proof From the definition of the cocycle (g7,1/)(1,17)ez2 in Proposition 5 and from Proposition 6
we derive

Xi(er +iex) — fr(er,e2) = Xp(er +iea) — fr(er,ea), (e1,e2) € ArnAp\ {(0,0)},

whenever (I,1') € Z? and A; N Ap # 0. The function X — f given by

(X = f)e1,e2) := Xp(e1 +ie2) — fr(er,e2), (e1,e2) € Ar\ {(0,0)}

is well defined on W \ {(0,0)}, where W = Ujez Ay is a closed neighborhood of (0, 0).
For every I € Z, X7 is a holomorphic function on Urg™" so that Cauchy-Riemann equations
hold:
a%(X])(El —|—i62) =0, (61,62) S A]\{(0,0)}.

This yields 9¢(X — f)(e1,€e2) = —0cfr(e1, €2) for every I € T and (€1, €2) € Int(Ay).

We have —0:f1(€1,€2) can be extended to a wg — C* function in the sense of Whitney on
Ay. This yields fr is wg — C* in the sense of Whitney on A;. In fact, their ¢—Gevrey types
coincide.

From this, we deduce that 0z(X — f) is a wy — C* function in the sense of Whitney on A; for
every I € 7 and also that Ozf1(€1,€2) = Oefr (€1, €2) for every (e1,€2) € Int(Ar N Ap) and every
I,I' € T due to grp/(€) is a holomorphic function on Urg™™ N Upg™. The previous equality is
also true for (e1,€e2) € Ay N Ap from the fact that f7 is wg —C® in the sense of Whitney on A;.

From Theorem 6 and Corollary 2 we derive 0(X — f) is a wyg — C* function in the sense of
Whitney on UjezAg.

Taking into account Lemma 12 we derive the existence of a C* function u(ey, €2) in the usual
sense, defined in Int(W) and verifying ¢—Gevrey bounds of a certain positive type, such that

O=u(e1, €2) = 0e(X — f)(e1,€2), (e1,€2) € Int(W).

From this last expression we have u(eq,e2) — (X — f)(€1,€2) defines a holomorphic function on

Int(WW) \ {(0,0)}.
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For every I € Z, X is a bounded Hy ,—function in Int(W)\ {(0,0)}, and so it is the function
u(er, €2) — (X — f)(€e1,€2). The origin turns out to be a removable singularity so the function
u(er, €2) — (X — f)(e1,€2) can be extended to a holomorphic function defined on Int(W). The
result follows from here. a

We are under conditions to enunciate the main result in the present work.

Theorem 7 Under the same hypotheses as in Theorem 3, there exists a formal power series

Ketn) =Y XDk g g

k!
E>0
formal solution of
S—1
(58) S X (e, qt,2) + DT X (e, t,2) = Y by(e, 2)(tag) "M (DL X ) (e, 1, 27 ™+).
k=0

Moreover, let I € T and K; any compact subset of Int(Ky). There exists B > 0 such that
the function Xy(e,t,z) constructed in Theorem 3 admits X(e,t,2) as its g—Gevrey asymptotic
expansion of type B in Krqg™N.

Proof Let I € 7 and K any compact subset of Int(K7).

From Proposition 7 we can extend X(e; +iez) to a wg—C™ function in the sense of Whitney
on A; = {(e1,e2) € R? : €1 +iex € K;g N U{0}} C Int(A;) U {(0,0)}. Let us fix I € Z. We
consider the family (X (*1:h2) (¢, €2)) (h1,ho)en2 associated to X by Definition 9. We have

X{Mh2) (e e) = 1R X (€1 + i) = P20 T2 X (e),  (e1,e0) € A7\ {(0,0)},

due to X(e) is holomorphic on Int(K7)g™N.

We have X}hl’hﬂ(el, €2) is continuous at (0,0) for every (hi, hs) € N? so we can define for
every k >0

x"h2) (0 o)

(59) Xk, := i

S H']jp,

whenever h; + hy = k. Estimates held by any wg — C* function in the sense of Whitney (see
Definition 9 for o = (0,0)) lead us to the existence of positive constants Cy, H, B > 0 such that

m

Xi(e1 + iea) Z

p=0

m? |1 + ieg| ™1
€1+'L€2) <C Hm‘q|B ‘1(7/)1—’_21)

9

HT,p

for every m > 0 and €] + ieg € K}q_N. As a matter of fact, this shows that X; admits
XI( ) =2 k>0 )]g, ¥ as its g—Gevrey expansion of type B > 0 in K;q V.

The formal power series X does not depend on I € Z. Indeed, from Theorem 3 we have
that X7(€) — X (e) admits both 0 and X, — X7 as g—asymptotic expansion on KigNnKpg
whenever this intersection is not empty. We put X = X; for any I € Z. The function
Xi1 = Xi I(t z) € HTp does not depend on I for every k > 0. We write X}, := X}, 1 for & > 0.
X7 admits X = > k>0 k' ek as its g—Gevrey asymptotic expansion of type B > 0 in K;q¢~N for
all I € 7.
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In order to achieve the result, it only remains to prove that X (e,t, z) is a formal solution of
(58). Let I > 1. If we derive I times with respect to € in equation (58) we get that 9! X (e, t, 2)
is a solution of

(60) etd2 0 X (e, qt, z) + 10710 X1 (e, qt, 2) + 050! X1 (e, t, 2)

— Z Z Wallbk €, z)alz((ta )mo k)aka)(e t, 2q” ™ k)
k=011 +l2=l

for every [ > 1,(t,z) € T x D(0, p) and e € K;q~N. Letting € tend to 0 in (60) we obtain

SXl 1((]75 Z) SXl t Z 8 bk 6 z |6 0 ((ta )mO,kanlz)(t7zq—m1,k)
O o=y o Yy L

k=011+l2=I

for every [ > 1,(t,z) € T x D(0, p). Holomorphy of b(e, z) with respect to € at 0 implies

[
(62) bi(e,z) =Y abk(el'z)lzo "

1>0
for € near 0 and for every z € C. Statements (60) and (61) conclude X (e, ¢, z) = > k>0 Xk(t, z)ek—
is a formal solution of (58). O
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