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Affiliations:

- Alberto Lastra (Corresponding author, alastra@am.uva.es)
Universidad de Valladolid, VALLADOLID, Spain.

Address:
Facultad de Ciencias
Calle del Doctor Mergelina s/n
47011 Valladolid
SPAIN
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Abstract

We study a q−analog of a singularly perturbed Cauchy problem with irregular singularity
in the complex domain which generalizes a previous result by S. Malek in [11]. First, we con-
struct solutions defined in open q−spirals to the origin. By means of a q−Gevrey version of
Malgrange-Sibuya theorem we show the existence of a formal power series in the perturbation
parameter which turns out to be the q−Gevrey asymptotic expansion (of certain type) of the
actual solutions.

Key words: q−Laplace transform, Malgrange-Sibuya theorem, q−Gevrey asymptotic expan-
sion, formal power series. 2010 MSC: 35C10, 35C20.

1 Introduction

We study a family of q-difference-differential equations of the following form

(1) εt∂S
z X(ε, qt, z) + ∂S

z X(ε, t, z) =
S−1
∑

k=0

bk(ε, z)(tσq)
m0,k(∂k

zX)(ε, t, zq−m1,k),

where q ∈ C such that |q| > 1, m0,k,m1,k are positive integers, bk(ε, z) are polynomials in
z with holomorphic coefficients in ε on some neighborhood of 0 in C and σq is the dilation
operator given by (σqX)(ε, t, z) = X(ε, qt, z). As in previous works [12], [14], [9], the map
(t, z) 7→ (qm0,kt, zq−m1,k) is assumed to be a volume shrinking map, meaning that the modulus
of the Jacobian determinant |q|m0,k−m1,k is less than 1, for every 0 ≤ k ≤ S − 1.

In [11], the second author studies a similar singularly perturbed Cauchy problem. In this
previous work, the polynomial bk(ε, z) :=

∑

s∈Ik
bks(ε)z

s is such that, for all 0 ≤ k ≤ S − 1, Ik
is a finite subset of N = {0, 1, ...} and bks(ε) are bounded holomorphic functions on some disc
D(0, r0) in C which verify that the origin is a zero of order at least m0,k. The main point on these
flatness conditions on the coefficients in bk(ε, z) is that the method used by M. Canalis-Durand,
J. Mozo-Fernández and R. Schäfke in [3] could be adapted so that the initial singularly perturbed
problem turns into an auxiliary regularly perturbed q−difference−differential equation with an
irregular singularity at t = 0, preserving holomorphic coefficients bks (we refer to [11] for the
details). These constricting conditions on the flatness of bk(ε, z) is now omitted, so that previous
result is generalized. In the present work we will not only make use of the procedure considered
in [3] but also of the methodology followed in [13]. In that work, the second author considers a
family of singularly perturbed nonlinear partial differential equations such that the coefficients
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appearing possess poles with respect to ε at the origin after the change of variable t 7→ t/ε. This
scenary fits our problem.

In both, the present work and [13], the procedure for locating actual solutions relies on the
research of certain appropriate Banach spaces. The ones appearing here may be regarded as
q−analogs of the ones in [13].

In order to fix ideas we first settle a brief summary of the procedure followed. We consider
a finite family of discrete q−spirals (UIq

−N)I∈I in such a way that it provides a good covering
at 0 (Definition 3).

We depart from a finite family, with indices belonging to a set I, of perturbed Cauchy
problems (33)+(34). Let I ∈ I be fixed. Firstly, by means of a non-discrete q−analog of
Laplace transform introduced by C. Zhang in [21] (for details on classical Laplace transform we
refer to [1],[5]), we are able to transform our initial problem into auxiliary equation (9) (or (21)).

The transformed problem fits into certain Cauchy auxiliary problem such as (9)+(10) which
is considered in Section 2. Here, its solution is found in the space of formal power series in
z with coefficients belonging to the space of holomorphic functions defined in the product of
discrete q−spirals to the origin in the variable ε (this domain corresponds to UIq

−N in the
auxiliary transformed problem) times a continuous q−spiral to infinity in the variable τ (VIq

R+

for the auxiliary equation). Moreover, for any fixed ε and regarding our auxiliary equation, one
can deduce that the coefficients, as functions in the variable τ , belong to the Banach space of
holomorphic functions in VIq

R+ subject to q−Gevrey bounds

|W I
β (ε, τ)| ≤ C1β!HβeM log2 |τ/ε|

∣

∣

∣

τ

ε

∣

∣

∣

Cβ
|q|−A1β2

, τ ∈ VIq
R+

for positive constants C1, C,M,H,A1 > 0, where the index of the coefficient considered is β (see
Theorem 1).

Also, the transformed problem fits into the auxiliary problem (21)+(22), studied in detail
in Section 3. In this case, the solution is found in the space of formal power series in z with
coefficients belonging to the space of holomorphic functions defined in the product of a punctured
disc at 0 in the variable ε times a punctured disc at the origin in τ . For a fixed ε, the coefficients
belong to the Banach space of holomorphic functions in D(0, ρ0) \ {0} such that

|W I
β (ε, τ)| ≤ C1β!HβeM log2 |τ/ε||ε|−Cβ|q|−A1β2

, τ ∈ D(0, ρ0) \ {0}

for positive constants C1, C,M,H,A1 > 0 when β is the index of the coefficient considered (see
Theorem 2).

From these results, we get a sequence (W I
β )β∈N consisting of holomorphic functions in the

variable τ so that q−Laplace transform can be applied to its elements. In addition, the function

(2) XI(ε, t, z) :=
∑

β≥0

LλI
q;1W

I
β (ε, εt)

zβ

β!

turns out to be a holomorphic function defined in UIq
−N × T × C which is a solution of the

initial problem. Here, T is an adequate open half q−spiral to 0 and λI corresponds to certain
q−directions for the q−Laplace transform (see Proposition 1). The way to proceed is also
followed by the authors in [6] and [7] when studying asymptotic properties of analytic solutions
of q−difference equations with irregular singularities.

It is worth pointing out that the choice of a continuous summation procedure unlike the
discrete one in [11] is due to the requirement of Cauchy’s theorem on the way.
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At this point we own a finite family (XI)I∈I of solutions of (33)+(34). The main goal is to
study its asymptotic behavior at the origin in some sense. Let ρ > 0. One observes (Theorem 3)
that whenever the intersection UI ∩ UI′ is not empty we have

(3) |XI(ε, t, z) −XI′(ε, t, z)| ≤ C1e
− 1

A
log2 |ε|

for positive constants C1, A and for every (ε, t, z) ∈ (UIq
−N ∩ UI′q

−N) × T ×D(0, ρ). Equation
(3) implies that the difference of two solutions of (33)+(34) admits q−Gevrey null expansion of
type A > 0 at 0 in UI ∩ UI′ as a function with values in the Banach space HT ,ρ of holomorphic
bounded functions defined in T ×D(0, ρ) endowed with the supremum norm. Flatness condition
(3) allows us to establish the main result of the present work (Theorem 7): the existence of a
formal power series

X̂(ε) =
∑

k≥0

Xk

k!
εk ∈ HT ,ρ[[ε]],

formal solution of (1), such that for every I ∈ I, each of the actual solutions (2) of the problem
(33)+(34) admits X̂ as its q−Gevrey expansion of a certain type in the corresponding domain
of definition.

The main result heavily rests on a Malgrange-Sibuya type theorem involving q−Gevrey
bounds, which generalizes a result in [11] where no precise bounds on the asymptotic appears. In
this step, we make use of Whitney-type extension results in the framework of ultradifferentiable
functions. Whitney-type extension theory is widely studied in literature under the framework
of ultradifferentiable functions subject to bounds of their derivatives (see for example [4], [2])
and also it is a useful tool taken into account on the study of continuity of ultraholomorphic
operators (see [19],[20],[10]). It is also worth saying that, although q−Gevrey bounds have been
achieved in the present work, the type involved might be increased when applying an extension
result for ultradifferentiable functions from [2].

The paper is organized as follows.
In Section 2 and Section 3, we introduce Banach spaces of formal power series and solve auxiliary
Cauchy problems involving these spaces. In Section 2, this is done when the variables rely in a
product of a discrete q−spiral to the origin times a q−spiral to infinity, while in Section 3 it is
done when working on a product of a punctured disc at 0 times a disc at 0.

In Section 4 we first recall definitions and some properties related to q−Laplace transform
appearing in [21], firstly developed by C. Zhang. In this section we also find actual solutions
of the main Cauchy problem (33)+(34) and settle a flatness condition on the difference of two
of them so that, when regarding the difference of two solutions in the variable ε, we are able
to give some information on its asymptotic behavior at 0. Finally, in Section 6 we conclude
with the existence of a formal power series in ε with coefficients in an adequate Banach space
of functions which solves in a formal sense the problem considered. The procedure heavily rests
on a q−Gevrey version of Malgrange-Sibuya theorem, developed in Section 5.

2 A Cauchy problem in weighted Banach spaces of Taylor series

M,A1, C > 0 are fixed positive real numbers throughout the whole paper.
Let U, V be nonempty bounded open sets in C

? := C \ {0} and let q ∈ C
? such that |q| > 1.

We define

Uq−N = {εq−n ∈ C : ε ∈ U, n ∈ N} , V qR+ = {τql ∈ C : τ ∈ V, l ∈ R, l ≥ 0}.
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We assume there exists M1 > 0 such that |τ + 1| > M1 for all τ ∈ V qR+ and also that the
distance from the set V to the origin is positive.

Definition 1 Let ε ∈ Uq−N and β ∈ N. Eβ,ε,V qR+ denotes the vector space of functions v ∈

O(V qR+) such that

‖v(τ)‖β,ε,V qR+ := sup
τ∈V qR+

{

|v(τ)|

eM log2| τε |

∣

∣

∣

τ

ε

∣

∣

∣

−Cβ
}

|q|A1β2

is finite.
Let δ > 0. H(ε, δ, V qR+) denotes the complex vector space of all formal series v(τ, z) =

∑

β≥0 vβ(τ)zβ/β! belonging to O(V qR+)[[z]] such that

‖v(τ, z)‖(ε,δ,V qR+ ) :=
∑

β≥0

‖vβ(τ)‖β,ε,V qR+
δβ

β!
< ∞.

It is straightforward to check that the pair (H(ε, δ, V qR+), ‖·‖(ε,δ,V qR+ )) is a Banach space.

We consider the formal integration operator ∂−1
z defined on O(V qR+)[[z]] by

∂−1
z (v(τ, z)) :=

∑

β≥1

vβ−1(τ)
zβ

β!
∈ O(V qR+)[[z]].

Lemma 1 Let s, k,m1,m2 ∈ N, δ > 0, ε ∈ Uq−N. We assume that the following conditions
hold:

(4) m1 ≤ C(k + s) , m2 ≥ 2(k + s)A1.

Then, there exists a constant C1 = C1(s, k,m1,m2, V, U,C,A1) (not depending on ε nor δ)
such that

(5)
∥

∥

∥
zs

(τ

ε

)m1

∂−k
z v(τ, zq−m2)

∥

∥

∥

(ε,δ,V qR+ )
≤ C1δ

k+s ‖v(τ, z)‖(ε,δ,V qR+ ) ,

for every v ∈ H(ε, δ, V qR+).

Proof Let v(τ, z) =
∑

β≥0 vβ(τ) z
β

β! ∈ O(V qR+)[[z]]. We have that

∥

∥

∥
zs

(τ

ε

)m1

∂−k
z v(τ, zq−m2)

∥

∥

∥

(ε,δ,V qR+ )
=

∥

∥

∥

∥

∥

∥

∑

β≥k+s

(τ

ε

)m1

vβ−(k+s)(τ)
β!

(β − s)!

1

qm2(β−s)

zβ

β!

∥

∥

∥

∥

∥

∥

(ε,δ,V qR+ )

=
∑

β≥k+s

∥

∥

∥

∥

(τ

ε

)m1

vβ−(k+s)(τ)
β!

(β − s)!

1

qm2(β−s)

∥

∥

∥

∥

β,ε,V qR+

δβ

β!
(6)

Taking into account the definition of the norm ‖·‖β,ε,V qR+ , we get

∥

∥

∥

∥

(τ

ε

)m1

vβ−(k+s)(τ)
β!

(β − s)!

1

qm2(β−s)

∥

∥

∥

∥

β,ε,V qR+
=

β!

(β − s)!
|q|A1(β−(k+s))2 |q|p(β)

sup
τ∈V qR+

{

|vβ−(k+s)(τ)|

eM log2| τε |

∣

∣

∣

τ

ε

∣

∣

∣

−C(β−(k+s)) ∣
∣

∣

ε

τ

∣

∣

∣

C(k+s)−m1
}

,(7)
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with p(β) = A1β
2 − A1(β − (k + s))2 − m2(β − s). From (4) we derive |ε/τ |C(k+s)−m1 ≤

(CU/CV )C(k+s)−m1 for every ε ∈ Uq−N and τ ∈ V qR+ , where 0 < CV := min{|τ | : τ ∈ V } and
0 < CU := max{|ε| : ε ∈ U}. Moreover,

p(β) = (2(k + s)A1 −m2)β − (k + s)2A1 + m2s,

for every β ∈ N. Regarding condition (4) we obtain the existence of C1 > 0 such that

(8)
∣

∣

∣

ε

τ

∣

∣

∣

C(k+s)−m1

|q|p(β) ≤ C1,

for every τ ∈ V qR+ and β ∈ N. Inequality (5) follows from (6), (7) and (8):

∥

∥

∥
zs

(τ

ε

)m1

∂−k
z v(τ, zq−m2)

∥

∥

∥

(ε,δ,V qR+ )
≤ C1

∑

β≥k+s

∥

∥vβ−(k+s)(τ)
∥

∥

β−(k+s),ε,V qR+

β!

(β − s)!

δβ

β!

≤ C1δ
k+s

∑

β≥k+s

∥

∥vβ−(k+s)(τ)
∥

∥

β−(k+s),ε,V qR+

δβ−(k+s)

(β − (k + s))!
.

2

Lemma 2 Let F (ε, τ) be a holomorphic and bounded function defined on Uq−N × V qR+ . Then,
there exists a constant C2 = C2(F,U, V ) > 0 such that

‖F (ε, τ)vε(τ, z)‖(ε,δ,V qR+ ) ≤ C2 ‖vε(τ, z)‖(ε,δ,V qR+ )

for every ε ∈ Uq−N, every δ > 0 and all vε ∈ H(ε, δ, V qR+).

Proof Direct calculations regarding the definition of the elements in H(ε, δ, V qR+) allow us to
conclude when taking C2 := max{|F (ε, τ)| : ε ∈ Uq−N, τ ∈ V qR+}. 2

Let S ≥ 1 be an integer. For all 0 ≤ k ≤ S − 1, let m0,k,m1,k be positive integers and
bk(ε, z) =

∑

s∈Ik
bks(ε)z

s be a polynomial in z, where Ik is a finite subset of N and bks(ε) are

holomorphic bounded functions on D(0, r0). We assume Uq−N ⊆ D(0, r0)).
We consider the following functional equation

(9) ∂S
z W (ε, τ, z) =

S−1
∑

k=0

bk(ε, z)

(τ + 1)εm0,k
τm0,k(∂k

zW )(ε, τ, zq−m1,k)

with initial conditions

(10) (∂j
zW )(ε, τ, 0) = Wj(ε, τ) , 0 ≤ j ≤ S − 1,

where the functions (ε, τ) 7→ Wj(ε, τ) belong to O(Uq−N × V qR+) for every 0 ≤ j ≤ S − 1.
We make the following
Assumption (A) For every 0 ≤ k ≤ S − 1 and s ∈ Ik, we have

m0,k ≤ C(S − k + s) , m1,k ≥ 2(S − k + s)A1.
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Theorem 1 Let Assumption (A) be fulfilled. We also make the following assumption on the
initial conditions in (10): there exist a constant ∆ > 0 and 0 < M̃ < M such that for every
0 ≤ j ≤ S − 1

(11) |Wj(ε, τ)| ≤ ∆eM̃ log2| τε |,

for all τ ∈ V qR+ , ε ∈ Uq−N. Then, there exists W (ε, τ, z) ∈ O(Uq−N × V qR+)[[z]] solution of

(9)+(10) such that if W (ε, τ, z) =
∑

β≥0Wβ(ε, τ) z
β

β! , then there exist C2 > 0 and 0 < δ < 1 such
that

(12) |Wβ(ε, τ)| ≤ C2β!

(

|q|2A1S

δ

)β
∣

∣

∣

τ

ε

∣

∣

∣

Cβ
eM log2| τε ||q|−A1β2

, β ≥ 0

for every ε ∈ Uq−N and τ ∈ V qR+ .

Proof Let ε ∈ Uq−N. We define the map Aε from O(V qR+)[[z]] into itself by

(13) Aε(W̃ (τ, z)) :=
S−1
∑

k=0

bk(ε, z)

(τ + 1)εm0,k
τm0,k

[

(∂k−S
z W̃ )(τ, zq−m1,k) + ∂k

zwε(τ, zq
−m1,k)

]

,

where wε(τ, z) :=
∑S−1

j=0 Wj(ε, τ) z
j

j! . In the following lemma, we show the restriction of Aε to

a neighborhood of the origin in H(ε, δ, V qR+) is a Lipschitz shrinking map for an appropriate
choice of δ > 0.

Lemma 3 There exist R > 0 and δ > 0 (not depending on ε) such that:

1.
∥

∥

∥
Aε(W̃ (τ, z))

∥

∥

∥

(ε,δ,V qR+ )
≤ R for every W̃ (τ, z) ∈ B(0, R). B(0, R) denotes the closed ball

centered at 0 with radius R in H(ε, δ, V qR+).

2.
∥

∥

∥
Aε(W̃1(τ, z)) −Aε(W̃2(τ, z))

∥

∥

∥

(ε,δ,V qR+ )
≤

1

2

∥

∥

∥
W̃1(τ, z) − W̃2(τ, z)

∥

∥

∥

(ε,δ,V qR+ )

for every W̃1, W̃2 ∈ B(0, R).

Proof Let R > 0 and 0 < δ < 1.
For the first part we consider W̃ (τ, z) ∈ B(0, R) ⊆ H(ε, δ, V qR+). Lemma 1 and Lemma 2

can be applied so that
∥

∥

∥
Aε(W̃ (τ, z))

∥

∥

∥

(ε,δ,V qR+ )

(14) ≤
S−1
∑

k=0

∑

s∈Ik

Mks

M1

[

C1δ
S−k+s

∥

∥

∥
W̃ (τ, z)

∥

∥

∥

(ε,δ,V qR+ )
+
∥

∥

∥
zs

(τ

ε

)m0,k

∂k
zwε(τ, zq

−m1,k)
∥

∥

∥

(ε,δ,V qR+ )

]

,

with Mks = supε∈Uq−N |bks(ε)| < ∞, s ∈ Ik, 0 ≤ k ≤ S − 1. Taking into account the definition

of H(ε, δ, V qR+) and (11) we have

∥

∥

∥
zs
(τ

ε

)m0,k

∂k
zwε(τ, zq

−m1,k)
∥

∥

∥

(ε,δ,V qR+ )
=

∥

∥

∥

∥

∥

∥

S−1−k
∑

j=0

(τ

ε

)m0,k

Wj+k(ε, τ)
zj+s

j!qm1,kj

∥

∥

∥

∥

∥

∥

(ε,δ,V qR+ )
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=
S−1−k
∑

j=0

sup
τ∈V qR+

{

|Wj+k(ε, τ)|

eM log2| τε |

∣

∣

∣

τ

ε

∣

∣

∣

m0,k−C(j+s)
}

|q|A1(j+s)2 δj+s

j!|q|m1,kj

≤ ∆
S−1−k
∑

j=0

|q|A1(j+s)2δj+s

j!|q|m1,kj
max{e−(M−M̃) log2(x)xm0,k−C(j+s) : x > 0, 0 ≤ j + k ≤ S − 1, s ∈ Ik}

(15)

≤ ∆C ′
2,

for a positive constant C ′
2.

We conclude this first part from an appropriate choice of R and δ > 0.
For the second part we take W̃1, W̃2 ∈ B(0, R) ⊆ H(ε, δ, V qR+). Similar arguments as before

yield
∥

∥

∥
Aε(W̃1) −Aε(W̃2)

∥

∥

∥

(ε,δ,V qR+ )
≤

S−1
∑

k=0

∑

s∈Ik

Mks

M1
C1δ

S−k+s
∥

∥

∥
W̃1 − W̃2

∥

∥

∥

(ε,δ,V qR+ )
.

An adequate choice for δ > 0 allows us to conclude the proof. 2

We choose constants R, δ as in the previous lemma.
From Lemma 3 and taking into account the shrinking map theorem on complete metric spaces,
we guarantee the existence of W̃ε(τ, z) ∈ H(ε, δ, V qR+) which is a fixed point for Aε in B(0, R),
it is to say,

∥

∥W̃ε(τ, z)
∥

∥

(ε,δ,V qR+ )
≤ R and Aε(W̃ε(τ, z)) = W̃ε(τ, z).

Let us define

(16) Wε(τ, z) := ∂−S
z W̃ε(τ, z) + wε(τ, z).

If we write W̃ε(τ, z) =
∑

β≥0 W̃β,ε(τ) z
β

β! and Wε(τ, z) =
∑

β≥0Wβ,ε(τ) z
β

β! , then we have that

Wβ+S,ε ≡ W̃β,ε for β ≥ 0 and Wj,ε(τ) = Wj(ε, τ), 0 ≤ j ≤ S − 1.

From
∥

∥W̃ε(τ, z)
∥

∥

(ε,δ,V qR+ )
≤ R we arrive at

∥

∥W̃β,ε

∥

∥

β,ε,V qR+
≤ Rβ!

(

1
δ

)β
for every β ≥ 0. This

implies

|W̃β,ε(τ)| ≤ Rβ!

(

1

δ

)β ∣
∣

∣

τ

ε

∣

∣

∣

Cβ
eM log2| τε ||q|−A1β2

,

for every β ≥ 0 and τ ∈ V qR+ .
This is valid for every ε ∈ Uq−N. We define W (ε, τ, z) := Wε(τ, z) and Wβ(ε, τ) := Wβ,ε(τ)

for every (ε, τ) ∈ Uq−N×V qR+ , z ∈ C and β ≥ S. From (16), it is straightforward to prove that

W (ε, τ, z) =
∑

β≥0Wβ(ε, τ) z
β

β! is a solution of (9)+(10).

Moreover, holomorphy of Wβ in Uq−N × V qR+ for every β ≥ 0 can be deduced from the
recursion formula verified by the coefficients:

(17)
Wh+S(ε, τ)

h!
=

S−1
∑

k=0

∑

h1+h2=h,h1∈Ik

bkh1(ε)τm0,k

(τ + 1)εm0,k

Wh2+k(ε, τ)

h2!qm1,kh2
, h ≥ 0.

This implies Wβ(ε, τ) is holomorphic in Uq−N × V qR+ for every β ∈ N.
It only rests to prove (12). Upper and lower bounds for the modulus of the elements in

Uq−N and V qR+ respectively and usual calculations lead us to assure the existence of a positive
constant R1 > 0 such that

(18) |Wβ(ε, τ)| = |W̃β−S,ε(τ)| ≤ R1β!

(

|q|2A1S

δ

)β
∣

∣

∣

τ

ε

∣

∣

∣

Cβ
eM log2| τε ||q|−A1β2

,



9

for every β ≥ S, and for every ε ∈ Uq−N and τ ∈ V qR+ . This concludes the proof for β ≥ S.
Hypothesis (11) leads us to obtain (18) for 0 ≤ k ≤ S − 1. 2

Remark: If s > 0 for every s ∈ Ik, 0 ≤ k ≤ S − 1, then for every R > 0, there exists small
enough δ > 0 in such a way that Lemma 3 holds.

3 Second Cauchy problem in a weighted Banach space of Taylor

series

This section is devoted to the study of the same equation as in the previous section when the
initial conditions are of a different nature. Proofs will only be sketched not to repeat calculations.

Let 1 < ρ0 and U ⊆ C
? a bounded and open set with positive distance to the origin. Ḋρ0

stands for D(0, ρ0) \ {0} in this section. M,A1, C remain the same positive constants as in the
previous section.

Definition 2 Let r0 > 0, ε ∈ D(0, r0) \ {0} and β ∈ N. E2
β,ε,Ḋρ0

denotes the vector space of

functions v ∈ O(Ḋρ0) such that

|v(τ)|β,ε,Ḋρ0
:= sup

τ∈Ḋρ0

{

|v(τ)|
|ε|Cβ

eM log2 |τ/ε|

}

|q|A1β2
,

is finite. Let δ > 0. H2(ε, δ, Ḋρ0) stands for the vector space of all formal series v(τ, z) =
∑

β≥0 vβ(τ)zβ/β! belonging to O(Ḋρ0)[[z]] such that

|v(τ, z)|(ε,δ,Ḋρ0 )
:=

∑

β≥0

|vβ(τ)|β,ε,Ḋρ0

δβ

β!
< ∞.

It is straightforward to check that the pair (H2(ε, δ, Ḋρ0), | · |(ε,δ,Ḋρ0 )
) is a Banach space.

Lemma 4 Let s, k,m1,m2 ∈ N, δ > 0 and ε ∈ D(0, r0) \ {0}. We assume that the following
conditions hold:

(19) m1 ≤ C(k + s) , m2 ≥ 2(k + s)A1.

Then, there exists a constant C1 = C1(s, k,m1,m2, Ḋρ0 , U) (not depending on ε nor δ) such
that

(20)
∣

∣

∣
zs

(τ

ε

)m1

∂−k
z v(τ, zq−m2)

∣

∣

∣

(ε,δ,Ḋρ0 )
≤ C1δ

k+s |v(τ, z)|(ε,δ,Ḋρ0 )
,

for every v ∈ H2(ε, δ, Ḋρ0).

Proof Let v(τ, z) ∈ O(Ḋρ0)[[z]]. The proof follows similar steps as in Lemma 1. We have

∣

∣

∣
zs

(τ

ε

)m1

∂−k
z v(τ, zq−m2)

∣

∣

∣

(ε,δ,Ḋρ0 )
=

∑

β≥k+s

∣

∣

∣

∣

(τ

ε

)m1

vβ−(k+s)(τ)
β!

(β − s)!

1

qm2(β−s)

∣

∣

∣

∣

β,ε,Ḋρ0

δβ

β!
.

From the definition of the norm | · |β,ε,Ḋρ0
, we get

∣

∣

∣

∣

(τ

ε

)m1

vβ−(k+s)(τ)
β!

(β − s)!

1

qm2(β−s)

∣

∣

∣

∣

β,ε,Ḋρ0

≤
β!

(β − s)!
|q|A1(β−(k+s))2 |q|p(β)
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× sup
τ∈Ḋρ0

{

|vβ−(k+s)(τ)|

eM log2 |τ/ε|
|ε|C(β−(k+s))

}

ρm1
0 |ε|C(k+s)−m1 ,

with p(β) = A1β
2 −A1(β − (k + s))2 −m2(β − s). Identical arguments as in Lemma 1 allow us

to conclude. 2

Lemma 5 Let F (ε, τ) be a holomorphic and bounded function defined on (D(0, r0)\{0})× Ḋρ0 .
Then, there exists a constant C2 = C2(F ) > 0 such that

|F (ε, τ)vε(τ, z)|(ε,δ,Ḋρ0 )
≤ C2 |vε(τ, z)|(ε,δ,Ḋρ0 )

for every ε ∈ D(0, r0) \ {0}, every δ > 0 and every vε ∈ H2(ε, δ, Ḋρ0).

Let S, r0,m0,k,m1,k and bk as in Section 2 and ρ0 > 0. We consider the Cauchy problem

(21) ∂S
z W (ε, τ, z) =

S−1
∑

k=0

bk(ε, z)

(τ + 1)εm0,k
τm0,k(∂k

zW )(ε, τ, zq−m1,k)

with initial conditions

(22) (∂j
zW )(ε, τ, 0) = Wj(ε, τ) , 0 ≤ j ≤ S − 1,

where the functions (ε, τ) 7→ Wj(ε, τ) belong to O((D(0, r0)\{0})×Ḋρ0) for every 0 ≤ j ≤ S−1.

Theorem 2 Let Assumption (A) be fulfilled. We make the following assumption on the initial
conditions (22): there exist constants ∆ > 0 and 0 < M̃ < M such that

(23) |Wj(ε, τ)| ≤ ∆eM̃ log2| τε |,

for every τ ∈ Ḋρ0, ε ∈ D(0, r0) \ {0} and 0 ≤ j ≤ S − 1. Then, there exists W (ε, τ, z) ∈

O((D(0, r0) \ {0}) × Ḋρ0)[[z]] solution of (21)+(22) such that if W (ε, τ, z) =
∑

β≥0Wβ(ε, τ) z
β

β! ,
then there exist C3 > 0 and 0 < δ < 1 such that

(24) |Wβ(ε, τ)| ≤ C3β!

(

|q|2A1S

δ

)β

|ε|−CβeM log2| τε ||q|−A1β2
, β ≥ 0,

for every ε ∈ D(0, r0) \ {0} and τ ∈ Ḋρ0.

Proof The proof of Theorem 1 can be adapted here so details will be omitted.
Let ε ∈ D(0, r0) \ {0} and 0 < δ < 1. We consider the map Aε from O(Ḋρ0)[[z]] into itself

defined as in (13) and construct wε(τ, z) as above. From (23) we derive

∣

∣

∣
zs
(τ

ε

)m0,k

∂k
zwε(τ, zq

−m1,k)
∣

∣

∣

(ε,δ,Ḋρ0 )

=
S−1−k
∑

j=0

sup
τ∈Ḋρ0

|Wj+k(ε, τ)|
|ε|C(j+s)

eM log2| ετ |

∣

∣

∣

τ

ε

∣

∣

∣

m0,k

|q|A1(j+s)2 δj+s

j!|q|m1,kj

≤ ∆C ′
3,(25)
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for a positive constant C ′
3 not depending on ε nor δ.

Lemma 4, Lemma 5 and (25) allow us to affirm that one can find R > 0 and δ > 0 such that
the restriction of Aε to the disc D(0, R) in H2(ε, δ, Ḋρ0) is a Lipschitz shrinking map. Moreover,
there exists W̃ε(τ, z) ∈ H2(ε, δ, Ḋρ0) which is a fixed point for Aε in B(0, R).

If we put W̃ε(τ, z) =
∑

β≥0 W̃β,ε(τ) z
β

β! , then one gets |W̃β,ε|β,ε,Ḋρ0
≤ Rβ!

(

1
δ

)β
for β ≥ 0. This

implies

|W̃β,ε(τ)| ≤ Rβ!

(

1

δ

)β

|ε|−CβeM log2| τε ||q|−A1β2
, β ≥ 0, τ ∈ Ḋρ0 .

The formal power series

W (ε, τ, z) :=
∑

β≥S

W̃β−S,ε(τ)
zβ

β!
+ wε(τ, z) :=

∑

β≥0

Wβ(ε, τ)
zβ

β!

turns out to be a solution of (21)+(22) verifying that Wβ(ε, τ) is a holomorphic function in
(D(0, r0) \ {0}) × Ḋρ0 and the estimates (24) hold for β ≥ 0.

2

4 Analytic solutions in a small parameter of a singularly per-

turbed problem

4.1 A q−analog of the Laplace transform and q−asymptotic expansion

In this subsection, we recall the definition and several results related to the Jacobi Theta function
and also a q−analog of the Laplace transform which was firstly developed by C. Zhang in [21].

Let q ∈ C such that |q| > 1.
The Jacobi Theta function is defined in C

? by

Θ(x) =
∑

n∈Z

q−n(n−1)/2xn, x ∈ C
?.

From the fact that the Jacobi Theta function satisfies the functional equation xqΘ(x) = Θ(qx),
for x 6= 0, we have

(26) Θ(qmx) = q
m(m+1)

2 xmΘ(x), x ∈ C, x 6= 0

for every m ∈ Z. The following lower bounds for the Jacobi Theta function will be useful in the
sequel.

Lemma 6 Let δ > 0. There exists C > 0 (not depending on δ) such that

(27) |Θ(x)| ≥ Cδe
log2 |x|
2 log |q| |x|

1
2 ,

for every x ∈ C
? such that |1 + xqk| > δ for all k ∈ Z.

Proof Let δ > 0. From Lemma 5.1.6 in [18] we get the existence of a positive constant C1 such
that |Θ(x)| ≥ C1δΘ|q|(|x|) for every x ∈ C

? such that |1 + xqk| > δ for all k ∈ Z. Now,

Θ|q|(|x|) =
∑

n∈Z

|q|−
n(n−1)

2 |x|n ≥ max
n∈Z

|q|−
n(n−1)

2 |x|n.
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Let us fix |x|. The function

f(t) = exp

(

−
1

2
t(t− 1) log |q| + t log |x|

)

takes its maximum value at t0 = log |x|
log |q| + 1

2 with f(t0) = C2 exp( log2 |x|
2 log |q|)|x|

1/2, for certain C2 > 0.
Taking into account that

max
n∈Z

|q|−
n(n−1)

2 |x|n ≥ f(bt0c) = f(t0)|q|
−

(bt0c−t0)
2

2 ≥ f(t0)|q|
− 1

2 ,

one can conclude the result. Here b·c stands for the entire part. 2

Corollary 1 Let δ > 0. For any ξ ∈ (0, 1) there exists Cξ = Cξ(δ) > 0 such that

(28) |Θ(x)| ≥ Cξe
ξ log2 |x|
2 log |q| ,

for every x ∈ C
? such that |1 + xqk| > δ, for all k ∈ Z.

From now on, (H, ‖·‖
H

) stands for a complex Banach space.
For any λ ∈ C and δ > 0

Rλ,q,δ := {z ∈ C
? : |1 +

λ

zqk
| > δ, ∀k ∈ R}.

The following definition corresponds to a q−analog of Laplace transform and can be found in [21]
when working with sectors in the complex plane.

Proposition 1 Let δ > 0 and ρ0 > 0. We fix an open and bounded set V in C
? such that

D(0, ρ0) ∩ V 6= ∅. Let λ ∈ D(0, ρ0) ∩ V and f be a holomorphic function defined in Ḋρ0 with
values in H such that can be extended to a function F defined in Ḋρ0 ∪ V qR+ and

(29) ‖F (x)‖
H
≤ C1e

M log2 |x|, x ∈ Ḋρ0 ∪ V qR+ ,

for positive constants C1 > 0 and 0 < M < 1
2 log |q| .

Let πq = log(q)
∏

n≥0(1 − q−n−1)−1 and put

(30) Lλ
q;1F (z) =

1

πq

∫ ∞λ

0

F (ξ)

Θ( ξz )

dξ

ξ
,

where the path [0,∞λ] is given by t ∈ (−∞,∞) 7→ qtλ. Then, Lλ
q;1F defines a holomorphic

function in Rλ,q,δ and it is known as the q−Laplace transform of f following direction [λ].

Proof
Let K ⊆ Rλ,q,δ be a compact set and z ∈ K. From the parametrization of the path [0,∞λ]

we have
∫ ∞λ

0

F (ξ)

Θ
(

ξ
z

)

dξ

ξ
= log(q)

∫ ∞

−∞

F (qtλ)

Θ
(

qtλ
z

)dt.
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Let 0 < ξ1 < 1 such that 0 < M < ξ1
2 log |q| and let t ∈ R. We have w = qtλ

z satisfies |1 + qkw| > δ

for every k ∈ Z. Corollary 1 and (29) yield

∫ ∞

−∞

∥

∥

∥

∥

∥

∥

F (qtλ)

Θ
(

qtλ
z

)

∥

∥

∥

∥

∥

∥

H

dt ≤

∫ ∞

−∞

C1e
M log2 |qtλ|

Cξ1e
ξ1

2 log |q|
log2 |qtλ/z|

dt ≤ L1

∫ ∞

−∞
|qtλ|

ξ1 log |z|
log |q| e

(M−
ξ1

2 log |q|
) log2 |qtλ|

dt,

for a positive constant L1. There exist 0 < A < B such that A ≤ |z| ≤ B for every z ∈ K, so
that the last term in the chain of inequalities above is upper bounded by

L1

∫ − log |λ|/ log |q|

−∞
|qtλ|

ξ1 logA
log |q| e

(M−
ξ1

2 log |q|
) log2 |qtλ|

dt

+ L1

∫ ∞

− log |λ|/ log |q|
|qtλ|

ξ1 logB
log |q| e

(M−
ξ1

2 log |q|
) log2 |qtλ|

dt.

The result follows from this last expression. 2

Remark: If we let M = 1
2 log |q| , then Lλ

q;1F will only remain holomorphic in Rλ,q,δ ∩D(0, r1) for
certain r1 > 0.

In the next proposition, we recall a commutation formula for the q−Laplace transform and
the multiplication by a polynomial.

Proposition 2 Let V be an open and bounded set in C
? and D(0, ρ0) such that V ∩D(0, ρ0) 6= ∅.

Let φ a holomorphic function on V qR+ ∪ Ḋρ0 with values in the Banach space (H, ‖·‖
H

) which
satisfies the following estimates: there exist C1 > 0 and 0 < M < 1

2 log |q| such that

(31) ‖φ(x)‖
H
< C1e

M log2 |x|, x ∈ Ḋρ0 ∪ V qR+ .

Then, the function mφ(τ) = τφ(τ) is holomorphic on V qR+ ∪ Ḋρ0 and satisfies estimates in the
shape above. Let λ ∈ V ∩D(0, ρ0) and δ > 0. We have the following equality

Lλ
q;1(mφ)(t) = tLλ

q;1φ(qt)

for every t ∈ Rλ,q,δ.

Proof It is direct to prove that mφ is a holomorphic function in V qR+ ∪ Ḋρ0 and also that mφ
verifies bounds as in (31). From (26) we have Θ(x) = xΘ(x/q), x ∈ C

?, so

Lλ
q;1(mφ)(t) =

1

πq

∫ ∞λ

0

(mφ)(ξ)

Θ( ξt )

dξ

ξ
=

1

πq

∫ ∞λ

0

φ(ξ)

Θ( ξt )
dξ

=
1

πq

∫ ∞λ

0

φ(ξ)
ξ
tΘ( ξ

qt)
dξ = tLλ

q;1(φ)(qt),

for every t ∈ Rλ,q,δ. 2

4.2 Analytic solutions in a parameter of a singularly perturbed Cauchy prob-

lem

The following definition of a good covering firstly appeared in [18], p. 36.
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Definition 3 Let I = (I1, I2) be a pair of open intervals in R each one of length smaller than
1/4 and let UI be the corresponding open bounded set in C

? defined by

UI = {e2πuiqv ∈ C
? : u ∈ I1, v ∈ I2}.

Let I be a finite family of tuple I as above verifying

1. ∪I∈I(UIq
−N) = ν \ {0}, where ν is a neighborhood of 0 in C, and

2. the open sets UIq
−N, I ∈ I are four by four disjoint.

Then, we say (UIq
−N)I∈I is a good covering.

Definition 4 Let (UIq
−N)I∈I be a good covering. Let δ > 0. We consider a family of open

bounded sets {(VI)I∈I , T } in C
? such that:

1. There exists 1 < ρ0 with VI ∩D(0, ρ0) 6= ∅, for all I ∈ I.

2. For every I ∈ I and τ ∈ VIq
R, |τ + 1| > δ.

3. For every I ∈ I, t ∈ T , εu ∈ UI and λv ∈ VI ∩D(0, ρ0), we have

|1 +
λv

εutqr
| > δ,

for every r ∈ R.

4. |t| ≤ 1 for every t ∈ T .

We say the family {(VI)I∈I , T } is associated to the good covering (UIq
−N)I∈I .

Let S ≥ 1 be an integer. For every 0 ≤ k ≤ S − 1, let m0,k,m1,k be positive integers and
bk(ε, z) =

∑

s∈Ik
bks(ε)z

s be a polynomial in z, where Ik is a subset of N and bks(ε) are bounded

holomorphic functions on some disc D(0, r0) in C, 0 < r0 ≤ 1. Let (UIq
−N)I∈I be a good

covering such that UIq
−N ⊆ D(0, r0) for every I ∈ I.

Assumption (B):

M <
1

2 log |q|
.

Definition 5 Let ρ0 > 1 such that V ∩ D(0, ρ0) 6= ∅. Let ∆, M̃ > 0 such that M̃ < M and
(ε, τ) 7→ W (ε, τ) a bounded holomorphic function on (D(0, r0) \ {0}) × Ḋρ0 verifying

|W (ε, τ)| ≤ ∆eM̃ log2 |τ/ε|,

for every (ε, τ) ∈ (D(0, r0) \ {0}) × Ḋρ0. Assume moreover that W (ε, τ) can be extended to an
analytic function (ε, τ) 7→ WUV (ε, τ) on Uq−N × (V qR+ ∪ Ḋρ0) and

(32) |WUV (ε, τ)| ≤ ∆eM̃ log2 |τ/ε|,

for every (ε, τ) ∈ Uq−N × (V qR+ ∪ Ḋρ0). We say that the set {W,WUV , ρ0} is admissible.
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Let I be a finite family of indices. For every I ∈ I, we consider the following singularly
perturbed Cauchy problem

(33) εt∂S
z XI(ε, qt, z) + ∂S

z XI(ε, t, z) =
S−1
∑

k=0

bk(ε, z)(tσq)
m0,k(∂k

zXI)(ε, t, zq−m1,k)

with bk as in (9), and with initial conditions

(34) (∂j
zXI)(ε, t, 0) = φI,j(ε, t) , 0 ≤ j ≤ S − 1,

where the functions φI,j(ε, t) are constructed as follows. Let {(VI)I∈I , T } be a family of open
sets associated to the good covering (UIq

−N)I∈I . For every 0 ≤ j ≤ S − 1 and I ∈ I, let
{Wj ,WUI ,VI ,j , ρ0} be an admissible set. Let λI be a complex number in VI ∩D(0, ρ0). We can
assume that r0 < 1 < |λI |. If not, we diminish r0 as desired. We put

φI,j(ε, t) := LλI
q;1(τ 7→ WUI ,VI ,j(ε, τ))(ε, εt).

Lemma 7 The function (ε, t) 7→ φI,j(ε, t), constructed as above, turns out to be holomorphic
and bounded on UIq

−N × T for every I ∈ I and all 0 ≤ j ≤ S − 1.

Proof Let I ∈ I and 0 ≤ j ≤ S − 1. From (32), one has

(35) |WUI ,VI ,j(ε, τ)| ≤ ∆eM̃ log2 |τ/ε| = ∆eM̃ log2 |ε||τ |−2M̃ log |ε|eM̃ log2 |τ |,

for every (ε, τ) ∈ UIq
−N × (VIq

R+ ∪ Ḋρ0). Let ε ∈ UIq
−N and M̃ < M̃2 < 1

2 log |q| . Then, (35)

can be upper bounded by ∆̃ exp(M̃2 log2 |τ |), for some ∆̃ = ∆̃(ε) > 0. Estimates in (29) holds
so that Proposition 1 can be applied here. The third item in Definition 4 derives holomorphy of
φI,j on UIq

−N × T .
We now prove boundness of φI,j in its domain of definition. One has

|φI,j(ε, t)| =
∣

∣

∣
LλI
q;1WUI ,VI ,j(ε, εt)

∣

∣

∣
≤

∣

∣

∣
LλI
q;1,+WUI ,VI ,j(ε, εt)

∣

∣

∣
+

∣

∣

∣
LλI
q;1,−WUI ,VI ,j(ε, εt)

∣

∣

∣
,

for every (ε, t) ∈ UIq
−N × T , where

LλI
q;1,+WUI ,VI ,j(ε, εt) =

log(q)

πq

∫ ∞

0

WUI ,VI ,j(ε, q
sλI)

Θ( q
sλI
εt )

ds,

LλI
q;1WUI ,VI ,j,−(ε, εt) =

log(q)

πq

∫ 0

−∞

WUI ,VI ,j(ε, q
sλI)

Θ( q
sλI
εt )

ds.

We only give bounds for the first integral. The estimates for the second one can be deduced
following a similar procedure.

Let 0 < ξ < 1 such that M̃ < ξ
2 log |q| . From Corollary 1 and (32) we deduce

∣

∣

∣
LλI
q;1,+WUI ,VI ,j(ε, εt)

∣

∣

∣
≤

| log(q)|

|πq|

∫ ∞

0

∣

∣

∣

∣

∣

WUI ,VI ,j(ε, q
sλI)

Θ( q
sλI
εt )

∣

∣

∣

∣

∣

ds ≤
| log(q)|∆

|πq|Cξ

∫ ∞

0

eM̃ log2 |qsλI/ε|

e
ξ log2 |

qsλI
εt |

2 log |q|

ds

≤
| log(q)|∆

|πq|Cξ
e
(M̃− ξ

2 log |q|
) log2 |

λI
ε
|
e
−

ξ log2 |t|
2 log |q| e

ξ log |λI/ε| log |t|

log |q|

×

∫ ∞

0
e
2(M̃− ξ

2 log |q|
) log2 |q|s2

e
(M̃− ξ

2 log |q|
) log |q| log |λI/ε|seξ log |t|sds ≤ Cj ,
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for some Cj > 0 which does not depend on ε nor t. 2

The following assumption is related to technical reasons appearing in the proof of Lemma 7
and Theorem 3.

Assumption (C): There exist a1, a2 > 0, 0 < ξ, ξ < 1 such that

(C.1) M <
ξ

2 log |q|
,

(C.2)
ξ

2
−M log |q| −

Ca1
2a2

> 0,

(C.3)
Ca2
2a1

+
C2

4ξ log |q|
(

ξ
2 log |q| −M

) < A1.

Next remark clarifies availability of these constants for a posed problem.
Remark: Assumptions (A), (B) and (C) strongly depend on the choice of q whose modulus

must rest near 1. For example, these assumptions on the constants are verified when taking
log |q| = 1/16, M = 1, A1 = 5, C = 1, ξ = 1/2, ξ = 1/2, a1 = 1, a2 = 4. Then, next theorem
provides a solution for the equation

εt∂2
zXI(ε, qt, z) + ∂2

zXI(ε, t, z) =
(

b00(ε) + b01(ε)z
)

t2XI(ε, q2t, zq−30) + b10(ε)t∂zXI(ε, qt, zq−10),

with b00, b01, b10 being holomorphic functions near the origin.

Theorem 3 Let Assumption (A) be fulfilled by the integers m0,k,m1,k, for 0 ≤ k ≤ S − 1 and
also assumptions (B) and (C) for M,A1, C. We consider the problem (33)+(34) where the
initial conditions are constructed as above. Then, for every I ∈ I, the problem (33)+(34) has a
solution XI(ε, t, z) which is holomorphic and bounded in UIq

−N × T × C.
Moreover, for every ρ > 0, if I, I ′ ∈ I are such that UIq

−N ∩ UI′q
−N 6= ∅ then there exists a

positive constant C1 = C1(ρ) > 0 such that

|XI(ε, t, z) −XI′(ε, t, z)| ≤ C1e
− 1

A
log2 |ε|, (ε, t, z) ∈ (UIq

−N ∩ UI′q
−N) × T ×D(0, ρ),

with 1
A = (1 − ξ)( ξ

2 log |q| −M) with ξ, ξ chosen as in Assumption (C).

Proof Let δ > 0 and I ∈ I. We consider the Cauchy problem (21) with initial conditions
(∂j

zW )(ε, τ, 0) = Wj(ε, τ) for 0 ≤ j ≤ S − 1. From Theorem 2 we obtain the existence of

a unique formal solution W (ε, τ, z) =
∑

β≥0Wβ(ε, τ) z
β

β ∈ O((D(0, r0) \ {0}) × Ḋρ0)[[z]] and
positive constants C3 > 0 and 0 < δ1 < 1 such that

(36) |Wβ(ε, τ)| ≤ C3β!
( |q|2A1S

δ1

)β
|ε|−CβeM log2| τε ||q|−A1β2

, β ≥ 0,

for (ε, τ) ∈ (D(0, r0) \ {0}) × Ḋρ0 .
Moreover, from Theorem 1 we get that the coefficients Wβ(ε, τ) can be extended to holo-

morphic functions defined in UIq
−N×VIq

R+ and also the existence of positive constants C2 and
0 < δ2 < 1 such that

(37) |Wβ(ε, τ)| ≤ C2β!
( |q|2A1S

δ2

)β ∣
∣

∣

τ

ε

∣

∣

∣

Cβ
eM log2| τε ||q|−A1β2

, β ≥ 0,
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for (ε, τ) ∈ UIq
−N × VIq

R+ .
We choose λI ∈ VI ∩D(0, ρ0). In the following estimates we will make use of the fact that

|ε| ≤ |λI | for every ε ∈ D(0, r0 \ {0}). Proposition 1 allows us to calculate the q−Laplace
transform of Wβ with respect to τ for every β ≥ 0, LλI

q;1(Wβ)(ε, τ). It defines a holomorphic

function in UIq
−N×RλI ,q,δ. From the fact that {(VI)I∈I , T } is chosen to be a family associated

to the good covering (UIq
−N)I∈I we derive that the function

(ε, t) 7→ LλI
q;1(Wβ)(ε, εt)

is a holomorphic and bounded function defined in UIq
−N × T . We can define, at least formally,

(38) XI(ε, t, z) :=
∑

β≥0

LλI
q;1(Wβ)(ε, εt)

zβ

β!
,

in O(UIq
−N ×T )[[z]]. If XI(ε, t, z) were a holomorphic function in UIq

−N ×T ×C, then Propo-
sition 2 would allow us to affirm that (38) is an actual solution of (33)+(34). In order to end the
first part of the proof it rests to demonstrate that (38) defines in fact a bounded holomorphic
function in UIq

−N × T × C. Let (ε, t) ∈ UIq
−N × T and β ≥ 0. We have

|LλI
q;1Wβ(ε, εt)| ≤ |LλI

q;1,+Wβ(ε, εt)| + |LλI
q;1,−Wβ(ε, εt)|,

where

LλI
q;1,+Wβ(ε, εt) =

log(q)

πq

∫ ∞

0

Wβ(ε, qsλI)

Θ( q
sλI
εt )

ds, LλI
q;1,−Wβ(ε, εt) =

log(q)

πq

∫ 0

−∞

Wβ(ε, qsλI)

Θ( q
sλI
εt )

ds.

We now establish bounds for both integrals.

|LλI
q;1,+Wβ(ε, εt)| ≤

| log q|

|πq|

∫ ∞

0

∣

∣

∣

∣

∣

Wβ(ε, qsλI)

Θ( q
sλI
εt )

∣

∣

∣

∣

∣

ds.

Let 0 < ξ < 1 as in Assumption (C). From (37) and (28), the previous integral is bounded by

| log q|

|πq|

∫ ∞

0

C2β!
(

|q|2A1S

δ2

)β ∣
∣

∣

qsλI
ε

∣

∣

∣

Cβ
e
M log2

∣

∣

∣

qsλI
ε

∣

∣

∣

|q|−A1β2

Cξ exp(
ξ log2 |

qsλI
εt

|

2 log |q| )

ds

≤
| log q|

|πq|

C2

Cξ
β!

(

|q|2A1S

δ2

)β ∣
∣

∣

∣

λI

ε

∣

∣

∣

∣

Cβ

|q|−A1β2

∫ ∞

0

|q|Csβe
M log2

∣

∣

∣

qsλI
ε

∣

∣

∣

exp(
ξ log2 |

qsλI
εt

|

2 log |q| )

ds.

Let a1, a2 as in Assumption (C.2) and (C.3).
From (a1s− a2β)2 ≥ 0 and 4. in Definition 4, the previous inequality is upper bounded by

(39) A

∫ ∞

0
|q|−Bs2e

(M− ξ
2 log |q|

) log2 |λI/ε|e((2M log |q|−ξ) log |λI/ε|+ξ log |t|)sds,

where 0 < B = ξ
2 −M log |q| − Ca1

2a2
and

A =
| log q|

|πq|

C2

Cξ
β!

(

|q|2A1S

δ2

)β ∣
∣

∣

∣

λI

ε

∣

∣

∣

∣

Cβ

|q|
−A1β2+

Ca2β
2

2a1 e
−

ξ log2 |t|
2 log |q| e

ξ log |λI/ε| log |t|

log |q| .
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The previous integral is uniformly bounded for ε ∈ D(0, r0) \ {0} and t ∈ T from hypotheses
made on these sets. The expression in (39) can be bounded by

| log q|

|πq|

C ′
2

Cξ
β!

(

|q|2A1S

δ2

)β ∣
∣

∣

∣

λI

ε

∣

∣

∣

∣

Cβ

e
(M− ξ

2 log |q|
) log2 |λI/ε||q|

−A1β2+
Ca2β

2

2a1 e
−

ξ log2 |t|
2 log |q| e

ξ log |λI/ε| log |t|

log |q| ,

for an appropriate constant C ′
2 > 0.

The function s 7→ sγβe−α log2(s) takes its maximum at s = eγβ/(2α) so each element in the
image set is bounded by e(γβ)

2/(4α). Taking this to the expression above we get

|LλI
q;1,+Wβ(ε, εt)| ≤

| log q|

|πq|

C ′′
2

Cξ
β!

(

|q|2A1S

δ2

)β

|q|
−A1β2+

Ca2β
2

2a1
+ C2β2

4 log |q|(ξ/(2 log |q|)−M) ,

for certain C ′′
2 > 0.

Assumption (C.3) applied to the last term in the previous expression allows us to deduce
that the sum

(40)
∑

β≥0

|LλI
q;1,+Wβ(ε, εt)|

|z|β

β!

converges in the variable z uniformly in the compact sets of C.
We now study LλI

q;1,−Wβ(ε, εt). We have

|LλI
q;1,−Wβ(ε, εt)| ≤

| log q|

|πq|

∫ 0

−∞

∣

∣

∣

∣

∣

Wβ(ε, qsλI)

Θ( q
sλI
εt )

∣

∣

∣

∣

∣

ds.

From (24) and (28) the previous integral is bounded by

| log q|

|πq|

∫ 0

−∞

C3β!
(

|q|2A1S

δ1

)β
|ε|−Cβe

M log2
∣

∣

∣

qsλI
ε

∣

∣

∣

|q|−A1β2

Cξe
ξ log2 |

qsλI
εt |

2 log |q|

ds.

Similar calculations as in the first part of the proof resting on Assumption (C) can be followed
so that the series

(41)
∑

β≥0

LλI
q;1,−Wβ(ε, εt)

zβ

β!

is uniformly convergent with respect to the variable z in the compact sets of C, for (ε, t) ∈
UIq

−N × T . We will not enter into detail not to repeat calculations.
The estimates (40) and (41) imply convergence of the series in (38) for every z ∈ C. Bound-

ness of the q−Laplace transform with respect to ε is guaranteed so the first part of the result is
achieved.

Let I, I ′ ∈ I such that UIq
−N ∩ UI′q

−N 6= ∅ and ρ > 0. For every (ε, t, z) ∈ (UIq
−N ∩

UI′q
−N) × T ×D(0, ρ) we have

(42) |XI(ε, t, z) −XI′(ε, t, z)| ≤
∑

β≥0

|LλI
q;1Wβ(ε, εt) − L

λI′

q;1Wβ(ε, εt)|
ρβ

β!
.
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We can write

(43) LλI
q;1Wβ(ε, εt)−L

λI′

q;1Wβ(ε, εt) =
1

πq

(

∫

γ1

Wβ(ε, ξ)

Θ(ξ/εt)

dξ

ξ
−

∫

γ2

Wβ(ε, ξ)

Θ(ξ/εt)

dξ

ξ
+

∫

γ3−γ4

Wβ(ε, ξ)

Θ(ξ/εt)

dξ

ξ

)

where the path γ1 is given by s ∈ (0,∞) 7→ qsλI , γ2 is given by s ∈ (0,∞) 7→ qsλI′ , γ3 is
s ∈ (−∞, 0) 7→ qsλI and γ4 is s ∈ (−∞, 0) 7→ qsλI′ .

Without loss of generality, we can assume that |λI | = |λI′ |.
For the first integral we deduce

∣

∣

∣

∫

γ1

Wβ(ε, ξ)

Θ(ξ/εt)

dξ

ξ

∣

∣

∣
≤ | log(q)|

∫ ∞

0

|Wβ(ε, qsλI)|

|Θ( q
sλI
εt )|

ds.

Similar estimates as in the first part of the proof lead us to bound the right part of previous
inequality by

C ′′′
2

Cξ
β!
( |q|2A1S

δ2

)β∣
∣

∣

λI

ε

∣

∣

∣

Cβ
|q|

−A1β2+
Ca2
2a1

β2

e
(M− ξ

2 log |q|
) log2 |λI/ε|,

for certain C ′′′
2 > 0. For any ξ ∈ (0, 1) we have

∣

∣

∣

λI

ε

∣

∣

∣

Cβ
e
ξ(M− ξ

2 log |q|
) log2 |λI/ε| ≤ e

C2β2

4ξ(
ξ

2 log |q|
−M)

, β ≥ 0.

This yields
(44)
∫

γ1

∣

∣

∣

Wβ(ε, qsλI)

Θ( q
sλI
εt )

∣

∣

∣
ds ≤

C ′′′
2

Cξ
β!
( |q|2A1S

δ2

)β
|q|

(−A1+
Ca2
2a1

+ C2

4ξ log |q|(
ξ

2 log |q|
−M)

)β2

e
(1−ξ)(M− ξ

2 log |q|
) log2 |λI/ε|.

We choose ξ as in Assumption (C).
The integral corresponding to the path γ2 can be bounded following identical steps.
We now give estimates concerning γ3 − γ4. It is worth saying that the function in the

integrand is well defined for (ε, τ) ∈ (D(0, r0) \ {0}) × Ḋρ0 and does not depend on the index
I ∈ I. This fact and Cauchy Theorem allow us to write for any n ∈ N

∫

Γn

Wβ(ε, ξ)

Θ(ξ/εt)

dξ

ξ
= 0,

where Γn = γn,1 + γ5 − γn,2 − γn,3 is the closed path defined in the following way: s ∈ [−n, 0] 7→
γn,1(s) = λIq

s,γ5 is the arc of circunference from λI to λI′ , s ∈ [−n, 0] 7→ γn,2(s) = λI′q
s and

γn,3 is the arc of circunference from λIq
−n to λI′q

−n. Taking n → ∞ we derive

(45) 0 = lim
n→∞

∫

Γn

Wβ(ε, ξ)

Θ(ξ/εt)

dξ

ξ
= lim

n→∞

∫

γn,1+γ5−γn,2

Wβ(ε, ξ)

Θ(ξ/εt)

dξ

ξ
− lim

n→∞

∫

γn,3

Wβ(ε, ξ)

Θ(ξ/εt)

dξ

ξ
.

Usual estimates lead us to prove that

(46) lim
n→∞

∫

γn,3

Wβ(ε, ξ)

Θ(ξ/εt)

dξ

ξ
= 0.

Moreover,

(47) lim
n→∞

∫

γn,1+γ5−γn,2

Wβ(ε, ξ)

Θ(ξ/εt)

dξ

ξ
=

∫

γ3+γ5−γ4

Wβ(ε, ξ)

Θ(ξ/εt)

dξ

ξ
.
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From (45), (46) and (47) we obtain

∫

γ3−γ4

Wβ(ε, ξ)

Θ(ξ/εt)

dξ

ξ
=

∫

−γ5

Wβ(ε, ξ)

Θ(ξ/εt)

dξ

ξ
=

∫ θI

θI′

Wβ(ε, |λI |e
iθ)

Θ( |λI |eiθ

εt )
dθ,

where θI = arg(λI), θI′ = arg(λI′). Taking into account Definition 4 and (36) we derive the
modulus of the last term in the previous equality is bounded by

length(γ5)C3

Cξ
β!
( |q|2A1S

δ1

)β
|ε|−Cβ e

M log2
∣

∣

∣

λI
ε

∣

∣

∣

e
ξ

2 log |q|
log2

∣

∣

∣

λI
εt

∣

∣

∣

|q|−A1β2

≤ C ′
3β!

( |q|2A1S

δ1

)β
|ε|−Cβe

(M− ξ
2 log |q|

) log2
∣

∣

∣

λI
ε

∣

∣

∣

|q|−A1β2

≤ C ′
3β!

( |q|2A1S

δ1

)β
|ε|−Cβe

ξ(M− ξ
2 log |q|

) log2 |ε|
|q|−A1β2

e
(1−ξ)(M− ξ

2 log |q|
) log2 |ε|

.

for adequate positive constants C3, C
′
3. From standard estimates we achieve

(48)
∣

∣

∣

∫

γ3−γ4

Wβ(ε, ξ)

Θ(ξ/εt)

dξ

ξ

∣

∣

∣
≤ C ′

3β!
( |q|2A1S

δ1

)β
|q|−A1β2

e

C2

4ξ(
ξ

2 log |q|
−M)

β2

e
(1−ξ)(M− ξ

2 log |q|
) log2 |ε|

.

From (42), (43), (44), (48) and Assumption (C.3) we conclude the existence of a positive
constant C ′

1 > 0 such that

|XI(ε, t, z) −XI′(ε, t, z)| ≤ C ′
1

∑

β≥0

β!
( |q|2A1S

δ0

)β
|q|

(

−A1+
Ca2
2a1

+ C2

4ξ log |q|(
ξ

2 log |q|
−M)

)

β2

×

×e
(1−ξ)(M− ξ

2 log |q|
) log2 |ε| ρ

β

β!
≤ C1e

(1−ξ)(M− ξ
2 log |q|

) log2 |ε|
,

for every (ε, t, z) ∈ (UIq
−N ∩ UI′q

−N) × T ×D(0, ρ), with δ0 = min{δ1, δ2}.
2

5 A q−Gevrey Malgrange-Sibuya type theorem

In this section we obtain a q−Gevrey version of the so called Malgrange-Sibuya theorem which
allows us to reach our final main achievement: the existence of a formal series solution of problem
(33)+(34) which asymptotically represents the actual solutions obtained in Theorem 3, meaning
that for every I ∈ I, XI admits this formal solution as its q−Gevrey asymptotic expansion in
the variable ε.

In [11], a Malgrange-Sibuya type theorem appears with similar aims as in this work. We
complete the information there giving bounds on the estimates appearing for the q−asymptotic
expansion. This mentioned work heavily rests on the theory developed by J-P. Ramis, J. Sauloy
and C. Zhang in [18].

In the present work, although q−Gevrey bounds are achieved, the q−Gevrey type involved
will not be preserved, suffering an increase on the way.

The nature of the proof relies in the one concerning classical Malgrange-Sibuya theorem for
Gevrey asymptotics which can be found in [16].

Let H be a complex Banach space.
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Definition 6 Let U be a bounded open set in C
? and A > 0. We say a holomorphic function

f : Uq−N → H admits f̂ =
∑

n≥0 fnε
n ∈ H[[ε]] as its q−Gevrey asymptotic expansion of type A

in Uq−N if for every compact set K ⊆ U there exist C1, H > 0 such that

∥

∥

∥

∥

∥

f(ε) −
N
∑

n=0

fnε
n

∥

∥

∥

∥

∥

H

≤ C1H
N |q|A

N2

2
|ε|N+1

(N + 1)!
, N ≥ 0,

for every ε ∈ Kq−N.

The following proposition can be found, under slight modifications in Section 4 of [18].

Proposition 3 Let A > 0 and U ⊆ C
? be an open and bounded set. Let f : Uq−N → H be a

holomorphic function that admits a formal power series f̂ ∈ H[[ε]] as its q−Gevrey asymptotic
expansion of type A in Uq−N. Then, if f̂ (k) stands for the k−th formal derivative of f̂ for every
k ∈ N, we have that f (k) admits f̂ (k) as its q−Gevrey asymptotic expansion of type A in Uq−N.

Proposition 4 Let A > 0 and f : Uq−N → H a holomorphic function in Uq−N. Then,

i) If f admits 0̂ as its q−Gevrey expansion of type A, then for every compact set K ⊆ U
there exists C1 > 0 with

‖f(ε)‖
H
≤ C1e

− 1
ã

1
2 log |q|

log2 |ε|
,

for every ε ∈ Kq−N and every ã > A.

ii) If for every compact set K ⊆ U there exists C1 > 0 with

‖f(ε)‖
H
≤ C1e

− 1
A

1
2 log |q|

log2 |ε|
,

for every ε ∈ Kq−N then f admits 0̂ as its q−Gevrey asymptotic expansion of type ã in
Uq−N, for every ã > A.

Proof Let C1, H,A > 0 and ε ∈ C
?. The function

G(x) = C1 exp(log(H)x +
log |q|A

2
x2 + (x + 1) log |ε|)

reaches its minimum for x > 0 at x0 = − log(H)−log |ε|
A log |q| . We deduce both results from standard

calculations. 2

Definition 7 Let (UIq
−N)I∈I be a good covering at 0 (see Definition 3), and gI,I′ : UIq

−N ∩
UI′q

−N → H a holomorphic function in UIq
−N ∩ UI′q

−N for I, I ′ ∈ I when the intersection is
not empty. The family (gI,I′)(I,I′)∈I2 is a q−Gevrey H−cocycle of type A > 0 attached to a good

covering (UIq
−N)I∈I if the following properties are satisfied:

1. gI,I′ admits 0̂ as its q−Gevrey asymptotic expansion of type A > 0 on UIq
−N ∩UI′q

−N for
every (I, I ′) ∈ I.

2. gI,I′(ε) = −gI′,I(ε) for every (I, I ′) ∈ I, and ε ∈ UIq
−N ∩ UI′q

−N.

3. We have gI,I′′(ε) = gI,I′(ε) + gI′,I′′(ε) for all ε ∈ UIq
−N ∩ UI′q

−N ∩ UI′′q
−N, I, I ′, I ′′ ∈ I.
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Let ρ > 0 and T ⊆ C
? be an open and bounded set. HT ,ρ stands for the Banach space of

holomorphic and bounded functions in T ×D(0, ρ) with the supremum norm.

Proposition 5 Let ρ > 0. We consider the family (XI(ε, t, z))I∈I constructed in Theorem 3.
Then, the set of functions (gI,I′(ε))(I,I′)∈I2 defined by

gI,I′(ε) := (t, z) ∈ T ×D(0, ρ) 7→ XI′(ε, t, z) −XI(ε, t, z)

for I, I ′ ∈ I is a q−Gevrey HT ,ρ-cocycle of type Ã for every

Ã > A :=
1

(1 − ξ)( ξ
2 log |q| −M)2 log |q|

=
1

(1 − ξ)(ξ − 2M log |q|)
,

attached to the good covering (UIq
−N)I∈I .

Proof The first property in Definition 7 directly comes from Theorem 3 and Proposition 4. The
other two are verified by construction of the cocycle. 2

We recall several definitions and an extension result from [2] which will be crucial in our work.

Definition 8 A continuous increasing function w : [0,∞) → [0,∞) is a weight function if it
satisfies

(α) there exists k ≥ 1 with w(2t) ≤ k(w(t) + 1) for all t ≥ 0,

(β)
∫∞
0

w(t)
1+t2

dt < ∞,

(γ) limt→∞
log t
w(t) = 0,

(δ) φ : t 7→ w(et) is convex.

The Young conjugate associated to φ, φ? : [0,∞) → R is defined by

φ?(y) := sup{xy − φ(x) : x ≥ 0}.

Definition 9 Let K be a nonempty compact set in R
2. A jet on K is a family F = (fα)α∈N2

where fα : K → C is a continuous function on K for each α ∈ N
2.

Let w be a weight function. A jet F = (fα)α∈N2 on K is said to be a w−Whitney jet (of
Roumieu type) on K if there exist m > 0 and M > 0 such that

‖f‖K,1/m := sup
x∈K,α∈N2

|fα(x)| exp(−
1

m
φ?(m|α|)) ≤ M,

and for every l ∈ N, α ∈ N
2 with |α| ≤ l and x, y ∈ K one has

|(Rl
xF )α(y)| ≤ M

|x− y|l+1−|α|

(l + 1 − |α|)!
exp(

1

m
φ?(m(l + 1))),

where (Rl
xF )α(y) := fα(y) −

∑

|α+β|≤l
1
β!f

α+β(x)(y − x)β.

E{w}(K) denotes the linear space of w−Whitney jets on K.
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Definition 10 Let K ⊆ R
2 be a nonempty compact set and w a weight function in K. A

continuous function f : K → C is w − C∞ in the sense of Whitney in K if there exists a
w−Whitney jet on K, (fα)α∈N2 such that f (0,0) = f .

For an open set Ω ∈ R
2 we define

E{w}(Ω) := {f ∈ C∞(Ω) : ∀K ⊆ Ω,K compact , ∃m > 0, ‖f‖K,1/m < ∞}.

The following result establishes conditions on a weight function so that a jet in E{w}(K) can
be extended to an element in E{w}(R

2).

Theorem 4 (Corollary 3.10, [2]) For a given weight function w, the following statements
are equivalent:

1. For every nonempty closed set K in R
2 the restriction map sending a function f ∈ E{w}(R

2)

to the family of derivatives of f in K, (f (α)|K)α∈N2 ∈ E{w}(K) is a surjective map.

2. w is a strong weight function, it is to say,

lim
ε→0+

lim
t→∞

εw(t)

w(εt)
= 0.

Let k1 = 1
4 log |q| . We consider the weight function defined by w0(t) = k1 log2(t) for t ≥ 1 and

w0(t) = 0 for 0 ≤ t ≤ 1. As the authors write in [2], the value of a weight function near the
origin is not relevant for the space of functions generated in the sequel.

The following lemma can be easily verified.

Lemma 8 w0 is a weight function.

Under this definition of w0 we have

φ?
w0

(y) = sup{xy − φw0(x) : x ≥ 0} = sup{xy −
x2

4 log |q|
: x ≥ 0} = log |q|y2, y ≥ 0.

The spaces appearing in Definition 9 concerning this weight function are the following: for
any nonempty compact set K ⊆ R

2, E{w0}(K) is the set of w0-Whitney jets on K, which consists
of every jet F = (fα)α∈N2 on K such that there exist m ∈ N, M > 0 with

|fα(x)| ≤ M |q|m|α|2 , x ∈ K,α ∈ N
2

and such that for every l ∈ N and α ∈ N
2 with |α| ≤ l we have

|(Rl
xF )α(y)| ≤ M

|x− y|l+1−|α|

(l + 1 − |α|)!
|q|m(l+1)2 , x, y ∈ K.

We derive that E{w0}(K) consists of the Whitney jets on K such that there exist C1, H > 0
with

(49) |fα(x)| ≤ C1H
|α||q|A

|α|2

2 , x ∈ K,α ∈ N
2,

and for every x, y ∈ K and all l ∈ N, α ∈ N
2 with |α| ≤ l

(50) |(Rl
xF )α(y)| ≤ C1H

l|q|A
l2

2
|x− y|l+1−|α|

(l + 1 − |α|)!
.
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Theorem 5 w0 is a strong weight function so that Theorem 4 holds.

Proof

lim
ε→0+

lim
t→∞

εw(t)

w(εt)
= lim

ε→0+
lim
t→∞

εk1 log2(t)

k1 log2(εt)
= lim

ε→0+
ε = 0.

2

Remark: A continuous function f which is w0 − C∞ in the sense of Whitney on a compact
set K is indeed C∞ in the usual sense in Int(K) and verifies q−Gevrey bounds of the same type.
Moreover, we have

fk(x, y) = ∂k1
x ∂k2

y f(x, y),

for every k = (k1, k2) ∈ N
2 and (x, y) ∈ Int(K).

Next result is an adaptation of Lemma 4.1.2 in [18]. Here, we need to determine bounds in
order to achieve a q−Gevrey type result.

Lemma 9 Let U be an open set in C
? and f : Uq−N → H a holomorphic function with f̂ =

∑

h≥0 ahε
h ∈ H[[ε]] being its q-Gevrey asymptotic expansion of type A > 0 in Uq−N. Then, for

any n ∈ N, the family ∂n
ε f(ε) of n−complex derivatives of f satisfies that for every compact set

K ⊆ U and k,m ∈ N with k ≤ m, there exist C1, H > 0 such that

(51)

∥

∥

∥

∥

∥

∂k
ε f(εa) −

m−k
∑

h=0

∂k+h
ε f(εb)

h!
(εa − εb)

h

∥

∥

∥

∥

∥

H

≤ C1H
m|q|A

m2

2
|εa − εb|

m+1−k

(m + 1 − k)!
,

for every εa, εb ∈ Kq−N ∪ {0}. Here, we write ∂l
εf(0) = l!al for l ∈ N.

Proof We will first state the result when εb = 0. Indeed, we prove in this first step that the
family of functions with q−Gevrey asymptotic expansion of type A > 0 in a fixed q−spiral is
closed under derivation. Proposition 3 turns out to be a particular case of this result.
Let m ∈ N, K be a compact set in U and consider another compact set K1 such that K ⊆ K1 ⊆
U . We define

Rm(ε) := ε−m−1(f(ε) −
m
∑

h=0

∂h
ε f(0)

h!
εh), ε ∈ Kq−N,

where ∂h
ε f(0) denotes the limit of ∂h

ε f(ε) for ε ∈ Kq−N tending to 0. Then we have that

(52) ∂εf(ε) =
m
∑

h=1

∂h
ε f(0)

h!
hεh−1 + (∂εRm(ε))εm+1 + (m + 1)Rm(ε)εm.

Moreover, from Definition 6, there exist C,H > 0 such that ‖Rm(ε)‖ ≤ CHm |q|A
m2

2

(m+1)! for every

ε ∈ K1q
−N.

Lemma 10 (Lemma 4.4.1 [18]) There exists ρ > 0 such that D(ε, ρ|ε|) ⊆ K1q
−N for every

ε ∈ Kq−N.

Cauchy’s integral formula and q−Gevrey expansion of f guarantee the existence of a positive
constant C2 > 0 such that

‖∂εRm(ε)‖
H
≤ C2H

m |q|A
m2

2

(m + 1)!

1

ρ|ε|
, ε ∈ Kq−N,
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This yields the existence of C3 > 0 such that

∥

∥

∥

∥

∥

ε−m(∂εf(ε) −
m−1
∑

h=0

∂h+1
ε f(0)

h!
εh)

∥

∥

∥

∥

∥

H

≤ ‖∂εRm(ε)‖
H
|ε| + (m + 1) ‖Rm(ε)‖

H

≤ C2A
m
1

|q|A
m2

2

m!
, ε ∈ Kq−N.

An induction reasoning is sufficient to conclude the proof for every m ≥ 0.
We now study the case where εb 6= 0 and only give details for k = 0. For k ≥ 1 one only

has to take into account that the derivatives of f also admit q−Gevrey asymptotic expansion of
type A and consider the function ∂k

ε f .
If εb 6= 0 we treat two cases:
If |εa − εb| ≤ ρ|εb|, then [εa, εb] is contained in K1q

−N and we conclude from Cauchy’s integral
formula.

If |εa − εb| > ρ|εb|, then we bear in mind that the result is obvious when f is a polynomial

and write f(ε) = εm+1Rm(ε) + p(ε) where p(ε) =
∑m

h=0
∂h
ε f(0)
h! εh. So, it is sufficient to prove (51)

when f(ε) := εm+1Rm(ε). The result follows from q−Gevrey bounds for
∥

∥∂k
εRm

∥

∥

H
, k = 0, ..., n

and usual estimates. 2

The following lemma generalizes Lemma 6 in [11].

Lemma 11 Let f : Uq−N → H be a holomorphic function having f̂(ε) =
∑

h≥0 ahε
h ∈ H[[ε]] as

its q−Gevrey asymptotic expansion of type A > 0 on Uq−N. Let K ⊆ U be a compact set. Then,
the function (ε1, ε2) 7→ φ(ε1 + iε2) = f(ε1, ε2) is a w0 − C∞ function in the sense of Whitney on
the compact set

K ′ = {(ε1, ε2) ∈ R
2 : ε1 + iε2 ∈ Kq−N ∪ {0}}.

Proof We consider the set of functions (φ(k1,k2))(k1,k2)∈N2 defined by

(53) φ(k1,k2) := ik2∂k1+k2
ε f(ε), (k1, k2) ∈ N

2, (ε1, ε2) ∈ K ′.

From Lemma 9, function f satisfies bounds as in (51). Written in terms of the elements in
(φ(k1,k2))(k1,k2)∈N2 we have the existence of C1, H > 0 such that for every (k1, k2) ∈ N

2, m ≥ 0

∥

∥

∥

∥

∥

∥

1

ik2
φ(k1,k2)(x1, y1) −

m−|(k1,k2)|
∑

p=0

∑

h1+h2=p

φ(k1+h1,k2+h2)(x2, y2)

ik2+h2p!

×
p!

h1!h2!
(x1 − x2)

h1ih2(y1 − y2)
h2

∥

∥

∥

∥

H

≤ C1H
m|q|A

m2

2
‖(x1 − x2, y1 − y2)‖

m+1−|(k1,k2)|
R2

(m + 1 − |(k1, k2)|)!

for (x1, y1), (x2, y2) ∈ K ′. Expression (49) can be directly checked from (53) and (51) for εb = 0
and m = k. This yields the set (φ(k1,k2))(k1,k2)∈N2 is an element in E{w0}(K

′) 2

Next result allows us to glue together a finite number of jets in E{w0}(K), for a given compact
set K.

Theorem 6 [[8]. Theorem II.1.3] Let K1,K2 be compact sets in R
2. The following statements

are equivalent:
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i. The sequence

0 −→ E{w0}(K1 ∪K2)
π

−→ E{w0}(K1) ⊕ E{w0}(K2)
δ

−→ E{w0}(K1 ∩K2) −→ 0

is exact. π(f) = (f |K1 , f |K2) and δ(f, g) = f |K1∩K2 − g|K1∩K2.

ii. Let f1 ∈ E{w0}(K1) and f2 ∈ E{w0}(K2) be such that f1(x) = f2(x) for every x ∈ K1 ∩K2.
The function f defined by f(x) = f1(x) if x ∈ K1 and f(x) = f2(x) if x ∈ K2 belongs to
E{w0}(K1 ∪K2).

iii. If K1 ∩K2 6= ∅ then there exist A3, A4 > 0 such that

M(A3dist(x,K1 ∩K2)) ≤ A4M(dist(x,K2)),

for every x ∈ K1. Here, M denotes the function given by M(0) = 0 and M(t) =
infn∈N tnMn for t > 0. dist(x,K) stands for the distance from x to the set K.

Corollary 2 [[18], Lemma 4.3.6] Given K̃1, K̃2 nonempty compact sets in C
?, if we put Kj :=

{(ε1, ε2) ∈ R
2 : ε1 + iε2 ∈ K̃jq

−N ∪ {0}}, j = 1, 2, then the previous theorem holds for K1 and
K2.

As the authors remark in [18], condition iii) in the previous result is known as transversality
condition which is more constricting than  Lojasiewicz’s condition (see [15]).

Next proposition is devoted to show that the cocycle constructed in Proposition 5 splits in
the space of w0 − C∞ functions in the sense of Whitney. Whitney-type extension results on
E{w0}(K) (Theorem 4 and Theorem 5) will play an important role in the following step.

Proposition 6 Let (UIq
−N)I∈I be a good covering and let (gI,I′(ε))(I,I′)∈I2 be the q−Gevrey

HT ,ρ-cocycle of type Ã constructed in Proposition 5. We choose a family of compact sets KI ⊆
UI for I ∈ I, with Int(KI) 6= ∅, in such a way that ∪I∈I(KIq

−N) is U \ {0}, where U is a
neighborhood of 0 in C.

Then, for all I ∈ I, there exists a w0 − C∞ function fI(ε1, ε2) in the sense of Whitney on
the compact set AI = {(ε1, ε2) ∈ R

2 : ε1 + iε2 ∈ KIq
−N ∪ {0}}, with values in the Banach space

HT ,ρ, such that

(54) gI,I′(ε1 + iε2) = fI′(ε1, ε2) − fI(ε1, ε2)

for all I, I ′ ∈ I such that AI ∩AI′ 6= ∅ and, for every (ε1, ε2) ∈ AI ∩AI′ .

Proof The proof follows similar arguments as Lemma 3.12 in [18] and it is an adaptation of
Proposition 5 in [11] under q−Gevrey settings.

Let I, I ′ ∈ I such that AI ∩ AI′ 6= ∅. From Lemma 11, we have the function (ε1, ε2) 7→
gI,I′(ε1 + iε2) is a w0 − C∞ function in the sense of Whitney on AI ∩ AI′ . In the following we
provide the construction of fI for I ∈ I verifying (54).

Let us fix any I ∈ I. We consider any w0 − C∞ function in the sense of Whitney on AI . By
definition of the good covering (UIq

−N)I∈I the following cases are possible:
Case 1: If there is at least one I ′ ∈ I, I 6= I ′, such that AI ∩AI′ 6= ∅ but AI ∩AI′ ∩AI′′ = ∅

for every I ′′ ∈ I with I ′′ 6= I ′ 6= I, then we define eI,I′(ε1, ε2) = fI(ε1, ε2) + gI,I′(ε1 + iε2) for
every (ε1, ε2) ∈ AI ∩AI′ . eI,I′ is a w0 − C∞ function in the sense of Whitney in AI ∩AI′ . From



27

Theorem 4 and Theorem 5, we can extend eI,I′ to a w0 − C∞ function in the sense of Whitney
on AI′ . This extension is called fI′ . We have

gI,I′(ε1 + iε2) = fI′(ε1, ε2) − fI(ε1, ε2), (ε1, ε2) ∈ AI ∩AI′ .

Case 2: There exist two different I ′, I ′′ ∈ I with I ′ 6= I 6= I ′′ such that AI ∩ AI′ ∩ AI′′ 6= ∅.
We first construct a w0 − C∞ function in the sense of Whitney on AI′ , fI′(ε1, ε2), verifying

(55) gI,I′(ε1 + iε2) = fI′(ε1, ε2) − fI(ε1, ε2), (ε1, ε2) ∈ AI ∩AI′ .

We define eI,I′′(ε1, ε2) = fI(ε1, ε2)+gI,I′′(ε1+iε2) for every (ε1, ε2) ∈ AI∩AI′′ and eI′,I′′(ε1, ε2) =
fI′(ε1, ε2) + gI′,I′′(ε1 + iε2) whenever (ε1, ε2) ∈ AI′ ∩ AI′′ . From (55) we have eI,I′′(ε1, ε2) =
eI′,I′′(ε1, ε2) for every (ε1, ε2) ∈ AI ∩AI′ ∩AI′′ . From this, we can define

eI′′(ε1, ε2) :=

{

eI,I′′(ε1, ε2) if (ε1, ε2) ∈ AI ∩AI′′

eI′,I′′(ε1, ε2) if (ε1, ε2) ∈ AI′ ∩AI′′ .

From Theorem 6 and Corollary 2 we deduce eI′′(ε1, ε2) can be extended to a w0 − C∞ function
in the sense of Whitney in AI′′ , fI′′(ε1, ε2). It is straightforward to check, from the way fI′′

was constructed, that fI′′(ε1, ε2) = fI(ε1, ε2) + gI,I′′(ε1 + iε2) when (ε1, ε2) ∈ AI ∩ AI′′ and also
fI′′(ε1, ε2) = fI′(ε1, ε2) + gI′,I′′(ε1 + iε2) for (ε1, ε2) ∈ AI′ ∩AI′′ .

These two cases solve completely the problem since nonempty intersection of four different
compacts in (AI)I∈I is not allowed when working with a good covering. The functions in (fI)I∈I
satisfy (54). 2

6 Existence of formal series solutions and q−Gevrey expansions

In the current section we set the main result in this work. We establish the existence of a
formal power series with coefficients belonging to HT ,ρ which asymptotically represents the
actual solutions found in Theorem 3 for the problem (33)+(34). Moreover, each actual solution
turns out to admit this formal power series as q−Gevrey expansion of a certain type in the
q−spiral where the solution is defined.

The following lemma will be useful in the following. We only sketch its proof. For more
details we refer to [17].

Lemma 12 Let U be an open and bounded set in R
2. We consider h ∈ C∞(U) (in the classical

sense) verifying bounds as in (49) and (50) for every (ε1, ε2) ∈ U . Let g be the solution of the
equation

(56) ∂εg(ε1, ε2) :=
1

2
(∂ε1 + i∂ε2)g(ε1 + iε2) = h(ε1, ε2), (ε1, ε2) ∈ U.

Then g also verifies bounds such as those in (49) and (50) for (ε1, ε2) ∈ U .

Proof Let h1 be any extension of the function h to R
2 with compact support which preserves

bounds in (49) and (50) in R
2. We have

g(ε1, ε2) := −
1

π

∫

R2

h1(x)

x− ε
dξdη, (ε1, ε2) ∈ U
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solves (56). Here, ε = (ε1, ε2), x = (ξ, η) and dξdη stands for Lebesgue measure in x−plane.
Bounds in (49) for the function g come out from

∂α1+α2g

∂εα1
1 ∂εα2

2

(ε1, ε2) = −
1

π

∫

R2

∂α1+α2h1
∂εα1

1 ∂εα2
2

(x)
1

x− ε
dξdη,

for every α = (α1, α2) ∈ N
2 and (ε1, ε2) ∈ U , and from the fact that the function x = (x1, x2) 7→

1/|x| is Lebesgue integrable in any compact set containing 0.
On the other hand, g satisfies estimates in (50) from Taylor formula with integral remainder.

2

We now give a decomposition result of the functions XI constructed in Theorem 3. The
procedure is adapted from [11] under q−Gevrey settings. For every I ∈ I, we write XI(ε) :
UIq

−N → HT ,ρ for the holomorphic function given by XI(ε) := (t, z) 7→ XI(ε, t, z).

Proposition 7 There exists a w0−C∞ function u(ε1, ε2) and a holomorphic function a(ε1+iε2)
defined on the neighborhood Int(∪I∈IAI) of 0 such that

(57) XI(ε1 + iε2) = fI(ε1, ε2) + u(ε1, ε2) + a(ε1 + iε2), (ε1, ε2) ∈ Int(AI),

for every I ∈ I.

Proof From the definition of the cocycle (gI,I′)(I,I′)∈I2 in Proposition 5 and from Proposition 6
we derive

XI(ε1 + iε2) − fI(ε1, ε2) = XI′(ε1 + iε2) − fI′(ε1, ε2), (ε1, ε2) ∈ AI ∩AI′ \ {(0, 0)},

whenever (I, I ′) ∈ I2 and AI ∩AI′ 6= ∅. The function X − f given by

(X − f)(ε1, ε2) := XI(ε1 + iε2) − fI(ε1, ε2), (ε1, ε2) ∈ AI \ {(0, 0)}

is well defined on W \ {(0, 0)}, where W = ∪I∈IAI is a closed neighborhood of (0, 0).
For every I ∈ I, XI is a holomorphic function on UIq

−N so that Cauchy-Riemann equations
hold:

∂ε(XI)(ε1 + iε2) = 0, (ε1, ε2) ∈ AI \ {(0, 0)}.

This yields ∂ε(X − f)(ε1, ε2) = −∂εfI(ε1, ε2) for every I ∈ I and (ε1, ε2) ∈ Int(AI).
We have −∂εfI(ε1, ε2) can be extended to a w0 − C∞ function in the sense of Whitney on

AI . This yields fI is w0 − C∞ in the sense of Whitney on AI . In fact, their q−Gevrey types
coincide.

From this, we deduce that ∂ε(X−f) is a w0−C∞ function in the sense of Whitney on AI for
every I ∈ I and also that ∂εfI(ε1, ε2) = ∂εfI′(ε1, ε2) for every (ε1, ε2) ∈ Int(AI ∩ AI′) and every
I, I ′ ∈ I due to gI,I′(ε) is a holomorphic function on UIq

−N ∩ UI′q
−N. The previous equality is

also true for (ε1, ε2) ∈ AI ∩AI′ from the fact that fI is w0 −C∞ in the sense of Whitney on AI .
From Theorem 6 and Corollary 2 we derive ∂ε(X − f) is a w0 − C∞ function in the sense of

Whitney on ∪I∈IAI .
Taking into account Lemma 12 we derive the existence of a C∞ function u(ε1, ε2) in the usual

sense, defined in Int(W ) and verifying q−Gevrey bounds of a certain positive type, such that

∂εu(ε1, ε2) = ∂ε(X − f)(ε1, ε2), (ε1, ε2) ∈ Int(W ).

From this last expression we have u(ε1, ε2) − (X − f)(ε1, ε2) defines a holomorphic function on
Int(W ) \ {(0, 0)}.
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For every I ∈ I, XI is a bounded HT ,ρ−function in Int(W )\{(0, 0)}, and so it is the function
u(ε1, ε2) − (X − f)(ε1, ε2). The origin turns out to be a removable singularity so the function
u(ε1, ε2) − (X − f)(ε1, ε2) can be extended to a holomorphic function defined on Int(W ). The
result follows from here. 2

We are under conditions to enunciate the main result in the present work.

Theorem 7 Under the same hypotheses as in Theorem 3, there exists a formal power series

X̂(ε, t, z) =
∑

k≥0

Xk(t, z)

k!
εk ∈ HT ,ρ[[ε]],

formal solution of

(58) εt∂S
z X̂(ε, qt, z) + ∂S

z X̂(ε, t, z) =

S−1
∑

k=0

bk(ε, z)(tσq)
m0,k(∂k

z X̂)(ε, t, zq−m1,k).

Moreover, let I ∈ I and K̃I any compact subset of Int(KI). There exists B > 0 such that
the function XI(ε, t, z) constructed in Theorem 3 admits X̂(ε, t, z) as its q−Gevrey asymptotic
expansion of type B in K̃Iq

−N.

Proof Let I ∈ I and K̃I any compact subset of Int(KI).
From Proposition 7 we can extend XI(ε1+iε2) to a w0−C∞ function in the sense of Whitney

on ÃI = {(ε1, ε2) ∈ R
2 : ε1 + iε2 ∈ K̃Iq

−N ∪ {0}} ⊆ Int(AI) ∪ {(0, 0)}. Let us fix I ∈ I. We
consider the family (X(h1,h2)(ε1, ε2))(h1,h2)∈N2 associated to XI by Definition 9. We have

X
(h1,h2)
I (ε1, ε2) = ∂h1

ε1 ∂
h2
ε2 XI(ε1 + iε2) = ih2∂h1+h2

ε XI(ε), (ε1, ε2) ∈ ÃI \ {(0, 0)},

due to XI(ε) is holomorphic on Int(KI)q−N.

We have X
(h1,h2)
I (ε1, ε2) is continuous at (0, 0) for every (h1, h2) ∈ N

2 so we can define for
every k ≥ 0

(59) Xk,I :=
X

(h1,h2)
I (0, 0)

ih2
∈ HT ,ρ,

whenever h1 + h2 = k. Estimates held by any w0 − C∞ function in the sense of Whitney (see
Definition 9 for α = (0, 0)) lead us to the existence of positive constants C1, H,B > 0 such that

∥

∥

∥

∥

∥

∥

XI(ε1 + iε2) −
m
∑

p=0

Xp,I

p!
(ε1 + iε2)

p

∥

∥

∥

∥

∥

∥

HT ,ρ

≤ C1H
m|q|B

m2

2
|ε1 + iε2|

m+1

(m + 1)!
,

for every m ≥ 0 and ε1 + iε2 ∈ K̃Iq
−N. As a matter of fact, this shows that XI admits

X̂I(ε) =
∑

k≥0
Xk
k! ε

k as its q−Gevrey expansion of type B > 0 in K̃Iq
−N.

The formal power series X̂I does not depend on I ∈ I. Indeed, from Theorem 3 we have
that XI(ε)−XI′(ε) admits both 0̂ and X̂I′ − X̂I as q−asymptotic expansion on K̃Iq

−N∩ K̃I′q
−N

whenever this intersection is not empty. We put X̂ := X̂I for any I ∈ I. The function
Xk,I = Xk,I(t, z) ∈ HT ,ρ does not depend on I for every k ≥ 0. We write Xk := Xk,I for k ≥ 0.

XI admits X̂ =
∑

k≥0
Xk
k! ε

k as its q−Gevrey asymptotic expansion of type B > 0 in K̃Iq
−N for

all I ∈ I.
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In order to achieve the result, it only remains to prove that X̂(ε, t, z) is a formal solution of
(58). Let l ≥ 1. If we derive l times with respect to ε in equation (58) we get that ∂ l

εXI(ε, t, z)
is a solution of

(60) εt∂S
z ∂

l
εXI(ε, qt, z) + t∂S

z l∂
l−1
ε XI(ε, qt, z) + ∂S

z ∂
l
εXI(ε, t, z)

=
S−1
∑

k=0

∑

l1+l2=l

l!

l1!l2!
∂l1
ε bk(ε, z)∂l2

ε ((tσq)
m0,k)∂k

zXI)(ε, t, zq−m1,k).

for every l ≥ 1, (t, z) ∈ T ×D(0, ρ) and ε ∈ K̃Iq
−N. Letting ε tend to 0 in (60) we obtain

(61) t∂S
z

Xl−1(qt, z)

(l − 1)!
+ ∂S

z

Xl(t, z)

l!
=

S−1
∑

k=0

∑

l1+l2=l

∂l1
ε bk(ε, z)|ε=0

l1!

((tσq)
m0,k∂k

zXl2)(t, zq−m1,k)

l2!

for every l ≥ 1, (t, z) ∈ T ×D(0, ρ). Holomorphy of bk(ε, z) with respect to ε at 0 implies

(62) bk(ε, z) =
∑

l≥0

∂l
εbk(ε, z)|ε=0

l!
εl,

for ε near 0 and for every z ∈ C. Statements (60) and (61) conclude X̂(ε, t, z) =
∑

k≥0Xk(t, z) ε
k

k!
is a formal solution of (58). 2
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C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), no. 1, 31-34.


