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Abstract: We prove an infinite dimensional KAM theorem which implies the existence of Cantor
families of small-amplitude, reducible, elliptic, analytic, invariant tori of Hamiltonian derivative wave
equations.
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Résumé: Nous prouvons un théoreme KAM en dimension infinie, qui implique ’existence de familles
de Cantor de tores invariants de petite amplitude, réductibles, elliptiques et analytiques, pour les
équations des ondes hamiltoniennes avec dérivées.

1 Introduction

In the last years many progresses have been done concerning KAM theory for nonlinear Hamiltonian
PDEs. The first existence results were given by Kuksin [I8] and Wayne [29] for semilinear wave (NLW)
and Schrédinger equations (NLS) in one space dimension (1d) under Dirichlet boundary conditions,
see [24]-]25] and [21] for further developments. The approach of these papers consists in generating
iteratively a sequence of symplectic changes of variables which bring the Hamiltonian into a constant
coefficients (=reducible) normal form with an elliptic (=linearly stable) invariant torus at the origin.
Such a torus is filled by quasi-periodic solutions with zero Lyapunov exponents. This procedure
requires to solve, at each step, constant-coefficients linear “homological equations” by imposing the
“second order Melnikov” non-resonance conditions. Unfortunately these (infinitely many) conditions
are violated already for periodic boundary conditions.

In this case, existence of quasi-periodic solutions for semilinear 1d-NLW and NLS equations, was
first proved by Bourgain [3] by extending the Newton approach introduced by Craig-Wayne [9] for
periodic solutions. Its main advantage is to require only the “first order Melnikov” non-resonance
conditions (the minimal assumptions) for solving the homological equations. Actually, developing this
perspective, Bourgain was able to prove in [4], [6] also the existence of quasi-periodic solutions for
NLW and NLS (with Fourier multipliers) in higher space dimensions, see also the recent extensions in
[1], [28]. The main drawback of this approach is that the homological equations are linear PDEs with
non-constant coefficients. Translated in the KAM language this implies a non-reducible normal form
around the torus and then a lack of informations about the stability of the quasi-periodic solutions.

Later on, existence of reducible elliptic tori was proved by Chierchia-You [7] for semilinear 1d-
NLW, and, more recently, by Eliasson-Kuksin [12] for NLS (with Fourier multipliers) in any space
dimension, see also Procesi-Xu [27], Geng-Xu-You [14].

An important problem concerns the study of PDEs where the nonlinearity involves derivatives. A
comprehension of this situation is of major importance since most of the models coming from Physics
are of this kind.

In this direction KAM theory has been extended to deal with KdV equations by Kuksin [19]-[20],
Kappeler-Poschel [I7], and, for the 1d-derivative NLS (DNLS) and Benjiamin-Ono equations, by Liu-
Yuan [22]. The key idea of these results is again to provide only a non-reducible normal form around



the torus. However, in this cases, the homological equations with non-constant coefficients are only
scalar (not an infinite system as in the Craig-Wayne-Bourgain approach). We remark that the KAM
proof is more delicate for DNLS and Benjiamin-Ono, because these equations are less “dispersive” than
KdV, i.e. the eigenvalues of the principal part of the differential operator grow only quadratically at
infinity, and not cubically as for KdV. As a consequence of this difficulty, the quasi-periodic solutions
in [19], [I7] are analytic, in [22], only C*°. Actually, for the applicability of these KAM schemes, the
more dispersive the equation is, the more derivatives in the nonlinearity can be supported. The limit
case of the derivative nonlinear wave equation (DNLW) -which is not dispersive at all- is excluded by
these approaches.

In the paper [3] (which proves the existence of quasi-periodic solutions for semilinear 1d-NLS
and NLW), Bourgain claims, in the last remark, that his analysis works also for the Hamiltonian
“derivation” wave equation

d2 \1/2
Yt — Yax + 9(T)y = (— @> F(z,y),

see also [5], page 81. Unfortunately no details are given. However, Bourgain [5] provided a detailed
proof of the existence of periodic solutions for the non-Hamiltonian equation

ytt_yLL+my+yt2:Oa m#o

These kind of problems have been then reconsidered by Craig in [8] for more general Hamiltonian
derivative wave equations like

Yit — Yoo + 9(@)y + f(2, DY) =0, z€T,

where g(z) > 0 and D is the first order pseudo-differential operator D := /=0 + g(x). The
perturbative analysis of Craig-Wayne [9] for the search of periodic solutions works when 8 < 1. The
main reason is that the wave equation vector field gains one derivative and then the nonlinear term
f (Dﬁ u) has a strictly weaker effect on the dynamics for § < 1. The case § = 1 is left as an open
problem. Actually, in this case, the small divisors problem for periodic solutions has the same level
of difficulty of quasi-periodic solutions with 2 frequencies.

The goal of this paper is to extend KAM theory to deal with the Hamiltonian derivative wave
equation

yttfyrz+my+f(Dy):O7 m >0, D::\/*axz‘i’ma zeT, (11)
with real analytic nonlinearities (see Remark
f(s):a53+2fksk, a#0. (1.2)
k>5

We write equation (|1.1)) as the infinite dimensional Hamiltonian system
U = —1371H, Up = 1(“)UH,

with Hamiltonian

H(u, @) ::/TﬂDu+F(u\za)dx, F(s) = /Osf, (1.3)

in the complex unknown

1 1

—(Dy +iy), u:=-—(Dy—iy), i:=+—1.

ﬁ( Y+ iyt) \/i( y — iyt)

Setting u = Z Uj ¢ (similarly for @), we obtain the Hamiltonian in infinitely many coordinates
JEZ

u =

H = Z)\jujﬂj + /’H‘F(ﬁ jgz(uje‘” —|— ﬂj€_1]$)> dl’ (14)

JEZ



where

Aji=+/j2+m (1.5)
are the eigenvalues of the diagonal operator D. Note that the nonlinearity in (|L.1]) is z-independent im-
plying, for (|1.3)), the conservation of the momentum —i / u0yudzx. This symmetry allows to simplify

T
somehow the KAM proof (a similar idea was used by Geng-You [13]).

For every choice of the tangential sites Z := {j1,...,jn} C Z, n > 2, the integrable Hamiltonian
Z Aju;%; has the invariant tori {u;a; = ¢;, for j € 7, u; = u; = 0 for j ¢ 7} parametrized by the
JEZ
actions & = (§j)jez € R™. The next KAM result states the existence of nearby invariant tori for the
complete Hamiltonian H in (|1.4).

Theorem 1.1. The equation (1.1)-(1.2) admits Cantor families of small-amplitude, analytic, quasi-
periodic solutions with zero Lyapunov exponents and whose linearized equation is reducible to constant
coefficients. Such Cantor families have asymptotically full measure at the origin in the set of param-
eters.

The proof of Theorem is based on the abstract KAM Theorem which provides a reducible
normal form (see (4.12))) around the elliptic invariant torus, and on the measure estimates Theorem
The key point in proving Theorem is the asymptotic bound on the perturbed normal
frequencies Q°°(&) after the KAM iteration. This allows to prove that the second order Melnikov
non-resonance conditions (4.11)) are fulfilled for an asymptotically full measure set of parameters (see
(4.19)). The estimate in turn, is achieved by exploiting the quasi-Tdplitz property of the
perturbation. This notion has been introduced by Procesi-Xu [27] in the context of NLS in higher
space dimensions and it is similar, in spirit, to the T6plitz-Lipschitz property in Eliasson-Kuksin
[12]. The precise formulation of quasi-T6plitz functions, adapted to the DNLW setting, is given in
Definition 3.4 below.

Let us roughly explain the main ideas and techniques for proving Theorems [{.1] [£:2] These
theorems concern, as usual, a parameter dependent family of analytic Hamiltonians of the form

H=w(&) y+Q) 22+ Px,y,2,2¢) (1.6)

where (z,y) € T" x R", z, Z are infinitely many variables, w(§) € R", Q(¢) € R* and £ € R". The
frequencies (&) are close to the unperturbed frequencies A; in .

As well known, the main difficulty of the KAM iteration which provides a reducible KAM normal
form like is to fulfill, at each iterative step, the second order Melnikov non-resonance conditions.
Actually, following the formulation of the KAM theorem given in [2], it is sufficient to verify

Y
X&) - k+ Q08 — QF > 0 1.7
() k+ OO~ O] 2 T >0, (a7)
only for the “final” frequencies w™ (§) and Q% (), see (4.11)), and not along the inductive iteration.
The application of the usual KAM theory (see e.g. [18], [24]-[25]), to the DNLW equation provides
only the asymptotic decay estimate

Q7)) =7 +0(1) for j— +oo. (1.8)

Such a bound is not enough: the set of parameters ¢ satisfying could be empty. Note that for
the semilinear NLW equation (see e.g. [24]) the frequencies decay asymptotically faster, namely like
Q7 (&) =7+ 0(1/j).

The key idea for verifying the second order Melnikov non-resonance conditions for DNLW is
to prove the higher order asymptotic decay estimate (see , )

2/3
QF(6) = j+a(€) + = + O(*—

oF ) for j>0(1%) (1.9)



where ay(€) is a constant independent of j (an analogous expansion holds for j — —oo with a
possibly different limit constant a_(&)). In this way infinitely many conditions in are verified
by imposing only first order Melnikov conditions like [w™ (&) - k + h| > 2+4%/3/|k|™, h € Z. Indeed, for
i>j> O(k|"y™13), we get

W)k QR(E) — ()] = W€ kit “1(2;” L O(3)

292 1k|7T = O(kI/5%) = O(**[3) = */P Ikl =

%

noting that i — j is integer and |i — j| = O(]k|) (otherwise no small divisors occur). We refer to section
[6] for the precise arguments, see in particular Lemma [6.2

The asymptotic decay for the perturbed frequencies Q2°°(&) is achieved thanks to the “quasi-
Toplitz” property of the perturbation (Definition . Let us roughly explain this notion. The new
normal frequencies after each KAM step are Q;‘ = —I—Pjo where the corrections P7O are the coefficients
of the quadratic form

P2z .= ZP]szZj, PjQ = / (afjng)(a:,0,0,0;f) dz .
J

We say that a quadratic form P° is quasi-T6plitz if it has the form
P'=T+R

where T is a Toplitz matrix (i.e. constant on the diagonals) and R is a “small” remainder satisfying
R;; = O(1/j) (see Lemma . Then follows with a := T}; which is independent of j.

Since the quadratic perturbation PY along the KAM iteration does not depend only on the
quadratic perturbation at the previous steps, we need to extend the notion of quasi-T6plitz to general
(non-quadratic) analytic functions.

The preservation of the quasi-Toplitz property of the perturbations P at each KAM step (with
just slightly modified parameters) holds in view of the following key facts:

1. the Poisson bracket of two quasi-T6plitz functions is quasi-T6plitz (Proposition 7

2. the hamiltonian flow generated by a quasi-Toplitz function preserves the quasi-Toplitz property

(Proposition [3.2)),

3. the solution of the homological equation with a quasi-TOplitz perturbation is quasi-Toplitz

(Proposition [5.1).

We note that, in [I2], the analogous properties 1 (and therefore 2) for T6pliz-Lipschitz functions is
proved only when one of them is quadratic.

The definition of quasi-Toplitz functions heavily relies on properties of projections. However, for
an analytic function in infinitely many variables, such projections may not be well defined unless the
Taylor-Fourier series (see (2.28)) is absolutely convergent. For such reason, instead of the sup-norm,
we use the majorant norm (see (2.12)), (2.54)), for which the bounds and on projections
hold (see also Remark [2.4)).

We underline that the majorant norm of a vector field introduced in is very different from
the weighted norm introduced by Péschel in [23]-Appendix C, which works only in finite dimension,
see comments in [23] after Lemma C.2 and Remark As far as we know this majorant norm of
vector fields is new. In Section [2] we show its properties, in particular the key estimate of the majorant
norm of the commutator of two vector fields (see Lemma [2.15).

Before concluding this introduction we also mention the recent KAM theorem of Grebért-Thomann
[16] for the quantum harmonic oscillator with semilinear nonlinearity. Also here the eigenvalues grow



to infinity only linearly. We quote the normal form results of Delort-Szeftel [10], Delort [I1], for
quasi-linear wave equations, where only finitely many steps of normal form can be performed. Finally
we mention also the recent work by Gérard-Grellier [I5] on Birkhoff normal form for a degenerate
“half-wave” equation.

2

The paper is organized as follows:

e In SECTION [2| we define the majorant norm of formal power series of scalar functions (Defini-

tion and vector fields (Definition and we investigate the relations with the notion of
analiticity, see Lemmata and Corollary Then we prove Lemma on
commutators.

In SECTION [3| we define the Téplitz (Definition[3.3) and Quasi-Toplitz functions (Definition [3.4)).
Then we prove that this class of functions is closed under Poisson brackets (Proposition and
composition with the Hamiltonian flow (Proposition [3.2)).

In SECTION [4] we state the abstract KAM Theorem The first part of Theorem [4.1] follows by
the KAM Theorem 5.1 in [2]. The main novelty is part II, in particular the asymptotic estimate

(4.15]) of the normal frequencies.

In SECTION [B] we prove the abstract KAM Theorem

We first perform (as in Theorem 5.1 in [2]) a first normal form step, which makes Theorem
suitable for the direct application to the wave equation.

In Proposition we prove that the solution of the homological equation with a quasi-T6plitz
perturbation is quasi-T6plitz. Then the main results of the KAM step concerns the asymptotic
estimates of the perturbed frequencies (section [5.2.3) and the Toplitz estimates of the new

perturbation (section [5.2.4]).

In SECTION [6] we prove Theorem the second order Melnikov non-resonance conditions are
fulfilled for a set of parameters with large measure, see (4.19). We use the conservation of
momentum to avoid the presence of double eigenvalues.

In SECTION|7| we finally apply the abstract KAM Theorem 4 he DNLW equation (|1.1] .
7.1

proving Theorem [1.1] . We first verify that the Hamlltonlan 1-) is qua81 Toplitz ( Lemma

as well as the Birkhoff normal form Hamiltonian of Proposition The main technical
difficulties concern the proof in Lemma [7.4] that the generating function of the Birkhoff
symplectic transformation is also quasi-T6plitz (and the small divisors Lemma . In section
we prove that the perturbation, obtained after the introduction of the action-angle variables,
is still quasi-T6plitz (Proposition . Finally in section we prove Theorem applying
Theorems 1] and (1.2

Functional setting

Given a finite subset Z C Z (possibly empty), a > 0,p > 1/2, we define the Hilbert space

67 ={s={5henz, 5 €C 1 22, = Y 122e0()? < oo}
JEINT

When 7 = () we denote £*? := (7", We consider the direct product

E :=C" xC" x (3" x 13" (2.1)

where n is the cardinality of Z. We endow the space F with the (s, r)-weighted norm

x z z
v=(@p2D)€B, Il = ol = T2 Ly PElop | (ol 22)




n
where, 0 < s,7 < 1, and |z|s 1= , max lzn|, lyl1 == Z lyn|. Note that, for all s < s, r’ <r,
=4..,n

h=1
[0l g,s < max{s/s', (r/r")?}|0] s, - (2.3)
We shall also use the notations
zjzzw z; = Zzj.

We identify a vector v € E with the sequence {v)};c 7 with indices in

{1,....n} if j,=1,2 }

2.4
Z\T if j; =3,4 (24)

J = {] = (j17j2)7 jl € {172a374}7 j2 S {

and components
p(12) = Tj, v(Z72) = yj, (1 <j2<n), v®72) = Zjs p®i2) = Zj, (o €Z\T),

more compactly
o) = T, @) = Y, , 03 = Z,, o) =z,

We denote by {e;};jcs the orthogonal basis of the Hilbert space E, where e; is the sequence with
all zeros, except the jo-th entry of its ji;-th components, which is 1. Then every v € FE writes

v = Z v(j)ej, v e C. We also define the toroidal domain
jeJ

D(s,r) =Ty x D(r) =T} X B2 X B, x B, CE (2.5)
where D(r) := B,2 x B, X B,,

T = {x e C"” : max
h=1,..

=L1..,71

Imxp| < s}, B,z = {y eC”: lyh < r2} (2.6)
and B, C (7" is the open ball of radius r centered at zero. We think T" as the n-dimensional torus
T" := 27R™/Z", namely f : D(s,r) — C means that f is 2r-periodic in each zp-variable, h = 1,...,n.

Remark 2.1. If n =0 then D(s,r) = B, x B, C {*P x {*P,

2.1 Majorant norm
2.1.1 Scalar functions
We consider formal power series with infinitely many variables
f0) = f@y 2= Y frimsd®TyeoF (2.7)
(k,i,0,8)€l

with coefficients fj ;.3 € C and multi-indices in

[:=Z" x N® x NZ\D) 5 N(Z\T) (2.8)
where
NEOD) .= {a = (ay)jemz € N? with [ = Y aj < +oo}. (2.9)
JEINT

In (2.7) we use the standard multi-indices notation 2*z° := ez z?j 25 7. We denote the monomials

mk,i,a,ﬁ(v) = mk,i,a,ﬁ(l', Y, 2, 2) = eik'wyizazﬁ . (2'1())



Remark 2.2. Ifn = 0 the set I reduces to N> xN? and the formal series to f(z,2) Z fa,p2° z°
(a,B)€l
We define the “majorant” of f as

(Mf)(’U) = (Mf)(x,y,z,é) = Z |fk,i,a,,6
(k,i,a,B8)€L

hexgiyogh (2.11)

We now discuss the convergence of formal series.

Definition 2.1. A series

Z Ck,i,a,ﬁ ) ck,i,a,ﬂ S (Ca
(ki,0,8) €l

is absolutely convergent if the function T 3 (k,i,, 3) = criap € C is in L' (I, u) where p is the
counting measure of 1. Then we set

Y Chiap = /Ck,i,a,ﬁ dp..
I

(k,i,a,B)€l

By the properties of the Lebesgue integral, given any sequence {I;};>¢ of finite subsets I; C I with
I} C I141 and Up>ol; =1, the absolutely convergent series

E Chyi,a,B 1= E Chyia, = HM E Chyisa -
— 00
ki, (k,i,a,ﬁ)EH (k,i,a,ﬁ)eh

Definition 2.2. (Majorant-norm: scalar functions) The majorant-norm of a formal power series

(2.7) s
I llsr = sup > |fuiaple™l]]22]]27) (2.12)

(y,2,2)€D(r) koo,
where |k| := |k|1 := k1| + ... + |kn]-
By (2.7) and (2.12) we clearly have ||f]s, =

For every subset of indices I C I, we define the projection

(M )z, y,2,2) = Z friape®®yizoz8 (2.13)
(kyi,a,8)€l

s,r-

of the formal power series f in . Clearly

s < flls,r (2.14)
and, for any I, I’ C I, it results
Iy = Unp = Il . (2.15)
Property (2.14)) is one of the main advantages of the majorant-norm with respect to the usual sup-norm
[flsp=="sup [f(v)]. (2.16)
veD(s,r)

We now define useful projectors on the time Fourier indices.

Definition 2.3. Given ¢ = (s1,...,6,) € {+,—}" we define

fo =T f =T minenxnan f = Y foiase™  y'2"2° (2.17)
kEZ?,i,a,ﬁ

where
k>0 if ¢ =+

: v1ghgn}. (2.18)
kn<0 if ¢,=-—

zi={kez" with {



Then any formal series f can be decomposed as

f= > Tf (2.19)

se{+,—}n

and ((2.14)) implies ||H§f||8,r < ”f”s,r'

We now investigate the relations between formal power series with finite majorant norm and
analytic functions. We recall that a function f: D(s,r) — C is

e ANALYTIC, if f € C'(D(s,r),C), namely the Fréchet differential D(s,r) > v + df (v) € L(E,C)

is continuous,

e WEAKLY ANALYTIC, if Vv € D(s,7), v' € E \ {0}, there exists £ > 0 such that the function
{€eC, [fl<e} = flo+&)eC
is analytic in the usual sense of one complex variable.

A well known result (see e.g. Theorem 1, page 133 of [26]) states that a function f is
analytic <= weakly analytic and locally bounded. (2.20)

Lemma 2.1. Suppose that the formal power series (2.7) is absolutely convergent for all v € D(s,r).
Then f(v) and M f(v), defined in (2.7) and (2.11)), are well defined and weakly analytic in D(s,r).
If, moreover, the sup-norm |f|s, < 0o, resp. |M fls, < oo, then f, resp. M f, is analytic in D(s,r).

PROOF. Since the series ([2.7)) is absolutely convergent the functions f, M f, and, for all ¢ € {+,—}",

fo =T f, Mf. (see (2.17)) are well defined (also the series in (2.17) is absolutely convergent).
We now prove that each M f. is weakly analytic, namely Vo € D(s,r), v' € E \ {0},

Mfw+&)= > |friaslMiias+ &) (2.21)
kGZZ",i,a,B

is analytic in {|¢] < €}, for € small enough (recall the notation (2.10))). Since each & — my; o g(v +
&v') is entire, the analyticity of M f.(v + &v’) follows once we prove that the series (2.21)) is totally
convergent, namely

> friasl Sup [Meiapv+ &) < o0 (2:22)
KELT 0,3 €l<e

Let us prove (2.22). We claim that, for ¢ small enough, there is v° € D(s,r) such that

|Sl|lp ‘mk,i7a,5(v + 51/)| < Mpiap(vt), VEkeZlia,f. (2.23)
él<e

Therefore (2.22)) follows by

S friasl s Meias@+ &N < Y |frias

keZy i a,B l&l<e kezg i,0.8
= Mf(v°) < +o0.

My i,0,6(0°)

Let us construct v € D(s,r) satisfying (2.23). Since v = (z,y,2,2z) € D(s,r) we have z € T and,
since T? is open, there is 0 < s’ < s such that [Im(zp)| < ', V1 < h < n. Hence, for € small enough,

sup [Im(z + &a2')p| < ' <s, V1<h<n. (2.24)
1€l<e



The vector v° := (z°,y°, 2°, 2°) with components
aj, = —igs’, Y = lynl +elynl,  1<h<n,
z5 = |an| + €|z, z; = |zZn| +€|Z,| heZ, (2.25)

belongs to D(s,r) because [Imaz5| = s' < s, V1 < h < n, and also (y°,2°,2°) E D r) for € small
enough, because (y, z,Z) € D(r) and D(r) is open. Moreover, Vk € Z, by - and (2.25),

el |eiF (e8| < elkls” = ika® (2.26)
<e

By (2.10)), (2.25), (2.26]), we get (2.23)). Hence each M f. is weakly analytic and, by the decomposition
(2.19), also f and M f are weakly analytic. The final statement follows by (2.20). ®

Corollary 2.1. If || f|ls.r < 400 then f and M f are analytic and

| Flss IM flsr < A1 fllsr- (2.27)
PRrROOF. For all v = (z,y,2,2) € T? x D(r), we have |¢*| < el*l* and
) (2.12)
F@1 M) < Y7 |friasle™lyl1z127) ? [ flls.r < 400
k,i,a,0

by assumption. Lemma [2.I] implies that f, M f are analytic. ®
Now, we associate to any analytic function f : D(s,r) — C the formal Taylor-Fourier power series
f(v) := Z frionp etk eyt azh (2.28)
(k,i,0,8)€l

(as (2.7)) with Taylor-Fourier coefficients

1 —ik-x 1 i Qo
fk,i,a,ﬁ = W /" e * Z'Ollﬁ' (ayaz aiﬁf)(xa07070) dx (229)

1 1] . . s dt
where 0,070z f are the partial derlvatlve

What is the relation between f and its formal Taylor-Fourier series £ 7

Lemma 2.2. Let f : D(s,r) — C be analytic. If its associated Taylor-Fourier power series (2.28))-
(12.29) is absolutely convergent in D(s,r), and the sup-norm

kyi,o,B

< o0, (2.31)

s,

then f=1£, Vv € D(s,r).

PROOF. Since the Taylor-Fourier series (2.28])-(2.29) is absolutely convergent and (2.31)) holds, by
Lemmathe function £ : D(s,r) — Cis analytic. The functions f = £ are equal if the Taylor-Fourier
coefficients

fk,i,a,ﬁ = fk,i,a,ﬁ P Vk7 i: «, ﬁ7 (232)
1 - . ) _ . . P
For a multi-index @ = Z €i || = k, the partial derivative is
1<j<k
8k

as‘f(x,y,z,i) = f(x7yvz+716i1 +"~+Tk5ik72)' (230)

OT1 ... 07Tk =0



where the coefficients £y ; o g are defined from £ as in (2.29)). Let us prove (2.32)). Indeed, for example,

1 d ik
fo,0en,0 = Hn / - Z Fr.0.men 06" TE™ (2.33)
(2m)" S d€ e keZ™, meN
1 d )
= To\n e fk,O,me ,,Oelk.mgm = f0,0,e ,0
keZ%eN (2m)™ Jon d€ je=o " "

using that the above series totally converge for r < r, namely

sup |fk,0,meh,06ik.w£m| S Z ‘fk,O,meh,OKT/)m
kezn, meNTER, [€]<r kezZn, meN

Z |fk,i,a,ﬁmk,i,a,ﬁ(07Ov/rlehv0)‘ < o0
ki,

recall (2.10]). For the others k, 7, «, 8 in (2.32) is analogous. ®

The above arguments also show the unicity of the Taylor-Fourier expansion.

IN

Lemma 2.3. If an analytic function f : D(s,7) — C equals an absolutely convergent formal series,

ie. f(v)= Z Friap€f Tyt 2228 then its Taylor-Fourier coefficients (2.29) are friop = frio.p-
kyia,B

The majorant norm of f is equivalent to the sup-norm of its majorant M f.

Lemma 2.4.

[M flsr < [1flls.r < 27[M .0 (2.34)
PROOF. The first inequality in (2.34]) is (2.27). The second one follows by
I flls,r < |Mflsr, Vse{+,-}", (2.35)

where II. f is defined in (2.17). Let us prove (2.35)). Let
DH(r) = {(y,z,z) €D(r) : yp>0,YV1<h<n, 2,5 >0,V eZ\I}.

For any 0 < ¢ < s, we have

(M fls, = sup > |fk,i,a,ﬁ|€ik'lyiza’gﬁ‘

(@y,2,2)€D(s,r) ' 10 3

> sup Z | fie,is0,8 eikwyizagﬁ‘
1‘1:*i§107~uyl’n:*igna»(y’z’z)eD*»(T) ki, o3

(2.18) ]

> sup Z | fr,le! 171y 22|27
®:2.2)€D%(1) kezn i 0,8

= s 3 frianle Iy = 1 f
(y,2,2)€D(r) keZr i a,B

Then (2.35)) follows since for every function g we have sup ||gllo.r = ||lg]ls.-. ®

0<o<s
Definition 2.4. (Order relation: scalar functions) Given formal power series
F=Y" friese® 2?2 g= " griasety"2’,
ka8 ki, o,

with griap € RY, we say that

f=<g if |fk,i,a,,8| < Gki,a8 Vk,i,a, 3. (2.36)
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Note that, by the definition (2.11)) of majorant series,
f<9g <= [f<Mf=<g. (2.37)

Moreover, if [|g[|s,» < +00, then f < g = [|f]ls.r < llglls.r-
For any ¢ € {+, —}" define ¢, := (¢\"))jes as

; —Gp i if j=(1 1<h<
@ =47 .(,h), <h<n, (2.38)
1 otherwise .
Lemma 2.5. Assume || f||sr, ||g]ls,r < +00. Then
f+9=<Mf+Mg, f-g=<Mf-Mg (2.39)
and '
M(0;(I.f)) = ¢P0;(M(IL. ), jeT, (2.40)

where 0; is short for O, and qg(,j) are defined in (2.38)).

PROOF. Since the series which define f and g are absolutely convergent, the bounds (2.39)) follow
by summing and multiplying the series term by term. Next (2.40) follows by differentiating the series
term by term. W

An immediate consequence of (2.39) is

1+ gllsr < Fllsir + llgllsrs N gllsr < I1F

The next lemma extends property (2.39) for infinite series.

sorllgllsr- (2.41)

Lemma 2.6. Assume that 9, g9 are formal power series satisfying
1 f9 <" vjeg,
2‘ ”g(])HS,T < OO; VJ S \7:

3. Z |g(j)(v)\ < o0, Vv e D(s,r),
JjeET

4. g(v) == Z g (v) is bounded in D(s,r), namely |gs., < .
JjeT
Then the function g : D(s,r) — C is analytic, its Taylor-Fourier coefficients (defined as in (2.29)) are
9ki,a,8 = Zgl(cj,z,a,ﬁ Z Oa V(k’,i,a,ﬂ) S ]I7 (242)
JjeT

and ||g||s,» < 00. Moreover

1. Z |f9) (v)] < 00, Yv € D(s,7),
JjET

2. f(v):= Z f9(v) is analytic in D(s,r),
JjeTJ

3. =g and |[fllsr < llglls,r < oo

11



PROOF. For each monomial my; o g(v) (see (2.10)) and v = (x,y, 2, Z) € D(s,r), we have

M i0,6(0)] = Meia6(ve), (2.43)
where vy = (ilmwz, |y, 2|, [2]) € D(s,r) with [y| := (Jy1], ..., |yn|) and |z|, |2| are similarly defined.
Since ||g (and £ < g\9)) the series
9P = > ), ghias®), g, 5>0 (2.44)
k,i,o,0

is absolutely convergent. For all v € D(s,r) we prove that
Z Z |g£¢{2aa,ﬁmkvivavﬁ(v)| = Z Z gl(c],z),a,,@mkaiaaaﬁ(v'f')
JET kyi,a,B JET kyi,a,B
BED S g0(p) = glog) < o0 (2.45)
JjET
by assumption [3] Therefore, by Fubini’s theorem, we exchange the order of the series
= Z Z gl(cjz)a Ne] kazvavﬂ Z (Z gl(cjz) a,ﬁ) k1i7a75(v) (246)
JET k,i,a,8 ka8 jJET

proving that g is equal to an absolutely convergent series. Lemma and the assumption |g|s, < 00
imply that g is analytic in D(s,r). Moreover and Lemma imply . The griap = 0
because g,(f’z’aﬂ >0, see (2.44). Therefore Mg = g, and, by and the assumption |gs, < oo, we
deduce ||gl|sr < o0.

Concerning f we have

DIy > ‘sza,ﬁ Miesi,0,6(V ‘ o> 9y k,i,a,ﬁ(v)\oo

jeJ JET ki o JET kyi,a,B

and, arguing as for g, its Taylor-Fourier coefficients are fj ;.3 = Z f,gi)a’ﬁ, V(k,i,,3) € I. Then
jeT
; E42)
sl < S0 sl €370 0 5 5 ghians -
JjeET JjeET
Hence f < g and ||f||s,» < ||glls,» < co. Finally f is analytic by Lemma ]
Lemma 2.7. Let || f||s» < 0o. Then, V0 < s’ <s, 0 <r' <7, we have ||0;f||s r < .

PROOF. It is enough to prove the lemma for each f. = Il f defined in (2.17). By || f|ls,» < oo and
Corollary [2.1] the functions f., M f. are analytic and

n €0 .,
”ajchS’,W < 2 ‘M(ajf<)|8’,r/ = 2 |8j(Mf<)|S',r’§C|Mf<|sm < C||f<||sm

for a suitable ¢ := ¢(n, s,s’,r,r"), having used the Cauchy estimate (in one variable). B

We conclude this subsection with a simple result on representation of differentials.

Lemma 2.8. Let f: D(s,r) — C be Fréchet differentiable at vy. Then

[v] = Z 8jf(vo)v(j) , YYo= Z "u(j)ej eF, (2.47)
JjeJ jeJ
and _
D105 (wo)o | < ldf (vo)ll 2.y 10| 2 - (2.48)
JjeT

12



PROOF. follows by the continuity of the differential df (vg) € L(E,C). Next, consider a vector
= (0 (]))Jej € E such that |7;| = |v;| and

39(051)(wo) = (/) (wo)o?| , VjeT.

Hence df (vo)][ Zv(” (05 f)(vo) Z| 9;f)(vo)v| which gives ) because ||0]|g = ||v]|g. W
JjeT JjeT

2.1.2 Vector fields

We now consider a formal vector field

X(v) = (X(j)(v)) (2.49)

JjeTJ
where each component X /) is a formal power series

X9 (v) = XU (2,9, 2,2) Z Xl“aﬁe‘k Tyl zh (2.50)
k,i,a,0

as in ([2.7). We define its “majorant” vector field componentwise, namely

MX(v) := ((MX)U)(U)) - (MX(j)(v)> . (2.51)

jeg jeg
We consider vector fields X : D(s,r) C E — E, see (2.1]).

Definition 2.5. The vector field X is absolutely convergent at v if every component X(j)(v), 1€ J,
is absolutely convergent (see Deﬁnition and

|(xO@),cs ], < +oo.

The properties of the space E in (2.1) (as target space), that we will use are:
1. E is a separable Hilbert space times a finite dimensional space,

2. the “monotonicity property” of the norm
vo,v € E with o] < [0i), VieT = Jvolle < |lule. (2.52)

For X : D(s,r) — E we define the sup-norm

sup || X (v)
vED(s,r)

(2.53)

Definition 2.6. (Majorant-norm: vector field) The majorant norm of a formal vector field X

as in is

- (T i), )
(y,2,2)€D(r) k;;,ﬁ k,i,a ,Bl || | | erllgor

= || X sl el (254)
(y,2,2)€D(r) ki,

where 0 0
Xk1i7a75 = (Xkrjz « ﬁ)jej and |Xk7i70475| = (|Xk:j,i,a,ﬁ|)jej .
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Remark 2.3. The stronger norm (see [Z4)])

= (s ST sl ) |
(y,2,2)€D(r) ki, E

IS}

is not suited for infinite dimensional systems: for X = Id we have | X|s , = +o0.

By (2.54) and (2.51) we get | X||s,» = [|[MX||s,-. For a subset of indices I C I we define the projection

(HIX)(o:,y,z,Z) = Z Xk,i,a,ﬁ elk myzzaz,é’
(kyi,a,B)€l

Lemma 2.9. (Projection) VI C I,
”HIXHS,?" < HX”s,r- (2.55)
PROOF. See (2.54). m

Remark 2.4. The estimate (2.55) may fail for the sup-norm | |5, and suitable I.

Let Iy >k the “ultraviolet” projection

(M X)(@,9,2,2) == Y Xpjape" y'z22".
[kl 2 K,ia,8

Lemma 2.10. (Smoothing) V0 < s’ < s,

S _K(s—s'
MLy e Xllsr < e K= X g0 - (2.56)

PRrOOF. Recall (2.54) and use e/*1¥" < elFlse=KG=5) yip| > K. m

We decompose each formal vector field

X= ) ILX (2.57)
se{+,—}n
applying (2.19) componentwise
X =T1.X = <H§X<J’>) A (2.58)
JjeT
recall . Clearly implies
[ Xcllsir < (2.59)

In the next lemma we prove that, if X has finite majorant norm, then it is analytic.

Lemma 2.11. Assume
(1X|ls,r < +o0. (2.60)

Then the series in (2.49)-(2.50), resp. (2.51)), absolutely converge to the analytic vector field X (v),
resp. M X (v), for every v € D(s,r). Moreover the sup-norm defined in (2.53|) satisfies

X sy IMX[sr < [[X]]sr- (2.61)
PrOOF. By (2.60) and Definition for each j € J, we have

sup > XD) el lye]]22] 2] < oo
(y,2,2)€D(r) 5o 3
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and Lemma (and Corollary implies that each coordinate function X, (M X)W : D(s,r) — C
is analytic. Moreover (2.61)) follows applying (2.27)) componentwise. By (2.60) the maps

X,MX:D(s,r)— E
are bounded. Since E is a separable Hilbert space (times a finite dimensional space), Theorem 3-

Appendix A in [26], implies that X, M X : D(s,r) — E are analytic [ |

Viceversa, we associate to an analytic vector ﬁeld X : D(s,r) — E a formal Taylor-Fourier vector
field ( - - 2.50)) developing each component X©) asin - -

Definition 2.7. (Order relation: vector fields) Given formal vector fields X, Y, we say that
X=<Y

if each coordinate X0 <y, j € J, according to Definition .

If |Y]s,r < +oo and
X=<Y = | X|sr <IIYsr- (2.62)

Applying Lemma, component-wise we get
Lemma 2.12. If | X |50 [|Y]lsr <00 then X +Y < MX + MY and | X +Y ||s.r < [|X|ls.r + 1Y |5

Lemma 2.13.
MX|., <X <2°|MX]., . (2.63)
ProOOF. As for Lemmawith f~X,| Z | ~ || Z ||z and using (2.52). m
kyi,a,B k,i,a,8

We define the space of analytic vector fields
Vsr i=Vsrp = {X :D(s,r) — E with norm || X||s, < Jroo} .

By Lemma if X € Vs, then X is analytic, namely the Fréchet differential D(s,r) > v — dX(v) €
L(E,E) is continuous. The next lemma bounds its operator norm from (E,s,r) := (E,| ||g,s.r) to

(E7 3/7 T/)a see " .

Lemma 2.14. (Cauchy estimate) Let X € V,,. Then, for s/2<s <s,r/2 <71 <r,

X Wl 5 < 197 Xl (2.64)
veD(s',r’

where the sup-norm |X|s, is defined in (2.53)) and

! ,r,/

5::min{1f%,1f?}. (2.65)

PrOOF. In the Appendix. B
The commutator of two vector fields X,Y : D(s,r) — E is

[X,Y](v) :=dX)[Y(v)] —dY (v)[X (v)], Vv e D(s,r). (2.66)
The next lemma is the fundamental result of this section.
Lemma 2.15. (Commutator) Let X,Y €V, .. Then, forr/2 <r' <r,s/2<s <s,
11X, Y llor i < 227207 HIX L [V ] (2.67)

where § is defined in (2.65)).
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PROOF. The lemma follows by

[dX[Y]|s . < 4"+267 (2.68)
the analogous estimate for dY'[X] and (2.66).
We claim that, for each ¢ € {Jr —}", the vector field X defined in (2.58)) satisfies
HdXC[Y]HS,J" < A S s,T”Y”s,T (2-69)

which implies (2.68) because

lD th
HdX[Y]”s/,T’ = Z ”ch[Y]HS’,T’ . Z 2”+2571||X§H57T||Y||57T

se{+,—}n se{+,—}"
ED) . e
< Yo 2 X s Y s < ATFEETHIX s Y s
se{+,—}m
Let us prove (2.69). First note that, since || Xc|ls, < [ X|sr < 400 and |[Y]s, < 400 by

assumption, Lemma implies that the vector fields
X, MXY,MY : D(s,7r) = E, ¥Yse{+,—}", (2.70)

are analytic, as well as each component Xg(i), MXC(i), YO My ® . D(s,r) > C,ie J.
The key for proving the lemma is the following chain of inequalities:

dX [Y]D < M(dx [y])® M(Z(aj‘ Xg(i))y(j))

JjET
b B S (0, X0 My ) (2.71)
JjeT
(2E) S D0, (MXD) M My o) BED d(MXD)[T,)
JjeT
where ~ o _ '
Yy = (Y D)jeq =@ MYD);cr € E. (2.72)
Actually, since |q§j)| =1 (see (2.38])), then
- lb
[Yq(0)lle = MY (v)|| +o00, Vv e D(s,r). (2.73)
In (2.71) above we applied Lemma with
s s s’ f9) s (9, XYW @) s M(9; XD ) MY D) (2.74)

Let us verify that the hypotheses of Lemma hold:

1. f9) < gY) follows by (2:39) and since || f9]|g v, [|¢9|| 5.0 < +00 because | X < | X]|s.r <
+00, ||Y(j)||37r <||IY|ls,r < 400, and Lemma

2. ||g(j)\|5/,,-/ < 00 is proved above.
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3. We have Z 199 (v)] < oo, for all v € D(s,7"), because
JjeT

Sl @) B 3 1m0 x0) )My 0 () B Y 1490, (MXD) () MY D ()
JjeT JjeET jeJ

8 .
3 10, (XY )My O ()] T M XD (@) oy |MY ()5 < +o0
JjeET

by (2.70] , - Actually we also proved that ¢/ = q( )8]- (MXC(i))MY(j).

4. The function

)= Y g9 = Y q@o; (mxO)my ) B g x0)[7,)

JjET Jje€T

since MXC(i) is differentiable (see (2.70)) and Y, € E (see ([2.73)).

Moreover the bound |g|s , < oo follows by

9l = 1AM X)) [Vyllor,rr < 1d(MX) [Vl

and
> @353) >
ld(MX) [Yollsrw = sup ‘d (MX. )(U)[Yq(v)]H .
veD(s’,r") E,s',r
< sup ‘d MXJ) (v H Y, (v E,s,r
elup o) (@) L((E’S’r)’(E’S,’T,))H ()l
(2.64) 1 -
> S IMX s sup  [[Yy(v)]lE s,
veD(s’,r")
E.ET
< 46 1||X<HS,T g‘(lp )”(MY)(U)”E,S,T
veD(s',r’

(2.53) lb
< AT X s MY s S 46T X s 1Y s < o0 (2.75)

because [|Y||s,» < 400 and || X¢||s» < || X||s,» < +00 by assumption.

Hence Lemma implies

X - . . Lemma 2.6 i od .
axOy] B S0, x 0y 0 = p B — (X O)[7,], vied,

namely, by (2.37) and Definition 2.7
dX[Y] < M(dX.[Y]) < d(MX)[Y,]. (2.76)

Hence (2.72)) is fully justified. By (2.76) and (2.62)) we get

XY s < ld(MXe) [Yollsr o = M(d(MXc) [?q])
= (MX)[Y]| (2.77)

because d(MX.) [}711] coincides with its majorant by (2.76]). Finally (2.69) follows by (2.77)), (2.75)). m
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2.2 Hamiltonian formalism

Given a function H : D(s,r) C E — C we define the associated Hamiltonian vector field
Xy = (0,H,—0,H, —10:H,10. H) (2.78)

where the partial derivatives are defined as in ([2.30)).
For a subset of indices I C I, the bound ([2.55)) implies

||XH1H||5,T < ||XHHs,r~ (279)
The Poisson brackets are defined by

{H,K} = {H K} +{H K}**
= (81H 9K — 0,K - 6yH) + i((‘)zH 0K — O:H - 6ZK>
= O0,H -0yK—-0,K -0,H+i0,+H -0,-K —-i0,-H-0,+K
= O,H -0,K—0,K-0,H+i > 00:7 H O, K (2.80)
o=+,jEZ\T ’
where “-” denotes the standard pairing a - b := Z a;b;. We recall the Jacobi identity
J
{K.G), H} + {({G, H), K} + {{H.K},G} =0. (281)

Along this paper we shall use the Lie algebra notations

>, adh
adp :={,F}, e .= k—f (2.82)
k=0

Given a set of indices
Z:={j1,.---,jn} CZ, (2.83)

we define the momentum
M::MI::Zjlyl—i- ijsz Zjlyl+ Z]z Zi
=1 JEINT JEZNT

We say that a function H satisfies momentum conservation if {H, M} = 0.
By (2.80), any monomial e*¥3 2%z is an eigenvector of the operator ad, namely

{e*oyizozP M} = 7(k, o, B)em Tyt 220 (2.84)

where
m(k,a, ) : Zykﬁ >l (2.85)
JEZNT
We refer to 7(k, v, ) as the momentum of the monomial elbTyizazh, A monomial satisfies momentum
conservation if and only if w(k,«, 3) = 0. Moreover, a power series with || f][s,» < 400 satisfies
momentum conservation if and only if all its monomials have zero momentum.

Let O C R" be a subset of parameters, and

f:D(s,r) x O —=C with X¢:D(s,r) x O — E. (2.86)
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For A > 0, we consider

X420 = 1Xs12, = Sgple|s,r + AX 2 (2.87)

XA(6) = X5(n)|or
= sup |Xf(£)|s,r +A sup | f(g) f(Ti)| T
£€o £€O, £ 1€ =

Note that | - |)‘ is only a semi-norm on spaces of functions f because the Hamiltonian vector field

s,r

Xy =0 when f is constant.
Definition 2.8. A function f as in (2.86) is called

e regular, if the sup-norm |X;|sr.0 :=sup|Xyls,, < 00, see (2.53)).
o
e M-regular, if the majorant norm || X¢||sr0 :=sup || Xf|lsr < 00, see (2.54)).
o

e \-regular, if the Lipschitz semi norm |Xf|§‘,r’@ < 00, see (2.87).

null

We denote by Hs,,- the space of M-regular Hamiltonians and by H," its subspace of functions satisfying
momentum conservation.

When T = 0 (namely there are no (x,y)-variables) we denote the space of M-regular functions

simply by M., similarly H™™, and we drop s form the norms, i.c. |- |, |- |rs |- |ro, ete.
Note that, by (2.61]) and (2.87]), we have
M —regular = regular <= )\ —regular. (2.88)

If H, F satisfy momentum conservation, the same holds for {H, K'}. Indeed by the Jacobi identity

@381,
(M,H}=0 and {M,K}=0 = {M, {H K}}=0. (2.89)

For H, K € 'H,, we have
Xenxy = dXu[Xk] — dXg([Xu] = [Xu, Xk] (2.90)
and the commutator Lemma [2.15|implies the fundamental lemma below.
Lemma 2.16. Let H, K € H,,. Then, for allr/2 <71 <r,s/2<s <s
1Xtarcy s = 11X e Xilllsr o < 227207 X pr s | X s, (2.91)
where § is defined in .

Unlike the sup-norm, the majorant norm of a function is very sensitive to coordinate transforma-
tions. For our purposes, we only need to consider close to identity canonical transformations that are
generated by an M-regular Hamiltonian flow. We show below that the M-regular functions are closed
under this group and we estimate the majorant norm of the transformed Hamiltonian vector field.

Lemma 2.17. (Hamiltonian flow) Let r/2 <71’ <r, s/2<s <s, and F € H,, with
IXEllor < 1= 8/(225¢) (2.92)
with § defined in . Then the time 1-hamiltonian flow
®L = er . D(s', 1) — D(s,7)
is well defined, analytic, symplectic, and, VH € H;,, we have H o @}v € Her o and

[ Xrlls.r

X o®l ||s’,r’ < . 2.93
|| H@F” 1_7]_1HXF||S,T ( )

Finally if F,H € H2"' then H o ®}, € Hu"W..
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PROOF. We estimate by Lie series the Hamiltonian vector field of

d’“ o~ H® X
H = Hod = v = Z e e de Xp=3) Z'““’ : (2.94)
k=0 k=0 )

where H := ad’.(H) = adp(H" V), HO .= H.
For each k > 0, divide the intervals [s’, s] and [r’, 7] into k equal segments and set

s—s' r—r'
i = —1 5 i = —1 , :0,,k
s s—1 B T r—1 2 )
By (2.91) we have
HXH“) ||Si77‘z’ = ||[XF’XH”*1>} 8iyTi < 22n+36i_IHXH(’i*1)Hsifl,mfl HXF 8i—1,Ti—1 (295)
where
5 i {1 1 ”}>‘5 (2.96)
; = min — , 11— > —. .
Si—1 Ti—1 k
By (2.95)-(2.96)) we deduce
HXH(” ||5l771 < 273k 1||XH(1 b Héz 1,7i—1 ||XFH57, i1y L= L....k.

Sic1,Tio1 4||XF||8T (see (22 )
X oo [|sr < (22" FPk6™ ¥ X .

Tterating k-times, and using || Xr

(2.97)
By (2.94), using k* < €*k! and recalling the definition of 7 in (2.92)), we estimate

’ ”X WHS r’ - (22n+5k571”XF”s r)k
”XH/HS’J” Z = | X H ””’Z :

!
k=0
o0
_ 1’ HXHHST
< 2 X))t T e
,; Sl T

proving .

Finally, if F' and H satisfy momentum conservation then each ad]}H , k > 1, satisfy momentum
conservation. For &k = 1 it is proved in and, for k > 1, it follows by induction and the Jacobi
identity . By we conclude that also H o @% satisfies momentum conservation. B

We conclude this section with two simple lemmata.

Lemma 2.18. Let P = Z kai’aﬂelk Tyi22Z8 and |Akiapgl >k, Ykl < K,i,a,5. Then
|k|<K.ia,p

P
Fo= }: A’“aﬂ efeyizozf satisfies || Xpller <7 KT Xp o
. k,i,a,0
|k|<K,i,a,3

PRrROOF. By Deﬁnitionand |[Akia,pl =K forall k| < K. m

Lemma 2.19. Let P = Y P,z with [|Xp|, < co. Then |P;| < ||Xpl|,.
JEZNT

Proor. By ([2.78)) and Definition we have

IXpl2=2 sup 3 (Rl et gy > e
HZHa p<T hEZ\I

by evaluating at z(J = djpe a|7|< )Pr/\f m
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3 Quasi-Toplitz functions
Let Ng € N, 0, 1 € R be parameters such that

1<0,p<6, 12NE'42eNt<1, k= max {5, (3.1)

(the j; are defined in (2.83))) where
0<b<L<1. (3.2)

For N > Ny, we decompose
077 x 070 = 47P D UGP D LY (3.3)

where
(7P = U7P(N) = {wz(zﬂz*) el7? xtz? 1 28 =0, o=+, V|j 26NL}
B = UEP(N) = {w:(er,z*) €07 x 477 27 =0, 0 =+, unless 6N < |j| <N}

08P = (P (N) = {w — (2T 2T) €O X B 27 =0, o=+, V]| < N}.
Note that by (3.1)-(3.2)) the subspaces £7” N ¢}” = 0 and £3” # 0. Accordingly we decompose any
w € LYP x *P as w=wr +wgr +wy

and we call wy, € £7” the “low momentum variables” and wy € ¢%;" the “high momentum variables”.
We split the Poisson brackets in (2.80)) as

{'7 } - {'7 .}z,y + {'ﬂ '}L + {'7 '}R + {'7 '}H

where
H .
{H, K} =i ) 00::H O~ K. (3.4)
o==,|j|>cN

The other Poisson brackets {-,-}%, {-,-}® are defined analogously with respect to the splitting (3.3)).
Lemma 3.1. Consider two monomials m = cm,aﬂeik'zyizaéﬁ and m' = c%/7i/7a,75/eik/'myi,z°"2ﬁ/.
The momentum of mm’, {m,m’'}, {m,m'}*¥, {m,m'}2, {m,m'}%, {m,m'}, equals the sum of the
momenta of each monomial m, m’.

Proor. By (2:85), ([280), and
w(k+ K, a+ o', B+ 8) =k, 8) + 7K, o/, 8) = w(k,a— e;, B) + 7(K, o/, B — ¢;),

forany j€Z. m
We now define subspaces of H, , (recall Definition .

Definition 3.1. (Low-momentum) A monomial €*%y'227" is (N, u)-low momentum if
> lilley +8;) < pN*. [k < N (3.5)
JELNT

We denote by
»CS,T(Nv M) C Hs,r

the subspace of functions
g = ng,i,a,ﬁeikmyiza'gﬁ S Hs,r (36)
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whose monomials are (N, p)-low momentum. The corresponding projection

5, Her — Lo (N, 1) (3.7)

is defined as Hk,u =TIy (see (2.13)) where I is the subset of T (see (2.8))) satisfying (3.5). Finally,

given h € Z, we denote by
‘CSJ‘(N’ /u‘7 h) - ‘CS,T(Nv ,U,)

the subspace of functions whose monomials satisfy

m(k,a,B)+h=0. (3.8)
By , -, any function in Ly, (N, 1), 1 < p < 6, only depends on z,y, wy, and therefore
9.9 € Lo (N,p) = g9, {9,9'}"Y, {9,9'}* do not depend on wg . (3.9)

Moreover, by ([2.85), (3.1), (3.5), if
|h| > uN* + kN = L, (N,u,h)=0. (3.10)

Definition 3.2. ((V, 6, u)-bilinear) We denote by
Be (N, 0, 1) C HEY
the subspace of the (N, 0, p)-bilinear functions defined as

f= Z gb’f’n/ (z,y, wL)zfnzZ/ with ;;;j’n' € Ly (N,p,om+o'n) (3.11)
Im|,|n|>0N,0,0'=+

and we denote the projection
HN,G,H : Hs,r e Bs,r(Na 97 M) .

Explicitely, for g € He, as in (3.6), the coefficients in (3.11)) of f :=TInyg .9 are

o0’ Ly ._ Z o0’ ik-x, i o=
m,n ($7y7w ) T k,i,a,ﬁ,m,ne yzz (312)
(k,i,a,B) s.t. (3.5) holds

and m(k,o,8)=—om—o'n

where
+,+ - -1 +,— —
k,i,a,8,mmn " (2 - 5mn) Gk,i,atemten,B fk:,i,oz,@m,n = ki, atem,B+en
—— - -1 —+ —
fk,i,a,ﬁ,m,n T (2 - 57"”) ki, ftemten ki, 8,mn - 9ksi,aten,Bten - (313)

For parameters 1 < 6 < 6', 6 > pu > 1/, we have
B, (N0, ") C By (N, 0, 1)

Remark 3.1. The projection Il g, can be written in the form I1;, see (2.13), for a suitable I C L.
The representation in (3.11)) is not unique. It becomes unique if we impose the “symmetric” conditions
a0’ — folo (3.14)

m,n n,m

Note that the coefficients in (3.12)-(3.13)) satisfy (3.14).
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3.1 Toplitz functions
Let N > NQ.
Definition 3.3. (T6plitz) A function f € B, (N,0,u) is (N,8,pn)-Toplitz if the coefficients in

have the form
":’nl = f""’,(s(m),am—k o’'n) for some 77 (s, h) € Lsr(N,p,h), (3.15)
with s(m) :=sign(m), s = +,— and h € Z. We denote by
T, =T, (N,0,1) C By (N, 0, 1)
the space of the (N, 0, u)-Toplitz functions.
For parameters N' > N, §' >0, ' < pu, v <r, s’ <s we have
Tor(N,0, 1) C Tor i (N, 60, 4t . (3.16)

Lemma 3.2. Consider f,g € T,,(N,0,p) and p € Ls,(N,11,0) with 1 < p,pq < 6. For all
0<s' <s,0<r <rand® >0,1/ <p one has

HNve/vH/{fvp}L 9 HN,G/JLI{fa p}m’y € ,];lyr/(Nv 9/’ ILL/) . (317)
If moreover
uNE + kNP < (0" — )N (3.18)
then
HN,G/,,U/{fag}H € 7;’,7”(N7 9/,/14/) . (319)
Proor. Write f € 7, ,(N,0, ) as in where f7:7, " satisfy (3.15) and , namely
ool = 00 = [ (s(m),om + o'n) € Ly (N, p,om +o'n), (3.20)

similarly for g.
PROOF OF (3.17). Since the variables z; , zzl, |m|,|n| > 6N, are high momentum,

{mn ZmAn 7p}L_{ mn’p}LZg@ZfL

and { m n p}L does not d6pend on wy by . recall that m nﬂ pE 'CS T(N ’u')) The coefficient
of 29,25 in Tyg . {f,p}"

0y {55, pt* €20 % {f"’”/(s(m),am +o'n), ptt € Lo (N, i/ ;om+ o'n)

using Lemma (recall that p has zero momentum). The proof that I ¢/, {f,p}*Y € Ty (N, 6, 1)
is analogous.

PRrROOF OF (3.19). A direct computation, using (3.4]), gives

(f,9}" = 3 P2 2s

[m|,|n|>6N, 0,0'=%

with )

pglgn =2 Z o1 (f;;?gl 7(7,717 _|_f0 Ulgl 7%17 ) . (3.21)
l|[>0N , o1=%
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By . ) the coefficient p7.7, " does not depend on wg. Therefore

H . !’ L 7
HN,G’,;L/{f, g} = Z Qm nza ZU with qrari,gn = HN,,u’p;‘rfn (322)
|m|,|n|>0'N, o,0'==%

(recall (3.7))). It results qfn"n’ € Ly (N,p',om+o'n) by (3.22), (3.21)), and Lemma since, i.e.,
fa € Ly (N, u,om+o1l) and 9m —o1,0’ ¢ L (N, p,—o1l+0'n).

Hence the (N, ¢, i/)-bilinear function Iy o . { f, g} in (3.22)) is written in the form (3.11)). It remains
to prove that it is (N, 6, u')-Téplitz, namely that for all |m|, |n| > 6'N, 0,0’ = =+,

qfn",; = q""’/ (s(m),om +o'n) for some q” (s, h) € Lsr(N,u' h). (3.23)

Let us consider in (3.21)-(3.22) the term (with m,n,0,0", 01 ﬁxed)

15 Z g o (3.24)
[l|>6N

(the other is analogous). Since f, g € 7, (IV, 0, 1) we have
fo’0'1 fo’t71( ( ),am—f—O'll) Gﬁs’,«(N,,u,am—i—oll) (325)

gfgl’”/ = g*"l"’/ (s(l), —o1l + a’n) € Ls (N, p,—o1l+ 0'n). (3.26)

By (3.10), (3.25), (3.26), if the coefficients f7", gljgl’al are not zero then

lom 4+ o1l], | — o1l 4+ o'n| < uN* + kN®. (3.27)
By (3:27), (1), we get ¢N > |om+01l| = |oo1s(m)|m|+s(1)|l||, which implies, since [m| > §'N > N
(see 1_' that the sign
s(l) = —oo1s(m). (3.28)
Moreover r T
-3 ) B1s)
1] > |m| — |om + o1l O'N — uNt — xN* == 0N

This shows that the restriction |I| > #N in the sum (3.24) is automatically met. Then

Z foo *T‘L’lv H&H,Zf”"” (s(m),am—i—Ull)g_"“”/(s(l)7—all—i—a’n)

\l|>9N ez
= TR Y 77 (s(m)g)g 7 (s(),om + o'n — j)
JEZ
328 H%#/ Z fa,al (S(m),j)gigl’al ( . Jcrls(m), om + o'n — ])
JEL

depends only on s(m) and om + o'n, i.e. (3.23). m

3.2 Quasi-Toplitz functions
Given f € H,, and fe Ts.r(N,0, 1) we set

f=Nnouf ~1). (3.20)
All the functions f € Hs, below possibly depend on parameters £ € O, see (2.86]). For simplicity we
shall often omit this dependence and denote || ||s.r.0 = || ||s,-
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Definition 3.4. (Quasi-Toplitz) A function f € H?}‘TH is called (N, 0, p)-quasi-Toplitz if the quasi-
Téoplitz semi-norm

LA = A1 g = suo [ inf (max{ | X o Xl 1 X7l1003)] (330)

N>Ng L feT, . (N,0,p)

is finite. We define
Q= QT (No, b, ) i= { f € M IFI1Z, g < o0}

In other words, a function f is (No, 0, p)-quasi-Téplitz with semi-norm || || if, for all N > No,
Ve > 0, there is f € Ts,-(N,0, 1) such that

Ovouf =F+ N7 and 1 Xpllsrs [ Xfllsr s 1Xfllsr < AT, +e (3.31)

We call f € T, r(N,0, 1) a “Toplitz approzimation” of f and f the “Toplitz-defect”. Note that, by
Definition [3.3] and (3.29)
HN,H,uf = fa HN,@,Mf = f

By the definition ([3.30) we get

I Xsller < IFIE, (3.32)
and we complete (2.88) noting that
quasi-Toplitz = M —regular = regular <= ) —regular. (3.33)

Clearly, if f is (No, 8, u)-Toplitz then f is (No, 6, u)-quasi-Toplitz and
£ 0,000 = 1 X plls,r - (3.34)
Then we have the following inclusions
Tor C QL. Bor CHM' CH,p
Note that neither B, , C QST’T nor By, 2 QST,T.

Lemma 3.3. For parameters Ny > No, p1 < p, 01 >0, r1 <r, s1 < s, we have

Qr (No,0,p) € QL , (N1,01, 1)

and
LIS 600 < max{s/s1, (r/m1) 2 HIF I N 0, (3.35)

Proor. By (3.31)), for all N > Ny > Ny (since 61 > 0, pq < )

HNﬁth = HN7917#1HN79,MJ£ = HN,el,#lf + N_1HN,91,M1f~

The function Ty g, .., f € T,y (N, 01, p11) and

||XHN,91,u1f||81,7’1 < ||Xf||81,r1 < ||fHZ1,r1 +e,
|| HN,el,/;,1f||517T1 < ||Xf||5177‘1 < ”szl,rl—’—E'

Hence, VN > Ny,

it (il e I e 1)) < AT
FE€Tsy,ry (N,01,111)
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applying (2.3) we have ([3.35)), because € > 0 is arbitrary. B
For f € H,, we define its homogeneous component of degree | € N,

fO =10 f .= Z friapeFoyiz2z8 (3.36)
keZm | 2|i|+|a|+| 8=l

and the projections

T =<k f = Z friape® Y222 sk f:=f—My<xf. (3.37)
|k|<K.i,a,8
We also set
[0 = Myex fS2, 2= fO 4 fO 4 f@ (3.38)

The above projectors o, k< x, Ik have the form IIy, see (2.13)), for suitable subsets I C I.

Lemma 3.4. (Projections) Let f € QET(NO,G,N), Then, for alll e N, K € N,

||H l)st r,No,0,;n = ||f||s r,No,0,1 (339)
Hf<2||5rNo, 0, ||f ||erg, O,p = Hf”ero,Op, (340)
||H\k|<Kf|| erO,e,H (3.41)
||H7€ 0H|a\ 18l= IH( )er ,No,0,p = < HH(Q)f”ero, 0,1 (342)
and, V0 < s’ < s,
— S§—S S

Z—;,T,No,a,u <e K( N ||f||s r,No,0,u * (343)

PROOF. We first note that by (2.15]) (recall also Remark we have
MO Ty g =g, TVg, VgeH,,. (3.44)

Then, applying 1® in , we deduce that, VN > Ny, Ve > 0, there is f € 75 (N, 0, 1) such that
MOy g, f = Tng, A0 f =10 f + N—TIO f (3.45)
and, by , ,
X flls.r s 1 X fllsr s 1 X flse < IFIG +e (3.46)
We claim that IV f € 7, (N, 0, 1), VI > 0. Hence (3-45)-(3.46)) imply nof e er(No,G,/i) and

O r, <

sr—i_6

ie. (3.39). Let us prove our claim. For [ = 0,1 the projection H(l)f = 0 because f € Tsr(N, 0, 1)
is bilinear. For | > 2, write f in the form (3.11) with coefficients fm . " satisfying (3.15). Then also
g := 11D f has the form (3.11)) with coefficients

a0’ _ H(l—?) fo,o

gm n m,n

which satisfy (3.15) noting that IV L, (N, u,h) C L, (N, h). Hence g € T, ,.(N,0,p), ¥l > 0,
proving the claim. The proof of (3.40), (3.41)), (3.42), and (3.43) are similar (use also (2.56))). m
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Lemma 3.5. Assume that, VN > N,, we have the decomposition
G=Gy+GY with [|Gy[l, ne, <K, NlXny, ol < K. (3.47)
Then G2, x. 0, < mac{| Xa o, Ko + Ko}

PROOF. By assumption, VN > N,, we have HGG\,HST,T,N’&H < K;. Then, Ve > 0, there exist
G’y € T,..(N,0, 1), Gy, such that

lnouGy =Gy + NGy and [ Xg s 1 Xgy lsr < Ki+e. (3.48)
Therefore, VN > N,,

HN,97MG=G~'N+N716N, GN = é;\lv GN = GA§V+NHN797HG/[<;
where G € 7,..(N, 0, 1) and

Xy llsr = 1Xay llsr < Kite, (3.49)

Em).ED
1Xe, o < 1Xe lor + Nl Xny, agller < K

Then G S QZ?T?N*,@JL and

L +e+ K. (3.50)

G

S,T‘}

Z:'r‘,N*,G,M < NSBJI\)I maX{HXG”S,M ||XG’N

Z LV s

s 1 X |

BT 550
<

max{ || X¢l|sr, K1+ K2 +¢€}.

Since € > 0 is arbitrary the lemma follows. B

The Poisson bracket of two quasi-T6plitz functions is quasi-Toplitz.

Proposition 3.1. (Poisson bracket) Assume that fV), f? ¢ Ql (No,0, ) and Ny > No, 1 < pu,
01 >0, s/2<s1 <s,r/2<r <r satisfy

ENPTE < =g, i NET NPT < 0y — 0, 2Nie MR <1 b(s - s)NP > 2.0 (3.51)
Then
{fO, f@re ol | (N1, 61, 11)
and
IO, PO s v < COIHFONL w0l (8:52)
where C(n) > 1 and
5::min{175—1,lfﬁ}~ (3.53)
s r

The proof is based on the following splitting Lemma for the Poisson brackets.

Lemma 3.6. (Splitting lemma) Let @ ¢ QiT(NO,H,u) and (3.51)) hold. Then, for all
N > Ny,

HN,91“U1 {f(l)v f(2)} =
(1) @\ W p@)* L) @\”
N6, ({HN,G,uf o uf } + {HN,H,Hf AN o f } + {HN,zﬂf Mnouf }
x,Y x,yY
+ {HNuevﬂf(1)7 H%,uf@)} + {H%,ufu% HNﬂ,uf@)}

+ {H\k|2Nbf(1)7 f(Q)} + {H|k|<Nbf(1)aH\k\ZNbf(Q)}) . (3.54)
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PrROOF. We have

(P, @} = {ene fY, e ne £} (3.55)
+ {Hlk\szf(l)vf(2)}+{H\k\<Nbf(1)7H|k|2Nbf(2)}'
The last two terms correspond to the last line in (3.54). We now study the first term in the right

hand side of (3.55). We replace each f () = 1,2, with single monomials (with zero momentum) and
we analyze under which conditions the projection

PR CORICO NN CO NP TCD BT C) SO BN ¢ BIPTC) 1 9 b
HNﬂhm{e‘ Tyt 2 25 €l Tyt 2 b , \k()\,\k()\<N,

is not zero. By direct inspection, recalling the Definition of IIng,,., and the expression (2.80)
of the Poisson brackets {, } = {, }*¥ + {, }*%, one of the following situations (apart from a trivial
permutation of the indexes 1,2) must hold:

@ g _ a0 0
a8 = P50 z;” and z

(1) _3(1) 52 _3(2)
Zﬁ z° Zﬁ

@) _g@) 52 5@
AL

1. one has z -

z; 7 where |m|,|n| > 61N,

o,01,0 = %, and z is of (N, u1)-low momentum. We consider the Poisson
bracket { 1 : (in the variables (zj', z; ) of the monomials.

W _gh _ah F0 @ _g@ A _3
2. one has 2% 27 = 7720 27 z7" and 2% A z; 7!

AV 31 5@ _5@ . . .
2877 287 297 s of (N, p1)-low momentum. We consider the Poisson bracket {, }*#

where |m|, |n| > 6; N and

a® g0 s pM o o

(2) _g2) ~(2) _5(2)
zo zy and z2° T = T8

3. one has z , where |m|,|n| > 61N and
A(D 31 @) 5@ . . . L
2877287 257 s of (N, p1)-low momentum. We consider the Poisson bracket {, }*¥, i.e. in

the variables (z,y).
Note that when we consider the {, }*¥ Poisson bracket, the case

1) _gn A1) (1)
20 = e A e

@) _g@ A _F@)
. 22T = TP 0

n

and |m|,|n| > 601N,

and 28" 78 ,a® 58 is of (N, p1)-low momentum, does not appear. Indeed, the momentum conser-
vation —om = W(d(l),ﬁ(l),k‘(l)), (2.85) and |k‘(1)| < N, give

ON < [m < > (a4 137V + kN < pNE 4 &N,
1€Z\T

which contradicts (3.51)).

CASE 1. The momentum conservation of each monomial gives

Ulj = —0om — 7-[-(6[(1)7 B(l)) k(l)) — o'ln _|_ W(@(Q)’ 5(2)7 k(2)) . (356)
Since 28" 58 267 28 ig of (N, p1)-low momentum (Definition ,
>l +a? + ) <Nt = Y E" +47) < Nt i=1,2,
leZ\T 1€Z\T

which implies, by (3.56)), P |k<1>| < N® |j] > 61N — uuN* — kN® > 0N by (3.51). Hence
Im|, |n|,|j| > ON. Then e'* ﬁ(h)l h = 1,2, are (N,0, u)-bilinear. Moreover the (z;, Z;)
are high momentum variables, namely {, V2% = {, Y see (34). As m,n run over all Z \ 7 with
|m|, |n| > 61N, we obtain the first term in formula (3.54).

CASE 2. The momentum conservation of the second monomial reads

—o1j = —n(a®, 3P k@), (3.57)
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Then, using also (2.85)), [k®)] < N®, that L8 BN 6P 2B g of (N, p1)-low momentum,

. ~ % (3:57) ~ 5 ~ 5
i1+ 3 i + 5 B (@@, 5, k@) + 3 e + 5P) <
1€Z\T 1€Z\T

W e - E51)
STHEY + BV + 67 + 5) + kNY < uNF + kN* T uNE

I€Z\T

Then zd(l)ZB(l)z}” is of (N, p1)-low momentum and the first monomial

kM. ;) L1 _gD) kM. ;) 51 _z31 ’
elk: zyz s Zﬁ — elk xyz s zﬁ Z;_flzglzg

is (N, 6, p)-bilinear (u1 < p). The second monomial

k(2. (2 (2 _g©2) ik . 2 52 _3@ _
61k zyz P Z’B _ elk zyz P Z'G Zj o1

is (N, 2u)-low-momentum because, arguing as above,

(3.57)

g+ 3@ + 62) m(@®, 3@ k) + S @ + 57)
l l

EED)
< 2uNE 4+ kN® " 2uNE.

The (zj, Z;) are low momentum variables, namely {, }** = {, }¥, and we obtain the second and third
contribution in formula ([3.54)).

Caske 3. We have, for ¢ = 1,2, that
Sol@ + 57 < Y@ + 5 + 6 + 5Y) < Nt < unt
! 1
Then eik(l)'”’yi(l)zo‘méﬁ(l) is (N, 0, p)-bilinear and eik(z)'xyi(z)za(z)iﬁ(z) is (N, p)-low-momentum. We
obtain the fourth and fifth contribution in formula (3.54). ®

PROOF OF PROPOSITION . Since f() QZ:T(NO,Q,M), 1 =1,2, for all N > N; > N there exist
f® e T, (N6, 1) and ) such that (see (3.31))

My f@ =FfO+ N1fO =12, (3.58)

and

1X s s < 2 FOIT, - (3.59)

5,7 ”Xf(i) llsrs ”Xf(i)

In order to show that {f), f?} Qzl,n (N1,07, p1) and prove (3.52)) we have to provide a decom-
position

Ty oy { SO, fP} = 2 4 N2 YN > Ny
so that f(172) € 7—5177‘1 (N? 617,“/1) and
{F fF@ Y s1,m1s Fa2) lls1,res fa2lls1,m B 5,7 8,7 :
X | 1X .2 s [ X pa s < C)SHIFDNT NPT (3.60)
or brevity we omit the indices Ny, 01, p1, No, 0, 1). By (2. we have (0 1s defined in (3.
for brevi it the indi Ny,0 Ny, 0 By (2.91) h ¢ is defined in (3.53))

X p@yllsim < 227367 X o

S,T||Xf(2)

ERE
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Considering (3.58) and (3.54)), we define the candidate Toplitz approximation

~ - ~ H ~ L - L
Fa» HN’GI’M({f(l))f(Z)} +{f(”7Hsz,2uf(2)} +{H§,2uf(”7f(2)}

+ {f“),nk,uf@)}x’y + {HLN,Hf<1), f‘”}w (3.61)
and Toplitz-defect
FO = N (T {F0, 12y = F02). (3.62)
Lemma n_zind 3.51) imply that f12 € 7, . (N, 61, u1). The estimate ( ([3.60) for f F(12) follows by
B61), (2.91), @.79), (3.59). Next

fOP = Ty, ({f(l) f(2)}H n {f(l)’ f(z)}H n N—l{fu)’ f(z)}H

b {0 g, @Y ik, p0, )
+ {F0 g, @) 4 ko, je)
+ N { Moo SO O+ Ny e £ T £ 1)

=: g, the last one being analogous. We first use Lemma [2.16| with r' ~ 71,

and the bound (3.60)) follows again by (2.91)), (2.79)), (3.59)), (2.56)), (3.51]). Let consider only the term
N{szmf(l) 1@

-1 —1
r 71,8 ~ s and s ~ 81 + 0 /2, where o := s — s1. Since (17871) §2(178—1> <257t
s1+0/2 s
with the § in (3.53)), by (2.91)) we get
[Xgllsyrn < C(n)d'N|| Xy
@56)

\k\ZNb

N
o
o)

—N%(s—s
C(n)d— N 5 N =072 X i [[s, | X 20 s,

<
7!' STUX o lls,r 1 X s s

for every N > Nj. The proof of Proposition is complete. H

The quasi-Toplitz character of a function is preserved under the flow generated by a quasi-Toplitz
Hamiltonian.

Proposition 3.2. (Lie transform) Let f,g € QF (No,0,p) and let s/2 < s' < s, 7/2 <71/ <r.
There is ¢(n) > 0 such that, if

o < c(n)d, (3.63)

with § defined in (2.65)), then the hamiltonian flow of f at timet =1,

e . D(s',1") — D(s,7),

is well defined, analytic and symplectic, and, for

Ny > max{Ny, N}, N::exp(max{i Ll 5 1EL 8}), (3.64)

(recall (3.2)), ' < u, 0" > 0, satisfying

RING T InNg <pp— !, (64+K)(NHETInN, <6 —60, 2(N) P In®> Nj < b(s—s'),  (3.65)
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we have e*V7g € Q (N{,0', ') and

16991 g < 2010

Moreover, for h=0,1,2, and coefficients 0 < b; < 1/j!, j € N,

HZb ad’ (g

j>h

Note that (3.66]) is (3.67) with h =0, b; :=1/4!

PROOF. Let us prove (3.67). We define

s NGO ! = (05 1Hf||er0 ) ”g”ero, oO,u

GO =g, GU .= adgc(g) = ady(GU V) = {£,GU"DY j>1,

and we split, for h = 0,1, 2,
hi=3 560 = Zb GO +3 " b;GD = G2+ Gy
J>h jzJ

As in (2.97) we deduce
1Xaw s < (Cn)ia~ Y 1 Xy 1L,

where ¢ is defined in (2.65). Let

Vji=0,

0= C(n)ed | Xyl < 1/(2€)
(namely take c¢(n) small in (3.63)). By using jjbj < /5! < el we get

||XG>JH5 r < Zb n)jo~ 1HXst r)? HXg”sw >
i>J

In particular, for J =h =0, 1,2, we get
[Xaznlsm < 277h||Xg||s77"-

For any N > N/, we choose
J:=JN):=InN,

and we set

/1 . ~>h "o >h __ v "
N’_G<J’ N'_GZJ7 G_ — N+GN.

glis,r -

(3.66)

(3.67)

(3.68)

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)

Then (3:67) follows by Lemma [3.5] (with N, ~ N§,s ~ s',7 ~ 17, 0 ~ 0,y ~ /) and ([3.72), once

we show that

||G ||s ;' ,N,0’, 5,7 N”XGX,” frh > ERd
with h =0, 1,2 (for simplicity ||g||z = ||g||s rNo.O u)
For all N > N} > ¢€® (recall (3.64),
-
N”XGZJHS’,T' < N277J||Xg||s,7" < nh(N277‘] h)HgHT -
.79 hg—J+h+1 h nro—J T
n e HgHw_ ||9||w>

proving the second inequality in (3.74)). Let us prove the first inequality in (3.74)).
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CLamM: Vj=1,...,J — 1, we have GY) ¢ Qg,r,(N, 0, 1) and

IGONT o vy < Mlglls (€38 HIFIIT ) (3.76)

(for simplicity | fIIT,. == 1|2, no.6. ,)- This claim implies (using §b; < e’)

H Zb anl|l”

(@ G0SE)

s’ ,r' ,N,0",n"
(BN ()
< gl an < 77 "gllZ,

for ¢ small enough in (3.63). This proves the first inequality in (3.74]).
Let us prove the claim. Fix 0 < j < J — 1. We define, Vi =0, ..., 7,

_ ! 9/ _9 _ a2/ _ o
pimp—iP T gm0l =i L sms 2 (3.77)
J J J
and we prove inductively that, for all ¢ =0, ..., 7,
lad (DT, 3.0, < (C G NI (3.78)

which, for ¢ = j, gives (3.76]). For ¢ = 0, formula (3.78)) follows because g € QSTJ(NO7 0, 1) and Lemma

Now assume that - ) holds for ¢ and prove it for i+ 1. We want to apply Proposition |3.1] mto the
functions f and adf( ) with Ny ~» N, s ~ 8;,81 ~ Sit1, 0 ~ 6;,01 ~> 0,11, etc. We have to verify
conditions (3.51)) that reads

KNPE < i — pivr, i NPTP 4+ RNPTE < 0,00 — 05, (3.79)
INe™™ TS <1, b(si — si) N > 2. (3.80)
Since, by 7
Hi = Hit1 = ,u—.u’7 Oiv1 —0; = 9f0/7 5 — 8401 = S—’s’
J J j

and 7 < J = InN (see (3.73)), 0 < b < L < 1 (recall (3.2)), ¢/ < pu < 6, the above conditions

(3-79)-(3.80)) are implied by
KN IInN <p—p', (6+8)NETITInN <@ -9,
ONe N'(s=s0/2IN 1 = p(s— )NV > 2In N . (3.81)

The last two conditions (3.81) are implied by b(s — s')N® > 2In* N and since N > e'/17° (recall
(3.64)). Recollecting we have to verify

KN PInN <p—p', 6+r)NEIInN <@ —0, 2N I N <b(s—5). (3.82)

Since the function N — N~7InN is decreasing for N > e'/7, we have that ([3-82) follows by (3.64)-
3.65). Therefore Proposition implies that ad“‘l( ) € Q siirorips Vo big1, piv1) and, by (3.52
3.35), we get

b

i+1 _
||adf+ (g) z—;+1,7‘i+1,N,01‘+1,}Li+1 S C/(Sl 1||-f|| ||adf( ) S“’I‘I,N euﬂz (3'83)

where 5
8 ;:min{1—8i“,1—”“}>. (3.84)

Si T J
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and ¢ is defined in (2.65)). Then

I s o AT, 0o )T
2 Tl
proving by induction. ®
4 An abstract KAM theorem
We consider a family of integrable Hamiltonians
N i= Ny, 5€) 1= e(€) +w(€) -y + 0(€) - 22 (1.1)

defined on T x C" x £77 x 77 where 7 is defined in (2.83)), the tangential frequencies w := (w1, ..., wy)
and the normal frequencies €2 := (€2;) cz\7 depend on n-parameters

E€e OCR", O bounded with positive Lebesgue measure .
For each ¢ there is an invariant n-torus
To =" x {0} x {0} x {0}
with frequency w(§). In its normal space, the origin (z,%) = 0 is an elliptic fixed point with proper

frequencies 2(£). The aim is to prove the persistence of a large portion of this family of linearly stable
tori under small analytic perturbations H = N + P.

(A1) PARAMETER DEPENDENCE. The map w: O — R", £ — w(£), is Lipschiz continuous.
With in mind the application to NLW we assume
(A2) FREQUENCY ASYMPTOTICS. We have
Qi) =vi2+m+al§)eR, jeZ\T, (4.2)
for some Lipschiz continuous functions a(§) € R.

By (A1) and (A2), the Lipschiz semi-norms of the frequency maps satisfy, for some 1 < M; < oo,

jw[ P+ Q5 < My (4.3)
where the Lipschiz semi-norm is
: Q&) — QN)|oo
‘Q|101£> = sup | (6) (77)| . (4.4)

encoen €=
(A3) REGULARITY. The perturbation P : D(s,7) x O — C is A-regular (see Definition [2.8).
In order to obtain the asymptotic expansion for the perturbed frequencies we also assume
(A4) QUASI-TOPLITZ. The perturbation P (preserves momentum and) is quasi-Téplitz, see (4.13).
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Thanks to the conservation of momentum we restrict to the set of indices
1= { (k,1) € Z" x Z, (k,1) # (0,0), |I] < 2, where (4.5)
orl=0, k-j=0,
orl=o0e, ,meZ\T, k-j+om=0,
orl=cey,+oe,, mneZ\T,k-j —|—Um—|—0'n=0}.

For nn > 0 we define the set of Diophantine vectors

n 77 n
Dn::{weR :|w'k|21+|k|n,Vk€Z \{O}} (4.6)

Let

P = Py(z) + P(z,y,2,2) where P(z,0,0,0)=0. (4.7)

Theorem 4.1. (KAM theorem)
I) Suppose that H = N + P satisfies (A1)-(A3). Let v € (0,1) be a parameter and X := /M. If

) (48)

e = max {2/ Xp, [, .77 | X
is small enough, then there exist:
e (Frequencies) Lipschiz functions w™ : O — R", Q®° : O — L such that
W™ — w| + Aw™® — [P Q% — Q| +AQ® - QP < Cre, (4.9)
and |w™|"P, |Q>°|P < 207 .

e (KAM normal form) A Lipschiz family of analytic symplectic maps

D :D(s/4,7/4) X Oco 3 (Toos Yoo, Weo3 &) — (z,y,w) € D(s,r) (4.10)
close to the identity where
2
O = {E€ONW D)+ [wX(€) h+0%(€) 1] > ﬁ (k1) €T
where I is defined in (4.5) and D, 2/s in (4.6) withn = 72/3} (4.11)
such that,
H>(58) = Ho®(8) =w?(§) Yoo + Q&) - ZooZoo + P has P25 =0. (4.12)

Then, V¢ € Ou, the map T — P(20,0,0;&) is a real analytic embedding of an elliptic, n-dimensional
torus with frequency w™(§) for the system with Hamiltonian H.

IT) Assume (A4). If, for some 1 < 0,1 <6, N >0,

€ 1= max {’7_2/3||XP00||S,7‘ P

. N,g,u} (4.13)

is small enough, then

¢ (Asymptotic of frequencies) There exist a5 : O} — R where

272/3

1+ k|7’

Ok i={€€ 0+ () k+p| = VEEZ", peZ, (kp)# (0,00}  (414)
with 7> 1/b (recall (3:2)) and

sup [Q7°(8) — Q;(§) — ag(y ()] < 72/365

| ?
oo

Vil > Coy R (4.15)
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Part I) of Theorem follows by Theorem 5.1 of [2] because the KAM condition implies
hypothesis (H3) with d = 1 and p = 2/3 of Theorem 5.1-[2]. Note that condition is weaker than
the KAM condition in [24], allowing a direct application to the nonlinear wave equation.

There is only a minor difference in the settings of Theorems[4.1)and Theorem 5.1-[2]. In assumption
(A1) the 7tail” Q; — v/j%2 +m = a(€) is independent of j, unlike in [2] it tends to zero as j — oo.
This difference does not affect the iterative part of the KAM theorem. The decay of the tail was used
in [2] (as in [24]) only to prove the measure estimates.

The main novelty of Theorem is part IT). In the next Theorem we verify the second order
Melnikov non-resonance conditions thanks to

1. the asymptotic decay (4.15]) of the perturbed frequencies,

2. the restriction to indices (k,1) € I in (4.11) which is a consequence of the momentum conserva-
tion, see (A4).

As in [2], the Cantor set of "good” parameters O in (4.11]) and OF in (4.14]), are expressed in terms
of the final frequencies only (and not inductively as in [24]). This simplifies the measure estimates.

Theorem 4.2. (Measure estimate) Suppose
wE)=w+ A, @R, AcMat(nxn) , Q) =vV2+m+ad ¢, acR” (4.16)
and assume the non-degeneracy condition:
A invertible and 2(A"Y)Ta ¢ z"\ {0}. (4.17)
Then, the Cantor like set O, defined in , with exponent
7 > max{2n + 1,1/b} (4.18)
(b is fized in ([3.2))), satisfies
O\ O | <CO(T)p" 19*3  where  p:= diam(0). (4.19)
Theorem %IS proved in section @ The asymptotic estimate is used for proving the key
511)

inclusion |

5 Proof of the KAM Theorem [4.1]

In this section we revisit the KAM scheme of [2] for proving part IT of Theorem (4.1

5.1 First step

We perform a preliminary change of variables in order to improve the smallness conditions. For all

e wil(D,yQ/s) NO =:0y (51)
(see (4.6) we consider the solution
Pook ik
Foo(z) := — e (5.2)
o
of the homological equation
—adn Foo + Poo(z) = (Foo) - (5.3)

Note that for any function Fyo(z) we have ||Foo||, = [ Xy, ||s,r» see Definition
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We want to apply Proposition with s,7,s', 7" ~ 3s/4,3r/4,s/2,7/2. The condition (3.63) is
verified because

62, @6 3 (z13)
1Fooll3s/ar = 1 XEpll3sjar < Cls)v < C(s)eo
and g¢ is sufficiently small. Hence the time—one flow
Do = e300 : D(sg,10) X Og — D(s,7) with sg:=s/2, 19 :=7/2, (5.4)

is well defined, analytic, symplectic. Let pg < p, 9 > 6, No > N large enough, so that (3.65)) is
satisfied with s, 7, No, 0, u,~ s,7, N, 0, and s, 7", N§, 0", ' ~~ so,70, No, 0o, po. Hence (3.66) implies

le* <00 PI3, < 2/Pl S0 (5.5)

70,No,00,H0
Noting that €400 Py = Pyo and P N = N + adp,, N the new Hamiltonian is

HO = ¢2dro0 [ = ¢2dFoo N 4 2300 Py + 2P0 P = N+ adp,, N + Py + e*dFo0 P (5.6)

" <P00> +N+€adF00p:Z N0+P0.
By (5.5) and (4.13) we have that
HPOHZ:),T‘(),N(),QOHU.O < 2’}/6 ‘ (5~7)

5.2 KAM step

We now consider the generic KAM step for an Hamiltonian

H=N+P=N+Pg’+(P-Pg (5.8)
where P2? are defined as in (3.38).

5.2.1 Homological equation

Lemma 5.1. Assume that
|Q Vi er*asu)'—' | Vil > g (5.9)

for some ay,a_ € R. Let
A =w-k+Qy —Qp, Apmm =w-k+|m|—|n|.
If Im|, |n| > max{j., vVm} and s(m) = s(n), then

m |m — n 1 1 m2 1 1
2 [n][m] im| ~ |n| 2 \|m[> * n|?

Proor. For 0 < z <1 we have |1+ x —1—2/2| < 2?/2. Setting x := m/n? (which is < 1) and
using (5.9), we get

2
m ~ m
Q, —|n|] — =— — <4
== g = | < i+ 3
An analogous estimates holds for €2,,,. Since |Ag ., — A mnl = |Qm — |m| — Q,, + |n|| the estimate
(5.10) follows noting that ag(m) = as(,). B
For a monomial my ; o g := eF Ty 2258 we set
Mg a, if k=0 a:ﬂ
[Mki0,8] = he? ' (5.11)
0 otherwise.

The following key proposition proves that the solution of the homological equation is quasi-T6plitz.
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Proposition 5.1. (Homological equation)
I) Let K € N. For all £ € O such that

w(€) - k+ Q) 1] > <,3>T, V(k,1) €I (see (LF)), |k < K, (5.12)

then VPI(?) H?“TH, h=0,1,2 (see , , the homological equations

—adNFI(j” +P§(h) = [P}j”}, h=0,1,2, (5.13)

have a unique solution of the same form F(h) € Hnuu with [F(h)] =0 and

X i [l < v IKT ||XP<,L (5.14)
In particular F[%2 = F( ) F(l) + FI(<) solves
—ady F? + P22 = [P, (5.15)
II) Assume now that Pl((h) € QZ,T(N(),H,/.L) and (&) satisfies for all |j| > ON§ where
N; := max {NO *1/3KT+1} (5.16)
for a constant ¢ :== é(m, k) > 1. Then, V¢ € O such that
~42/3
|W(§)'k+P|ZW7 V| <K, peZ, (5.17)
we have F[(?) € QST’T(NJ,G,M), h=0,1,2, and
1F N g 0 < 46 TIPS v (5.18)

PROOF. The solution of the homological equation ([5.13]) is

P,

h . k 5 i

F§<) =1 Z A LA klylzazﬁ Apia,p i =w(§)  k+QE)  (a—p5).
k| <K, (k,i,o,B)#(0,4,a,a) ki, 8

2it|al+|Bl=h

The divisors Ag ;g # 0, V(k,i, o, 8) # (0,4, @, a), because (k,i,a, ) # (0,4, a, @) is equivalent to
(k,a — ) € I, and the bounds hold. Ttem I) follows by Lemma

In item IT) we notice that the cases h = 0,1 are trivial since Iy ,Fg = 0.

When h = 2 we first consider the subtlest case when P1(<2 )
lal = 18] =1 (see (3.36)), namely

contains only the monomials with ¢ = 0,
P:=rY = > Prmn€® 27 (5.19)
|k|<K,m,nc€Z\T
and, because of the conservation of momentum, the indices k, m,n in (5.19)) are restricted to
jok+m—-—n=0. (5.20)

The unique solution FI(?) of (5.13) with [FI(?)] =0is

P .
F=F == Y S Gk Dpmm = w(E) kD (6) — Qa(€)  (5.21)
k| <K, (kym,n) £(0,m,m) — mon
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Note that by (5.12) and (5.20) we have Ag ., # 0 if and only if (k, m,n) # (0, m, m).
Let us prove (5.18)). For all N > N§

. Py k-
Iy, F = —i g ZDMR ik (5.22)
|| < K, ], In|>6N

and note that " is (N, u)-low momentum since |k| < K < (N§)? < N® by (5.16) and 7 > 1/b. By
assumption P € Qz’r, No.o.u and so, recalling formula (3.45), we may write, VIV > Ny > No,

0,1
lyg,P=P+N 1P with P:= > Preom—n€® %27, € T, (N, 0, 1) (5.23)
|k|<K,|m|,|n|>0N
and
1P s, 1X5 sy 1 X5 15,0 < 201PIIS, - (5.24)
We now prove that
i pk,m_" ik-x = A
F = Z e 22, Apma i =w(&) k4 |m|—|n], (5.25)

k| < K fmln|>6N Dkmn

E19)
is a Toplitz approximation of F. Since |m|,|n| > 0N > ONJ > N > kK > |j-k| by (3.1), we

deduce by that m,n have the same sign. Then
B = (&) k] — [n] = w(€) - b+ s(m)(m —n), s(m) := sign(m),
and F in is (N, 6, p)-Téplitz (see (3.15)). Moreover, since |m| — |n| € Z, by (5.17), we get
Apmn| =230, Yk <K, m,n, (5.26)

and Lemma and ((5.25) imply

HX]:‘HS,T < '7_2/3K7||X75||s,r . (5.27)
The Toplitz defect is
N7LF = My F —F (5.28)
622,629 Py mn . pk,m—n)eik,xz 3
Ak,m,n Ak,m,n men

|K|<K.|ml.In|>0N

Pk,m,n Pk,m,n Pk,m,n - Pk,m—n ik-x _
g A — A + A e Zmzn
k<K [ml |n|>0N ~ "M Skmon kym,n

(5-23) 2 : Ak,m,n - Ak,m,n 1 Peman e, -
= Pk,m,n A A + N - | € Zmin -
|k| <K [ml,In|>6N Foman Sk mn Faman

By (5.10]), |m|,|n| > 6N > N, and |m — n| < kK (see (5.20)) we get, taking ¢ large enough,

X mkK 2y m? ¢ (K BI8 . (ey/3 A28
- < N N3 < ANT AT < . .
[Bkmn = Bremnl < Sim 5+t 3E S oy (N +7) < mln{ o i (- (529

Hence
EZ.ED) 123 423 42/

|Akmnl 2 [Akmn] = [Akm, ko (k)™ 2K™ = 2(k)7 30
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Therefore ([5.29)), (5.26]), (5.30) imply

|Ak,m,n — Dpymnl < /3 2(k)" (k)" < LKQT
|Ak7m,n |Ak:,m7n| - 2N 72/3 72/3 o N’Y

and (5.28)), (5.26)), and Lemma imply

L _ L
||Xﬁ||s,r§C'Y 1K27HX7’||S,T+'Y Q/BKTHXﬁ”s,r < Aoy 1K2THPHZ,7~ (5.31)

In conclusion (5.14), (5.27)), (5.31]) prove (5.18]) for F.

Let us briefly discuss the case when h = 2 and P}(f
la] =2, |8] = 0 or viceversa (see (3.36))). Denoting

P = PI({Q) = Z P;wnmeik'”“'zmzn7 (5.32)
|k|<K,m,n€Z\T

)

contains only the monomials with ¢ = 0,

we have

. Py ”
HN,9,H‘7: =1 E w-k+ i;n7n+ Q elk ? 2m2n
k| <K, |m],|n|>0N m "

where |w -k + Qp + Q| > (|m| + |n])/2 > ON/2 since |m|,|n| > ON and |k| < K < NP®. In this case
we may take as Toplitz approximation 7 = 0. B

5.2.2 The new Hamiltonian H™"
Let F = F;Q be the solution of the homological equation (5.15)). If, for s/2 < s, < s, r/2 <ry <r,

the condition s ,
|F |sT,r,Ng,9,u <c¢(n)dy, Oy :=min {1 — f, 1-— 7+} (5.33)

holds (see (3.63))), then Proposition (with s" ~» s, 7" ~ 14, Ng ~ N{ defined in (5.16)) implies
that the Hamiltonian flow €7 : D(s,,ry) — D(s,r) is well defined, analytic and symplectic. We
transform the Hamiltonian H in (5.8)), obtaining

253 1
HY =etrg B2 Hopadp(H)+ Y —ad)(H)
: J:
jz2

. 1
N+ PE 4 (P~ PE%) +adpN +adpP + Y —adj(H)
322"
: 1
b= N PR+ P - PRt adpP+ Y —adf(H) == N 4 P
i>2 7
with new normal form
Nt =N+N, N=[PP|=¢+0-y+Qz-2
01 1= Oy ym0=0(P), i=1.on, Q= Q)jeng, =[P =02 ,0.0(P)  (534)
(the () denotes the average with respect to the angles x) and new perturbation
1
Pt i=P— P’ +adp P +adp P74+ ) - —adj,(H) (5.35)
=2
having decomposed P = P=% 4 P23 with P23 .= Z P see (3.36).

h>3
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5.2.3 The new normal form V7T
The next lemma holds uniformly in the parameters &.

Lemma 5.2. Let P € er(No,H,u) with 1 < 0,4 <6, Ng>9. Then

191, 192000 < 2IPPNT 1 ng 0.0 (5.36)
and there exist a1+ € R satisfying
|ai| <2HP ||97"N07 0,
such that
Q) — gyl < —HP O rNo o Y1312 6(No+1). (5.37)

Lemma is based on the following elementary Lemma, whose proof is postponed.

Lemma 5.3. Suppose that, VN > Ny > 9, j > 0N,
Qj =an + bN’jN_l with (lN7bN’j eR, |(1N| <cy, |bN’j| <cy, (538)

for some ¢1 > 0 (indipendent of j). Then there exists a € R, satisfying |a| < ¢1, such that

20c¢ .
[o? |<|7|1, V5] > 6(No +1). (5.39)

PROOF OF LEMMA The estimate on & is trivial. Regarding  we set (recall (3.36), (3.42))

P() —Hk 0H|a‘ 18|= 1H( )P Z Z]Zj

J

since, by the momentum conservation (2.85)), all the monomials in PO(Q) have @ = 3 = e;. Note that
[P]; is defined in (5.34). By Lemma [2.19

ED
[P < 1 Xpeollr < HP(Z)IIT = P)|T (5.40)

We now prove (5.37) for j > 0 (the case j < 0 is similar). Since P ) ¢ OT(N,0, ), for all N > Ny,
we may write HNﬂMPéZ) = ]50(2]2, + N71P(5212, with

Pézjz, ZszzjeT(Nﬁu 0(2 ZP iZ;
J>ON j>0
and @
X g [l X el s (1 X peo) [Ir < 2(1 P 17 < 2P|, (5.41)

For |j] > 0N, since all the quadratic forms in (5.41)) are diagonal, we have

Q; = [Pl; = P+ N"'Fj = ant + N 'by,

where ay 4 = 15j is independent of 7 > 0 because 150(2]2, € T.(N,0, 1) (see (3.15))). Applying Lemma

to ]5(52]2, and }50(2]2,, we obtain

o+ < 1Xp llor < = 2PDYL,, oyl = 1B < X pe2), I < 2P

S,

Hence the assumptions of Lemma [5.3| are satisfied with ¢; = 2\|P(2)||£T and (5.37) follows. m
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PrROOF OF LEMMA [5.3] For all Ny > N > Ny, j > 6Ny we get, by (5.38),

lany — an,| = by, ;N7 ' — by ;N7 < 2e,N7F. (5.42)
Therefore ay is a Cauchy sequence. Let a := 1—1>I—ri-loo ay be its limit. Since |ay| < ¢; we have |a| < ¢;.
Moreover, letting N; — +o00 in , we derive |[a —ay| < 2¢, N~ VN > Ny, and, using also ,
1Q; —al <[Q; —an| +|axy —a] <3esN™', VYN >Ny, j>6N. (5.43)
For all j > 6(No + 1) let N :=[j/6] (where [-] denotes the integer part). Since N > Ny, j > 6N,
©-43) 3¢ 3c 18c 20c
- S S e R) ST

forall j > 6(No+1). m

5.2.4 The new perturbation P*
We introduce, for h = 0,1, 2,

(h) = 7_1||P h)H.s ,7,No,0,p €= Zg(h) 5 O = _1” ||s ,7,No,0, 1 (544)

and the corresponding quantities for P* with indices 7, s, NO+ S04,y
Proposition 5.2. (KAM step) Suppose (s,7, No,0,p1), (54,74, Ny, 04, puy) satisfy s/2 < s; < s,
r/2<ry<r,
N§ > max{Ng, N} (recall (5.16), 3-64)), 2(N; )~ "In*NJ <b(s—s4), (5.45)
RN PN <p—py, (6+r)(NSETIn NS <0, —6. (5.46)
Assume that .
EK76.' < csmall enough, ©<1, (5.47)
where T:= 27 +n+ 1 and d4 is deﬁned in . Suppose also that (5.9) holds for |j| > ON;.
Then, for all £ € O satisfying (5.12) P, denotmg by F := FI§2 the solution of the homological
equation (5.15), the Hamiltonian flow €T : D(sy,ry) — D(s,r), and the transformed Hamiltonian

HY :=eMrg =N, + P,

satisfies
SB) < 5;2K2%5—2 420 88116—(s—s+)K
Srl) < 5;2](2% (5(0) + é2) +eM 58116—(s—s+)K
e < STAET (@ 4 W 1 &%) 4 @ g57lem T K (5.48)
04 <O +C52Ke). (5.49)
The proof of this proposition is split in several lemmas where we analyze each term of P in (5.35)).
We note first that a— T
-3 ©33).649
||P<2 s,7,No,0,p = HP<2||.5 r,No,0,1 < ’yé, (550)

Moreover, the solution F = F(© 4+ F(1) 4 F) of the homological equation (5.15)) (for brevity F =
( ) and F = F<2) satisfies, by (5.18) (with Ng defined in (5.16)), (3.41)), (5. 44|)

||F(h)Hs NG ,0,1

Hence (5.47) and (5.51)) imply condition (5.33) and therefore ¢*¥ : D(s,,r,) — D(s,r) is well

defined. We now estimate the terms of the new perturbation P* in (5.35).

<K7e™, h=01,2 |F|L yio,<KE. (5.51)
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Lemma 5.4.

T 1 . T _
adp(P=?) + H —adl.(H <02 KYE?
H ( st NG04t ; J! r(H) st N Oy *
Proor. We have
1 1 1 1
Zﬁad%(H) = Zﬁad%(N—l—P) = Zﬁadi, (adF/\/')+Zﬁad%(P)
ji>2 §>2 §>2 §>2
Z i—1 PE%) J
= Zadl ([P ) + Z —ad
§>2 gt =2

By (5.45), (5.46) and (5.33) we can apply Propositionwith No, N§, 87", 0' 1,6 ~ NG, N, 54,
74,04, 1y, 4. We get (recall N§ > No)

E5.659
|3 S S G T2 O WV
]>2 S+,T+7No Ny
(31),(5-44)
< 6 PKYTE O (5.52)
and, similarly,
T
Hzi dJ 1 <2 _ HZ <2)
]>2 S+ar+7N0 N T (j+1)! 5474 NG04 it
" <2
X 1||F||STN*9;L||PK ||97’N09,u
(51, (5.50) -
< 6, KTE% . (5.53)
Finally, by Proposition [3.1} applied with
No, Nu, 51,71, 01, 1,6 ~ Ng, N sy, m, 04, iy, 6 (5.54)
we get
B52)
adp(P=? HIF v o || PS?
e ZUEIL 0.0l P=2 U 0
(-51).(G-50) -
< 6 KTye?. (5.55)

The bounds (5.52)), (5.53), (5.55), and © < 1 (see (5.47)), prove the lemma. m
Lemma 5.5. (5.49)) holds.
PROOF. By Proposition [3.1] (applied with (5.54)) we have

T
adp(P=3 < p=3
H F( ) s+,r+,Ngr,0+,,u+ s’rNO,G,u” ||sv"1\/'07 0,1
E51), G40, 54D )
< 6 K™yE0©, (5.56)

and (5.49) follows by (5.35)), (3.40), (3-35), (5.44) (5.56), Lemma [5.4] and & < 30 (which follows by
(9.44) and (3.39)). m

We now consider Pih), h =0,1,2. The term adgP=3 in (5.35) does not contribute to P_f_o). On

the contrary, its contribution to P_(:) is

(FO, p®)y (5.57)

and to Pf) is
{(FO PO} 4 (FO pA)} (5.58)
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Lemma 5.6. H{F(O)’ P(3)}HZ+7T+,NJF79+7H+

< 6;17K?5(0)@ and

T

H{F(l)’ p(3)} + {F(O),p(4)} <« 511](?7(6(0) + 5(1))@.

sS4 NG04y

ProoF. By (3.52)) (applied with (5.54))), (5.51)), (5.44) and (3.39). =
The contribution of P — P[%z in ([5.35) to PJ(rh)7 h=0,1,2, is Pg}){

(h) T —1,—K(s—s4 ) .(h)
Lemma 5.7. ||P] | s N 04 s <ss e e

PrOOF. By (3.43) and (5.44). m
Finally, (5.48)) follows by (/5.35]), Lemmata (and (5.57)-(5.58])), Lemma and © < 1.

5.3 KAM iteration

Lemma 5.8. Suppose that el® 6(-1),552) €(0,1),i=0,...,v, satisfy

9 < CKE 40 K (5.59)
55_131 < C.K( e 4 &)+ C,elt) e K2
e < Ck(EO 4N r )+ P e =0, v—1,

where & = 6(0)—|—€Z(»1) +5§2), for someK,Cy, K, > 1. Then there exist £,,Cy > 0, x € (1,2) (depending

i

onX,Cy, K. > 0), such that, if

F0<E = &<C.ge KX vi=0,... v. (5.60)

PROOF. We first note that £41 < K/&; + éje*K*Qj. Then, applying (5.59) three times, we deduce

55323 « KYT3z2 +€§0)6—K*2j
ey < kU2 g M-k
5;1)3 < KV 4 6;2)6_}{*2
and, therefore a; 1= &3;
aj41 < CIKY Y302 4 a; Cre K% (5.61)

for some C; := C1(Cy) > 1.
CrAM: There is €9 > 0, Cs > 1, such that, if ag < ¢, then, for all j € N,

(S),  a; < Carap(2C,) e KXy :=3/2.
J J

We proceed by induction. The statement (S), follows by the assumption ag < €, for Coe K+ > 1.

Now suppose (S); holds true. Then (8),,, follows by (5.61) and

aj41 S 01K4j+3022ag(201)2j672K*Xj + Cgao(ch)jcleiK*(ijLXj)

< Cyag (QCl)jJrleiK*XH—l

because, choosing £¢oC5 small enough, Vj € N,

. , ] , , ] o C i
C1rYH3C2a2(20)) e 25X < C1RYT3C2e0a0(207) Y e X < (201)”'172 ag e KX
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and
01(201)j02a067K*(2j+Xj) < (201)j+1% a eiK*XjJrl .

The claim and (5.59)) imply that also &;11, £j42 satisfy a bound like (5.60). =
For v € N, we define
o K, := Ko,

o S . T
o 5,41:=5,—502"" 2 N an Ty4l =Ty, — T2 v2 N an D, = D(SV,TV),
= —v=2 Fo o —v—2 90
®  flut1 = Hy — o2 N 50 Opy1:= 0, + 002 /! 337

1 1
o N, := Ny2"" with Ny := é’y*l/SKg'H ,  p:i=max {2(7 +1), =0 ﬁ} . (5.62)

Lemma 5.9. (Iterative lemma) Let Oy C R"™ and consider HY =Ny + Py : Dy x Oy — C with
Ny = eo+w (&) -y+ 99 (€) - 2z in normal form such that Q) satisfies [@.2)). Then there is Ko > 0
large enough, ¢ € (0,1/2) such that, if

O = 7_1HP0HZ:J7T0,N0,90)H0 < €0, (5'63)

then

(S1), Y0 < i < v, there exist H' := N;+ P; : D; x Of — C with N; := ¢; +w(i)(§) -y—l—Q(i)(f) “2Zin
normal form, QW = (Qy))jez\z fulfills (5.9) for some a(ﬁ, for all |§] > 0;N;. Above OF := Oy, and,
fori >0,

07 = {€€ 0, WO k+ QN U = o Yk D) €1, k] < K
L+ k™
) 72/3
D) kel 2 e Vp) £ (0,0), [k < Koy, pe 2 (5:64)

Moreover,¥1 <i <wv, H = H™'o®" where ®' : D; x O} — D;_; is a (Lipschitz) family (in & € O})
of close-to-the-identity analytic symplectic maps. Define

2

_ h h — h _

=y e, e =y PN L N O = IR N (5.65)
h=0

(S2), Y0 < i < v —1, the &2, eV c® € (0,1) satisfy with K = 42741, O, = 4K?", K, =
80K0/4.

(S3), Y0 <i < v, we have &; < C*s_oe*K*Xi and ©; < 20.
(S4), V0 <i<v and V¢ € Of, denote (recall (5.34))

60 = VP lymosmsmo  and D) 1= 02, om0 (PA(E)
There exist constants &i) (&) € R such that

ROE)], 19|, a8 (€)] < 298, |fz§-“<§>—a§i§)<f>|s4ofy%, Wil = 6(N; + 1), (5.66)

uniformly in £ € OF.

PROOF. The statement (S1), follows by the hypothesis. (S2), is empty. (S3), is trivial. (S4),
follows by Lemma and (5.44]). We then proceed by induction.
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(Sl>u+1 We wish to apply the KAM step Prop051t10n.W1th N=N,,P=P, Ny=N,,0=0,
and N0 = Ny41,04+ = 0,41,... Our definitions in 2) (and 7 > 1/b) imply that the condltlonsﬂ
(5.45)-(5.46)) are satisfied, for all v € N, taking Ky > large enough. Moreover, since

5T = 6,41 = min {1 - s:fl 11— r?”ni} sothat 2772 < 8,4, <2771, (5.67)
14 v

and (53), the condition (5.47) is satisfied, for £y < &y small enough, Vv € N. Finally, by (S1),,

condition (5.9) holds for |j| > 6,N,, and (5.12) and (5.17) hold (by definition) for all £ € O 41- Hence

Proposition [5.2f applies. For all { € Oy, the Hamiltonian flow e*r o D,y X 0,1 — D, and we
define

H" = e Y = Nyy1 + Pyy1 : Dyy1 x Ol — C,
where (recall ((5.34)))

WD — ) 500 QA — ) 4 QW)
and @), Q") are defined by (54),. Let agfﬂ) = a(iy) + dgf) =a® 4 Z&ﬁ?. By (S3),- (S4), we
i<v
have that, by (£.2), (5.9) holds for Q*V and for all |j| > 6,41 N,11 > 6(N, + 1) for &y < ¢ small
enough.

(S2),,, follows by (5.48) and (5.62).

(S3),,1- By (52), we can apply Lemma and ([5.60) implies &,41 < C,g0e KX Moreover, for
€o small enough,

(5-49) _ (-67),(53).
01 = Oy (1+CoAKYE) < 200,

(S4),,, follows by Lemma5.2{and (S3),. ®
The fundamental estimate (4.15]) follows by (5.66]) and the following corollary.

Corollary 5.1. For all £ € N, O} the

0 =>"0", a Za satisfy [0, 4] < &0 (5.68)
v>0 v>0
and
oo KTH 2/3 . —1/3 4peT41

PRrROOF. The bounds in (5.68) follow from (5.66) and (S3),. Let us prove (5.69) when j > 0 (the
case j < 0 is analogous). For all Vv > 0, j > 6(N, + 1), we have

5 —ag < Z\Qﬁ")—df)ljtzmﬁha%

n>v

4072 +Z|Q(n)|+‘ -(S3 ) 507 Zgn-

n>v n>v

(5.66)

Therefore, Vv > 0, 6(N, +1) < j < 6(Nyy1 + 1),

N N, )
|Q;>o Aoo| « 07 50’7 +1 Z ’ 807 —1/3KT+12P(V+1 ZE
J

n>v n>v

and (5.69) follows by (S3),. m

2For example the first inequality in (5.45) reads N,41 > max{N,, 6771/3K5+1, N}.
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PROOF OF THEOREM II) We apply the iterative Lemma to HY defined in (5.6). The sym-
plectic transformation ® in (4.10)) is defined by

® := lim @000@00@10---0@”

V—00

with ®¢¢ defined in (5.4). The final frequencies w™ and Q°° are

w® = lim w® =w+ ) o®, 0% =1lim QW =Q+0° =0+ Q¥ (5.70)
V—00 ”;) V—00 ;}

The KAM iteration procedure that we are using is the same as that of the abstract KAM theorem
of [2]. To be more precise in [2] one solves the homological equation for all £ in a larger set
where only the Melnikov conditions hold (see Proposition I), but not . Clearly, the
solutions of the homological equation, the new perturbation P* and the new frequencies w™, Q1 in
, coincide with those in [2] on this smaller set of parameters.

The procedure is completed by extending w™, Q" to Lipschiz functions in the whole parameter
set. By the Kirszbraun theorem (see e.g. [2I]) the extended frequencies satisfy the bounds
for every & € Og. In the set of £ where and hold, the extended frequencies satisfy also

(-36)-(5-39)-
Lemma 5.10. O} C M;O] (see (4.14)) and (5.64)).
PrOOF. If & € OF then, for all |k| < K;, |I| <2,
WOk +AO© 1] > () h+ () 1] — o~ wO[Jk] —20% ~ QO]

2y . A Y
> KDY oW =2) 10| >
1K m‘ | V>i| oo 2 1+ |k

by the definition of K; in (5.62)), (53), and (5.66). The other estimate is analogous. B

As a consequence, for £ € O, Corollaryholds. Then (4.15)) follows by (5.70)), (4.2]) and (5.69).
This concludes the proof of Theorem

6 Measure estimates: proof of Theorem [4.2

We have to estimate the measure of

O0\OL = U Ry () U Rip(v*?) ﬂ w ! (Dyera) (6.1)
(k,1)EAQUAIUAT UAS (k.p)ezm+1\{0}
where
Ria(y) = i) = {6 € 0 ¢ () k4 0(0) 1] < 7 (62)
1+ k|7
~ ~ 2,}/2/3
2/3 T 2/3 — . 0o .
Rap (/%) = R, (7% = {€.€ 0 |(©) k] < 1 |
and
Ap = {(k,l) €T (see {@5)), I :h}, h=0,1,2, Ay=AJUA;, (6.3)

A} = {(k,l) EAg,l::I:(ei—i—ej)}, Ay = {(k,l) GAg,l:ei—ej}.

We first consider the most difficult case A; . Setting Ry (V) := Ri,e;—e; (7) we show that

U RuO)=] U Reiitn| <" (6.4)
| -] |

(k,1)eAy (kyij)eT
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where
= {(k,i,j)eZ”x (Z\T)? : (k.i,j) # (0,4,9), j~k+z’—j:O}. (6.5)

Note that the indices in I satisfy
il =14l <% |k| and & #0. (6.6)
Since the matrix A in is invertible, the bound implies, for € small enough, that
w®: 0 — w>e(0) is invertible and |(w™)7![MP < 2/|A71. (6.7)

Lemma 6.1. For (k,i,j) € I, n € (0,1), we have

n—1
T P
R (M < T k[ (6.8)
Proor. By (4.9) and (4.16])
W)k 4+ Q(€) — (&) =w™ (&) k+ ViZ+m— /jZ +m+ 1y 5(8)
where .
Irk,i,5(€)] = O(e7), |7hi|™ = O(e). (6.9)

We introduce the final frequencies ¢ := w°(§) as parameters (see (6.7))), and we consider

Jrii(Q)=¢ k+ Vi2 +m — /52 +m + 7,4,5(C)

where also 7y, ; == i ; © (w>®)~! satisfies . In the direction ¢ = sk|k|™* +w, w - k = 0, the
function fx; ;(s) := fr.i;(sklk|™" 4+ w) satisfies

Frij(s2) = frij(s1) (52 — s1)(|k| — Ce) > (s2 — s1)|k]/2.

Since |k| > 1 (recall (6.6)), by Fubini theorem,

1

‘{C €wH(0) + s (O < 1+27|7/<|TH < 1—7Zp|71;|77+1 '

By the bound follows. ®

We split
I=1I.UI. where I.:= {(k,i,j) €1 : min{|i|,|j]} > Cyy V31 + \k|70)} (6.10)

where Cy > C, in {4.15)) for 7o :=n+1. We set I :=1\I..

Lemma 6.2. For all (k,i,j) € I we have

R () SR, (29°73) (6.11)
(sce ©2)). iv.jo € Z\T satisfy
s(io) = s(3), s(jo) = (), liol = 1ol = Ii| = ] (6.12)
and
min|jol, iol} = [Coy /31 + |™)] (6.13)
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PROOF. Since |j| >y~ /3C,, by (&.15) and (4.16) we have the frequency asymptotic

QF () = ljl+ 5 ta- £+as(3>(£>+0<|m;>+0( Wg) (6.14)

\J\ 1]
By (6.6) we have |[i| —|j]| = [|io| — |Jo||<C|k| k| > 1. If & € O\RP, ;. (29°/%), since [il, || > po :=

min{|ig|, |jo|} (recall and , we have
W (€) - b+ Q7°(8) - 950(5)\ > w8 -k QT (E) — QF ()
—197°(6) = QF (&) = Q7°(8) + Q7 (9]

2/3
8~ it 131+ il
—lagty — aslio) — aai) T (o)
et _omt _mli =il _m ol Lol
1o pg 2 il 2 Jiol ljol
(6.12) 4,)/2/3 70 2/3 |k‘ 9 2,},2/3
I 1o T L[k

taking Cy in (6.13) large enough. Therefore £ € O\ R}, ;(v 2/3) proving (6.11)). m
As a corollary we deduce:

Lemma 6.3. ‘ U R (v )‘ <3t
(k,i,5)€I>

PROOF. Since 0 <y <1 and 7> 79 (see (4.18)), we have (see (6.2)) Ry ,; ;(v) C R

ri i (Y 2/3). Then
Lemma and imply that, for each p € Z,

2/3 n—1
E,i,j(’Y)’ W'
(k,1,3) €I, |i|=|jl=p + [l
Therefore 23 ) 23 .
T et e
U Rkaivj(’}/)‘ < Z 1 k|mo+1 < 1 k|
N + |k| + [K|
(k,i,5) €I k,|p|<Clk| k

proving the lemma. H

Lemma 6.4. ‘ U Rzlj('y)‘ <3t
(k,i,j)€T<

ProoOF. For all (k,i,j) € I< such that R, ;(y) # 0 we have (see (6.6))
minfif, ||} < Cy™V2 (1 + k™), (il = 4] < Clk| = max{]i], ||} < C'y 2 (1 + [k]™).
Therefore, using also Lemma and

n—1

U R0 < X > > %

(ki,j) €T ko i <Oy =13 (1Rl m0) (il =151 Clk|
2/3 n—1

<
Z 1+ |k|7— 0
which, by (4.18)), gives the lemma. ®

Lemmata imply (6.4). This concludes the case (k,I) € A5 . Let consider the other cases.
The analogue of Lemma is
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Lemma 6.5. For (k,1) € AgUA; UAS, 1€ (0,1), we have

n—1

np

[Ri(n)] < TR (6.15)

PROOF. We consider only the case (k,1) € AJ, | = e; + ¢, the other ones being analogous. By (4.9)
and (4.16)

Fra(€) == w™®(€) k+ QX&)+ Q) =@ k+ Vi +m+ /72 + m+ (ATk +23) - €+ 14 1(€) (6.16)

where

e (©)] = O(ey) , [rral™ = O(e). (6.17)

If K = @ = 0 then the function in (6.16)) is bigger than v/m and Ro;(n) = (). Otherwise, by ([4.17)), the
vector

a:=A"k+2a=A"(k+2(A"")"a) satisfies |a| >c=c(A,a@) >0, Vk#0. (6.18)

The function fi(s) == fri(sala| ™! +w), @-w = 0, satisfies

fra(s2) = fra(s1) (s2 — s1)(|a| — Ce) > (s2 — s1)lal/2.

Then (6.15]) follows by (6.18) and Fubini theorem. B
By Lemma and standard arguments (as above)

’ U Rkl(’Y)’ <y, ‘ U 7~3kp(72/3)‘ <23 pn1 (6.19)
(k1) EAoUALUAS (k,p)ezZn+1\{0}

and |w™(D.2/s)| <~*/®. Finally (6.1), (64), (6-19) imply (£.19).

7 Application to DNLW

For 7= (ji,...,ja) € Z%, & = (01,...,04) € {£}? we denote & - J:= o1j1 + ... + 04ja, and, given

5wt (of degree d).

7 — (T ). : o .
(uj,uj)jez = (uj ,u; )jez, we define the monomial u? :=u

7.1 The partial Birkhoff normal form

We now consider the Hamiltonian (T.4) when F(s) = s*/4 since terms of order five or more will not
make any difference, see remark
After a rescaling of the variables (and of the Hamiltonian) it becomes

H = Z/\]ujuj_ + Z u;f =N+G (7.1)
jez Fezt,5e{+}4,5.5=0
! 41
= Y Mg + T Cogu®@®, Gy (lel +18D! _

!Bl alpl’

JEL lor|+[8]=4, 7 (e, 3)=0

where (ut,u”) = (u, @) € £*P x £*P for some a > 0, p > 1/2, and the momentum is (see (2.85)))

m(e,B) = jla; = B;).

JEL

Note that 0 < Gqo,5 < 4! (recall a! = IL;eza;!)
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Lemma 7.1. For all R > 0, Ny satisfying ., the Hamiltonian G defined in ) belongs to
Q% (Ny,3/2,4) and
G np3/2.4 = 1 Xcllr < R?. (7.2)

PROOF. The Hamiltonian vector field X¢ := (—i0;G,10,,G) has components
00,0 G = io Z Gl Buu c=+,1€7Z,
la|+|8|=3,7(c,8)=—0l

where
1 l,—
Goly=(u+D)Garers:  Gop=(0+1)Gagre -

Note that 0 < Glofﬁ < 5! By Definitions and

1 a Lo | o= 2 Yz
Xola=g sw (O e Y clguen))
l€Z,o=%

R fulla.polllap<R | +181=3 7(c8)=—o1
For each component

l, _
> Golglu®||a”| < > g [ugy |ugy

|al+]8]=38 ,7(a,8)=—0l o1j1+02j2+03j3=—0l

< (ﬂ*ﬂ*ﬂ)

—ol
where @ = (U)iez, 0; = \uj| + |, and * denotes the convolution of sequences. Note that ||@[/q, <
lullap + [|t@lla,p- Since €7 is an Hilbert algebra, ||@ * @ * i|q,, < [|@]3 ,, and
N\ 12
|Xcllr < R7* sup < Z e2a‘l|(l>2p|(ﬁ*ﬁ*ﬁ)_gl| > (7.3)
llulla,pslltllap<R N\ ez ey
< R sup |G * @ * il 0 < R™1 sup all, < R*.
llulla.p,ll@lla,p <R lella,plltlla,r<R

Moreover G € H}u“7 namely G Poisson commutes with the momentum M := Z Ju;u;, because (see
JEZ
(12.80)) .
{./\/l,u~ = —id - Jug . (7.4)
We now prove that, for all N > Ny, the projection Iy 3/24G € Tr(N,3/2,4). Hence (7.2) follows by
(7.3) (see Deﬁnition . By Definition (with g ~ G, no (x,y)-variables and 2z = u, Z = @), in
particular (3.12 , 13)), we get

! !
Ungz/peaG = g G (w)ug, with
m|,|n|>3N/2,0,0'=+
’ o0’ _
Gfrfn(wL) = E G7 s mn ua”? and

Sjezlila;+B8;)<aNl,

7(a,f)=—0om—oc'n

1 1 4!

G = —G = =12=G_;
a,B,m,n 9 _ 5mn atemten,S 9 _ 6mn (1 + 5mn) a,B,m,n
+,— T+

Ga,ﬁ,m,n = GO““@mﬂJ"ew =24=0G, a,B,mn "

These coefficients trivially satisfy (3.15) (with f ~ G), so ly 3/24G € Tr(N,3/2,4). m

We now perform a Birkhoff semi—normal form on the tangential sites

IZ{JL?JTL}CZa J1<<Jna (75)
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recall (2.83). Let Z¢:=Z\ .

Set
_ 1 _ L . =
G:= 3 E Giju;u; ujuj . Giy=12(2-46;), G:= g ug . (7.6)
iorj€Z jert, ze{+,—}4,
F-7=0,7e(z¢)4

By (7.2) and noting that G, G are projections of G, for R > 0, Ny satisfying (3.1)), we have

||6H£,No,3/2,4’ HG||£,NO,3/2,4 <R?. (7.7)

Proposition 7.1. (Birkhoff normal form) For any Z C Z and m > 0, there exists Ry > 0 and a
real analytic, symplectic change of variables

I': Brja X Brja CU*P x4*P — Bpx Br CL"P x{*F, 0<R< Ry,
that takes the Hamiltonian H = N + G in (7.1)) into
Hgiihot = HoT' = N+G+G+ K (7.8)

where G,G are defined in (7.6) and

K= > Ky zul (7.9)
yez?d, Fe{+,—}24,
A>3, 5-7=0
satisfies, for N := Nj(m,Z, L,b) large enough,
”K”£/2,N{),2,3 <R'. (7.10)

The rest of this subsection is devoted to the proof of Proposition We start following the
strategy of [25]. By (2.80) the Poisson bracket

{N,uG} = —id - \ju (7.11)
where Ay := (X\j;,...,\;,) and \; := A;(m) := /52 + m.
The following lemma extends Lemma 4 of [25].

Lemma 7.2. (Small divisors) Let 7€ Z* & € {+}* be such that & - 7= 0 and (up to permutation
of the indexes)

I=O7iaﬁé07 (7.12)

1=1
or j=(0,0,9,9), ¢#0,01 =02, (7.13)
or j=(p,p,—p,—p), p# 0,01 =02, (7.14)
or  J#(p.p,q,q)- (7.15)

Then, there exists an absolute constant c. > 0, such that, for every m € (0, 00),

CiIM

|G- Ap(m)| > M+ m)pl

>0 where no := min{<j1>7 <j2>, <j3>7 <j4>} . (716)
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PROOF. In the Appendix. B

The map I := ¢*I7 is obtained as the time-1 flow generated by the Hamiltonian

i "
F:=- E ul (7.17)
> Y3
7-5=0,5-2570 g )\]
and j¢(Z¢)%

We notice that the condition 7-6 = 0,0 Ay # 0 is equivalent to requiring that & = 0 and 7, & satisfy
(7.12)-(7.15). By Lemma [7.2] there is a constant ¢ > 0 (depending only on m and 7) such that

7:6=0,0-A\;#0and j¢ (Z9)" = |G -\]>e>0. (7.18)

We have proved that the moduli of the small divisors in ((7.17)) are uniformly bounded away from zero.
Hence F' is well defined and, arguing as in Lemma we get

I Xpllr<R?. (7.19)
Moreover F € H3" because in (7.17) the sum is restricted to @ - 7= 0 (see also (7.4)).
Lemma 7.3. F in (7.17) solves the homological equation

{N,F}+G=adp(N)+G=G+G (7.20)
where G, G are defined in (7.6)).

PrOOF. We claim that the only 7€ Z* & € {£}* with 7- @ = 0 which do not satisfy (7.12)-(7.15)
have the form

Jj1=1J2, j3s =ja, 01 = —09, 03 = —0oy4 (or permutations of the indexes). (7.21)

Indeed:
If 7=0, Z o; = 0: the o; are pairwise equal and ([7.21]) holds.

If 7=1(0,0,q,9), ¢ # 0, and 01 = —09: by 7- & = 0 we have also 03 = —o4 and (|7.21)) holds.
If 7= (p,p,—p,—p), p # 0 and 01 = —0o9: by J- & = 0 we have also o5 = —o4 and (7.21)) holds.

If j1 = Jj2, js = Jja, j1,Js # 0, j1 # —Js:

CASE 1: j1 # j3. Then 0 =& 7= (01 + 02)j1 + (03 + 04)J3 implies 01 = —09, 03 = —04.

CASE 2: j; = j3 and 80 j1 = jo = j3 = js # 0. Hence 0 = (01 + 03 + 03 4+ 04)J1 and follows.
By (7.17) and (7.11)) all the monomials in {NNV, F'} cancel the monomials of G in except for

those in G (see (7.6)) and those of the form lup|?|ug|?, p or ¢ € Z, which contribute to G. The
expression in ([7.6]) of G follows by counting the multiplicities. B

The Hamiltonian F € H3" in (7.17) is quasi-Toplitz:

Lemma 7.4. Let R > 0. If Ny := No(m,Z, L,b) is large enough, then F defined in (7.17)) belongs to
0% (Ny,3/2,4) and
||F||£,N073/274 <R®. (7.22)

Proor. We have to show that F' € Hﬁuu verifies Definition For all N > Ny, we compute, by
(7.17) and Definition (in particular (3.12))), the projection

_ E o0’ L\, o, o
HN’3/274F— Fm’n (U) )umun (723)
[n],|m|>CN/4,
o,0’=%+ ,|om+o'n|<4NL
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where

. O
uliu’

Foo (wk) = 192 L 7.24
mm(w ) 1 Z gi)\i+0j)\j+0>\m+0/)\n ( )

lil+1jl<aNE, iorjez,
ojito jtomto/n=0, i#jif m=n

’
— a0 a0
= g E G o ut (7.25)
Sjlil(ej+8)<aNL, S icr(a;+85)>0,
om+4o/n=—n(a,B), |a|+|B8|=2, a#Bif m=n

and
oo 241 1

F> = — , Aagi= A — . 7.26
o m,m B! Nag + 0Am + '\, s zh: nlan =) (7.26)

Notice that in ((7.24) the restriction ¢ # j if m = n is equivalent to requiring

{(i,j,m,n), (0i,05,0,0")} #{(i,i,m,m), (0;, —0i,0,—0)},

see Formula (7.17) and (7.21)). Indeed if m = n, |i|+|j| < 4N and |m| > C'N/4 then, by momentum
conservation, we have a contribution to (7.24) only if 0 = —¢’ and hence |i| = |j].
We define the Toplitz approximation

=3 Foo(whugud  with Ego(wh) =3 E0T u (7.27)

where the indexes in the two sums have the same restrictions as in ([7.23)), (7.25)), respectively, and
the coefficients are

o 24 1 .
oo 2 Foo =0, (7.28)

a,B,m,n

a,B,m,n

alBl Na.g +alm| —aln|’
The coefficients in ([7.28]) are well defined for N > Ny large enough, because

Pastolml—olnll = ap+ohn — oAl = [Am — |mll = A — [nl]
§ _ m /1 1) .. 2m>é - 9
= o\ Tm) 2 i 2y (7.29)

(¢ defined in (|7.18))) having used the elementary inequality
IVn2+m—|n|| < 2| i (7.30)

Then (7.27)), (7.28)), (7.29) imply, arguing as in the proof of Lemma that
IXzllr < R?. (7.31)

For proving that F € Tz(Ny, 3/2,4) we have to show (3.15)) (with f ~» F), namely

E G = 25 (s(m),om + o'n) (7.32)
with o X
[0, 0 1 0,0
F75%(s,h) =~ F2%(s,h) =0, s=+, hel.

alBl Aag + sh’

Recalling ([7.28)), this is obvious When o' = 0. When ¢/ = —o we first note that s(m) = s(n). Indeed
the restrlctlon on the first sum in is (vecall (7-23)) |m|,|n| > 3N/2, |om — on| < AN, which

implies s(m) = s(n) by (3.1). Then

olm| — oln| = os(m)m — os(n)n = s(m)(om — on)
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and (7.32)) follows. We have proved that F' € Tr(No,3/2,4).
The Téplitz defect, defined by (3.29), is

=3 oo (whugug with Ego (wh) =3 E2T u (7.33)

where the indexes in the two sums have the same restrictions as in ([7.23)-(7.25)), and

o 24i N
Falmn = = 318 %y F om0 (7:34)
e i ( 1 - 1 >
afmn alBt \ Ao g+ 0Am — oA, Ao+ olm|—oln|
24i No(Am — Im| — A + |n|)

= a3 O+ o — ohn) oy + o m] — o)) (7.35)

We now proof that the coefficients in ((7.34))-(7.35) are bounded by a constant independent of N.
The coefficients in ([7.34) are bounded because

Aol < Z)\h(|04h| +1Bnl) < Z |hl(Jen] 4 1Bnl) + \/EZ(WH +|6n]) < 4NT +2y/m
3 3 3

by (7.26)-(7.25) (note that A, < |h|+ +/m) and
Mg+ 0Am + 0An] > A+ Al — [Aagl = 3N —4NE — 2¢/m > 3N/2

for N > Ny large enough.

The coefficients in (|7.35)) are bounded by ([7.18)), (7.29)), and

m/ 1 1 2
N\, — —An < —(—+—) <-m.
A = ] = An + [ 3 (ol * Tonl) S 37
Hence arguing as in the proof of Lemma we get
X el < R2. (7.36)
In conclusion, (7.19), (7.31), (7.36) imply (7.22)) (recall (3.30)). m
PROOF OF PROPOSITION [Z.1] COMPLETED. We have
. , 1 1
H = N 4G = NN FL 4 Y —adp(N)+ G+ Y —adi(G)
il 7!
i>2 i>1
[7-20) — A 1 P P
i>1 1>1
= N+G+G+K
where, using again (7.20)),
1 o 1 .
= ——adw(G+ G -G —adnG =: K| + K,. 7.37

PrOOF OF (7.9). We claim that in the expansion of K in (7.37)) there are only monomials uzz with

7ez2* ge {+, —}2d d > 3. Indeed F,G, G, G contain only monomials of degree four and, for any
monomial m, adp(m) contains only monomials of degree equal to the deg(m) + 2. The restriction
- 7= 0 follows by the Jacobi identity -7 since F,G,G,G preserve momentum, i.e. Poisson

o4



commute with M.
Proor oF (7.10). We apply Proposition [3.2] with (no (z,y) variables and)

f~F, gw{g+G_G ffor[;{l, r~~ R, T/WR/Q, (5«~>1/2,
or Ao,

0~~3/2, 0~2, pu~4, p ~3,
Ny defined in Lemma and N} > Ny satisfying (3.64) and

k(N TIn Ny <1, (6 +rK)(NHEFTIn N, <1/2. (7.38)

Note that (3.65) follows by (7.38]). By (7.22)), the assumption (3.63|) is verified for every 0 < R < Ry,
with Ry small enough. Then Proposition applies and (7.10) follows by (3.67) (with h ~~ 1), (7.2)),
[22) and (7). m

7.2 Action—angle variables

We introduce action-angle variables on the tangential sites Z := {j1,..., jn} (see (7.5))) via the analytic
and symplectic map
O(2,y,2, 7€) = (u, 0) (7.39)

defined by
Uy, 1= VE +yre®, Uy, = Vea+wye ™ 1=1,...,n, uj =2z, U =2, j € Z\T. (7.40)
Let
ngz{geR”:ggglgg,lzL...,n}. (7.41)
Lemma 7.5. (Domains) Let r, R, p > 0 satisfy
16r2 < o, o=C.R?> with C':=48nk?Pe2(stan) (7.42)
Then, for all § € O, U Oy, the map
O(-5€) : D(s,2r) — D(R/2) := Brya x Brya C L%F x £*P (7.43)
is well defined and analytic (D(s,2r) is defined in and k in (3.1)).

(7.42)
ProOOF. Note first that for (z,y,z2,2) € D(s,2r) we have (see (2.6)) that |y| < 472 g p/4 < &,
V€ € O, U Oy,. Then the map y; — /& + vy is well defined and analytic. Moreover, for § < 2p,
l31] < K, 2 €Ty, ||2]lap < 2r, we get

n
_ (™39 i . j . i
||u(1‘7y’z,z;§)||g7p = Z(gl +y[)|€2lrl||_]l|2p€2abl| + Z ‘Zj|2<j>2p€2a\]|
=1 JEZNT

(&2
+4r? "X R?/4

S n(29+ 2)625521762&“

proving (the bound for @ is the same). B
Given a function F' : D(R/2) — C, the previous Lemma shows that the composite map F o ® :
D(s,2r) — C. The main result of this section is Proposition if F' is quasi-Toplitz in the variables
(u, @) then the composite F' o ® is quasi-T6plitz in the variables (z,y, z, Z) (see Definition .
We write
F=3 Fapmag. mapi= (@) @) @) @)™, (7.44)
a,B
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where
w=(uM @), M= {uj}jer, u® = {u;j}jez\z, similarly for @,

and
(a,8) = (@ +a@ M + 5@) (oW M) = {a;, B ez, (P, 5P) = {aj,B}jenz - (7.45)

We define
Hpi={FeHp : F= Y Fopua’}. (7.46)
(2 +52) | >d

Proposition 7.2. (Quasi—To6plitz) Let Ny, 0, u, 1’ satisfying (3.1) and
/ L b SN
(W —pu)Ny > Ny, No27 27 < 1. (7.47)
If F € Qh5(No, 0, 1') N HE o with d = 0,1, then f:= Fo® e QL (No,0, ) and

1F 110 N0 0,00, < BT/ B2 IF N R 2,0 0,0 - (7.48)

The rest of this section is devoted to the proof of Proposition Introducing the action-angle
variables ([7.40)) in (7.44)), and using the Taylor expansion

N (7 ot 1y =1)...(y=h+1)
1+¢) = t =1 = h>1 7.49
arr=2 () () =1 () . hx1 (149
we get
fi=Fod®= Z Fria@ g@ eik.xyizam) 6% (7.50)
ki, 3(2)

with Taylor—Fourier coefficients

noaye® oA
fria@po =Y.  Fagl[& ° ( f ) . (7.51)
a — 3 =k 1=1 !
We need an upper bound on the binomial coefficients.
Lemma 7.6. For |t| < 1/2 we have
nl (5 k e k
O ‘(ZN <25, Vb0, (i) > I ‘(Z)‘ < 3*[t|, Yk > 1. (7.52)
h>0 h>1
PROOF. By (7.49) and the definition of majorant (see (2.11])) we have

};‘( >(th 1+t)%(M(1+t% (ZK >’th)k<<zth)k (753)

h>0 h>0

1
because ’<}2L)’ <1 by (7.49). For |t| < 1/2 the bound (7.53) implies (7.52))-(7). Ne

Sl (2) <usur](, 2, ) 2 > ()[BT < my ] (2] 52 e
h>1 h>0

h>0

which implies (7.52))-(i7) for k > 1. B
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Lemma 7.7. (M-regularity) If F € H%/Q then f:=F o® € H, 2, and

1X£lls.2r,0,002, < (87/R)* 2| XFry2 - (7.54)
Moreover if F' preserves momentum then so does F o ®.

PrOOF. We first bound the majorant norm

(7.50),(7.46) ; (), _3(2)
EALD g, sup S i gl 7] (755)

||f||’s72T7OQUOZQ
£€0,U0, (y,2,2)€D(2r) b

Ja@ 482 |>d

Fix o'®, 8. Since for all £ € O, U Oz, y € Bayy2, we have |y;/&] < 1/2 by (7.42), we have

> N f i@ s |yl (7.56)
k i
, (1) 5
751 n i oy 67
D SR RIS el | DI ( 2 )’ (7.57)
a) g 1hs01 & "
n
7;2 es(la(l)‘ﬂﬁ(l)mFa ﬁ|§a(1>42r,3(1) HQO‘z(l)Jrﬁz(l) (7.58)
o) B =1
< Z es(|a(1)‘+‘ﬁ(l)‘)|FaB|(29)M2‘a(1)‘+|5(1)| _ Z (268 /29)|a(1)|+\5(1)‘|Fa5| .
o) g o) B
Then, substituting in (|7.55)),
Il flls2r0,00,, < sup G(z,2) where (7.59)
zlla.psl1Zlla,p <27
Glz2) = Y (220 HEVIE, 5112127 (7.60)

@@+ 5@ |2d
By (7.42)), for all ||z
ui =u; = 2e°\/20, j€T, uj = (R/(87))|z], uj := (R/(87))IZ|, j€Z\T (7.61)

belongs to Br/p X Brs. Then, by (7.60)), recalling (2.11]), Definition (and since R/(8r) > 1 by
(7.42)),

la.ps [|Z]lap < 27, the vector (u*,@") defined by

G(z,2) < (8r/R) (MF) (", ") < 8r/R)IF g2, Y 2llap I2llap < 2r.

Hence by (7.59)
1£1ls.2r,0,002, < Br/R)|F |2 - (7.62)

This shows that f is M-regular. Similarly we get

102 lls,2r,0,005, < 10w F|lry2(8r/R)*~", same for 0;. (7.63)

Moreover, by the chain rule, and (7.62)

102, flls 2r,0,005, < (10,00 Fllry2 + 10500 Fll r/2) v/ 20 + o/4e*(8r/R)?
65
10y, flls.2r0,00, < (10,00 Fllrs2 + 10,0 F |l r2) ——==—==(8r/R)".
: : 0/2 —o0/4

Then (7.54) follows by (7.42) (recalling (2.2)). =
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Definition 7.1. For a monomial my g := (u(l))a(l)(a(l))ﬁm(u@))o‘(z) (12(2))5@) (as in (7.44))) we set

p(map) == > (Gl +85), () = max{1, |j]}. (7.64)
=1

For any F as in (7.44), K € N, we define the projection

Mp>xFi= > Fapmap, Mpeg:=1-Tsk. (7.65)
p(ma,B)ZK

Lemma 7.8. Let F' € Hg/o. Then

_K
5,70, <272

$,2r,Osy - (7.66)

PRrROOF. For each monomial m, g as in (7.44) with p(mg,g) > K we have

HX(HpEKF)

n n
" 1 1 " _ . 1 1 " — —
a0+ 50 BB 370l 4 50 = S (oaf)) + 1) B () > K
=1 =1

and then, V¢ € O,, y € B2,

(Mo g0 ®) (@92, 58] =2 |(E+y)

|a<1J+e 1o 451 a1 L (1) g1y, (2) _g2
) el A8

- 2" (26 +
< 275 (ma g0 D) (2, 2y, 2, 5 26)]

a(1>+5<) l(au) ﬁu))m a® 5(2)| (7.67)

The bound (7.66)) for the Hamiltonian vector field follows applying the above rescaling argument to
each component, and noting that the derivatives with respect to y in the vector field decrease the
degree in £ by one. B

Let Ng, 0, u, 1/ be as in Proposition For N > Ng and F' € Hp/o we set

£ =Ty, ((F — Ty F)o <I>) . (7.68)

Note that Iy, ./ is the projection on the bilinear functions in the variables u, %, while Il g, in the
variables x,y, z, Z.

Lemma 7.9. We have
1 X¢1ls,r0, <27 +1HXFmbHs 2r,0s, - (7.69)

PrOOF. We first claim that if F = m, g is a monomial as in (7.44)) with p(m, ) < N° then f* = 0.
CASE 1: m, g is (N, 6, u/)-bilinear, see Deﬁnition Then Hy g ,Mma3 = My g and f* =0, see
(17.68).
CASE 2: mq g is not (N, 0, p')-bilinear. Then Iln g, me s = 0 and f* = Iyyg . (Map o D), see
(7.68)). We claim that mq g o ® is not (NN, 6, p)-bilinear, and so f* = Iy, (Ma,p 0 ®) = 0. Indeed,

oD ()

Mago®=(E+y) 2 V=81 w0l 52 (7.70)

is (N, 6, u)-bilinear if and only if (see Definitions and

@ _z2 ~(2) _3(2) /
R R z0 20,

ST I@EP + 8P < uNE, |l [n > 0N, o — gD < NP (7.71)
JEZNT

58



We deduce the contradiction that m, 5 = (u(l))a(l)(ﬂ(l))ﬂ(l)(u(Q))é‘(Z) (11(2))5(2>u7"nug, is (N,0,u1)-
bilinear because (recall that we suppose p(m,. ) < N?)

n - () (&%)
STl + 850+ Y ila () p(mag) + uNT < N® 4 N 527 /N
=1

JEINT

For the general case, we divide F' = I, yo I + I, > n» F'. By the above claim
£ =Ty (((1d = Ty )Ty 5o F) 0 @) = Ty g (T e (Td = T, F) 0 @)

Finally, (7.69) follows by (2.79)) and applying Lemma to (HPZNb (Id — HNyg’M/)F) od. N

Lemma 7.10. Let F € Tg5(N,0, 1) with HysyoF = 0. Then F o ®(¢) € T, 2.(N,0,1'), VE €
0,U0,, .

PROOF. Recalling Definition [3:3] we have

wg with F7 (¢,h) € Lp/o(N, 1/, h).

F= > F(s(m)om+o'n)u
[l [n|>0N 0,0/ =+

g
m
Composing with the map @ in (7.40)), since m,n ¢ Z, we get

’ ’
Fod= g F77 (s(m),om+c'n)o®27 27 .
o,0'==%,|m|,|n|>0N

Each coefficient F7° (s(m),om + o'n) o ® depends on n,m, o, o’ only through s(m),om + o'n, 0,0’
Hence, in order to conclude that Fo® € 7; ,.(N, 0, 1i’) it remains only to prove that F”’U/(s(m), om+
o'n)o® € L o,(N,u',om+0'n), see Deﬁnition Each monomial m, g of F©% (s(m),om+0'n) €
Lr/2(N, i ,om+ o'n) satisfies

> g, + B+ Y (a+B)lil < W/ NE - and  p(mgs) < N
=1 JEZNT

by the hypothesis IT,> yo F = 0. Hence mq 50 ® (see (7.70)) is (N, u)-low momentum, in particular
ot = 3] < p(ma,p) < NP,
PROOF OF PROPOSITION Since FF € Q% 5(No, 0, ') (see Definition , for all N > Ny, there
is a Toplitz approximation F' € Tg/5(N, 0, ') of F, namely

OnguwF =F+NT'E with || Xel g, 1 Xpllrse 1Xelr2 < 20F T2, 8.0, - (7.72)
In order to prove that f:= Fo® ¢ Qir (No, 0, 1) we define its candidate Toplitz approximation

f=1ngu(Myeno F) o @), (7.73

)
see ([7.65)). Lemmaapplied to I, yo I € Tr/2(N, 0 , ') implies that (IT, . xv F)o® € T, 2, (N, 0, ')
and then, applying the projection Iy g, we get f € 7T, 2r(N, 0, 1) C T, (N, 0, j1). Moreover, by -
and applying Lemma [7.7] to Hp<NbF (note that Hp<NbF is either zero or it is in HR/2 with d >
because it is bilinear), we get

2.79) (7 -54)

HXst,r,Og < HX(HF<N,,I~”‘)0<I>)||SJ’>(99 < (8T/R)d_2HXHp<NbﬁHR/2
27). 772 )
< ®r/R)* | Fll 2,5 0,00 (7.74)
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Moreover the Toplitz defect is

~ (7.73) ~
N ouf — F) B2 Ny, ((F = Ty ) 0 )
NHN’Q’“((F o F) ° ‘I)) + NHNﬂvu((F - 1_[1o<N’>F) ° (I’)

—~
|

S
3
&)
<=
[=2]
<

Mg, (F o ®)+ Ny, ((F Ty F)o q:) + Ny g (s e ) 0 ®)

=
[
(03]

Ingu(Fo®) + Nf*+ Ny, ((Msne F) 0 ®) .

b
Using (2.79), Lemmata and imply that, since N2 2t < 1, VN > Ny by (7.47)),

_Nb
||Xf||s,r,0g < ”Xﬁ'o@Hs,nOg + N2 2= +1(||XF0‘1>||S,27‘,029 + ||X13'o<1>| 5;27‘;029)
< | Xpoalls2ro, + 1 XFools,2r,0., + 1 X foplls.2r0.,
() B
< /R Xpllrse + 1 XFllrs2 + 1 Xl R 2) (7.75)
) ,
< 8r/R)NFl oo (7.76)

(to get ([7.75) we also note that F, F,Fe H%/Q with d = 0,1, unless are zero).

The bound (|7.48)) follows by (7.54)), (7.74])), (7.76]). =
We conclude this subsection with a lemma, similar to Lemma used in Lemma (see (7.90).
Lemma 7.11. Let F' € Hg/s, f:= Fo® and f(x,y) = f(z,v,0,0) — f(2,0,0,0). Then, assuming
(7.42),

[ X flls,2r,0,00,, <1 XFPllR/2- (7.77)
Moreover if F' preserves momentum then so does f

PRrROOF. We proceed as in Lemma The main difference is that here there are no (z, z)-variables
and the sum in (7.56) runs over i # 0. Then in the product in (7.57) (at least) one of the sums

is on 4, > 1. Therefore we can use the second estimate in (7.52)) gaining a factor’| 8%/p (since
Iyl /1] < 8r%/o by (7.41))). Continuing as in the proof of Lemmal7.7| we get (recall (7.54) with d = 0)

B €3
1X5lls.2r.0,002, < (72/0)(r/R) 21 XFllRs2 < | XFlRs2
proving (7.77). =

7.3 Proof of Theorem [1.1]

We now introduce the action-angle variables (7.40]) (via the map (7.39)) in the Birkhoff normal form
Hamiltonian (7.8]). Hence we obtain the parameter dependent family of Hamiltonians

H = Hpirkhor 0 @ = N+ P (778)
where (up to a constant), by (7.6),
1 N
N =w() y+Q(&zz, P:= §Ay ‘y+ By-2z2+G(2,2) + K'(z,y, 2, 2;£) , (7.79)
w(f) ::(D+A€7 W= (>‘j1a"'a>‘jn,)7 Q(f) :Q+B£a Q:: ()‘j)jEZ\Ia (780)

A = (Alh)lgl,hgny Alh = 12(2 — 5lh)7 B = (le)jEZ\I,1§l§n7 le = 24, K, = K (¢] (P . (781)
The parameters ¢ stay in the set O, defined in (7:41) with p = C.R? as in (7.42). As in ([@7) we

decompose the perturbation
P:P00+P where Poo(l';f) = K’($,0,070;f), P =P — Py (782)
3 Actually we have the constant 3 instead of 2 in (7.58) and 3e® instead of 2¢* in (7.59) and (7.61).
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Lemma 7.12. Let s, > 0 as in (7.42)) and N large enough (w.r.t. m,Z,L,b). Then

I Xpollsr <ROr™2,  ||P||L, yoo<r®+Rr™! (7.83)
and, for A >0,
[ Xpglar < (L+AQRT2, | Xplh, < (L+ M) (r* + R, (7.84)
for & belonging to
O::O(g)::{feR” : %QS&SZQ, l:l,...,n}COp. (7.85)

PRrROOF. By the definition (7.82) we have
T 737)

.32) -
IXpollsr < I Xkrllsr < 1K [Sn22 = [Ko®IT, N2

(7.48) rN\—2
T (%) 1K R e (7.86)

(applying (7.48) with d ~ 0, Ng ~» N, 0 ~ 2, i~ 2, 1/ ~ 3) and taking N large enough so that
(7.47) holds. Take also N > N defined in Proposition Then by (7.86) we get

(3.35) /1 \—2 @10y , N\ —2 RS
Xm0 (2) 1K I R g 2 () R

proving the first estimate in . Let us prove the second bound. By and we write
p:%Ay~y+By.22+é(z,2)+K1+K2 (7.87)
where
Ky = K'(z,y,2,%§) — K'(2,9,0,0;¢), K :=K'(z,9,0,0;¢) — K'(2,0,0,0;).

Using (7.7) (note that » < R by (7.42))) for N > Ny large enough to fulfill (3.1)), we have by (3.35))

T
<r?, (7.88)

1 .
HfAy-erBy 22+ G(z,2)
2 s,r,N,2,2

By (7.48) (with d ~ 1, Ng ~» N, i~ 2, i/ ~ 3), for N > Ny(m, Z, L, b) large enough, we get

T T\t oy R’
I vpn < () B <—- (7.89)
Moreover, since K5 does not depend on (z, Z), we have
A
Ielfrnee = I Xalsr < [ Xkllre < KRN 25 < B (7.90)

In conclusion, ((7.87)), (7.88)), (7.89), (7.90) imply the second estimate in ([7.83):

_ RS R®
1P Nae<r®+ —+ R* = r? 4+ —

Let us prove the estimates ([7.84]) for the Lipschitz norm defined in (2.87) (which involves only the
sup-norm of the vector fields). First

[261) B _ (733) _
Xpolsr < I Xpllsr < B2, [Xplsr < [ Xpllsr < IPlrnze < 2+ Rr!
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Next, since the vector fields Xp,,, Xp are analytic in the parameters £ € O,, Cauchy estimates in

the domain O C O, (see ([7.85)) imply

|XP00 |EE«,(’) < p71|XPoo |s,r,(’)p < R6T727 |XP|SS~,O < pil‘XP|s,r,Op <r’+R°r

and (|7.84)) are proved.

All the assumptions of Theorems are fulfilled by H' in ((7.78)) with parameters £ € O defined
in (7.85)). The hypothesis (A1)-(A2) follow from (7.80)), (7.81)) with

a@ =24 Y &, and M =24+|A].

I=1,...,n

Then (A3)-(A4) and the quantitative bounds (4.8), (4.13]) follow by (7.83)-(7.84)), choosing
s=1,r=R"i o=C,R?asin 7.42), N as inLemma =2 pn=2, v=R"5, (7.91)

and taking R small enough. Hence Theorem [£.1] applies.
Let us verify that also the assumptions of Theorem [4.2|are fulfilled. Indeed (4.16]) follows by (7.80)),
(7.81) with @ = 24(1,...,1) € R". The matrix A defined in (7.81)) is invertible and

-1

— _ 1 2
AT = A hissn s A = 5= —on).

Finally the non-degeneracy assumption (4.17) is satisfied because A = AT and

4
2n —1

2471 =

(1,...,1) ¢ Z™\ 0.
We deduce that the Cantor set of parameters O C O in (4.14)) has asymptotically full density because

|O|\O(|9;o| p7172/3 R72R%(3+%) — R% N 0
The proof of Theorem [T.1]is now completed.

Remark 7.1. The terms kask in (1.2) contribute to the Hamiltonian (7.1 with monomials of
k>5

order 6 or more and (7.8) holds (with a possibly different K satisfying ([7.10)). On the contrary, the
term fus* in (1.2)) would add monomials of order 5 to the Hamiltonian in (7.1). Hence (7.10) holds

with R® instead of R*. This estimate is not sufficient. These 5-th order terms should be removed by
a Birkhoff normal form. For simplicity, we did not pursue this point.

8 Appendix
Proor or LEMMA |2.14] We need some notation, we write
E= EB?=1ij ) El = (Cn7 | |OO)3 E2 = (Cna | |1)a E3 = E4 = éafp

so that a vector v = (z,y,2,2Z) € E can be expressed by its four components ) e E;, o = x,
v® =y, v® =z, 0@ := z and the norm (2.2) is

4 .
|U(9)|E,
vl 5,5, == E ij where p1 =5, p2= 7“2, P3=pPs=T. (8.1)
j=1 "
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We are now ready to prove (2.64). By definition

4 .
BD [dX D (0)[Y]|,
JAX )l c(mommery = s X O)V]perED  sup 30 WS
IYle,sr<1 IYle,sr<1 i=1 Pi
L3 o XD ()Y D,
-y ,
Yie,s,r<1 i=1 Pi
dn XD )YD|g
< swp |y (/U) B,
”Y”E,sySl,L] 1 Pi
4
< sup Aldu XD )| 20,0 1Y V|,
”Y”Eb T'S]-,szl p ! ( )
4
1|xXO( .
< sup sup Z X0l e Ly @) ;
|\Y||E“ 1oeD(s.r) 52 Pi (Pj — )
by the Cauchy estimates in Banach spaces. Then
VI c((B,s,m);(E,s 1 > sup E— sup — —_
(« 3 ) vED(s,7) =1 Pz Pi IYll5.sr <1527 Pj Pj

/

. N —1
max P 4max4(lfp—j> sup [ X ()| 5s < 461X |50

. / - ) —
=LA ) =L i’/ seD(s.r)

by ([233), (2:65). This proves (%67). m

PROOF OF LEMMA [7.2] We first extend Lemma 4 of [25] proving that:

NG

Lemma 8.1. If0<i<j<k<lwithitjtkxl=0 for SOME combination of plus and minus
signs and (i,7,k,1) # (p,p,q,q) for p,q € N, then, there exists an absolute constant ¢ > 0, such that

|+ Ai(m) + A (m) £ A\ (m) £ A\ (m)| > em(i2 + m)~3/2 (8.2)
for ALL possible combinations of plus and minus signs

PROOF. When i > 0 it is a reformulation of the statement of Lemma 4 of [25]. Let us prove it also for
1 =0. Then j + k £ = 0 for some combination of plus and minus signs. Since (3, j, k,1) # (0,0, ¢, q),
the only possibility is I = j + k with j > 1 (otherwise i = j = 0 and k = ). We have to study

O(m) := £Ao(m) £ \;(m) £ Ap(m) £ A\ (m)

for all possible combinations of plus and minus signs. To this end, we distinguish them according to
their number of plus and minus signs. To shorten notation we let, for example, 44—y = Ao + Aj —
Ak + A, similarly for the other combinations. The only interesting cases are when there are one or
two minus signs. The case when there are no (or four) minus signs is trivial. When there are 3 minus
signs we reduce to the case with one minus sign by a global sign change.

One minus sign. Since 044 4+,0+—44,0_444 > 0444+ = 0 we study only the last case. We have
1/1 1 1 1 1 1
00)=j+k—-1=0 5 = |-ttt |25 =
0)=35+ ’ (m) 2<)\0+)\j+)\k >\l>_2>\0 2y/m

Therefore §(m) > v/m > em(1 + m)~%/2 for an absolute constant ¢ > 0.

Two minus signs. Now we have d_4_4,0__44 > d4__4 and all other cases reduce to these ones by
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inverting signs. So we consider only ¢ = d.___. Since the function f(t) := v/¢2 + m is monotone
increasing and convex for ¢ > 0, we have the estimate

N—=A > Nep— A—p, VO<p<k. (8.3)
Hence A\; — A > Ajp1 — Ap and Ajp1 — Aj > A2 — A (using j =1 — k > 1). Therefore
S=X =X = A+ N> X0 — A — A A > Ao — 20 4+ A > m(4 4+ m) 2,
The last inequality follows since f”(t) = m(t? + m)~%/2 is decreasing and
Ay =201+ Xo = f(2) = 2f(1) + £(0) = (&) = f7(2)

for some £ € (0,2). B
We complete the proof of Lemma We first consider the trivial cases (7.12])-(7.14).

CASE ([7.12)). Since Z o; # 0 is even, ([7.16) follows by
i
o Al =13 oidgl = 205 = 2v/m > m(1 +m) /2.

CASE (7.13)). By ¢ - 7= (03 +04)qg =0, ¢ # 0, we deduce 03 = —04. Hence (7.16) follows by
o+ Ml = (01 + 02) Xo| = 2¢/m > m(1 +m) /2
CASE (7.14). Since 7= (p, p, —p, —p) and o1 = o2 then to achieve ¢ - 7= 0 we must have o3 = 04 = 02

and
o= Mg = 40| = 44/p? + m > m(p* + m) /2.

CASE (7.15)). Set [j1| =: ¢, |j2| =: 7, |j3| =: k, |ja| =: |. After reordering we can assume 0 < i < j <
k < l. Since, by assumption, & - 7= 0, the following combination of plus and minus signs gives

s(j1)o1i + s(ja)o2j + s(jz)osk + s(ja)oal = 0.

Hence Lemma [8.1] implies for every 7 except when |j1| = |j2| and |j3| = |j4] (in this case i = j
and k =1 and Lemma does not apply). We now prove that holds also in these cases.
We have that
G- Ay = (01 4+ 02)Aj, + (03 + 04) Ay,

where o, + o, = 0, £2 so that (7.16) holds trivially unless o1 + g2 = —(03 + 04).
We consider this last case. If o1 + 02 = —(03 + 04) = 0 then the equality

G-J=01(j1 —j2) + 03(jz — ja) =0

implies that ji,...,j4 are pairwise equal, contrary to our hypothesis.
If 01 + 09 = £2 and i := |j1]| < k := |j3| then

(8-3) (k>1)
‘52 )\j“ Z 2)‘j3 - 2>‘j1 = 2)\k — 2)\1 g 2)\]@,2' — 2)\0 Z 2)\1 - 2)\0 2 ]./\/]. +m

giving (7.16). If |j1| = |j2| = |js| = |ja| and o1 + 02 = —(03 + 04) = £2 then the relation & - 7 =
01(j1 + jo — js — ja) = 0 implies that the ji, ..., js4 are pairwise equal, contrary to the hypothesis. B
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