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ABSTRACT. We derive the defocusing cubic Gross-Pitaevskii (GP) hierarchy
in dimensions d = 2,3, from an N-body Schrédinger equation describing a
gas of interacting bosons in the GP scaling, in the limit N — oco. The main
result of this paper is the proof of convergence of the corresponding BBGKY
hierarchy to a GP hierarchy in the spaces introduced in our previous work on
the well-posedness of the Cauchy problem for GP hierarchies, [6, 7, 8], which
are inspired by the solutions spaces based on space-time norms introduced by
Klainerman and Machedon in [23]. We note that in d = 3, this has been a well-
known open problem in the field. While our results do not assume factorization
of the solutions, consideration of factorized solutions yields a new derivation
of the cubic, defocusing nonlinear Schrodinger equation (NLS) in d = 2, 3.

1. INTRODUCTION

We derive the defocusing cubic Gross-Pitaevskii (GP) hierarchy from an N-body
Schrédinger equation in dimensions 2 and 3 describing a gas of interacting bosons
in the Gross-Pitaevskii (GP) scaling, as N — co. The main result of this paper is
the proof of convergence in the spaces introduced in our previous work on the well-
posedness of the Cauchy problem for GP hierarchies, [6, 7, 8], which are inspired
by the solutions spaces based on space-time norms introduced by Klainerman and
Machedon in [23]. In dimension 3, this problem has so far remained a key open
problem, while in dimensions 1 and 2, it was solved in [24, 5] for the cubic and
quintic case.

The derivation of nonlinear dispersive PDEs, such as the nonlinear Schrodinger
(NLS) or nonlinear Hartree (NLH) equations, from many body quantum dynamics
is a central topic in mathematical physics, and has been approached by many
authors in a variety of ways; see [14, 15, 16, 24, 23, 29] and the references therein,
and also [1, 3, 10, 11, 13, 17, 18, 19, 21, 20, 22, 28, 31]. This problem is closely
related to the mathematical study of Bose-Einstein condensation in systems of
interacting bosons, where we refer to the important works [2, 25, 26, 27] and the
references therein.

1.1. The Gross-Pitaevkii limit for Bose gases. As a preparation for our anal-

ysis in the present paper, we will outline some main ingredients of the approach

due to L. Erdos, B. Schlein, and H.-T. Yau. In an important series of works,
1
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[14, 15, 16], these authors developed a powerful method to derive the cubic nonlin-
ear Schrodiner equation (NLS) from the dynamics of an interacting Bose gas in the
Gross-Pitaevskii limit. We remark that the defocusing quintic NLS can be derived
from a system of bosons with repelling three body interactions, see [5].

1.1.1. From N-body Schridinger to BBGKY hierarchy. We consider a quantum
mechanical system consisting of N bosons in R? with wave function ® € L?(R4Y).
According to Bose-Einstein statistics, @ is invariant under the permutation of
particle variables,

¢N(xﬂ(1)7$ﬂ'(2)7"'7x7T(N)) = q)N(xlaxQ?"'axN) v € SNv (1]‘)
where Sy is the N-th symmetric group. We denote by Liym (RN) the subspace of
L?(R4N) of elements obeying (1.1). The dynamics of the system is determined by
the N-body Schrédinger equation

i0:Pny = Hy®n . (1.2)

The Hamiltonian Hy is given by a self-adjoint operator acting on the Hilbert space
L2, (RIN), of the form

sym

N
1
HN = Z(7A$1)+N Z VN(xiij)a (13)
j=1 1<i<j<N
where Vi (z) = NV (NPz) with V > 0 spherically symmetric, sufficiently regular,
andfor0<ﬂ<d%rl.

Since the Schrodinger equation (1.2) is linear and Hpy self-adjoint, the global
well-posedness of solutions is evident. To perform the infinite particle number limit
N — o0, we outline the strategy developed in [14, 15] as follows.

One introduces the density matrix

Yon (thNaQEV) = |(I)N(t7§N) ><(I)N<t’£§v)| = q)N(t’QN)q)N(ta@;V)
where z = (21,22, ...,2n) and 2y = (2], 25, ..., 2'y). Furthermore, one considers
the associated sequence of k-particle marginal density matrices 7<(I>k13 (t), for k =

1,..., N, as the partial traces of v3, over the degrees of freedom associated to the
last (N — k) particle variables,

’Yc(;\), = Trpi1 k42, N PN){PN].

Here, Tr11 k42,...,n denotes the partial trace with respect to the particles indexed
by k+1,k+2,..., N. Accordingly, %(112 is explicitly given by

k
Vélz(ikv&%) = /dgN*k’y(bN(£k7£N—k;£;cjiN7k)
= [dry e ey 0BG ()
It follows immediately from the definitions that the property of admissibility holds,
’Y<(1>k1\), = Trk+1('7<(1>k;1)) , k=1,...,N—1, (1.5)

for 1 < k < N —1, and that Trfygl\), = ||<I>N\\%2(Rd1\,) = 1 for all N, and all

k=1,2,..,N.
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Moreover Voo ) > 0 is positive semidefinite as an operator S (RF) x S(R*) — C,
(f,9) = [ dzda' f(z)y(z;2')g(z)).

The time evolution of the density matrix ve, is determined by the Heisenberg
equation

i0vey (1) = [Hy,vay ()], (1.6)
which has the explicit form
iat’Y@N(ta&Nvg/N) = 7(A£N7A§'N)’Y¢N(t7£Na§§\/) (1.7)
1
tN > Wi — ) = V(@) — 2))yan (t 2y, 2y) -
1<i<j<N

Accordingly, the k-particle marginals satisfy the BBGKY hierarchy

. k
i) (4 x k) = (A, — A )79 (1 zy, )

1
5 2 e — ) = Viv(ah — o))y (62 2f) (L8)
1<i<j<k
N -k
+—Z / A1 [Viv (@i — 2is1) — Vi (2] — ps1)] (1.9)
(k+1)

W
W(I)N (ta§k7xk+1a§ku‘rk+l)

where A, = ijl A,;, and similarly for A, . We note that the number of terms
n (1.8) is = % — 0, and the number of terms in (1.9) is w — kas N — oo.
Accordingly, for fixed k, (1.8) disappears in the limit N — oo described below,

while (1.9) survives.

1.1.2. From BBGKY hierarchy to GP hierarchy. It is proven in [14, 15, 16] that,
for asymptotically factorized initial data, and in the weak topology on the space of

marginal density matrices, one can extract convergent subsequences 7( ) ( ) as
N — o0, for k € N, which satisfy the the infinite limiting hierarchy
0P (t zp52y) = —(Amk = Dy VB (t s ) (1.10)

+/€OZ Bjx1y ) (8 2y 23)

which is referred to as the Gross-Pitaevskii (GP) hierarchy. Here,
(Bjks17" ) (t s i)
- /dmkﬂdx;”l[(s(mj = Th1)0(25 — ) — 6(2] — 2pp1)(2f — 2]

(k+1)(

W /
Y tvikaxk+1vlkaxk+l)'

The coefficient kg is the scattering length if 3 =1 (see [14, 26] for the definition),
and kg = [V(x)dz if B < 1 (corresponding to the Born approximation of the
scattering length). For 8 < 1, the interaction term is obtained from the weak limit
Vn(x) = Kkod(x) in (1.9) as N — oo. The proof for the case f = 1 is much more
difficult, and the derivation of the scattering length in this context is a breakthrough
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result obtained in [14, 15]. For notational convenience, we will mostly set kg = 1
in the sequel.

Some key properties satisfied by the solutions of the GP hierarchy are:

e The solution of the GP hierarchy obtained in [14, 15] exists globally in t.
o [t satisfies the property of admissibility,

B = Tr (Y*D) | VEEN, (1.11)

which is inherited from the system at finite V.
e There exists a constant Cy depending on the initial data only, such that
the a priori energy bound

Te(|s* DB (o)) < C (112)

is satisfied for all £ € N, and for all ¢ € R, where

k
S®) = TT(Va,)* (Ve ). (1.13)

J
j=1
This is obtained from energy conservation in the original N-body Schrédinger
system.
e Solutions of the GP hierarchy are studied in spaces of k-particle marginals
(A | |[y®) g1 < oo} with norms

78 [ 1= Tr(|SE®4®)]) (1.14)

This is in agreement with the a priori bounds (1.12).

1.1.3. Factorized solutions of GP and NLS. The NLS emerges as the mean field
dynamics of the Bose gas for the very special subclass of solutions of the GP hier-
archy that are factorized. Factorized k—particle marginals at time ¢ = 0 have the
form

—

Il
_

do(zj)do(2])

k
o (s ) =
J

where we assume that ¢y € H'(R?). One can easily verify that

YWtz ap) = [ ] ot 2))é(t o))

—.

I
—

J

is a solution (usually referred to as a factorized solution) of the GP hierarchy (1.10)
with kg = 1, if ¢(t) € H'(RY) solves the defocusing cubic NLS,

i) = —Dstp + (6, (1.15)
fort € I CR, and ¢(0) = ¢g € H*(R?).
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1.1.4. Uniqueness of solutions of GP hierarchies. While the existence of factor-
ized solutions can be easily verified in the manner outlined above, the proof of
the uniqueness of solutions of the GP hierarchy (which encompass non-factorized
solutions) is the most difficult part in this analysis. The proof of uniqueness of
solutions to the GP hierarchy was originally achieved by Erdos, Schlein and Yau
in [14, 15, 16] in the space {y® | ||y ||;1 < oo}, for which the authors developed
highly sophisticated Feynman graph expansion methods.

In [23], Klainerman and Machedon introduced an alternative method for prov-
ing uniqueness in a space of density matrices defined by the Hilbert-Schmidt type
Sobolev norms

Iy ® i = 1S%™7® 2 v xary < o0 (1.16)

While this is a different (strictly larger) space of marginal density matrices than
the one considered by Erdos, Schlein, and Yau, [14, 15], the authors of [23] impose
an additional a priori condition on space-time norms of the form

1Bk V2 < CF, (1.17)

for some arbitrary but finite C' independent of k. The strategy in [23] developed to
prove the uniqueness of solutions of the GP hierarchy (1.10) in d = 3 involves the use
of certain space-time bounds on density matrices (of generalized Strichartz type),
and crucially employs the reformulation of a combinatorial result in [14, 15] into
a “board game” argument. The latter is used to organize the Duhamel expansion
of solutions of the GP hierarchy into equivalence classes of terms which leads to a
significant reduction of the complexity of the problem.

Subsequently, Kirkpatrick, Schlein, and Staffilani proved in [24] that the a priori
spacetime bound (1.17) is satisfied for the cubic GP hierarchy in d = 2, locally
in time. Their argument is based on the conservation of energy in the original
N-body Schrédinger system, and a related a priori H!'-bounds for the BBGKY
hierarchy in the limit N — oo derived in [14, 15|, combined with a generalized
Sobolev inequality for density matrices.

1.2. Cauchy problem for GP hierarchies. In [6], we began investigating the
well-posedness of the Cauchy problem for GP hierarchies, with both focusing and
defocusing interactions. We do so independently of the fact that it is currently not
known how to rigorously derive a GP hierarchy from the N — oo limit of a BBGKY
hierarchy with L2-supercritical, attractive interactions. In [6], we introduced the
notions of cubic, quintic, focusing, or defocusing GP hierarchies, according to the
type of NLS obtained from factorized solutions.

In [6], we introduced the following topology on the Banach space of sequences
of k-particle marginal density matrices

& ={T = (¥ (xy,..., 21520, ... 2}) ren | TP < o0}, (1.18)
Given & > 0, we defined the space

He = {T|IIT g < o0} (1.19)
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with the norm

IT Nl ==Y €17 ™ Jlare (1.20)

keN

where
||’Y(k)HH,§‘ — ||S(k’°‘)'y(k)||L2 (1.21)

is the norm (1.16) considered in [23]. If T' € Hg, then £~! an upper bound on the
typical H%-energy per particle; this notion is made precise in [6]. We note that
small energy results are characterized by large £ > 1, while results valid without
any upper bound on the size of the energy can be proven for arbitrarily small values
of £ > 0; in the latter case, one can assume 0 < £ < 1 without any loss of generality.
The GP hierarchy can then be written in the form

i, + AT = BT, (1.22)

with I'(0) = T'g, where the components of AT and BT can be read off from (1.10).
Here we have set kg = 1.

In [6], we prove the local well-posedness of solutions for energy subcritical focus-
ing and defocusing cubic and quintic GP hierarchies in a subspace of H¢ defined
by a condition related to (1.17). The parameter « determines the regularity of the
solution,

(1,00) ifd=1
a € Ald,p) = (% — 2(17171),<>o) if d > 2 and (d,p) # (3,2) (1.23)
[1,00) if (d,p) = (3,2),

where p = 2 for the cubic, and p = 4 for the quintic GP hierarchy. Our result is
obtained from a Picard fixed point argument, and holds for various dimensions d,
without any requirement on factorization. The parameter £ > 0 is determined by
the initial condition, and it sets the energy scale of the given Cauchy problem. In
addition, we prove lower bounds on the blowup rate for blowup solutions of focusing
GP-hierarchies in [6]. The Cauchy problem for GP hierarchies was also analyzed
by the authors of [12], and the cubic GP hierarchy was derived in [11] with the
presence of an external trapping potential in 2D.

In the joint work [9] with N. Tzirakis, we identify a conserved energy functional
E(T'(t)) = E1(Tg) describing the average energy per particle, and we prove virial
identities for solutions of GP hierarchies. In particular, we use these ingredients to
prove that for L2-critical and supercritical focusing GP hierarchies, blowup occurs
whenever E;(T'g) < 0 and the variance is finite. We note that prior to [9], no exact
conserved energy functional on the level of the GP hierarchy was identified in any
of the previous works, including [24] and [14, 15].

In [7], we discovered an infinite family of multiplicative energy functionals and
prove that they are conserved under time evolution; their existence is a consequence
of the mean field character of GP hierarchies. Those conserved energy functionals
allow us to prove global wellposedness for H! subcritical defocusing GP hierarchies,
and for L? subcritical focusing GP hierarchies.
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In the paper [8], we prove the existence of solutions to the GP hierarchy, without
the assumption of the Klainerman-Machedon condition. This is achieved via con-
sidering a truncated version of the GP hierarchy (for which existence of solutions
can be easily obtained) and showing that the limit of solutions to the truncated
GP hierarchy exists as the truncation parameter goes to infinity, and that this limit
is a solution to the GP hierarchy. Such a “truncation-based” proof of existence of
solutions to the GP hierarchy motivated us to try to implement a similar approach
at the level of the BBGKY hierarchy, which is what we do in this paper.

1.3. Main results of this paper. As noted above, our results in [6] prove the
local well-posedness of solutions for spaces

We(I) :={T € L2 /H | BT € Lic/HE}Y . a € A(d,p), (1.24)

where the condition on the boundedness of the L?, ¢ spacetime norm corresponds
to the condition (1.17) used by Klainerman and Machedon, [23].

This is a different solution space than that considered by Erdos, Schlein and Yau,
[14, 15]. As a matter of fact, it has so far not been known if the limiting solution
to the GP hierarchy constructed by Erdds, Schlein, and Yau is an element of (1.24)
or not in dimension d > 3 (for d < 2, it is known to be the case, [5, 24]). This is a
central open question surrounding the well-posedness theory for GP hierarchies in
the context of our approach developed in [6, 7, 8, 23].

In this paper, we answer this question in the affirmative. We give a derivation of
the cubic GP hierarchy from the BBGKY hierarchy in dimensions d = 2,3 based on
the spacetime norms used in [6, 23]. The main result can be formulated as follows:

Let d = 2,3, and

1
_— . 1.2
O<6<dJrl (1.25)

Moreover, let § > 0 be an arbitrary, small, fixed number. Suppose that the pair
potential Vy(z) = N¥BV(NBz), for V€ W%>=(R9) N L} (R?), is spherically sym-
metric, positive, and V € C°(R%) N L (R%) decays rapidly outside the unit ball.
Let (®n)n denote a sequence of solutions to the N-body Schrédinger equation
(1.2) for which we have that for some 0 < ¢’ < 1, and every N € N,
1 N
P2V (0) = (452(0),...,750(0),0,0,...) € H
holds at initial time ¢ = 0, and moreover, that the strong limit
Io = lim I'"V(0) € M (1.26)
N—oc0
exists. We emphasize that I'y does not need to be of factorized form. The additonal

0 amount of regularity is introduced to control the convergence of certain terms,
see section 5.

We denote by
(N)

TN (1) == (A52(0), ... 75 (£),0,0,...,0,...) (1.27)
the solution to the associated BBGKY hierarchy (1.8) — (1.9), trivially extended
byfyg:\), =0 forn > N.
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We define the truncation operator P<y by
Pexl = (W, ... 45 00,...), (1.28)
and let
K(N) := by log N (1.29)

for some sufficiently large constant by > 0.

Then, the following hold for sufficiently small 0 < £ < 1:

(1) There exists I € L2, T]’Hé such that the limit

holds strongly in L?E[QT}H%-

(2) Moreover, the limit
s — lim BNpgK(N)F'i'N = BT (131)

N—o00

holds strongly in L?e[o,T}Hé

(3) The limit point I € Lo T]H% is a mild solution to the cubic GP hierarchy
with initial data Iy, satisfying

() = U(t)Ty + i /t Ult — 5) BT(s) ds, (1.32)
0

An outline of our proof is given in Section 3 below.

Remark 1.1. We emphasize the following:

e The results stated above imply that the N-BBGKY hierarchy (truncated by
P< g (ny with a suitable choice of K(N)) has a limit in the space introduced
in [6], which is based on the space considered by Klainerman and Machedon
in [23]. For factorized solutions, this provides the derivation of the cubic
defocusing NLS in those spaces.

e In [14, 15, 24], the limit ’yé,kli — ~®) of solutions to the BBGKY hierar-
chy to solutions to the GP hierarchy holds in the weak, subsequential sense,
for an arbirary but fired k. In our approach, we prove strong convergence
for a sequence of suitably truncated solutions to the BBGKY hierarchy, in
an entirely different space of solutions. An important ingredient for our
construction is that this convergence is in part controlled by use of the pa-
rameter & > 0, which is not available in [14, 15, 24]. Moreover, we assume
initial data that are slightly more regular than of class 'Hé,.
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o We assume that the initial data has a limit, TN (0) — Ty € 7—[?‘6 as
N — oo, which does not need to be factorized. We note that in [14, 15], the
initial data is assumed to be asymptotically factorizing.

e The method based on spacetime norms developed in this paper works for the
cubic case in d = 2,3, and is expected to have a straightforward gemeral-
ization for the quintic case in d = 2. Our result is completely new for the
cubic case in d = 3; the other cases (of cubic and quintic GP in d < 2)
were covered in [5, 24]; however the mode of convergence proven here is
different and the initial data in this paper do not need to be of factorized
form. A main obstacle in treating the quintic GP hierarchy in d = 3 is the
fact that the currently available Strichartz estimates are mot good enough
for the quintic GP hierarchy, [5].
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2. DEFINITION OF THE MODEL

In this section, we introduce the mathematical model that will be studied in this
paper. Most notations and definitions are adopted from [6], and we refer to [6] for
additional motivations and details.

2.1. The N-body Schrodinger system. We consider the N-boson Schrédinger
equation

N
0Py = ( - A+ % > Vn(zy _mg))qm (2.1)
Jj=1 1<j<t<N

on Lgym(RNd), with initial data ®n(0) = Doy € L%ym(RNd). Here, Vy(z) =

NWBV(NPz) for V. W2>2(R%) N L'(RY) spherically symmetric, and positive.
Moreover, we assume that V € C!(R?) with rapid decay outside the unit ball.
The parameter 0 < 8 < 1 is assumed to satisfy the smallness condition (3.1).

Let
k
Yo = Trip..x(1@n){(@y]). (2.2)
It is proved in [14, 15, 24] that for V satisfying the above assumptions,
K
<<I>N (N + Hy)K by > > CF NK Te(50F4{9) (2.3)

for some positive constant C' < oo independent of IV, K. This a priori bound makes
use of energy conservation in the N-body Schrédinger equation satisfied by @,
and will be used in the proof of our main results.

2.2. The solution spaces. We recall the space introduced in [6]

o0
® = @LQ(de % de‘)
k=1
of sequences of marginal density matrices

r:= (V(k))keN

where v#) > 0, Try(®) = 1, and where every () (z,,2},) is symmetric in all
components of z;, and in all components of x}, respectively, i.e.

VI (@15 oo0s Bah)s Tor(1)s 000 Trry) = Y (@1, s s 2, 2y (2.4)

holds for all 7,7’ € S.
For brevity, we will write z;, := (z1,--- , zx), and similarly, z} = (z,--- , x}).

The k-particle marginals are assumed to be hermitean,

Y (@ ) = 7P (@) 2p.)- (2.5)
We call ' = (7)) en admissible if ) = Try 1 y*+1) | that is,

’Y(k)(lk5£;c) = /dekH 7(k+1)(£kaxk+1§§;ka+l)
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for all k£ € N.
Let 0 < £ < 1. We define
He = {T e as(||rHHg < oo}

where

||F||Hg = ZﬁkH’V(k) ”H,‘j(dedek)a

k=1
with
Yl o= 15®D 5P

where (@) := H§:1 <v9«’j>a<vI§>a'

11

(2.7)

2.3. The GP hierarchy. The main objective of the paper at hand will be to prove
that, in the limit N — oo, solutions of the BBGKY hierarchy converge to solutions
of an infinite hierarchy, referred to as the Gross-Pitaevskii (GP) hierarchy. In this
section, we introduce the necessary notations and definitions, adopting them from

[6].

The cubic GP (Gross-Pitaevskii) hierarchy is given by
k
0y ™ = Z[_Al’j77(k)] + Ko By

j=1
in d dimensions, for k € N. Here,

Bk+1’7(k+1) — BI-:+1,Y(]€+1) _ B;€_+1’Y(k+1)7

where
k
+ k+1) _ + k41
Bk+17( )= ZBj;kHV( ),
j=1
and
k
- k4+1) _ - k41
Bk+17( )= ZBJ‘;HW( ),
j=1
with
(B;:kJrlfy(k"'l)) (t, 1, T T,y T
= /dxk+1dw2;+1
5(xj - xk+1)6(xj - x;€+l)’y(k+1)(t, L1yeeey Tht1; 1'/1, cee
and

(B;k+17(k+1)) (t,x1,. ey T, Th)

/

5(55; - xk+1)5(x; - x;c+1)7(k+1)(

o
t,xla"'akarlaxl»"'

(2.9)

(2.10)

(2.11)

ax;<+1)7

ax;<+1)'
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We remark that for factorized initial data,
&) (0; 21,5 ) Hqso ;) go(2;) (2.12)
the corresponding solutions of the GP hlerarchy remain factorized,
A E (tmy, ., x) = H o(t, x;) gi_)(t,x;) . (2.13)

if the corresponding 1-particle wave function satisfies the defocusing cubic NLS

10 = —Ad + Kolo|*6.

The GP hierarchy can be rewritten in the following compact manner:

i0,T + ALT = roBT
ro) = Ty, (2.14)
where
k
Al = (AP M e, with AP = 37 (A, - A, )
j=1
and
BT = (Bey17*™ ren . (2.15)

We will also use the notation
BT = (B} "™ en,
BTI':= ( ]q_+17(k+1) )kGN-

2.4. The BBGKY hierarchy. In analogy to the compact notation for the GP
hierarchy described above, we introduce a similar notation for the cubic defocusing
BBGKY hierarchy.

We consider the cubic defocusing BBGKY hierarchy for the marginal density
matrices, given by

k
D0 = YA AW+ 3 Warlay - )0 0)
i=1 1<j<k
+w Z Trp1 [V (25 — Trg1), VJ(\I;H)( t)], (2.16)

1<j<k

for k = 1,...,n. We extend this finite hierarchy trivially to an infinite hierarchy
by adding the terms 'y](\l,c) =0 for kK > N. This will allow us to treat solutions of the
BBGKY hierarchy on the same footing as solutions to the GP hierarchy.

We next introduce the following compact notation for the BBGKY hierarchy.

k
iaﬂz(\f) = Z[ Az]ﬁ](\];)] + uBn; k+1’Y( + (2.17)
j=1
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for £k € N. Here, we have fy](\];) = 0 for £ > N. Moreover, we set By, to be given

by multiplication with zero for k > N. For k =1,..., N — 1, we define

k+1 k+1 _ k41
BN?kJrl’yJ(V = B]tf;k-&-l’yl(\f .= N;k+1%(v . (2.18)
where
k+1 +,main_ (k+1 +, k+1
Bigin = BRii T o+ B (2.19)
with
+,main_ (k+1 N—k +,main _ (k+1
Byt = R BN (2:20)
j=1
and
L
+.e k+1) +.e k+1
BN;ZTIOT J(V ) T N BN,:ZTZ?:}l’YJ(V )a (221)
i<j
with
main _(k+1 )
(B;Tzﬁ'y](\, )) (t, @1,y T XY, e, T)
k
= /dxk+1VN($Cj — sckﬂ)%(\,ﬂ)(t, Tly.oo Thy Thotl; .’,Cll, o 733;9’ 1) (2.22)
and
B+,error (k) W /
N;ivj;k_y_fYN (tvxla"kaaxla'“axk)
= VN(Z‘,‘ — xj)v(k)(t,xl, SN ,xk;xll, ‘e ,$;€)
k
= /dxk+1VN(xi — J;j)%(vﬂ)(t,ml, e TRy T4 13 T e, Ty 1), (2.23)

where the last line follows thanks to admissibility of 'yj(\f). Moreover,

(B]TIZ??I(CL?F?ALI’YJ(\;C+1)> (t’xlv s 7$k;x/1’ s 756:%)
= /dl'k+1VN(1';‘ - l‘k+1)’y](\l;+1)(t,x1, ooy Ty D415 xll, RPN ,x;ka_;,_l).
and
(B;v;ffjf;;ﬂ}ﬁ“)) (T, T Ty, T)
= Vn(z} — x;)’y(k)(t,xl, e TR T, )
= /dxk.HVN(x; — x;)7§§+1)(t,m1, e Tl Tt 13 X ey Ty Th1)-

The advantage of this notation will be that we can treat the BBGKY hierarchy and
the GP hierarchy on the same footing. We remark that in all of the above defini-
tions, we have that BJJ\E,ZZ“”", Bﬁi’?rw, etc. are defined to be given by multiplication
with zero for k > N.

As a consequence, we can write the BBGKY hierarchy compactly in the form

i0 Ty + AuTy = BnTn
In(0) € HE, (2.24)
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where
k
ATy = (AP e, with AP = 37 (A% —Azg) ,
j=1
and
BNTy = (BN;k+171(\]f+1))keN- (2.25)

In addition, we introduce the notation
k+1
BTy = (Blt/;k-i,-lp)/](\] ))keN
_ _ k+1
Byl = (BN;k+17](v ))keN

which will be convenient.
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3. STATEMENT OF MAIN RESULTS AND OUTLINE OF PROOF STRATEGY

The main result proven in this paper is the following theorem.

Theorem 3.1. Let d = 2,3 and let
1

B8 < P (3.1)
Moreover, let 6 > 0 be an arbitrary small, fivred number. Assume that @y solves
the N-body Schrédinger equation (2.1) with initial condition ®n(t = 0) = $o n €
L2(RN), where the pair potential Vy(z) = NPV (NPz), for V.e W2>(R%) N
LY (RY), is spherically symmetric, positive, and Ve C%(R?) N L>®(RY) with rapid
decay outside the unit ball.

Let
e~y = (yéxh),...,yw),o,o, 22 (3.2)

denote the associated sequence of marginal density matrices (trivially extended by
zeros), which solves the N-BBGKY hierarchy,

I () = U@) TP (0) + i /U(t— s) BNT®N (s) ds . (3.3)
Furthermore, we assume that T®oN ¢ H%/M for all N, and that
o Do N 146
Ty = A}gnoof‘ S (3.4)

exists for some 0 < & < 1.

Define the truncation operator P<y by

PoxD = (v, ... 45 00,...), (3.5)
and observe that
PPN (t) = U(t) PxT*N(0) + i / U(t — s) Pk BNTN (s) ds . (3.6)
Let
K(N) := bglogN (3.7)

for a sufficiently large constant by > 0. Then, there exists I' € Lfgﬂ—[é with BI' €
Lfeﬁ'—[% such that the limits

. ® -
A Pegen I = Dl 20 = 0 (3.8)

and
Aim | Bn P<ge(n) T — BT ||z 2: = 0 (3.9)

hold, for I = [0,T] with 0 < T < Ty(§), and for & > 0 sufficiently small (it is
sufficient that 0 < £ < n&’ with n specified in Lemma B.3 below).

In particular, T’ solves the cubic GP hierarchy,
It) =U@)To + i /U(tfs)BF(s) ds, (3.10)

with initial data T'g.
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We note that the limits K — co and N — oo are taken simultaneously, and that
the smallness of the parameter £ > 0 is used (since small £ > 0 corresponds to large
energy per particle, this does not lead to any loss of generality).

In our proof, we will significantly make use of our work [8] which proves the un-
conditional existence of solutions I' € Lyg /H¢' of GP hierarchies, without assuming

T e Li  He < oo
3.1. Outline of the proof strategy. The proof contains the following main steps:

e Step 1: In a first step, we construct a solution to the N-BBGKY hierarchy with
truncated initial data.

First, we recall that the N-BBGKY hierarchy is given by

x],VN + B riry (3.11)

M»

iat’Y
]:1
for all £ < N.
Given K, we let P<j denote the projection operator
Peg : &6 = 6
Iy =W A2 /000, = V...4% 00,..), (312

andP>K=1—P§K,aswellasPK::PSK—PSK_l.

Instead of considering the solution obtained from ®,, we consider (3.11) with
truncated initial data FéfN = P<gl'g n, for some fixed K. We will refer to solu-
tions of this system as the K-truncated N-BBGKY hierarchy, or (K, N)-BBGKY
hierarchy in short. We note that in contrast, ['*~ solves (3.11) with un-truncated
initial data I'g .

Next, we prove via a fixed point argument that there exists a unique solution of
the (K, N)-BBGKY hierarchy for every initial condition Fo N € ’Hé” in the space

{TN € Lig My | BNTN € Lic He™ ). (3.13)
To this end, we re-interpret Fo, n as an infinite sequence, extended by zeros for
elements (FéfN)(k) =0 with! k > K.
Hence, we have obtained solutions I'f (¢) of the BBGKY hierarchy,
i T = ALTE + ByTK, (3.15)
for the truncated initial data

TX(0) = PexTn(0) = (457(0),-...75(0),0,0,...) (3.16)

e observe that then, (3.11) determines a closed, infinite sub-hierarchy, for initial data
A/I(\iC)(O) =0, for k > K, which has the trivial solution

EY®@)y =0 , tel=[0,T] , k>K. (3.14)
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for an arbitrary, large, fixed K < N, and where component (T'X)(™)(¢) = 0 for the
m-th component, for all m > K. By the Duhamel formula, the solution of (3.15)
is given by

IR(t) = UGTR(0) + z/o U(t — s) BNTK (s) ds (3.17)

for initial data T (0) = P<xT'n(0).

For a fixed scale 0 < £ < 1, it is sufficient to iterate the Duhamel formula (3.17)
for TK only finitely many times, in order to obtain a fully explicit solution to (3.15)
for fixed K that satisfies

1T Ny pes I BaTK s puaes < CTE [Tollypss . (318)

e Step 2: In this step, we let K(N) = bplog N for a sufficiently large constant

bp > 0, and take the limit N — oo of the solution F]I\i(N) to (3.15) which was
obtained in Step 1.

To this end, we invoke the solution I'® of the GP hierarchy with truncated initial
data, T (t = 0) = P<Ty € H¢. In [8], we proved the existence of a solution rx
that satisfies the K-truncated GP-hierarchy in integral form,

k@) = urso) + i /tU(t—s) BTX (s)ds (3.19)
0

where (T5)()(t) = 0 for all k > K. Moreover, it is shown in [8] that this solution
satisfies BT'K € Lfg?-l%.

We then prove the following convergence:

(a) In the limit N — oo, Fﬁ(N) satisfies

: K(N) _ pK(N) _
Jim DY) = DR = 0. (3.20)

(b) In the limit N — oo, BNf‘ﬁ(N) satisfies

. K(N
Jim I BND®) = BEEO| a0 = 0. (3.21)

The proof of these limits makes use of the § amount of extra regularity of the initial
data I'g,I'g,n € ’Héfé beyond ”H%,.

e Step 3: We compare the solution I'§ of the K-truncated N-BBGKY hierarchy
to the the truncated solution P<g( N)F‘I’N of the N-BBGKY hierarchy. Notably,
both have the same value at ¢ = 0, given by P<g(n)To n-

Letting K(N) = byplog N for a sufficiently large constant by > 0 (the same as in
the previous step), we prove that

K(N
Iy — Peremyl® | e,

Jim w =0, (3.22)
and
(N)

. K @ —
A}EPOOHBNFN — BnP<gnl’ N”LfeIHé = 0. (3.23)
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The proof of this limit involves the a priori energy bounds for the N-body Schrodinger
system (2.3) established in [14, 15, 24]. The freedom to choose the parameter £ > 0
to be sufficiently small is used in this step.

e Step 4: Finally, we determine the limit N — oo of I'’X(Y) from Step 2, obtaining
that:

(i) The strong limit limy o TX) exists in Li°H{, and satisfies
lim TXM) = T e LPH], (3.24)
N—o00
where I' is a solution to the full GP hierarchy (2.8) with initial data I'y.

1) In addition, the strong limit impy_s exists 1n , and satisfies
ii) In addition, th g limit i BIXWN) exists in LFH{, and satisfi

lim Br®W) = Br e LI}, (3.25)

N —oc0

The results of Step 4 were proven in our earlier work [8].
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4. LOCAL WELL-POSEDNESS FOR THE (K, N)-BBGKY HIERARCHY

In this section, we prove the local well-posedness of the Cauchy problem for
the K-truncated N-BBGKY hierarchy, which we refer to as the (K, N)-BBGKY
hierarchy for brevity. In the sequel, we will have d = 2, 3.

Lemma 4.1. Assume that Fng = P<glon € Héfr‘s for some 0 < ¢ < 1 and
§ > 0. Then, there exists a unique solution T'X € L;’EI'H?‘& of (3.17) for I =[0,T]
with T > 0 sufficiently small, and independent of K, N. In particular, BNfﬁ €
Lfel'}-lé”, Moreover,

IPR e pezs < Co(T,6,€) P02 (4.1)
and
IBNTR Nz pzes < Co(T.6,€) 100wl (4.2)

hold for 0 < & < & sufficiently small (it is sufficient that 0 < & < n€& with n
specified in Lemma B.3 below). The constant Cy = Co(T,&,E') is independent of
K,N.

Furthermore, (TX.(t))*) =0 for all K <k < N, and all t € I.

Proof. To obtain local well-posedness of the Cauchy problem for the (K, N)-BBGKY
hierarchy, we consider the map

ME(@O%-Y) := ByUMTK,y + i /0 t ByU(t —s)0K1(s), (4.3)

where P<x 10K~ = ©K~1 on the subspace Ran(P<) N LfeI’Hé"'é C LfeI”HéH.
Using the K-truncated Strichartz estimate in Proposition A.2, we find that

||M§(é{(71) - Mﬁ(é§*1)||L?€IHé+5

¢
< ds|[BU(t — 5)(OF 1 — 85 1)(s) |
< | [ amsve-s@r-er ], |,
’ oK-1 _ k-1
< | as||BaUE - $)(@OF - BF ()|
< | aBsve-s@r -8t ),
! oK oK
< et [ a6 )|,
< Oy(K)eiTH é{“l—ég—l‘ o (4.4)
LiciMe
Thus, for (T(K))z < ﬁ(K)’ we find that MK is a contraction on LfeIHéH.

By the fixed point principle, we obtain a unique solution @Ilf,_l € Lfe IH%'HS with
@ﬁ_l = PEK_lgﬁ_l satisfying

oK' (t) = BNUMTR o + i/t ByU(t — 5)0K1(s). (4.5)

In particular,

”@Il\giluLfEﬂiéH < ||BNU(t)FIJ\<T,OHLfEIH§H + CO(K)€71TgHgﬁilaneﬂ-{é” (4.6)
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and use of Proposition A.2 implies that

_ Co(K)&t

K—-1 0 K

”@N HL?EIH?‘; < 1— Co(K) &1 T3 ”FO,N”H?‘s (4.7)

holds.

Next, we let
t
PE() = UK, + i / Ut - )0K1(s). (4.8)

0

Clearly,

IN

1 K—
1T N e 2 s + THIOK gz pavs

1
rx 4.9
| Co(K)e 1T} I O,N”Hé*‘; (4.9)

K
||FNHL§;I7-L§+5

from (4.7). Comparing the right hand sides of ByT'X and ©% !, we conclude that
BNTE = 057! (4.10)
holds, and that

IN(t) = Uy, + i/OtU(t — 5)ByTX (5) ds (4.11)

is satisfied, with BNT'Y € L2 I’H?‘S. So far, we have established well-posedness of
solutions of the (K, N)-BBGKY hierarchy for ¢ € [0, 7] with T' < Ty (K, ). We can
piece those together, in order to extend the solution to longer time intervals.

As a matter of fact, we can prove that (4.9) can be enhanced to an estimate with
both Cy and Ty independent of K. To this end, we observe that applying By to
(4.11), we find

t
BNTN(t) = BNUMT R + i / BnU(t — s)ByT'K (s)ds . (4.12)
0

It is easy to verify that the assumptions of Lemma B.3 in the Appendix are satisfied
for
Ok = ByTK |, =K = ByUMTEY. (4.13)
We assume that
£ < e < ¥ (4.14)
where 0 < < 1 is as in Lemma B.3. Then, Lemma B.3 implies that

HBNF%HLfGIfHé” < C(T,¢&n) ||BNU(t)F(I)(,'N||L§€IH;ﬁ5

< Go(T,&m) ||F5NH’H2,+“ (4.15)

holds for a constant Cy = Cy(T,&,n) independent of K, N, and for T' < Ty(&, n).

A

It remains to prove that (T%(#))*) = 0 for all K < k < N, and all t € I. To
this end, we first note that

(BNP<rx — P<x_1BN)TH =0, (4.16)
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as one easily verifies based on the componentwise definition of By in (2.22) and
(2.23). Hence, in particular,

(P~x By — ByPsg41) TR =0,

thanks to which we observe that P- KFI]\(, by itself satisfies a closed sub-hierarchy
of the N-BBGKY hierarchy,

i0,(PsxTE) = AL (P TK) + By(Psg I, (4.17)
where clearly,
Pog Iy = Pog1(PskTR) (4.18)
with initial data
(P>xTR)(0) = Pk (TR(0)) = 0. (4.19)
Here we recall that the initial data is truncated for k& > K.

Accordingly, by the same argument as above, there exists a unique solution
(P> xI'K) € L2 He with By (Psg41I'K) € L2 He such that

IBN (P> D)2z 2. < Co(T,€,m) ||(P>KF§)(0)HH;,+5 =0, (4.20)
for &€ < n?¢’. Moreover,
P> s TN llpge e < C1(T,E,m) ||(P>KFJI\(I)(O)”Hé,+5 =0. (4.21)

This implies that (PsxI'§)(t) = 0 for t € I, as claimed. O
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5. FrRoM (K, N)-BBGKY TO K-TRUNCATED GP HIERARCHY

In this section, we control the limit N — oo of the truncated BBGKY hierarchy,
at fixed K.

Proposition 5.1. Assume that Vi (z) = NV (NPz) with V € C° N L™ for some
arbitrary but fived, small § > 0. Moreover, assume that T € Qﬂ%M(I) (see (1.24))
is the solution of the GP hierarchy with truncated initial data T§ = P<xTg € ’H%H

constructed in [8].
Let TN solve the (K, N)-BBGKY hierarchy with initial data Ty := P<gTo N €
’H%f‘g. Let

K(N) := by log N (5.1)
for some finite constant bg > 0. Then, as N — oo, the strong limits
; K(N) _ pK(N) _
Jim [Ty r gz g pmt =0 (5.2)
and
. K(N) K(N) _
Jim [ Byl B e e = 0 (5.3)

hold, for 0 < T < Ty(€).

Proof. In [8], we constructed a solution ' of the full GP hierarchy with truncated
initial data, I'(0) = T¥ € 7—[%+6, satisfying the following: for an arbitrary fixed K,
'S satisfies the GP-hierarchy in integral representation,

&) = vl +i /t U(t — s) BT X (s) ds, (5.4)
0

and in particular, (T*)®)(¢) = 0 for all k > K.
Accordingly, we have

ByTX — BTK
= ByUWI N — BULE

+i/t (ByU(t — s)ByT'N — BU(t — s)BTR )(s)ds
0
= (By — BUWTGy + BU)(Tgn —T)

+i /t (By — B)U(t — s)BT'%(s) ds
0

—l—i/t ByU(t — s)(BNFI]\(, - BFK)(S) ds. (5.5)
0

Here, we observe that we can apply Lemma B.4 with

ok = ByTK -BIr¥ (5.6)
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and
Ex = (By — BUMIEy + BU@)(TEy —T§)

[
2
Il

+i /t (By — B)U(t — s)BI'*(s)ds . (5.7)
0

Given &', we introduce parameters &, £, & satisfying

£ <" <" < ¢ (5.8)
where 0 < 1 < 1 is as in Lemma B.3. Accordingly, Lemma B.3 implies that

IBNTN = Bl 2_ 301

< CoT &) (IBUOTEy = T)lliz_pa, + RX(V))
< &€, (ITEy =T llnz o, + RE(OV)), (5.9)
where we used Lemma A.1 to pass to the last line. Here,
RX(N) = R{Y(N) + R¥(N), (5.10)
with
RE(N) = [[(Bx = BUMOTG N2 me, (5.11)
and
t
RE(N) := H / (By — B)U(t — s)BT'%(s) ds‘ (5.12)
0 LiciHen

Next, we consider the limit N — oo with K(N) = by log N, for some finite constant
by < o0.

To begin with, we note that
Jim [Foy — Fo||H§,+6 = 0. (5.13)
Including the truncation at K(N), it is easy to see that

. K(N K(N .
]\}gnoo ||FO,J(V ) 1'\0 ( )HfHélJrg = J\}l—rfloo || PgK(N) (1—‘071\[ — Po) ”Héf‘s

IN

W I Tor = To 7o
=0 (5.14)
follows.

To control RXM)(N), we invoke Lemma 5.2 below, which implies that for an
arbitrary but fixed § > 0,

. K(N) . 1 nr—68 | E(N)
]\}gnoo Ry V(N) < ]\}E}noo Cvs& NPTy N ||L§EIH§,+5
= 0, (5.15)
for a constant Cy s that depends only on V and 4, since
; K(N) _
Jim Y = Tl = 0, (5.16)

and ||F0||,H1+5 < 00.
£I
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Moreover, invoking Lemma 5.3 below, we find

lim REM(N) < Jim Cys &7 NP BREM(s)

M ez et
= 0, (5.17)
because
B, s < CATE",E) Dol (5.15)
is uniformly bounded in N, as shown in [8]. O

Lemma 5.2. Let 6 > 0 be an arbitrary, but fixed, small number. Assume that
Vy(z) = NV (NPx) with V € C° N L>®. Then, with £ <n&" as in (5.8),

[(Bn — B)U(t)FgNHLfemﬂg < Cys& ' N7 Hré(,NHH;ﬁ (5.19)

for a constant Cy s depending only on V and §, but not on K or N.

Proof. In a first step, we prove that
k+1 - k+1
(Bss = B ) US D@V 1a_ i < Cok? NP 5o pres (5.20)
holds, for V € C® N L with § > 0.

To this end, we note that

Tn©) = TIN29) , Ta(0) = [Vaoyds = [Vio)da = V(0) = 1. (521
and we define
(€)= T E e - 7). (522)
We have
xn(a—dq) = xyla—d) + xila—4q) (5.23)
where
Wia—0) = Vala—d)-T(0) . Gla—d) = “Vna—d). (529

N
Clearly, we have that for 6 > 0 small, 5-Holder continuity of 1% implies
Xv@=d) < Vlles N — ')
Viles N7°% (g’ +14'1°) , (5.25)

IN

and
Ni(g—q) < |V|p=kN"! (5.26)

is clear.

Next, we let (7,u;,u}), ¢ and ¢’ denote the Fourier conjugate variables corre-
sponding to (t,z;,z}), Tr+1, and x;H_l, respectively. Without any loss of generality,
we may assume that j = 1 in By,j;x4+1 and Bj.x41. Then, abbreviating

k
S(-) = 8(1+ (ug +q—¢)? —&-Zuf +¢* — [ui]* - (¢)?) (5.27)
=2
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we find

H S®D(By1gpi1 — Bl;k+1)U(k+1)(t)7(k+1) ‘

L2(Rx Rk x R4k )
k
/dT/dykdg2H<uj>2<u;->2 (5.28)
R e
2
( /dqdq’ 5 )xn(g — @) A (run + g — ¢z, .k, g5 U, q’)> :

similarly as in [23, 24]. Using the Schwarz inequality, this is bounded by

/ ir / duy dutl, T (7, s ) / dadq’ 5(---)
R

(u1+q—q)(a)’(¢)* f[ (u;)” f[ V2 [ xw (g — ) [

jr=1

2
‘/\(k"rl) T Uy +q_ql7u2u"'7uk7q;u;g7ql)‘ (529)
where
2
6(--) (uy
J(Taulmy;c) = / q q/ <2 >2 5 - (530)
R? xRS (ur+q—4)(a) (¢)
The boundedness of
A\

Cy = ( sup J(T,@k,yk)) < o0 (5.31)

T,y U
is proven in [23] for dimension 3, and in [6, 24] for dimension 2.

Using (5.25) and (5.26), we obtain, from the Schwarz inequality, that

(5.29) < CV,J/RdT/dgkdg; /dqdq’(N—2‘55(|q|25+|q’|25) + k*N72%)
b 2 k 2
(ur +q—¢)()*(d) H | RO
j=2 j'=1

T, Ul+q—q/7u2a---7ukaQ§Q§c>q/) (532)

‘A(k+1> ‘2
where Cy, ; :== CyCy, and Cy is a finite constant depending on V. Hence,

H SED(By1t1 — Bier1) UR ()75 (k+1) ’

L2(Rx R4k xRak)
k+1 (k+1)
CvgN~ 208 ||7( v )||H1+5 + Cvu k* N2 ||'70 Y ||§11

O,y k2 N=28 ||y D2, (5.33)

IN

IN

follows, given that §3 < 1 for § > 0 sufficiently small.
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Therefore, we conclude that
K
1By = B)UM) g NIz

(k+1)
= Z ﬁk (B N k+1 k+1) U(kH)( ) ||L§€RH1

C ONHETY R o) s
k=1 "
< CN~ 6B k2 5 k —1 F
— Sup 5// H ||’H1+5
< CN ¢t ||r5(|\H1+5 : (5.34)
g//
for £ < &'. This proves the Lemma. O

Lemma 5.3. Assume that Vi (z) = NV (NPz) with V € C° N L. Then,

H /Ot (By — B)U(t — )BT (s) ds ‘

L2

1
feIH

{”
< Cys &1 T2 NP |IBDY| wy (339)

where the constant Cy,s > 0 depends only on V and 6, and " < 775"’ as in (5.8).

Proof. Using Lemma 5.2,

t
By — B Ut—sBFsts’
H / ( - apras],

< /OT H (By — B)U(t — s) BT (s) ds

146
LiexMen

T
< Cv,aé_lN_w/ || BD™ (5) ds [| 145
0

5///
< Cys&'TTN IBLS 2 s1ss (5.36)
&///
for C'vs as in the previous lemma. This proves the claim. ([l
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6. COMPARING THE (K, N)-BBGKY WITH THE FULL N-BBGKY HIERARCHY

In this section, we compare solutions T'X of the (K, N)-BBGKY hierarchy to
solutions I'®~ to the full N-BBGKY hierarchy obtained from ®, which solves the
N-body Schrédinger equation (2.1).

Lemma 6.1. There is a finite constant C(T,§) independent of K, N such that the
estimate

IBNTR — BNPSKP(I)N”LfEIHé

< O(T, ) 5 K ||(BNT*¥) 5|2 4 (6.1)

tel

holds, where (BNyT®N)E) s the K-th component of BNT®N (and the only non-
vanishing component of Px BNT'®N ).

Proof. We have already shown that BNT'§ € Lfe I”H%. Moreover, it is easy to see
that
|BNTKlluz, 0z < C(N.K,T). (6.2)

The easiest way to see this is to use the trivial bound ||Vy || < ¢(N), and the
fact that I = [0, 7] is finite.

Thus,
BNTN — ByP<gI®V € Lic M} (6.3)
follows.

Next, we observe that
(BNTN — ByP<xD®)(t)
(BNTX — Pog 1 BNT®V)(1) (6.4)
= ByUTH(0) — P<x_1ByU(#)'n(0)
t t
—I—i/ BnU(t — s)ByT'K (5)ds — z/ P<g 1 ByU(t — 8)BNT®N (s) ds
0 0
= (BnP<kx — P<g1Bn)U(t)I'n(0)

t
—|—Z(BNP§K — PSK—lBN)/ U(t — S)BNI«DN(S) ds
0
t
+i / BnU(t — s)ByT'K () ds
0

t
iByPex / Ut — 5)ByT®~ (s) ds
0

= (BnP<x — P<g-1Bn)TPM(1)
t
+i | ByU(t—s)(ByI'N — P<g_1BNT®V)(s)ds
0

t
+i(BnP<g—1 — BNP<k) / U(t—s)ByT®¥(s)ds, (6.5)
0
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where to obtain (6.4) we used the fact that
(ByP<y — P<x_1By)T®N =0, (6.6)

which follows, as (4.16), based on the componentwise definition of By in (2.22) and
(2.23). Now we notice that ByP<xg — BnP<kx_1 = BnPk. Hence (6.5) implies
that

(BNTR — Pog 1 BNT®N)(1)
= (ByP<kx — P<x1By)T*¥(1)

t
—i/ By U(t — s) Pk By T®V (s) ds
0

t
+i/ ByU(t — s)(BNTN — P<x_1BNT®Y)(s)ds,  (6.7)
0
which thanks to (6.6) simplifies to
(BNTN — P<x—1BNT*Y)(t)

t
- —i/ By U(t — s) Pk By T®V (s) ds
0

t
+l/ BNU(t—S)(BNFI]S, — PSK_lBNFq)N)(S) ds. (68)
0

We observe that the term in parenthesis on the last line corresponds to (6.4), which
is the same as (6.3). Therefore, we can apply Lemma B.3 with

Ok (t) := BNTX(t) — P<x_1BNT®N (1) (6.9)

and
t
=K = / ByU(t — 5) P ByT®N (s) ds (6.10)
0
We note that for the integral on the rhs of (6.10),

t
|| Byt = ) PuByr® (s) dslz
i ,
< OT% K [P BNT™ |13 301 (6.11)

for a constant C uniformly in N and K, based on similar arguments as in the proof
of Lemma 5.3, and using the Strichartz estimates (A.19) and (A.31).

Accordingly, Lemma B.3 implies that
IBNTN — BNP<xT™ |12

IBNTN — P<x-1BNT®¥ |12 501

C'(T,8) I1=8 s

LEIHé
C(T,&) K || Px By T*~ [FPREN (6.12)

IN

IA

where Px = P<x — P<g 1. This immediately implies the asserted estimate, for T’
sufficiently small (depending on K). Clearly,

1P BNT™ |12 22 = EXI(BNT®) S 2 i (6.13)

tel tel



DERIVATION OF THE CUBIC GP HIERARCHY 29

Therefore,
|BNTR — BNpgKF(DNHLfe,H;

< C(T, &) €% K ||(BNT™) 5| 2_ a1 (6.14)
as claimed. Here, we have modified the result of Lemma B.3 by setting £ = &', due

to the fact that P BNT'®Y has a single nonzero component. O
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7. CoNTROL OF I'®N AND I'§ As N — o0

In this section, we control the comparison between I'*~ and T'¥ in a limit N — oo
where simultaneously, K = K(N) — oo at a suitable rate.

Proposition 7.1. Assume that
K(N) := bolog N, (7.1)

for a sufficiently large constant by > 0, and that £ < ﬁ where by s the constant
given in Lemma 7.2 below. Then,

IBNTR™Y) — Peg(n)-1BNT®¥ |2 30 = 0 (7.2)

lim
N—o0

holds.

Proof. From Lemma 7.2 below, we have the estimate
IBNTR — PSK—lBNF¢N||L§€IH;
< C(T. & NP K2 (01" (7.3)
where b1, Cy are independent of K, N.

By assumption, b1€ < % Therefore, we have that for sufficiently large b,

N(d-‘rl),@’ K2 (blf)K(N) < CN(d—i—l)ﬂ (bO log N)2 9—bolog N
< N, (7.4)

for some € > 0. This immediately implies the claim. O

Lemma 7.2. The estimate
IBNTN — P<x-1BNT®¥ |12 01
< C(T,€) NUDB g2 (p6)K (7.5)

holds for finite constants by, Cy independent of K, N, andT. The constant by only
depends on the initial state ®n(0) of the N-body Schrédinger problem.

Proof. From Lemma 6.1, we have that

IBNTX — P<x-1BNT®N |12 01

< O(T, ) 5 K ||(BNT*¥) 512 g (7.6)

tel

holds for a finite constant C(T),€) independent of K, N.



DERIVATION OF THE CUBIC GP HIERARCHY 31

‘We have

IBRT*) 2,

K K
< C/dt/dngg}(\Z/ [H<sz><Vz;>}VN(xg—xKJrl)(I)N(t,gN)
4 =1 j=1
2
DN (t, 2, TR 415, TN) dTg 41 - dTy
i 2
< ClVal3 /dt/de’Z/ Il (V.,)] ®x )|
;( 2
/
sttell?/deHH<Vx;>} @N(t,gN)’ (7.7)
< CTN2(d+1)’3K25up( (S(Kl) K))) (7.8)

tel
using Cauchy-Schwarz to pass to (7.7), and admissibility to obtain (7.8).

It remains to bound the term
K
lr(S(K’l) 'y](\, )) (7.9)

n (7.8). To this end, we recall energy conservation in the N-body Schrodinger
equation satisfied by ® . Indeed, it is proved in [14, 15, 24] that

< Oy, (N + Hy)K oy > > OK NK Tr(S1H)4 {0y (7.10)
for some positive constant C' > 0 where
Yoy = Trier, v (|12x) (@) (7.11)
This implies that
Tr(SED AT ) < i (7.12)

for some finite constant b; > 0.

The fact that
[Valler < CNW@HIP (7.13)

follows immediately from the definition of Vy. O
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8. PROOF OF THE MAIN THEOREM 3.1

We may now collect all estimates proven so far, and prove the main result of this
paper, Theorem 3.1.

To this end, we recall again the solution I'® of the GP hierarchy with truncated
initial data, T (t = 0) = P<xTo € H¢. In [8], we proved the existence of a solution
'S that satisfies the K-truncated GP-hierarchy in integral form,

t
&) = Unr(0) + z/ U(t — s) BT'5(s) ds (8.1)
0
where (T5)()(#) = 0 for all k > K. Moreover, it is shown in [8] that this solution
satisfies BT'K € Lfg?—l%.
Moreover, we proved in [8] the following convergence:
(a) The strong limit

I''=s— lim I'" € LN} (8.2)

K—o0

exists.
(b) The strong limit

© = s— lim BTN € L. (8.3)

K—oo

exists, and in particular,
© = BT. (8.4)
Clearly, we have that

IBT — By Peg(n) T |22 20

tel

< |Br — Br¥™) [P (8.5)
+|[BOE™ — BT |12 g0 (8.6)
+BXTRY = By Percn T Iz s - (8.7)

In the limit N — oo, we have that (8.5) — 0 from (8.3) and (8.4).
Moreover, (8.6) — 0 follows from Proposition 5.1.
Finally, (8.7) — 0 follows from Proposition 7.1.

Therefore,

. @ —
A}EHOOHBF - BNPSK(N)F NHLfeIHé =0 (8.8)

follows.
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Moreover, we have that

1P<re iy DY = Tll e 242

tel
K(N
< |[P<gmD®N — v )||Lt°gIH§

+ TR — Ullzee 20

K(N
+ TR = TR o

tel

33

(8.9)
(8.10)
(8.11)

In the limit N — oo, we have (8.9) — 0, as a consequence of Proposition 7.1.

Indeed,
1P<e T = TR e 200
< T3 Byry™) — BNPSK(N)F(I)N”L';’GI?-Q
where the rhs tends to zero as N — oo, as discussed for (8.7).
Moreover, (8.10) — 0, as a consequence of (8.2).

Finally, (8.11) — 0 follows from Proposition 5.1.

This completes the proof of Theorem 3.1.

(8.12)
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APPENDIX A. STRICHARTZ ESTIMATES FOR GP AND BBGKY HIERARCHIES

In this section, motivated by the Strichartz estimate for the GP hierarchy, we
establish a Strichartz estimate for the BBGKY hierarchy.

A.1. Strichartz estimates for the GP hierarchy. Following [8], we first recall
a version of the GP Strichartz estimate for the free evolution U(t) = €4+ =
(U™ (t))pen. The estimate is obtained via reformulating the Strichartz estimate

proven by Klainerman and Machedon in [23].

Lemma A.1. Let

(3,00) ifd=1
o€ Ad) = ¢ (4E,00) ifd>2andd+#3 (A.1)
[1,00 if d = 3.

Then, the following hold:

(1) Bound for K-truncated case: Assume that Ty € Hg for some 0 < § < 1.
Then, for any K € N, there exists a constant C(K) such that the Strichartz
estimate for the free evolution

IBUTG N2 me < € CE) TG g (A.2)

holds. Notably, the value of £ is the same on both the lhs and rhs.

(2) Bound for K — oo: Assume that T'o € Hg, for some 0 < & < 1. Then,
for any 0 < £ < &, there exists a constant C(&,&') such that the Strichartz
estimate for the free evolution

IBUToll 2wz < C(6.€) [Tollag, (A.3)

holds.

Proof. From Theorem 1.3 in [23] we have, for a € (d, p), that

1B UE D 048] 2 pra

teR" Tk

k
k+1
23 1B USRS 6 e,me
j=1

IN

teR

CklIE™ u

IA

o .
k+1
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Then for any 0 < £ < £, we have:

c o k:
IBUMTol| 22z < 3 €5 1Brsa UMD O |2
E>1
k
<O ke Iy g, (A.5)
k>1
k:
Zk (f’) (k+1) ”’Y w ||Hk+1
k>1
£\" -
<c(e)! ?gzc( ) T

k>1
< C(6,¢) ITollne, -
where to obtain (A.5) we used (A.4).

On the other hand, we have
K—1

k
IBUMTE |1z_ 20 < Zf’ankHU(“”(t) e g
=1
K—

teER tER k

1

k
<O ke W g, (A.6)
k=1
K—-1 ( )
— -1 (k+1) | (k+1
=CKE) ™D ¥ " Vg,
k=1

< Co(K) ¢ HF(I)(HHg :
This proves the Lemma. O
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A.2. Strichartz estimates for the BBGKY hierarchy. In this subsection, we
prove a new Strichartz estimate for the free evolution U(t) = A% in L7 [HE, for
the BBGKY hierarchy, at the level of finite N. This result parallels the one for the
GP hierarchy, which was stated in Lemma A.1.

Proposition A.2. Let o € A(d) for d > 2, and

1

P T¥aa-1 (A7)

Assume that V € LY(R?), and that 1% decays rapidly outside the unit ball. Letting
co:=1—pB(d+2a —1), the following hold:

(1) Bound for K-truncated case: Assume that I'o € Hg for some 0 < § < 1.
Then, for any K € N, there exists a constant C(K) such that the Strichartz
estimate for the free evolution

IBR*"U (t)P<xTollpz_me < €' C K |Tollug (A.8)
and
IBR™"U (8)P<xTollp2_me < €1 CKN™|Tollg - (A.9)

Notably, the value of £ is the same on both the lhs and rhs.

(2) Bound for K — co: Assume that I'y(0) € Hg, for some 0 <& < 1. Then,
for any 0 < £ < &, there exists a constant C(£,&") such that we have the
Strichartz estimates for the free evolution

| BR"T ()T n (0) Iz me < CEED) ITN(O) g, (A.10)
and

IBE™ TN ()| 12 e < C(6:€) N~ T (0) 15, - (A.11)

Proof. We recall that By contains a main, and an error term. We will see that
the error term is small only if the condition (A.7) on the values of 8 holds. This is
an artifact of the L2-type norms used in this paper; squaring the potential Vi in
the error term makes it more singular to a degree that it can only be controlled for
sufficiently small .

(1) The main term. We first consider the main term in Bﬁ;k;k_klfyl(\lfﬂ). We have

,main k+1
| B U 05§ 0) 132 e
+,main k+1
= IBE U OrET 072 e

/dt/dikdﬁe‘S(k’a)/dﬁmld@;cﬂ /dxkﬂ/dqa(fﬂ eta(@r=Tt1)
R

el i1 (@yus—wiul) giwk g (g1 —uj )

. Bl 2 732y 2
et S5 (= () >7N<k+1>(0;gk+1;u;€+l)‘ (A.12)
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= /Rdt/c@kdgg€ /dgkﬂdg;cﬂdﬂkﬂdﬂ;ﬁl /da:k_H ATy /dqd@
k-1
[T )™ () ) ()] G+ 0 (G + @) () ()
j=1
‘//J\V(Q) ‘//J\V(a’) eiQ(Ik*rk+1) —iq(Tk—Thq1)
ot 2oho (wjuy —ahul —a ) piwngn (pgn —ufgr) = @1 (T + 4

it S5E (uf = (u))? —uF+(@))?)

0§Qk+15!;c+1)’VJ\V(kH)(OEﬂkH%%H) (A.13)

k-1

= /dﬂkﬂdﬂkﬂ diig dtig1 g1 ditg [ H <uj>2“<u;->2a} ()
j=1

’_71\\[(164’1) (

/ dgd Var(q) Vi (@) {ux + ) (T + 9)°

0(q — @+ up — k) 6(—q 4 Ups1 — Uy y1)0(—q + Upy1 — Uy i)
(uf — (u)? = Uiy + (Uh41)?) (A.14)

— (k) (. ot — (k) (. ~o~ ~
YN (07Qk+17gk+1)7N (07Qk71»ukauk+1,ﬂ§€»u;€+1)

To pass from (A.13) to (A.14), we have first integrated out the variables z,_;,Z;,
thus obtaining delta distributions Hf;ll O(uj—uy) H]Z:1 d(ujy—uy) enforcing momen-
tum constraints, which we subsequently eliminate by integrating over the variables
uj, up, forj=1,...,k—1,¢=1,... k. The first delta distribution in (A.14) stems
from integration in xj, the second and third from integrating in zpy; and Ty41,
and the fourth from integrating in ¢ (noting that terms of the form u? — @} and
(uj)? — (u))? have canceled, due to the momentum constraints). We note that the
expression (A.14) differs from the corresponding ones in [5, 6, 23] where the Fourier
transform in ¢ was first taken before squaring (in particular, the delta implementing

energy conservation in (A.14) is simpler). Then we have:

k

-1
— [ g i [ [T 0] i (A.15)
=1

[

/ dadq Vae(q) Vv (@) (wn + )2 8(q — T+ ur, — k)

O(ui — (up)® + uiyy = (urer — @)° = Uiyy + (s — 9)%)

—~ (k) (. o —~ (k) (. ~ o~
YN (07Qk+1ﬂﬁk7uk+1 - q) YN (Oagk—lvukauk+1aukvuk+1 - E]")
k—1

— [ g i i | T ) )] i (A.16)

j=1

/dq T (0) Ve (4 + wn — ) (e + @)%

O(ui — (up)® +uigy — (unr — @)* = Uiy + (@err — (g + we —Ur))?)

— (k — (k ~ o~ ~ ~
’YN( )(O;Qk“;yk,uk“ —q) ’YN( )(O;Qk_laukauk—&-l;ﬂ;gvuk—l—l — (g + ur — uy))
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k—1

— [ dupiti i | T ()2 052 (i (A17)
j=1

/dq Ve (q + ) Voo (@ + a) (e + T+ )2

S(uk — (up)? + ujiyr = (upsr — ¢ = W)* = gy + (U1 — ¢ — we))?)

WN( )(O;@k—kl;ﬂ%a Upy1 — G — Ug) WN( )(O§Mk_1aukyuk+1§ﬂgcauk+l —q—ug)

where to obtain (A.15) we integrated out the variables uy_ , U} |, to obtain (A.16)

we integrated out the variable ¢ and to obtain (A.17) we performed the shift ¢ —

q + ug. The last expression is manifestly real and non-negative. One immediately

finds the upper bound

. k—1

< |IVnllZe /dﬂkﬂdﬂk diiy, diigqy dg (ug + U, + ¢)°* [ H<Uj>2a<“}>2a} (up)
j=1

O(ui — (up)® + uf ey — (Uper — 4 = W)* = Wiy + (U1 — g — w))?)
(k

—~ (&) (n. o ~ N\ =~(&)n. ~ o~
AN (05 gy U, Ukgr — @ — UR) AN (05 8y, Uk, Upg 1 U, U1 — ¢ — Up)

U (1 I3

= |Vnlli~ | Bl

tERH]?
k+1)
< IV I, - (A.18)
Here, we have used ||VN |z < ||V ||L; =" ||Lg18 uniformly in N, and the Strichartz

estimate for the free evolution in the (infinite) GP hierarchy.

Therefore, we conclude that

|BRAE U 0 (0)]les

N;k+1 terty
k(N B k) +,main k+1
< Sy swIBGUS T O Ol
k0 (k) A
< C(k- N) vy (0)] e - (A.19)

Hence we have that
main k
S IBR TS O (0) 2

teR

k>1
< Y (k- s’fn D0)llg, (A.20)
k>1
_ n—1 k? § g N (k+1) || (k+1)
= @ k-5 () @OV O,
E>1
N1 _kj é g N (k+1) |, (k+1)
< c@)tsup | (k=) (5 ) ) 2o @OV T O,
k>1 £ 1

< CEE) 1+ ) TN Ol (A21)

¢’
where to obtain (A.20) we used (A.19).
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(2) The error term. Next, we consider the error term in B, kH’yJ(\I;H) By sym-

metry, we have

error k+1
B U D (D )17

error k+1
= IBES A U O T O e

/ dt / dzkdzﬁc’S(k’“) / duy, dus, / dq Vi (q) €' =72)
R

ot ho (wjuy—aful) it Zﬁzl(U?*(u;)r")%\v(’ﬂ) (05 uy.: uh)

2

k
(ur +q)*(uz — q)* H
2
ZZJ 1(11“1*1 Uy ) ”Z? 1(uj*(“j) )ﬁ(k)(oaﬂk,ﬂ;)
k
= /dukdukduldug (uh) H ui)?*(
7j=3

/dqda Vo (@) Tn (@ (u + @) {us — q)® (@ +D° (@ — 9)°

8(q— G+ uy — W) 6(q — G — ug + W) 6(u? +ul — U3 —u3)

()( ()(

- 27+ 7. eyl
TN Oukauk)%v 0; 11, Uz, us, . . ., Up; Uy,)

/dukduk H w; )2 (u)* (A.22)

[ dadi Vata) Va(a

S(u? +u3 —

(ur + q)%* (ug — )2
ul—i—q—?f)Q—(ug—q—FZf)Q)
A8 0wy ) TN P (0501 + g — G ug — g + Gy us, - - up )

: —~ —
- /dukduk[]—[ 2] /dqdavN(q) Vv (@ (A.23)

j=1
5((ur —q)* + (u2 + 9)* = (1 — 9)* — (u2 +9)*)

TN ()(O Uy — q,UQ—‘rq,Ug,...,Uk;@;c)
v M

. a a vy
07u1 _qau2+Q7u37"'auk7@k)

_ /dykdy;/dqdax’f;m)x’f;(m(?(—ul+uQ+q+@-<q—ff>>

k
|:H<uﬂ>2a<u;>2a] ,7]\\](’“)(07 U — g, u2 + q, U3, ..., uk?@?{;)

j=1

ﬁ(k)(ﬂ;ul 7(7’U2+Ej7u3,...,uk;ﬁ;€)a
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where to obtain (A.22) we integrated out the variables 1, 42 and to obtain (A.23)
we performed the shifts u; — u; — g and uy — ug + g. Clearly, the last expression
is bounded by

,error k+1
1B U ORT O e e < Cv(N) i O) 7 (A24)

where

Uy, u2

Cy(N) = sup/dqdq~5(2(—u1+u2+Q+zf)'(q—zf))

Viv(g) Viv (@) (1) {u2)>*
(ur — @)*(uz + )*(u1 — )*(uz + @)’
and ||I71\v||Loo < [|[Vn|lzr < C, uniformly in N. We may assume that supp{‘z\v} C

Bens(0), for some constant C. The modifications for Vi non-vanishing, but de-
caying rapidly outside Bg s (0) are straightforward.

(A.25)

Then,
<u1>2a <u2>2a
Cy(N) < sup
NS et o T = @ + 4l — (i + 37
sup [ dqgdg5(2(—ur +us +q+) - (g~ )
u1,u2 J B, y5(0)x B s (0)
< C(NP)i« sup/ dvy dv_ 6(2(u+vy) - vo)
w BCN['J (O)XBCN['! (0)
(A.26)
1
< C(NP)ie sup/ dvy dvt ———— (A.27)
w JBe s (0)xDys lu+ vy |
= C(NP)tetdt / dvy (A.28)
By (0) v ]
< C(NP)tet2d=2 (A.29)
To pass to (A.26), we used
<ul>2a <u2>2a

sup {
urus€RgGEB s (0) LU — @) (u2 + @)*(ur — q)*(uz + q)*

where we note that the maximum is attained for configurations similar to u; = g =

= —uz, g/ = O(N?).

} < C(NP)* (A.30)

Moreover, we introduced vy := ¢ £ ¢ as new variables. Passing to (A.27), we
integrated out the delta distribution with the component of v_ parallel to u+wv, for
fixed vy and u := u; — uy. Accordingly, we denoted by v the (d — 1)-dimensional
variable in the hyperplane

P:={veR|v L (utwvy)}
perpendicular to u + vy, for u, vy fixed.
The integral in v_ is supported on the set Dys, given by the intersection of

a ball of radius O(N?) with the hyperplane P. The measure of Dys is at most
O((N?)4=1). This is accounted for in passing to (A.28).
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The integral in vy in (A.27) over a ball or radius O(N?) in R? yields another
factor O((N?)4=1) in dimensions d > 2. To make this evident, we have shifted
vy — vy +uin (A.28).

Similarly, we can bound the term || By ’ETOTU("?“)(t)'y](\];H)( ez, me-

teR

Thus, we conclude that

.error k
IBErrer D (1) (0)

Nik+1 terHE
k(k — 1) error k+1
= TSUP ||B1j\E/zg k+1U(k+1)( ol J(v+ )( )HL?GRHQ
J
< Ck(k = 1) NP0 g EED (0) g (A31)
We may now complete the proof.
e Bound for K — co: We have
S IBREIT TS D O Oz g
E>1
< (O NPldt+2a-1)- Zk 1) ¢k ”7(k+1 0 )||H,‘;+1 (A.32)
k>1
= ot @ a1 (£) @ O,
k>1
2 :
< ONFREe D (@t gup (- 1) () ST €)ED 3 O)llg,
E>1 13 =
< O &) NP2 D=L IE N (0) g, (A.33)

where we used (A.31) to obtain (A.32).

Summarizing, we combine (A.21) and (A.33) to obtain:

||BNﬁ(t)FN(O)HLfEWHg
= Y B, UGV (0)]) 12

tER

k>1
+,main k+1

< D IBNEETED @Oz, e

k>1

error k+1)
+ > IBNRT U 0§V 0) 1z e
k>1

< O(6€) (1+ N1 NAH2mD=1) D (0) | . (A.34)
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e Bound for finite K : Replacing the infinite sum over indices k in (A.33) by a finite
sum with 1 < k < K, it is easy to see that one gets

IBNU (t)P<k Ty (0) (R

K
k+1
= YU UGV Ol ae
=1
K
+, i k+1
< Y IBR UE @AY Ol e
k=1
K
+,error k+1
+y & IBNR U (1) T ()] fenHE
k=1
< CKE (14 N1+ NOER2e=D=1) 15 (0) [0 (A.35)

(by setting & = ¢’, and taking sup; << in the second last line of (A.33) )).
This concludes the proof. 0

Remark A.3. We note that the restriction on B is due to the error term in By.
It stems from the fact that since we are using the L?-type H"-norms, the quantity
Vi, which is essentially a Dirac function, is squared. We can only expect to get
B =1 if we use L'-type trace norms similarly as Erdés, Schlein and Yau, [14, 15].

The main term in By, on the other hand, does allow for the entire range 0 <
B < 1. This is because in this term, averaging (integration over the variable xj41,
which is part of the argument of Vy(x; — xx41)) is performed before squaring, in
order to obtain the H*-norm.



DERIVATION OF THE CUBIC GP HIERARCHY 43

APPENDIX B. ITERATED DUHAMEL FORMULA AND BOARDGAME ARGUMENT

In this appendix, we prove the main Lemma B.3 below, following our earlier
work [6, 8], where we used analogous estimates to prove well-posedness results for
the infinite GP hierarchy. The proof is based on the boardgame strategy introduced
in [23] (which is a reformulation of a method introduced in [14, 15]).

Definition B.1. Let = = (E(”))neN denote a sequence of arbitrary Schwartz class

functions 2™ € S(RxR™xR"). Then, we define the associated sequence ﬁlj (=)
of j-th level iterated Duhamel terms, with components given by

Dub; (E§)™ (t) (B.1)
i ! tj71 : n .
= (—i,u)J / dty - / dthNerlez(t—tl)A(i +1)BN;TL+2el(tl_t2)
0 0

oA (nd) .
AT ER ) ().

(n+2)
Ai

for = +1, with the convention
Duho(EX)™ () := (E§)™(#) (B.2)
for 5 =0.

Here, the definition is given for Schwartz class functions, and can be extended to
other spaces by density arguments. The fact that Duh;(Z)(™ € S(R x R™? x R™?)
holds in this situation, for all n, can be easily verified. Using the boardgame strategy
of [23] (which is a reformulation of a combinatorial argument developed in [14, 15]),
one obtains:

Lemma B.2. Let o € A(d). Then, for T = (3"),en as above,
|| Duh; (2)™ (t) || .2 Ho(Rnd xRnd) (B.3)

tel

< nC(coT) I+ 1

2., He (R(n+i)d xR(n+i)d) ,

where the constants cy, Cy depend only on d,p.

In [6, 23], Lemma B.2 is proven for the operator B instead of By, based on the
use of Lemma A.1. For the case of By, we invoke Proposition A.2 instead; the
argument then proceeds exactly in the same way.

We then consider solutions éﬁ of the integral equation
t
ok = 2(t) + Z/ By U(t — 5) OK (s)ds (B.4)
0

where 2" (¢) = 0 and (™ (t) = 0 for alln > K, and all t € I = [0, T]. By iteration
of the Duhamel formula,

k—1
O©K)™(t) = > Duby(E)™(t) + Dubk(0X)™ (1), (B.5)
j=0

obtained from iterating the Duhamel formula k times for the n-th component of
OK. Since (%)™ () = 0 for all m > K, the remainder term on the rhs is zero
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whenever n + k£ > K. Thus,
N faN=m)/p] ‘
N = > Duhy(E) "), (B.6)
j=1
where each term on the right explicitly depends only on =X (¢) (there is no implicit

dependence on the solution (:)ﬁ (t)).

Lemma B.3. Let (:)115 and ZK satisfy (B.4), with only the first K components
nonzero. Assume that Z§ € LfeIH?, for some 0 < & <1, and all K € N. Then,
the estimate

1881z, 3ee < Co(T,6,€) 1=K ez,

holds for 0 < & < n¢&' sufficiently small, with n specified in (B.11), and for a finite
constant Co(T,&,£") > 0 independent of K, N.

(B.7)

Proof. We have
(O™t Z Dub, ()™ (#), (B.8)

using the fact that (X)) = 0 for j > N —n, see (B.1).
Using Lemma B.2, we therefore find that
1O ™Mlzz_, e

tel

tel

N-—n
< > I Oub;ED V@] 2, e
7=0

N—n

IN

nCi (coT)EINER) Iz, e

tEI
0

J

IN

N—n
(&) "nCy (£/€) Z(COT(E')’ VEE) I NER) ™ 2, e

tEI

J

< (&) "nCy (¢/¢ "ZCOT “2)3(¢)" )| @) ey

tEI

§=0
< (O CE /)" CUT N NIER 2z, e, (B.9)
for T > 0 sufficiently small so that coT(¢')~2 < 1. Hence,

S €18 (1) 13 e

neN
< ame)( Yy (f/«f’)”) ST

neN

< C(T6€) 12X L2 ; (B.10)

tEI

for £ < n&’ where
n<Cyt (B.11)
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noting that Cy = Cy(d, p).

This proves the claim for the case p = 2. The case p = 4 is completely analogous,
and we shall omit a repetition of arguments. (I
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