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Abstract

We consider a non compact, complete manifold M of finite area
with cuspidal ends. The generic cusp is isomorphic to Xx]1,400]
with metric ds®> = (h + dy?)/y*°. X is a compact manifold equipped
with the metric h. For a one-form A on M such that in each cusp A
is a non exact one-form on the boundary at infinity, we prove that
the magnetic Laplacian —Ay = (id + A)*(id + A) satisfies the Weyl
asymptotic formula with sharp remainder. We deduce an upper bound
for the counting function of the embedded eigenvalues of the Laplace-
Beltrami operator —A = —Ag. !

1 Introduction

We consider a smooth, connected n-dimensional Riemannian manifold (M, g),
(n > 2), such that

J
M =M (J>1), (1.1)
§=0
where the M; are open sets of M. We assume that the closure of My is
compact and that the other M; are cuspidal ends of M.

! Keywords : spectral asymptotics, magnetic Laplacian, embedded eigenvalues , cuspi-
dal manifold.



This means that M; "M, = (), if 1 < j < k, and that there exists, for any
Jj, 1 <7< .J,aclosed compact (n — 1)-dimensional Riemannian manifold
(X;, h;) such that M; is isometric to X;x]a3, +oo[ , (a; > 0) equipped with
the metric

ds; = y i(h; + dy*); (1/n<6; <1). (1.2)
So there exists a smooth real one-form A; € T*(X;), non exact, such that
i) dA; # 0
or (1.3)

it) dA; = 0 and [A;] is not integer.

In #7) we mean that there exists a smooth closed curve v in X; such that

[ ¢ 2z,

y

Then one can always find a smooth real one-form A € T*(M) such that
Vi,1<;<J A=A on M. (1.4)
We define the magnetic Laplacian, the Bochner Laplacian
Ay = (1d+A)*(id+ A), (1.5)

(i=+v-1,(d+Au=idu+ud, Vu € C&®M;C), the upper star, *,
stands for the adjoint in L?(M)) .

As M is a complete metric space, by Hopf-Rinow theorem M is geodesi-
cally complete, so it is well known, (see [Shu] ), that —A4 has a unique
self-adjoint extension on L?*(M) , containing in its domain C§°(M;C) , the
space of smooth and compactly supported functions. The spectrum of —A 4
is gauge invariant : for any f € C'(M;R), —A, and —A4,4 are unitary
equivalent, hence they have the same spectrum.

For a self-adjoint operator P on a Hilbert space H, sp(P), Spes(P), sp,(P)
and sp,(P) will denote respectively the spectrum, the essential spectrum,
the point spectrum and the discrete spectrum of P. We recall that sp(P) =
Spess(P> Uspd(P>7 Spd(P> - Spp(P) and Spess(P> N Spd(P> = Q)

Theorem 1.1 Under the above assumptions on M, the essential spectrum
of the Laplace-Beltrami operator on M, —A = —Ay is given by
{ SPess (—A) = [0, 400, if 1/n<di<l1

? 1.
Spess(_A) = [@,"’OO[, if 6=1 ( 6)
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When (1.3) and (1.4) are satisfied, the magnetic Laplacian —A has a com-

pact resolvent. The spectrum sp(—A4) = spy(—Aa) is a sequence of non-

decreasing eigenvalues (A;)jen , Aj < Ajt1, 'ligrn A;j = +o00, such that the
Jj—+oo

sequence of normalized eigenfunctions (p;)jen= is a Hilbert basis of L*(M).

Moreover \g > 0.

For any self-adjoint operator P with compact resolvent, and for any real
A, N(A, P) will denote the number of eigenvalues, (repeated according to
their multiplicity), of P less then A,

N<)‘7 P) = trace (X]—OO)\[<P)) ) (17>

(forany I C R, xs(x)=1ifx €l and x;(x) =0if x € R\ I).
The asymptotic behavior of N(A, —A,) satisfies the Weyl formula with
the following sharp remainder.

Theorem 1.2 Under the above assumptions on M and on A, we have the
Weyl formula with remainder as A\ — +o0,

N(A, =Ay) = \M\< o) A2+ 0(r(N) (1.8)
" D20y, i1/ 1)
A=Y 0n(N), if 1/(n—1) <9
) = { A/ (20) if 1/n<é<1/(n—1)" (1.9)
)= 11r<r111r1J(5 M| is the Riemannian measure of M and wqy is the euclidian
== /2

volume of the unit ball of RY, wy = .
L(1+9)

The asymptotic formula (1.8) without remainder is given in [Go-Mo], and
with remainder but only for n = 2 (and §; = 1 for any 1 < j < J) in
[Mo-Tr].

The Laplace-Beltrami operator —A = —/A, may have embedded eigenval-
ues in its essential spectrum sp(—A). Let Negs(A, —A) denote the number
of eigenvalues of —A, (counted according to their multiplicity), less then A.

Theorem 1.3 There exists a constant Cny such that, for any A >> 1,

N, —A) < [M|—2 X2 4 Chrro(N) (1.10)
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with ro(X\) defined by

n—(nd—1)

() = A7 n()), if 2/n<d<1 111)
O aE, I/n<d<2/n’ '

0 is the one defined in Theorem 1.2 .

The above upper bound proves that any eigenvalue of —A has finite
multiplicity.

The estimate (1.10) is sharp when n = 2. There exist hyperbolic surfaces
M of finite area so that
New(A, —A) = \M\<2w—2)2)\ + TnA 2 In() + O(AV?)

T

for some constant I'ny. See [Mul] for such examples.

Still in the case of surfaces, a compact perturbation of the metric of
non compact hyperbolic surface M of finite area can destroy all embedded
eigenvalues, see [Coll].

2 Proof

2.1 Proof of Theorem 1.1

Since the essential spectrum of an elliptic operator on a manifold is invariant
by compact perturbation of the manifold, (see for example [Do-Li|, Proposi-
tion 2.1 ), we can write

J
Dess(—A4) = | e (—AF"7) (2.1)
Jj=1

where —AIXIj P denotes the self-adjoint operator on L?(M)) associated to
—A 4 with Dirichlet boundary conditions on the boundary O0M; of M;.

Let us consider a cusp M; = X x]a?,—i—oo[ equipped with the metric
(1.2). Then for any u € C*(M}),

—Aqu = —yz‘szfju - ynéjay(y(%n)&jayu)a (2.2)



where AXJ_' is the magnetic Laplacian on X; : if for local coordinates h; =

Z G dxpdz, and A; = Zaj k dxy, then

k=1

X;
A

10y, + Q1) ( det(G)GM(i@W + aj,g)> .

T 2

We perform the change of variables y = ¢!, and define the unitary operator
U : L*(X;x]2In(a;),+oo[) — L*(Mj;) , where |2In(a;),+o0[ is equipped
with the standard euclidian metric dt?, by U(f) = y™%~/2f Thus L*(M;)
is unitary equivalent to L?(X;x]21In(a;), +oc[), and

(nd; — 1)[340,(n

_U*AAUf: _626th§;f+ — )] 2t6—1)f a( 2¢(6;—1) 8f)

4

(2.3)
Let us denote by (ue(j))een the increasing sequence of eigenvalues of
—-A A’, each eigenvalue repeated according to its multiplicity. Then AM P

+0o0

is unitary equivalent to @ LJ 0
=0
M,,D

sp(—Ay ") = sp(@ Lfe) ) (2.4)

where L7, is the Dirichlet operator on L*(]2In(a;), +oc[) associated to

(nd; — 1)

4

If pe(j) > 0 thensp(L7y) = spy(LY,) = {per(i); k € N}, where (p10(5))ken
is the increasing sequence of eigenvalues of L7,, lim px(j) = +oc.

k——+o0

If p1e(j) = 0 then sp(Lfe) = SpeSS(LM) = [ay,, 00|, with a,, = 0 if §; < 1,
and o, = (n —1)?/4if 6; = 1.

Since we have 1(j) = 0 when A = 0, we get that sp.(—Ao) = [y, +00[.

If A satisfies assumptions (1.3) and (1.4), then 0 < po(j) < we(j) for

all 7 and ¢, (see for example [Hel]), so sp(—AZ/[j’D) = {r(y); (k) €
N7} As Jm e (j) = +oo, each pgr(j) is an eigenvalue of — AP of
—+00

L, = ewjtw(j) + [3+5j(n_4)]62t(5j_1) - 8t(62t(6j_1)8t). (2.5)

finite multiplicity, so sp(—AY?") = sp,(=AY?"”). Therefore, we get that
Spess(_AA) = @ O



2.2 Proof of Theorem 1.2

We proceed as in [Mo-Tr].

We begin by establishing formula (1.8) for M, with —A}XIj P defined in
(2.1), instead of —A,4. When §; = 1 we make the same change of variables
and functions as in the proof of Theorem 1.1, but when 1/n < §; < 1, we set

y = [(1—6;)t]/17%) and define the unitary operator
2(1-5)

a
U (X% o) = L(M,), by U() = 502
Y
Then when 1/n < 6; < 1,

n—1)0;[(n — 3)d; + 2]

T AEE f—0f. (2.6)

26j .
SUALUS = —[(1-5) A% f

As a matter of fact,
—U*y nd; 9 [ (2-n)d; U(f)] _ _y(n+1)6j/2ay[ (3-n)d;/2p f] (n— 1 (n=1)o; 25 i—19 f+
(n—1)d;[(n— 3)5 +2] 72(1 55 )f
1
then using that y5 10, = 0, and that 70, = 0,(t".) — ptP~1, we get easily (2.6).
Equality (2.4 ) still holds when L7, is the Dirichlet operator on L*(] “21(:;?) :
associated to

2 (0= )F[(n - 3)5+2

Lj,@ = NK(])[(l _5j)t]1_6j + 4(1 _5j>2t2 - 8152 : (27>

From now on, any constant depending only on ¢; and on min jo(j) will
J

be invariably denoted by C'.
As in [Mo-Tr|, we will follow Titchmarsh’s method. Using Theorem 7.4
in [Tit] page 146, we prove the following Lemma.

Lemma 2.1 There exists C' > 1 so that for any A >> 1
and any L € Ky ={l € N; u(j) € [0, )\/mlna i},

1
INOLLD) — Tupe)] < Ol (2.8)
‘ +o0 12 T5(p) 12
MMuwm>:/‘[wﬂwwhdt=/' = V()2 dt.

oo[)



The potential V, is defined as following:

if 6 =1 Vielt) = pul)e® + 5
29 T35 ,
if 1/n<d; <1 Vie(t) = pe(h)[(1 =)t =% + (nfl)fgl[(_(sj2)32)5J+2]t—2
(2.9)
and
) 1 )
if ;=1 aj =2n(ay),  Tj(p) = 5 n(u/no(j))
2(175j) 1 ILL 1;(;? . (210)
ifl/n<d; <1 =% Ti(p) = ( )
/ J J 1-4; i (1) 1-05; \1())

Proof of Lemma 2.1

When 1/n < §; < 1, by enlarging My and reducing M;, we can take
a; large enough so that V,(¢) is an increasing function on [a;, +oo[ and
Mpe(j) >> 1 when £ € K. Then, if a; <Y < X(A) = V;,}()), following
the proof of Theorem 7.4 in [Tit] pages 146-147, we get that

INOWLE) =~y < (211)
CIn(\— Vi efe) (A = V(1)) + (X(0) = V)& = Vye(¥)) +1].

When §; = 1, we choose Y = X (\) — ‘/\1/?

1-6;

wm<A)%J

When 1/n < é§; <1, we choose Y = X(\) — —— | —— ;
fn <o W= e

lfzij

B
(X()\) ~ 1_15]. (M?j)) ) 0
Let us recall the sharp asymptotic Weyl formula of L. Hérmander [Horl]
(see also [Hor2]).

Theorem 2.2 There exists C > 0 so that for any p >> 1

X; Wn—-1 n— n—
IN (1, =A%) — Cﬂﬁﬁzﬁxﬂu(]“ﬂ < oA (212)

J
Lemma 2.3 There exists C' > 0 such that for any A >> 1

IN(A, =AY -

(2m)"

. A=D1\, if 1/(n—1)<§; <1
AL/(26) if 1/n<d;<1/(n—1)

M2 < (2.13)



Proof of Lemma 2.3 By the formula (2.4),
+oo
N, =AY = Y N LD . (2.14)
As N(\, L)) =0when ¢ ¢ K, (K, is defined in Lemma 2.1), the estimates

(2.8), (2.12) and formula (2.14) prove that

+

8

. 1
INOL, —AYPY — ST 2 (V)] < CAPD21In()) | (2.15)
= "
Let us denote
“+o0 —+o0 s
= > u) ad B = Y- wG . (216)
:0 =0
1 [T —1/2 X,
AsRi(w) =5 [ = )TN (s, —AX s,

0
the Hormander estimate (2.12) entails the following one.
There exists a constant C' > 0 such that, for any g >> 1,

Wn—1

+o00
B) = il [ s R < et R 2

Writing in (2.9 )

Vie(t) = me()Vi(t) + Wy(t) (2.18)

T5(N) — TV,
we get that ©;(\) = %/ V-I/Q(t)Rj()\—M/J(t))dt .

J
J

So according to (2.17)

Wi 1F 1 i /\) ))n/Q
©,(A) — 2n) FQ % ]I/ V- 1/2(15) dt| < (2.19)

(n—1)/2
c / )

(n— 2/2(t)




From the definitions (2.9) and (2.18) we get that

))H/Q 2 1 —1)/2
|/ dt — A/ —| < oA\ . (2.20)
V(n 1)/2( ) (5Jn . 1)a§(53n 1)
and 7,0 (n-1)/2
/ (A - Igf_g;; dt < (2.21)
a v (2)
A(n—1)/2 if 1/(n—1)<6;<1
C¢ A= D2l if 1/(n—1) =
A1/(205) if 1/n<dé<1/(n—1)
X
As |M;| = G | )J|2(5,n1) , we get (2.13) from (2.15), (2.16) and (2.19)—
jn—La;
(2.21) O

To achieve the proof of Theorem 1.2, we proceed as in [Mo-Tr].

We denote Mj = M \ (U M;) , then

M = M J (OE) . (2.22)

Let us denote respectively by —A%D and by —A%N the Dirichlet operator
and the Neumann-like operator on an open set €2 of M associated to —A 4 .
—AQ N is the Friedrichs extension defined by the associated quadratic form

¢ (u / lidu + Aul*dm | u € C*(9;C), u with compact support in
Q. (dm is the n-form volume of M).
The minimax principle and (2.22) imply that

NO-AY) 3T N =AY S NOL-AL) (2.23)

1<j<J

< NOL=AYSY) 3T N, Al

1<j<J



The Weyl formula with remainder, (see [Hor2] for Dirichlet boundary
condition and [Sa-Va] p. 9 for Neumann-like boundary condition), gives that

N(A, —AZIg’Z) = (;n) IMYINY24O(A"=V/2) . (for Z = D and for Z = N) .
T n
(2.24)
For 1 < j < J, the asymptotic formula for N (A, —AIXI"’N) ,
NO=AY) = M+ 06 () (2.25)

is obtained as for the Dirichlet case (2.13) by noticing that N(X,L7,) <
N(A LY,) < N(A LP,) + 1, where LY, and LY, are Dirichlet and Neumann-
like operators on a half-line I =|a;, +00[ , associated to the same differential
Schrodinger operator L,, defined by (2.5) when §; = 1, and by (2.7) oth-
erwise. (The Neumann-like boundary condition is of the form dyu(c;) +
Bju(ej) = 0 because of the change of functions performed by U*).

We get (1.8) from (2.13) and (2.23)— (2.25) O

2.3 Proof of Theorem 1.3

Lemma 2.4 For any j € {1,...,J}, there exists a one-form A; satisfying
(1.3) and the following property.
There exists 19 = 19(A4;) > 0 and C' = C(A;) > 0 such that for any
A>> 1, ife(r,j) = inf idu + TuA; |22« y denotes the first
fe(rJ) ueC™(X;), Jlull 2 x =1 | il f

eigenvalue of —Afjj, then

e(r,j) > Ct%; V7€)0,7). (2.26)
Proof of Lemma 2.4. When n = 2, we can take A; = w;dx;, (dx; is
2
the (n — 1)-form volume of X;), for some constant w; € R\ %Z, then
J

e(r,§) = T2w? for small |7].

When n > 3, we have €(0,j) =0, 0.e(0,7) =0 and

2e0.9) = [ [I4P = (A3 @A) A | dx;.

X,
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(d* is the adjoint of d defined on functions, and (—A())(j )~!is the inverse of the
Laplace-Beltrami operator on functions, which is well-defined on the space
{f € L2(X)); Jx, fdx; = 0}).

To the non-negative quadratic form A; — 92e(0, j), we associate a self-
adjoint operator P on T*(X,), which is a pseudodlfferentlal operator of order
0 with principal symbol, the square matrix po(x,€) = (p&F(x,€))1<ir<n_1
defined as follows. In local coordinates, if h; = G (z)dz;dxy, then

P, €) = G(x) — ZG"%)G@’“@)%%; (el = 3 6™ (0)Ents)
£m

lm
As the non-negative symmetric matrix po(x, &) is not the zero matrix, there
exists Aj such that P(A;) # 0 and by the positivity of P, 92e(0,j) =
fX Aj|Aj)dx; >00

Lemma 2.5 For a one-form A satisfying (1.4), there exists a constant C'y >
0 such that, if u is a function in L?*(M) such that du € L*(M) and

Vi=1,...,J, / u(zj,y)dx; =0, Vy €laZ,+ool, (2.27)
X,
then V1 €]0, 1],

Proof of Lemma 2.5. First we remark that the inequality
lidu + TuA|* < (1 + p)|dul® + (1 + p~ 1) |TuAl? (2.29)

is satisfied for any p > 0.
For p = 7 we get that there exists a constant C9 > 0, depending only on
A/M,, such that

||idU+TUA||%2(MO) < (1+7)||idu||%2(1v10)+TC94||U||%2(MO)- (2.30)

We get also for p = 7 that for any j € {1,...,J},

+o00
/2 lidu + TuA|72x,)y* % dy < (2.31)

J

11



+o00 .
[ (il + 7Calulace, ) o5

for some constant C% depending only on A/X;.
But (2.27) implies that

1
pa ()

lull2ex,) < lidul 72, - (2.32)
with (ue(j))een the sequence of eigenvalues of Laplace-Beltrami operator on
X, 1o(7) =0 < () < paly) <....Soif (2.27) is satisfied then (2.31) and
(2.32) imply that

lidu + TuAlF 2,y < (14 7)) lidul|F20, (2.33)
for some constant cf4 depending only on A/X;.
The existence of a constant C'y > 0 satisfying the inequality (2.28) follows
from (2.30) and (2.33) for j=1,...J 0O

Lemma 2.6 When A satisfies (1.3), (1.4) and Lemma 2.4 , then as A —
+00, the following Weyl formula is satisfied.

Wp, n
VO Buea) = MG + O 03
with / - 5
- { (nd —1)/2, if 1/n<d6<2/n "’ (2.35)

d and wy are as in Theorem 1.2, and the function ro(\) is the one defined by

(1.11) .

Proof of Lemma 2.6. Since A satisfies Lemma 2.4, we have

C/N? < po(j) and C < pu(j),

X
)\_ij'
Hence we can mimick the proof of Theorem 1.2. More precisely Lemma 2.1
holds for any ¢ € K,,¢ # 0, and to get the result it only remains to prove
that we have, for L, defined by (2.5) if §; = 1, and by (2.7) otherwise,

where (10(j))een denotes now the increasing sequence of eigenvalues of —A

N\, Ljp) = O(ro(N)) -

12



This can easily be done as follows.
When §; =1, (p=1/2), it is easy to see that

N\ LP)) < N(A+C,LPY) < AV In(N)

C
where LP is the Dirichlet operator on ]0, +o00[ associated to Xezt — 0.
When 0 < 0; < 1, by scaling we have that

NN LT < N((A+C)HH2et=0) [Py < oAI+20(1=03))/(205)

25
where L? is the Dirichlet operator on |0, +-o00] associated to %tl“sf — 7.
When 2/n <6 <1, as 2/n < 4§ <9, then

NA+20(1=6))/(26;) — \(2-9;)/(26;) < \(2-9)/(20) < \(n=1)/2 — O(ro(N)).

When 1/n < 0 < 2/n, as § < ¢;, then

A+20(126))/(28;) < \(1420(1-8))/126) — \(n=(5=1)/2 — O (1 (X)) O

To achieve the proof of Theorem 1.3, we take a one-form A satisfying the
assumptions of Lemma 2.6.

We remark that any eigenfunction u of the Laplace-Beltrami operator —A
on M associated to an eigenvalue in |inf sp.(—A), +00], satisfies (2.27). So
if H, is the subspace of L?(M) spanned by eigenfunctions of —A associated
to eigenvalues in |0, +ool, then, by (2.28) of Lemma 2.5 with 7 = 1/\*, with
p defined by (2.35), we have

. 1 Ca
Yu € Hy, \|zdu+VuA|yiz(M) < (1+V)||du\|%2(M)+CAHUH%2(M) (2.36)
So o
dim(H,) < N((1+)\—:‘))\+CA,—A(A7M)). (2.37)

The estimates (2.34) and (2.37) prove (1.10), by noticing that A\"/2/\* =
O(ro(A)) O
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