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Abstract

‘We complete the analysis of the symmetry algebra £ for systems of n second-order linear ODEs with constant
real coefficients, by studying the case of coefficient matrices having a non-diagonal Jordan canonical form. We
also classify the Levi factor (maximal semisimple subalgebra) of £, showing that it is completely determined
by the Jordan form. A universal formula for the dimension of the symmetry algebra of such systems is given.
As application, the case n = 5 is analyzed.
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1. Introduction

In contrast to the case of (scalar) ordinary differential equations, the analysis of the point symmetries and
linearization criteria for systems of n ODESs remains still an unsolved problem for general n, although various
results basing on different approaches have been developed in the literature [1, 2, 3]. A precise knowledge
of the symmetries for linear systems constitutes a valuable tool for the study of non-linear systems, as it is
known that systems of nonlinear ODEs can be locally mapped to a linear system of ODEs whenever they
have the same structure of symmetry [4]. The case of systems consisting of order two differential equations
is specially important, as it is related with many applications in Mechanics and dynamical systems, and the
symmetry groups can be used to better comprehend the evolution and characteristics of such systems [5, 6].
The symmetries of linear second systems with n < 3 equations and constant coefficients have been recently
studied in detail in [7, 8], while those with n = 4 equations were analyzed in [9]. The latter work also dealt
with the general case of diagonal coefficient matrices and the structure of their symmetry Lie algebra L.

The main objective of this work is to fill this gap in the literature, by finishing the study of symmetries of
systems with constant coefficients, the coefficients matrices of which are non-diagonalizable. To this extent,
we divide the task into various steps. We first consider the case of coefficient matrices J having only one
real eigenvalue or two complex conjugated eigenvalues. The symmetry condition is explicitly integrated, and
the dimension of the resulting symmetry algebra £ given for arbitrary n. The argument bases heavily on
the nilpotent part of the canonical Jordan forms [10]. We also prove that the Levi factor (i.e., the maximal
semisimple subalgebra) of the symmetry algebra is determined by the Jordan form, and obtain a realization
of this algebra. We also show that symmetries of systems X = Jx with coeflicient matrices having more
than one eigenvalue can be essentially reduced to the analysis of the cases with only one eigenvalue (or
two complex conjugated eigenvalues). This allows to establish, for arbitrary n, a general formula for the
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dimension of the symmetry algebra. In particular, it will follow that the dimension of the symmetry algebra
for a system of n equations and more than one eigenvalue can be described in terms of the dimension of
the symmetry algebras of systems with one eigenvalue and m < n equations. In similar form, the Levi
subalgebra can be classified, resulting in a criterion to decide whether the symmetry algebra is solvable or
not. As an illustration of the procedure, we tabulate the dimension and Levi factors for systems consisting
of n =5 ODEs.

1.1. Jordan forms of systems of ODFEs and symmetries

Any second-order system of ODEs with constant coefficients x = M;%+Mox + M3 (t), where x, M3(t) € R"
and Mj, My are real matrices, can be reduced, by means of canonical forms [7, 11], to a system of the form

y = (My— M7) y.

Since we are dealing with matrices with real coeflicients, there always exists a (real) Jordan canonical form
J such that My — M? = P~1JP for some invertible matrix P [10]. Since the latter is related to changes of
basis, a second change y =Pz reduces the system to the equivalent form z = Jz. Therefore, the analysis
of symmetries of systems with constant coefficients reduces to study the symmetries of the non-equivalent
canonical forms.

To compute the symmetries, we maintain the approach by means of vector fields used in [9], and based on
the equivalence of systems with PDEs of first order [12]. The system of ODEs z; = w; (i, z;,t) is equivalent
to the first order PDE

0 0 0
Af=(=+d—+w-——|f=0. 1
f (at”lawﬁ%a@)f M)
In this context, a vector field X = £ (¢, 21, -+ ,x,) % + 1 (txy, - Tp) % is a (point) symmetry if its
prolongation X = X + 7, (t,zi,24) % satisfies the commutator
. d¢
X,A] = %, P
| @ @
where 7; = —‘;—fjci + ddT. The n resulting equations of the components of the bracket are identities in ¢, x;

and &;. As for point symmetries the functions £ and 7; of the symmetry X do not depend on the #;s, these
n equations can be further split into more equations that express the symmetry condition analytically.

1.2. Non-diagonal canonical forms J

As commented, the case of systems with diagonal coefficient matrices was covered in [9], where the general
dimension and the structure of the symmetries was obtained. To complete the study of systems with
constants coefficients, it remains to see what happens for the non-diagonal canonical forms, corresponding
to non-diagonalizable coefficient matrices. Certainly this case is more complicated, due to the high number
of canonical forms and their structure. A generic non-diagonal canonical form J is of the shape

Ao
A2

Vn—2
)\nfl Vn—1
An

where the v; are either zero or one, and v; = 0 if A; # A\;11. For notational convenience we also define v, = 0.
Since J is not diagonalizable, at least one of the v;’s must be nonzero. The eigenvalues \; of J are either
real or complex conjugated [10]. If the eigenvalues are real, J is the canonical form to be analyzed, while
for complex conjugated eigenvalues (3) must be further transformed to a real matrix involving rotations.
For this reason it is convenient to analyze both possibilities separately, since the structure of the symmetry
algebras will be essentially different.



2. Matrices with one real eigenvalue

Suppose that all eigenvalues \; of (3) are real. For such a matrix J, the symmetry condition (2) of the

system x = Jx is expressed by means of the following system of PDEs:

82§ 827’”
= = 1<i4. i< .
8.215:% 07 al'zal'] 07 = Zv] =n, 7/?] #l
e 9,
2 - 1 =0,1<;5<
otox, P, - ISIST
825 82771
- =0,1<51< P4
O0tox; D)0 0,1<41<n, j#
o€ &y

()\lel =+ l/ll'lJrl) =0,1< j,l <n,j 7£ l

dx; 0Otdx;
*¢ Py

0
or, o2 “otom

0
Z (Niwi + vizig) % + 3 (M + vzi41)
i#£l v
N+ v = Y (A + vizig)

i=1

om  Pn 23
oz, pYe +2 ()\l«%'l + lelJrl) ot 0,1<I<n

As a first simplification, we will suppose in this section that the matrix J of (3) has only one real eigenvalue,
ie, A=)\ fori =1,...,n. In Section 4 we will prove that the general case of multiple (real) eigenvalues

can be recovered from the analysis of the subsystems corresponding to the different eigenvalues.

The first step in the analysis of the symmetries is to obtain a generic form for the solution of the symmetry

condition.

Theorem 1. Let X = f% + m% be a symmetry generator of the system X =Jx. Then the component

functions § (t,x1,...,2,) and n; (t,21,...,25) (§ =1,...,n) have the following generic form:

1. If X#0:
g(taxla"'vxn) = Qq,
n; (t, T1,...,%n) :ZaijJraj (t).
=1
2. Ifx=0:
£(t7x17°"7xn) :O‘0+Hltu

n; (¢, 1,...,&n) = Zaéxj +o0;(t).
1=1

where aq, K1, aé» € R.

From the set of equations (4) we immediately obtain that the component functions £ and 7); can be

written as
E(t,z1,.-,Tn) = @0 (t)+ngi(t)xi,
i=1
m(t,x1,. .., o) = ijﬁé (t, )+ pu (t,2y) .
i
3



By equation (5) we get the condition

620]
205 ( 8 5.2 + Z 2

i % T
=0 for | # j and 2gbj( ) = %. Now (6) further implies that oy gj = ¢ (¢t) for
[ # j. Thus the component functions »; (t,21,--- ,zy) can be rewritten as
0 (6o, wn) = (230 (1) +2;G (8) + 05 (1) + > _a (wo+ 75 (1), 1<j <m. (10)
il

For each j we now evaluate equation (7), which provides the conditions
(Azj + vimjr) @i (1) — zBi (8) — 75 (8) = 0, i # j. (11)

Since the matrix J is not diagonal, there exists at least one index v, 75 0. Without loss of generality we can

suppose that v; = 1. From (11) we deduce that o; (t) = 0 for i = 2,--- ,n.} The latter constraint implies

that 85 = 0 for 7 > 2. On the other hand, integrating the condltlon ( ) =0 we get T]l~ (t) = aé. Taking
into account this simplification, equation (8) with 7 = 1 reduces to

3 (Azy + m2) @1 () + o (1) + 2181 () — 421y () — 261 () = 0. (12)
From here we immediately see that o1 (t) = 0, and further that the function ¢y (¢) satisfies the ODE
o (t) =261 (1) =0
The same condition is obtained for the remaining indices j = 2,-- -, n, so that all functions ¢; (¢ ) are related

to the second derivative of ¢ (t). Straightforward integration gives (; (t) = 3o (t) + a;, j=1,---,n Up
to this point, the general solution to the symmetry condition takes the shape

E(t,xry. . xn) = wo (1), (13)
n; (t,x1,...,%n) = %gbo (t)+ 05 () +>0,4 aéml. (14)
It remains to consider the last equation (9). As v; = 1, this means that can express 19 (t,21,...,2,) in
terms of n1 (¢, 21,...,2n), wo () and their (partial) derivatives:
72 (t, Ti,... ,CL‘n) = i ()\LL‘Z + VZ:I:’LJFI) Oy + & o _ 2 ()\{E1 + {EQ) ©®o (t) — A (t,!L‘l, ce ,LL'n>
Ox;  Ot?

i=1

(1</>é3) (t) = 2\¢0 (t)) 1+ (af =200 (1) @2+ Y vimial Ve + (61 (1) — Aou (£)).

1=3

(15)

Comparing the coefficients with those of (14) we deduce the identities
3 . ,
= 2906)( 1) = 220 () a3 = aj — 2o (t);
CtlQ—Vl 10[1 l>3 0'2(15)25'1 (t)—)\dl (t)

Now, if 15 # 0, equation (9) allows us again to obtain 13 (¢, z1, . .., x,) expressed as a function of n; (¢, x1,...,x,)
and g (t). Evaluating the identity and comparing the coefficients in both sides, we rewrite 03 (¢, z1, ..., Z)

as

1 . : - - )
N3 (t, @1, ..., Tp) =2 ( cp(()g) (t) — 2X¢0 (t)) za+(af — 4¢o (1)) x3+z vi—1vi—odd 2ap+ (o (8) — 2061 (t) + Moy (¢)) .
[

LTf there is another index vy, # 0 with h # 1, then we also have ¢1 (t) = 0. However, in order to avoid a distinction of cases,
we will not make further assumptions on the values of v, for h > 2.

4



The same pattern holds for successive nonzero indices v;. Therefore, if vy,vs, -+ ;1 are all nonzero, the
component functions n; (¢, z1,...,2,) for j =2,--- [ are completely determined by n1 (¢, z1,. .., %), @o (t)
and their derivatives. Applying recurrence, we arrive at the closed expression

m (t,l‘l, S ,,In) = (l — 1) (;(pé?’) (t) — 2)\(,00 (t)) 131_1-4-(05% -2 (l — 1) ©o (t)) T+ Z

m=Il+1

-1
< I/m_s> a{’“‘l_lxm—l—al (t),
1

- (16)

where
-1

n0 =Y 0 () ). (17)
k=0

Suppose that v; = 0 is the first index that vanishes (I > 2).2 In this case, equation (9) provides additional
constraints on the coefficients and functions of n; (¢t,21,...,x,), and therefore on o1(t), ¢o(t) and the real
constants «f. Starting from the expression (14) for n; (¢, 21, ..., z,) and applying (9), we obtain the identity

n—1
. 1 _ . .
(2/\@0 (t) — §<pg3> (t) — a 1) T = Y veaiwepn + (60 (1) — Aoy (1) = 0. (18)
s=Il+1

Hence, inserting the values of the constants a{ from (16), we are led to the constraints

(2200 () = 387 (1) =0
S (1) ( ]i ) NP9 (1) = 0 (19)
Zﬂ:m (ng;t l/mfs> Oé?HPIZm =0

The first of these equations must be analyzed in dependence on the value of the eigenvalue A. Direct
integration gives
Qo + K1 exp (Qﬁt> + Kg exp (—2ﬁt) , A>0
o (t) =9 o+ kit + Kot A=0 - (20)
g + K1 sin (2Mt) + Ko COS (QJjAt) , A0

By (16), the coefficients ! must be real constants, which further implies that

al—=2(1-1) (2\5\/@1 exp (2\F)\t) — 2V Akg exp (—2\/Xt)) , A>0
a =2 =1)¢0(t) =13 al —2(1—1) (k1 + 2kat), A=0 » (21)
al—2(1-1) (2\/—7)\/11 cos (2\/—7)\t) — 2¢/=Aka sin (2\/—7)\1?)) , A<O0

a condition that can only hold if k1 = k3 = 0 for A # 0 and ks = 0 for A = 0, showing that ¢¢ (¢) must be
a constant. The components n; (¢, z1,...,x,) for j <[ are hence completely determined by equation (16).
Observe further that for j =1+1,--- ,n, equations (14) and (20) imply that the functions n; (t,z1,...,2x)
have the following generic form (where k; = 0 if A # 0):

n
1
(b, wn) =Y (aé + 25§n1> x+0j (). (22)
=1
This shows that the components functions & (t,z1,...,2,) and n; (t,21,...,2,) have the generic form
claimed.
2lesvi=vg=--=v_1 =1



As follows from equation (16), it may seem difficult to count the exact number of independent integration
constants ! for a generic matrix J as given in (3), as the successive products of the indices v; are involved.
In order to circumvent this difficulty and be able to determine the number of symmetries of the system, we
consider the normal form J more closely. We can always rewrite it as

I,
Ims
J = . , (23)
Im
Po
where for each index m; (i =1, -+ ,pg) the submatrix J,,, denotes the (m; + 1) x (m; + 1) —dimensional
Jordan block
Al
T, = R . (24)
’ 1
A

The scalar pg is nothing as the number of Jordan blocks of the matrix J. For convenience in the computations,
we further order the blocks J,,, after its size, i.e., taking m; > mg > --- > my,, > 0. It follows in particular
that Y 7%, m; + po = n.

Theorem 2. Let L denote the Lie algebra of point symmetries of the system of n equations X =Jx.

1. If A\ #0, then

po—1  po
dmL=2+p)n+1-— Z Z = my) (25)
i=1 k=j+1
2. IfA=0,
po—1  po
dimL=(2+p)n+2— Y Y (m;—my). (26)
i=1 k=j+1

Proof. The proof of this assertion is enormously simplified if we use the nilpotent part of the Jordan
form (3).
For each Jordan block J,,,, the function 7, (¢t,21,- - ,2,) determines the components 7, 1; (t,21, -+ ,Tn)
for 1 < j <m;, where g1 =1, ¢; = 22;11 my + 1 for (2 < i < py—1). Therefore we only need to consider
the number of integration constants provided by the functions 7, (¢,z1, -+ ,2,). The generic form for the
latter is

77@‘,-(1575317"', Za x]+0'1 (1S1Spo)

For each m;, the function o; (t) satisfies the corresponding ODE

mi+1 m; 4+ 1
Z(—l)’“( K )Ak P (1) =0, 1< < o 27)

If A # 0, the general solution to such equation is given by

t) = (i Bgﬁ) exp (ﬁt) + (i 72t8> exp (—ﬁt) ,



thus any function o; (t) contributes with 2 (m; + 1) integration constants and the part of the solution de-
pending on the independent variable ¢ has dimension 2> 2%, (m; + 1) = 2pg + 2 72, m;. For the case

A = 0, the equation (27) simply reduces to a§2mi+272k) (t) = 0, with general solution
2m;+1 tk
oi(t)= Y i
k=0

Also in this case, we obtain 2m; +2 integration constants for each 7, giving a total amount of 2pg+2 Zfil ms.
If we take into account that n = po+>_ 52, m;, the number of integration constants provided by the functions
o; (t) is simply 2n, i.e., it depends only on the number of equations. Further, as follows from Theorem 1,

the time component of a symmetry X is always & (¢, z1,- -+ ,&n) = ag + k1t, where k1 # 0 only if A = 0.
In order to determine the dimension of £, it remains to see how many integration constants arise from the
linear part ngLiT (tx, 0, @n) =D oy ol w; of the general solution to the symmetry condition.

In order to see how many of the constants aé are independent, we use the nilpotent part of J as given in

(23). Tt follows at once from (23) and (24) that

(J — Nld,,)™ ' = 0.
This condition implies that any for i > 2, the products ;anlfrl vi_j are identically zero. In particular, it
follows that the third equation of (19) is identically zero taking [ = m;+1. As a consequence, the coefficients
] are not subjected to any restriction, and the linear part of ny (¢, 21, -+ ,2,) is simply >, _; alzy with n
degrees of liberty.? This can be best seen rewriting the linear parts 77]-LT (t,x1,--,xq) of m; (t, 21, -+, Tp)
(j=2,---,mq+ 1) using matrices: Let (-,-) denote the standard inner product of R". By (15), the linear
part of 72 (t,21, -+ ,x,) can be reformulated as

851 0 1 € 1
OZ% 0 1) ZTo 1
772LT<t7551a"'733n):< 0 ) >7
a?fl Un_1 Tp_1 1
ol 0 T, 1
(28)
where vy = -+ = Uy, = 1, Vm,4+1 = 0 etc by (23). Observe that the upper diagonal matrix depending on

the v;s is exactly J — AId,,. Let us denote the diagonal matrix of (28) by A;, and let v = (1,--- ,l)T. It
follows from (16) that

nJLT (t,x1, - ,xp) = <A1 (J — )\Idn)j_lx,v> , J=2,--,mq+1. (29)
Now the third condition of (19) implies that the identity
<A1 (J — AId,,)™ ' x, v> ~0

. 1 . .
must be satisfied. However, as (J — AId,,)™* ™" = 0, this means that there are no constraints on the scalars
ok, as seen above. In analo treat th ini LT (¢ =l

T . gous manner we can treat the remaining n;" (t, 21, -+ ,2,) = > ,_; ol x;.

Written in matrix form, these functions are expressed as

WéT (t7x17"’ 71'”) = <A’L (J*)\Idn)X7V>, i = 27 yPo — 17 (30)

3If A = 0, we have the additional term x1z1, which does however not add dimension, since & (t,z1,- -+ ,Tn) = ag + K1t by
Theorem 1.



where A; denotes the diagonal matrix whose entries are (O‘;-v cee oz?i). Again, the functions nfiﬁj (t,z1, - ,Zn),
where j =1,--+ ,m;, are given by successive powers of (J — AId,,):
i—1
ML (b sen) = (A5 (7= A, T x,v ). (31)
For the last component n%, (¢, x1,--- ,z,) of the block J,,,, equation (9) implies the identity
<Ai (J — Md,,) x,v> ~0. (32)
If my = my, then (32) vanishes identically, and n” (t,z1,--+ ,2,) = Yp_; od z; with n integration con-
stants. Now, if m; > mq, we get a nontrivial identity
mi1—mza
Z a?2Ik+m2+1 =0.
k=1
This implies that
aiZ = a?Z — ... = agl_m2 = O7
and ntT (t,x1,- -+ ,2y) only provides n — (m1 — my) new integration constants. For n&% (t, 1, ,2,) =

22:1 a?g:z:k the situation is slightly more complicated. If m; = mgo = mg, all the 04?3 are independent and

provide n integration constants. If m; > ms = mg, (32) implies the constraint

mi—m3
k
Z Qg Tkt (ms+1) = 0, (33)
k=1
hence 0433 = 04?3 = =al™™ = 0 and only n — (m; —mg) integration constants arise. For the last

possibility, m; > msg > mg, the constraint (32) involves two sums

mi1—ms ma2—ms3
k k4sa—1
Z Ay Tht (ms+1) T Z asF e e (1) = 0, (34)
k=1 k=1
and thus a%s = ?3 =--=alt™M =02 = = agrma’“rl = 0. The total number of integration
constants of 17§L3T (t,z1, -+ ,x,) would be the given by

n— (my —ms) — (mg —mg3).
A recurrence argument shows that for m; the condition (32) leads to the identity

mi—m; mo—m; m3—m; Mj—1 ="My

k k+c2—1 k+¢3—1 k+ci—1—1 _
§ : O‘Gi'rkJF(miJrl)—i_ z : Qg T Thgt E : Qgy T gyt E Qg Y By, = 0, (35)
k=1 k=1 k=1 k=1

and therefore the linear function néT (t,x1,- - ,x,) provides exactly
n—(m1—m;) = (mg —m;) — - (mi—1 —m;)
integration constants. Summing together the integration constants for mq,--- ,m,,, the linear part of the
solution has
po—1 po
pon =Y Y (my—m) (36)
j=1 k=j+1



degrees of liberty. To these we must add 2n for the functional part coming from the functions o; (¢), and
either 1 or 2 from & (¢, 21, - , %, ), depending whether the eigenvalue is nonzero or not. Taken together, the
dimension of the symmetry algebra L is

R 1 for A#0
dme=@rmn- > Y (m-m)+{ ) P70
j=1 k=j+1
as claimed. =
Our subdivision of the functions n; (t,z1, - ,2,) into a linear and a “functional” part has an additional

advantage to that of simplifying the expression of the solution to the symmetry condition. It allows us
to explicitly construct the symmetries for each given matrix J, by simply taking into account equations
(28)-(31). Moreover, we can make precise assertions on the existence and structure of the Levi subalgebra
of L.

Proposition 1. Let L be the symmetry algebra of the system X =Jx, where J is of the form (3). Then the
Levi subalgebra s of L is isomorphic to sl(q,R), where q¢ denotes the number of Jordan blocks of order one
of J.

Proof. As follows from the preceding result, the component functions £ (¢, z1,- -+ ,x,) and n; (¢, 21, -, Ty)
of a symmetry X have the shape

g(tw%'la"' 7.’1,',”) :a0+ﬁlt;
n

ni (6,1, Tn) Zzaffck-f-mwﬁ-oi(t),
k=1

where k1 = 0 if A # 0 and the functions o; (t) and the coefficients o are determined by equations (27) and
(29) respectively. Now the symmetries of the form
0
1=1

axi’ S

¢ (t) n (37)
will always commute, which means that the symmetries determined by the functions o; (t) will generate a
2n-dimensional Abelian Lie subalgebra of £, as the functional part of the solution provided 2n integration
constants. On the other hand, the symmetries Y7 = % and Yy = t% (for A = 0) will only provide nonzero
commutators with the symmetries of type (37), in addition to the commutator [Y7,Y2] = Y;. Thus the
subalgebra spanned by Y7,Y; and the symmetries (37) is solvable of dimension 2n + 2. This means that if

a semisimple subalgebra s of £ exists, it will come from the symmetries of type afazk%, that is, will be

determined by what we have called the linear part of n; (t,z1, -, zy).
Like before, we assume that J is written in the block form (23). Suppose that some index m; vanishes,*
and let m; = 0 be the first of such vanishing indices. Then necessarily m;11 = --- = myp, = 0 because of
the order m; > mg > ---mp, > 0. It follows in particular that ¢;1; =¢ +j for j =1,--- ,po and gy, = n.
Further, using equation (29) it can be easily seen that the linear part of the function n¢,1; (¢, z1,--- ,zy) is

i—1 n

1

T]f;f—g (t,l’l,"' axn) = ZO{ZI}‘:‘; Tmy4+1 +Zaii+‘jxl' (38)

=1 l:(i

Taking into account the symmetries arising from the first summand, it follows at once that

m;+1 a m;+1 8 }

Aty Tmutlg = Qqp Tmitl

Tei+j axs‘i-‘rk

4In our previous notation, this means that the block Jm,, reduces to [A].

9



since g;4+j #my+1forl=1,--- ,i—1. These (i — 1) (n + 1 — ;) symmetries therefore generate an Abelian
subalgebra of £. Now we consider those symmetries arising from the second summand of (38) . We obtain
the (n+ 1 — ¢)? symmetries

le:xﬂ-‘rli, Oglajgnfgz (39)
’ 8$§i+j
It is not difficult to verify that the symmetries of (39) generate a Lie algebra isomorphic to sl (g, R) @ R,
where ¢ = po+1—1. Sincem; > 1for j =1,--- ,i—1, the scalar ¢ is exactly the number of one dimensional
Jordan blocks of the matrix J.5
It remains to see that from the symmetries determined by the components n; (¢, 21, -+ ,a,) forl =1, -+ ;¢ —
1 associated to the Jordan blocks J,,, of order at least two we cannot extract a semisimple Lie algebra. By
equation (30), the linear part of 7, (¢,z1, -+ ,zy,) for k=1,--- i —11is given by
mi+1 myg_2+1 n
ﬁngT (tvxlv"' ,(L’n) = Z askxs"_"' + Z aﬁkxs + Z azkxsv (40)
s=mi—mpr+1 s=mp_o—mp+1 s=mp_1—mpr+1
while the remaining components nng:ij (t,x1, -+ ,2,) being determined by equation (31). For any fixed k,

. . s . :
each integration constant o gives rise to a symmetry generator

o)
+"‘+xs+e(s>8w< te(s) .
LkTE(S

XS(%) = Ts + Ts41

81:% 8m§k+l

where € (s) < my is completely determined by s as a consequence of equation (31). Among all these
symmetries, there is a distinguished one, namely

Hg(:k) = Zg +..'+x§k+1_1 (42)

F o,

which corresponds to the integration constant agk.G It is immediate to see that for k # &’ we have

[Hg,gw, qe| =o.

Sk’

Let £; be the Lie subalgebra of £ generated by all the symmetries Xég’“),Hg(,f’“) for k=1,---,1— 1. If
L1 contains a semisimple subalgebra s, then in particular it must contain three symmetries Y7, Ys, Y3 with
commutators

Y1, Yo] = Yo, [Y1,Y3] = V3, [Yo,Y3] = Y3 (43)
that generate a Lie algebra isomorphic to sl(2,R) [13]. For fixed k, we analyze the commutator of the
symmetries (41). Now, any commutator [ngk),X if")} must be a linear combination of vector fields of
the type (41), as there are no symmetries whose first component is 3788%1 with ¢ < I < ¢g41 (this is a
consequence of equations (30) and (31)). Consider now two indices s, s’ # ¢,. Without loss of generality we

can suppose that s < s’. Let X s(g’“), Xs(,g’“) be the corresponding symmetries. Computing the commutator
formally we obtain

B 0 0 9
ngk)vX(fk)} - |:‘7/.s +--t s s Ls + -t x s Y.
[ s o, T 0y e Oa, D Do
8 s/ 8 8 S a a
= Is+a ° + ttt T xS'+b ° - = 6;”6“’» Xijfgf - 6gk+bX‘§/§i)b.

a$§k+ﬂ 8x§k aka-l-b 833%

5Obviously, for pp = 2 and m1 = n — 1 we get ¢ = 1, in which case (39) only provides one symmetry. Nontrivial semisimple
Lie algebras are hence obtained for g > 2.

6As oz%k is directly related to the Jordan block Jp,, , it follows at once that that e (¢) = my, for Hé;") It is also the only
symmetry of length my + 1.

10



If the commutator is not zero, then there are a < e(s), b < e(s’) such that s’ = ¢, + a, s = ¢ + b, which
further implies that s, s’ > ¢, and s + a # s’. Observe that s < s’ implies that s’ + b > s. Hence the only
possibility to obtain a commutator of the shape

[x00, x[9] = hx () (44)

with h € R* is that s = ¢, i.e., that X&) = Hg(:’“) The preceding computation also shows that Hg(,fk)

does not appear as a commutator of two symmetries X s(g’“)7 Xs(f’“). By the classical structure theorems [13],

it follows that the symmetries (41) for a fixed k generate a solvable Lie algebra. As a consequence, if £4
contains a subalgebra of type (43) , then we need to consider at least two different indices k, k’. Equation
(44) shows that the only possible candidates for the symmetry Y; are the Hg(,j’“) generators. Moreover, let
k#E and ¢ < . If ng’“), Xif"‘/) are the corresponding symmetries, it follows from (30)-(31) that s’ # .
Now, if

[Xé(k)7X5?k/)i| — H(Ck")

St

then necessarily &’ = k or k" = k’ by the structure of these symmetries. Suppose that

X‘§<k’)’X‘§I§k/):| _ (5glf+aXs(i";) _ (5§k/+bXS(/<i)b - Hg(,jf“l) (45)

for some k # k. Then s’ = ¢, +a and s+ a = ¢ with a > 0.7 By (42)
0 0 o)

*x/7+"'+l’/ =2 74’4’1' .
o o ax%’ Sl axgk’+171 e 8$S+U« sham. a‘r5+a+mk/
It is straightforward to verify that [Hg(:f“')7Xs(,§k')} = —Xifk'). If these three symmetries generate a Lie
algebra, then following constraint must be satisfied
{Hg(:f“/)aXs(%)} — X§Ck)7 (46)

otherwise the Jacobi condition is violated. Expanding the bracket we get

0 0 0 0
+-+ Ls+a+my, axsa + o+ Tste(
Ly,

[0, x6) = [ (47)

- o
axs+a 8xs+a+mk/ ) 8$§k+s(s)

If (46) holds, then there must be some 0 < b < mys such that

O,

—_— = 1,
axs+a+b

which contradicts the fact that a,b must be positive. We conclude that no symmetries satisfying (45) can
exist, which implies that £; does not contain a semisimple Lie algebra. m

Corollary 1. If m; > 1 fori=1,--- pg, then the Lie algebra L of point symmetries is solvable.

3. Matrices with complex conjugated eigenvalues

We now to consider matrices, the eigenvalues of which are non-real. In order to find the corresponding real
form, we have to introduce rotation matrices. Although these matrices represent a practical difficulty to

"If a = 0, this would imply that s’ = ¢, which cannot happen. Further, 5;"'+bXs<,§i)b =0because g, = s’ +b=¢, +a+b

would imply that b is negative, which cannot happen by the structure of the symmetries (41).
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solve explicitly the symmetry condition (2) for the corresponding system, formally the argument to count
the dimension and see the generic shape of the symmetry generators is very similar to the case already seen,
although computationally more complicated. In order to avoid repetition of the proofs, we only indicate the
general procedure to solve this type of canonical forms.

Suppose that n = 2p and that the coefficient matrix J has the form

o J(A+ip) 0
where the block matrices are given by
A+ip 12 A—ip 121
A+ip A—ip
J(A+ip) = s J(A=ip) = .
Adip vy A—ip vy
A+ip A—ip

(49)
and p # 0, i.e, the eigenvalues are non-real. It follows from the general theory [10] that for the matrix (48)
we can always find a real matrix S such that

C (A, M) lllIdg
C ()\, M) l/QIdQ

STET(A\p) S = - ; (50)

C ()\, ,LL) l/p_lldg
C(Ap

where vy =0,1 for {=1,--- ;p—1 and

C(/\,u)z(j‘u ‘;),yllcb:(%l g) (51)

Moreover, we can suppose without loss of generality that the nonzero v;s are all consecutive, as other
orderings belong to the same similarity class of matrices (see e.g [10], page 151 for details).

Theorem 3. For the system X =J (A, u) x, the symmetry algebra L has dimension
1
dim£=§n2+2n+1+2(k2+k:—kn), (52)

where k is the number of non-vanishing v;s in (50).

As commented, the symmetry condition (2) for the above type matrices is very similar to equations (4)-
(9). Actually, the first three equations remain exactly the same, while the others must be replaced by the
following:

wi (%) gfj - ;;Zj —0, j #1(53)

5 g+ 80 00 5+ it~ 2 =0, (50

ANok+1 + HN2k+2 + Vi+1M2k+3 — zn:wi (x) 87782;&1 B ani/;rl +2 (A\zort1 + pTokt2 + Vkr1T2k+3) % =0, (55)
=1 ?

—UN2k+1 + AN2kg2 + Vip17M2k44 — iwi (x) 87732:::1 _ 322?;“ + 2 (—pxopt1 + Arakt2 + Vkr1Tok+4) % =0, (56)

i=1
12



where £k =0,--- ,p—1 and

wi (%) = AZokt+1 + HTok+2 + Vk4122k+3, ¢ =2k+1
' —HT2k41 + )‘I2k+2 + Vp4122k+4, i =2k +2

Analyzing stepwise this system, as done in the proof of Theorem 1, it can be shown in similar way that the
solution to the symmetry condition is again of the shape

n
€(t,$1,,$n) = Qp; 773 <t7$1,7$n) :Za{xj +1/)j (t>
=1

Nowlet 1y =--- =y, =1,v;=0for j=k+1,--- ,p—1. Equations (55) and (56) imply that the functions
n; (t,x1, -+ ,xp) With j =2,--- 2k +2 are completely determined by n; (¢, 21, - ,z,), while for j > 2k +2
the function nogyoror (6,21, -+, z,) is determined by nor1149; (¢, 21, -+ , 2, ). Like done before, we separate
the functions n; (¢, 21,...,x,) into a linear and functional part:

n
LT — !
nit (G, m,) = E ;.
1=1

We can again rewrite these linear terms n]-LT (t,21,...,oy,) in matrix form: Define the matrices
0 1 0 wv1lds
-1 0 0 UQIdQ
A= , P= ) (57)
0 1 0 vp_1ldg
-1 0 0
and vectors
T
v:(a%,---,a’f),x:(xl,--~,xn) . (58)
Then, for j =1, -+ ,2k + 2 we have
nQL]T(t,xl,...wn):vAPj_lx, 1<i<k+1 (59)
iy (o, ) =vP X, 1< j<k+1 (60)
Observe that since P*+1 = 0, the coefficients ai, .-+ af are not subjected to any condition, and there-
fore we get niT (t,x1,...,2,) = Z?zl ajzj, providing n constants of integration. For the linear parts
772L,3;_2+l (t,z1, - ,x,) the situation is much simpler. We have
n
LT j
Maktr42t (621,00 @) = Za§k+1+2z%‘a (61)
1=1
LT 1
Maratar (621, Tn) = (a2k+1+2lv e 7a;k+1+21) Ax, (62)
but since v; = 0 for j > k, we get the constraint
1
(a2k+1+2l7"' ,Oégk+1+2z) Px=0.
Therefore only n — 2k constants of 775‘,31_14_21 (t,x1,- -+ ,x,) are nonzero. Taken together, the linear parts of
nj (ta Ty, 7'Tn) provide
n n? 9
n+ (n— 2k) (57k71) = o — 2kn+ 2k + 2

13



integration constants. Now to the functional part of the n; (t,x1,--- ,xy), given by the functions v; (t).
Again, for j = 2,---,2k + 2 the function 1;(¢) is determined by 11 (¢). By equations (55) and (56), they
must satisfy the system

P opy142 (1)

Paji3 (1) + ptharaj () + Mbajq () — = _o, )
¢%%Mﬂ—u¢%ﬂ+m@)+Ame+m@%—£E%£?£g2=a
udak+2(t)+-A¢Qk+1(t)__Ef%%%ggﬁfz::(L
__u¢ak+1(t)+-A¢Qk+2(t)__Efj@gggg@) o,

where j = 0,--- ,k — 2. Although not entirely trivial to integrate, it can be seen with some lengthly
computations that 1 (t) has 4k + 4 degrees of liberty.

For the remaning cases, it follows also from (55) and (56) that the functions {tor11421 (t), Vort2+2 ()}
satisfy the equations

g y142 (t)

pbakratar (1) + Mapy1yar (t) — 72 =0,
d? t
—ptary 1421 (t) + Margogar () — Wc;i;;zl() =0,
or in equivalent form, that ¥ox1149; () satisfies the fourth order equation
d* t d? t
Pt O) o) TVt @) (32 4 02) gy () =0, (69

dt* dt?
which provides four integration constants. Therefore the functional part of the symmetry condition provides

exactly

4k+4+4(g—k—1):2n

integration constants. Bearing in mind that £ (¢, 21, -+ ,2,) = g, this implies that the dimension of the
symmetry algebra £ of the system X =J (A, u) x is

2
ﬁm£:2n+1+%hf%n+2ﬁ+ﬂh

For this case, we can also determine the Levi subalgebra of £ in dependence of the Jordan form. The proof
is formally the same as that of proposition 1, although much more involved from the computational point
of view. For this reason we only give the general outline.

Proposition 2. Let J be coefficient matriz of type (50). Then the Levi subalgebra of L is isomorphic to
real simple Lie algebra sl (g, C), where

p—1
g=p-2n - v (65)
=2

If the symmetry algebra £ admits a semisimple subalgebra, this must be generated by the symmetries deter-
mined by the linear parts of the components functions n; (¢, 1, - ,z,). vy = =vpy =1, vy =+ =
vp—1 = 0 (recall that we can chose the non-zero v;s as consecutive) then using equations (59) and (60) it can
be shown that the symmetries associated to the integration constants oz]i (G=1,---,n)of m (t,x1, - ,n)
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generate a solvable Lie algebra. For the remaining components nog13 (t, 21, ,&n), -, 0n (E, 1, , )
the linear parts are simply

_ 2k+1 2k+2
Nokyatj (LT1, -, 2y) = OoptoqjT2k+1 T O5p 54 Lokt + o+ 0‘31@+2+jxm (66)
_ 2k+1 2k+2
N2k+3+5 (t; L1, 7$n) - a2k+2+jx2k+2 - a2k+2+jw2k:+1 + = a3k+2+jxn71a (67)
where j =1,3,5,--- ,n — 2k — 3. The integration constants o22, . o282 = define symmetries
J=139,---, . g 2k+2+50 Y2kt-2+45 Y
0 0
X2k+l =z +l‘ .X2k3+2 =1 —x _
2k+2 2k+1 2k+2 ) 2k+2 2k+2 2k+1
et 5$2k+2+j 3$2k+3+j T2ty a$2k+2+j ax2k+3+j
N - : . 2k+1 2k+1 | _ [y2k+1 2%k+2 | _ e
that are easily seen to satisfy the identity [X2k+2+j, X%HH} = [X2k+2+j’ Xopto41| = 0. Now, considering
; : 2k+1420  2k+242 . . . 9 .
the integration constants Xohiots s Mok iatg with [ > 1 we obtain additional 2 (p — k — 1)” symmetries
X 2k+1420 _ 9 9 . x2k+2+20 _ 9 9
ht24j — 1’2k+1+2l87 + $2k+2+2187, ht2tj — $2k+2+2l87 - $2k+1+2167~
LT2k+2475 L2k+345 L2k+2475 L2k+345
(68)
Taking arbitrary indices j, 5, 1,1’ and computing the brackets leads to
2k+1+420 y2k+1+20 _ g2l yv2k+1+420 521 2k+1+420
[X2k+2+j ’X2k+2+j’ } *51+jX2k+2+j/ 51-s—j’sz-+2+j J
2k+1+420 y2k+2+20 _ 2l yv2k+2+21 21 2k+2+4210
[X2k+2+j 7X2k+2+j’ } = 51+jX2k+2+j' _51+j'X2k+2+j ) (69)
2k+2420 y2k+2+20'| ol y2k+1+421 21 2k+1+21
[X2k+2+j 7X2k+2+j’ } = _51+jX2k+2+j' +51+j/X2k+2+j

Let £; be the Lie algebra generated by these symmetries. For convenience, we take the basis formed

1) 17(2) 77(1) 77(2) y2k+1420 y2k4+1421 a _9k_3 2k+144itL
by the vector fields {Ho JH L H Y H X T Xop e }#%, where Hy/ = Z;,l:l Xopyoii s

(2) _ —n—2k—3 -2k+2+1LL (1) 2k+1+i3E 2k+3+1%L (2) _ 2k+2+iEt 2k+4+ 5L
Hy” = Zj:l X2k+2+j , HyW = X2k+2+j - X2k+4+j and H;” = X2k+2+j - X2k+4+j In
particular
(1) 0 0 0 0
H;" = 2opiorjma—— t Tokqs4i 5 — T2htatja— — L2k45+i
O0%2k+2+j O0T2k 43+ O0T2k+4+4j O0T2k15+j
q® 0 0 0 n 0
 E Tokq34 i T T2k424+i A — T2k4b4j o T T2ktdtin -
J O0Tap 4245 O0T21 4345 0Tk 445 O0Tok 4545

Using (69) it can be easily verified that H ](1) and Héa) all commute with each other, and further that

(a) y2k+1+20"| _ (a) y2k+1+20"| _ _
[Hoa 7X2k+2+j’ } = {Hoa aX2k+2+j' } =0, a=1,2.

This shows that £; splits into the Abelian algebra generated by {H(gl), H(()Z)} and a Lie algebra Lo generated

by the remaining vector fields {Hj(l), H§2)7 Xg,’j_ﬁifl, X;,fj_rzljffl} We claim that the latter is isomorphic to

the simple algebra sl(q,C), where ¢ = p — k — 1 (if £k = 0, we simply take ¢ = p). This is best proved by
induction on n = 2p and computing the spectrum of the Killing form x associated to Lo [13]. For each
generator X € Lo define the linear operator

ad (X)) (Z2) =X, Z]
and the bilinear symmetric form

k(X,Y) =Trace(ad(X)-ad(Y)), X,Y € Lo (70)
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Using the commutation relations (69) and diagonalizing the matrix x resulting from (70), a cumbersome
but routine computation shows that the eigenvalues are given by

Spec (k) = {:I:nQ, (:N:Qn)qup ) :i:n} . (71)

Now the signature of the Killing form is given by the difference of positive and negative eigenvalues, thus
from (71) we get o (L2) = 0. It is known that real simple Lie algebras are determined by the signature of
the Killing form (see [13], chapter 14), it follows at once that £ must be isomorphic to the real Lie algebra
sl(q,C).8

4. Matrices with more than one eigenvalue

Until now we have only considered the case with one eigenvalue and two complex conjugated eigenvalues.
We next show that the general case corresponding to various different eigenvalues can be easily obtained in
terms of the cases already studied.

Let J be a non-diagonalizable coefficient matrix, and let us rewrite it as

J (A1)
J (A2)
J = . ’ (72)

J (Ar)

where A\, Ao, -+, Ay (kK <n —1) are the different eigenvalues of J. If some eigenvalue )\; is complex, we
replace the pair {J (\;),J (A;) } by the corresponding real matrix S~*J (v, 8;) S of (50), where \; = o;+if;.
In some sense, we can interpret the system X =Jx as the different systems corresponding to the matrices
J (A;) glued together with respect to the component function £ (¢, 1, ,2,) (which is common to all
different eigenvalues and therefore imposes some restrictions). It turns out that the equations of the system
% =Jx are then of (at least) one of the following types:

1. %= X + viXiqa,
2. Xj=a;X; + BjXjp1 + ViXjpe, XKjp1= —0X; + ;X1 + VjX43,

where \;, a;,8; € R, 5; #0 and v; =0, 1.

Proposition 3. Let X = £ (t,x1, -+ ,xn) % +n;(tz1, -, n) 8% be a symmetry of the system X =Jx.
Suppose that at least one of the following conditions holds:

1. X,= \ix; + ViXit1 and ij: )\ij + ViXjt1 with \; 75 )\j
2. X=Xy + X1 and Xj=a;X; + X411 + ViXjq2
3. ii:aixi + ﬂixi—i-l + ViXi4+2 and ij:O{ij + 5]’Xj+1 + ViXij12 with (673 7& Q
Then
877] (t,l‘l, T ,.13”) _ 8771 (ta-rh' o 7xn)

3$i aﬂfj =0

Proof. For simplicity, we only made the explicit computations for the first case, the remaining ones
being very similar. Further, it suffices to show the formula when J has only two eigenvalues A1, A2, as the

8By the structure of the symmetries (68), it is not surprising that the resulting symmetry algebra is sl (¢, C), as sl (¢, C)®rC ~
Ag—1® Ag—1. This is consistent with the fact that the complex Jordan form of J contains complex conjugated eigenvalues of
multiplicity q.
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general case follows by recurrence. Renumbering the dependent variables x1,--- ,x, we can suppose that
the system is given by

Xz: >\1X1' —+ Vixi-&-la 1 S 7 S S0 — 1
XSO: )\1XS()
Xsori= A2Xsopi T VsghiXsoritl, 1 <1<m—so—1

Xn= A2Xn

Considering separately the equations corresponding to the different eigenvalues, we know by Theorem 1 that
the generic form of the component functions & (¢,z1,- - ,x,) and n; (t,z1,- - ,x,) is given by

g(t’xla"' ,.Tn) = o,

n
T]i (t7x17"' axn) = Zaka +O.Z (t) °
k=1

Observe that £ (t,x1, - ,2,) is necessarily constant, since either A\; or A2 is nonzero. We now consider
equation (9) for i = s¢ (vs, =0):

.. -1
A17)so (t{ Ty, 7xn) —O0sy — ?il (Alxl + lel-i-l) also - )‘lmsoaig (73)
- Z:Ln;fsg (A2Tsotm + VsogtmTsg+m—1) O‘Zg - )\anozgo =0.
rom this identity, we are only interested on the terms involving the dependent variables {zs,4+1, -+, Zn}:
F this identit ly interested on the t involving the d dent iabl ot
n—so n—so—1
()\1 — )\2) (Z aé""sost_’_l) — Z V30+mam+50xso+m+l = 0.
=1 m=1
Reordering these terms we obtain the identity
n—so
()\1 — )\2) a;:sox50+1 + Z {()\1 - )\2) a;”0+50 - V50+m,1a;';+50_1} Lsg4+m = 0. (74)
m=2
ince \; 9, it follows immediately that o = 0. is implies tha e coefficient of x4, 4o is
Since A Ao, it follows immediately that alf* = 0. This implies that th fficient of 4,42 i

(M — A2) a?;“SO, which must also vanish as the eigenvalues are different. We thus successively obtain that
ai:rso =0, 1<1<n— s,

proving that

s,
=0,1=s9+1,---,n. 75
a.’Ei 0 ( )
We next consider the equation (9) for ¢ = sg — 1. If v5,—1 = 0, the same argument as before shows that
67;2._1 =0, i=50+1,---,n. In the case that v,,_; = 1, we get the expression
S0 n
Ons, Mso_y  0°Ngy—1
Moo (b1, ) = Y (Miwi + Vi) 5.;0_ LY (Mo + viwig) 5.;0_ : —T;E—Amso—l (tay, @)
i=1 b i=se+l !
As before, we only consider the terms in the variables {xs, 1, - ,2,}. By (75), these terms satisfy the
identity
n—so
(M = A2) ol 9z + > {1 = A2) @l — v pm1aT 07 2 g = 0, (76)
m=2

17



ons

which is quite similar to (74), and we again conclude that #fl =0, ¢ =59+ 1,--- ,n. Repeating the
process for the indices i = sg — 2,--- ,2, 1, we show recursively that
on; .
873314 =0,7=s+1,--,n.
J
In analogous manner, analyzing the functions n; (¢, z1, - ,x,) for i = so+ 1, -+ ,n it is proved in straight-
forward manner that
on; B .
0L *Oa J = 13 , S0~
J

|
This result allows us to establish the dimension formula for non-diagonalizable matrices J of type (72) with
more than one eigenvalue.

Proposition 4. For the system X =Jx, where J has the form (72), the symmetry algebra L has dimension

k
dim£ =Y " (dim £ (J (A1) — &) +1, (77)
=1

where ;. =1 if Ny 20 (or My € C) and g, =2 if \; = 0.

The proof is a consequence of the Theorems 2 and 3. If J has the form (72), then we compute the
symmetries of the equations X =J (\;) x separately. For each \; we obtain dim £ (J ();)) symmetries. Now,
as & (t,x1, - ,2n) is considered as many times as different eigenvalues the matrix J has, we must subtract
to each dim £ (J ()\;)) either one or two, depending whether )\; is nonzero (or complex) or zero (observe
further that zero appears at most once). As there is at least one eigenvalue that is nonzero, by Theorem 1
we conclude that & (¢, 1, - ,x,) must a constant. Counting the dimensions dim £ (J (\;)) —¢; and adding
the integration constant provided by & (¢,x1,--- ,z,), we obtain formula (77).

The preceding results, combined with those obtained for diagonal coefficient matrices [9], allow to obtain
the number of symmetries for an arbitrary (non-diagonalizable) matrix J. We first rewrite J as a block
matrix, separating the non-diagonalizable part J; from the diagonal part J; :

N

First of all, it is important to observe that none of the eigenvalues of the diagonal part Jo can appear in the
sub-matrix Ji, as this matrix corresponds to the non-diagonal Jordan blocks of J. Now, for the subsystem
X =J1x, the symmetries are determined by Theorems 2 and 3, thus their number is given by formula (77).
For the diagonal part, however, some caution is necessary. We have that for any symmetry X of X =Jx,
the time component function & (¢,x1,--- ,x,) is either a constant or a linear function of the independent
variable ¢. This constraint implies that the symmetries of the subsystem X =J;x will have the generic form
X = (ap + K1t) % + nia%i, and therefore, even if J, = pld, they do not coincide with the symmetries of the
free particle system.? In fact, their number will be given by proposition 3 of [9]:

dim £ (J2) =3m+1+ Y ki (ki —1),

i=1
where m is the dimension of J; and k1, - - - , k, is the multiplicity of the different eigenvalues of J>. Summa-
rizing, the dimension of the symmetry algebra £ of the system X =Jx is
dimE:dimE(J1)+dim£(J2)+1—€1 — E9. (78)

Using propositions 1 and 2, we can further determine the Levi factor of the symmetry Lie algebra L, by
analyzing the sub-matrices corresponding to the different eigenvalues.

9This fact can be seen as a constrained symmetry of the free particle system, where only symmetry generators of certain
type are allowed.
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4.1. Symmetries forn =75

As an application of the results obtained in this work, we determine the dimension and solvability of the
symmetry algebra £ of a system X =Jx with n = 5 equations. For this case, there are 36 types of real
canonical forms, which can be comprised in the three following generic types:

Ao At Alop o
A2 —H1 A1 —p1 A1 o
J1 = A3 U3 , Ja= A2 1o N A2 o
A 1y Az 3 —H2 A2
As A A3

To distinguish the different canonical forms, we denote the matrices of (79) by J1 (A1, A2, A3, A, As, V1, Vo, V3, 1y),
Jo (A1, 41, Ao, Mgy Mg, v3,vq) and Js (A1, p1, Aa, 2, Ag, ). We give the result in tabular form. If the symmetry
algebra £ does not contain a Levi factor, then it is solvable.

Table 1: Dimensions d = dim(£) and Levi factors of symmetry algebras £ for systems with n = 5 equations.

Matrix d Levi factor Matrix d  Levi factor

J1 (A A A A 0,0,0,0,0) 48 s0(7,R) J1 (A1, A1, A1, A2, 02,0,0,0,1) 22 s[(3,R)
J (AN 1) 16 - J1 (A1, A1, A1, A2, 02,1,0,0,1) 18 -
J1(0,0,0,0,0,1,1,1,1) 17 - J1 (A1, A1, A1, A2, 02,1,0,0,0) 20 s0(2,R)
J (NN 1,1,1,0) 18 - J1 (A1, A1, A1, A2, A3,0,0,0,0) 22 s[(3,R)
J1(0,0,0,0,0,1,1,1,0) 19 - J1 (A1, A1, A1, A2, A3,1,1,0,0) 16 -
J1 (A A AN 1,1,0,0) 22 s[(2,R) J1 (A1, A1, A1, A2, 23,1,0,0,0) 18 -
J1(0,0,0,0,0,1,1,0,0) 23 s[(2,R) J1 (A1, A1, A2, A2, A3,0,0,0,0) 20 25[(2,R)Jr
J1 (A A A A0, 1,0,0,0) 28 s[(3,R) J1 (A1, A1, A2, A2, A3,1,0,1,0) 16 -
J1(0,0,0,0,0,1,0,0,0) 29 s[(3,R) J1 (A1, A1, A2, Ae, A3,1,0,0,0) 18 s0(2,R)
J (A NN 1,1,0,1) 20 - J1 (A1, A1, A2, A3, A4,0,0,0,0) 18 s0(2,R)
J1(0,0,0,0,0,1,1,0,1) 21 - J1 (A1, A1, A2, A3, A4,1,0,0,0) 16 -
J1 (A A AN 1,0,1,0) 24 - J1 (A1, A2, Az, Mg, A5,0,0,0,0) 16 -
J1(0,0,0,0,0,1,0,1,0) 25 - Jo (A1, i1, A2, A2, A2, 0,0) 22 s[(3,R)

J1 (A1, A1, A1, A1, A2,0,0,0,0) 28 sl(4,R) Jo (A1, p1, A2, A2, A2, 1,0) 18 -

Jl ()\1,)\1,)\1,)\1,)\271,1,1,0) 16 - J2 ()\17/L1,)\2,)\27)\271,1) 16 -

Jl ()\17)\1,)\1,)\1,)\2,1,1,0,()) 18 - J2 ()\1,/14,)\2,)\2,)\3,0,0) 18 5[(2,R)

J1 (A1, A1, A1, A1, A2,1,0,0,0) 22 s[(2,R) Jo (A1, i1, A2, Ao, Az, 1,0) 16 -

J1 (A1, A1, A1, A1, A2,1,0,1,0) 20 - Jo (A1, i1, A2, Az, Mg, 0,0) 16 -

J1 (A1, A1, A1, A2, 22,0,0,0,0) 24 sI(3,R) @ sl(2,R) J3 (A1, p1, A1, g, A3, 0) 20 sl(2,C)

Jl ()\1,)\1,)\1,)\2,)\27171,0,1) 16 - J3 ()\17,111,)\1,/141,)\371) 16 -

Jl ()\17>\1,)\1,)\2,)\271,1,0,0) 18 5[(2,R) J3 ()\1,,&1,)\2,,[1,2,)\370) 16 -

T 2s1(2,R) = sl(2,R) @ sl(2,R)

5. Conclusions

In this work we have completed the study of the possible dimensions and Levi subalgebras of the Lie algebra
L of point symmetries of a linear system of n second order ODEs with constant real coefficients. While the
symmetries for low values of n and the case of diagonal coefficient matrices were known [7, 8, 9], for the
remaining types of matrices, corresponding to non-diagonalizable coefficient matrices, no general result was
known beyond n = 4. This has been solved here for arbitrary values of n by means of a detailed analysis of
the Jordan blocks of the coefficient matrices, and computing the symmetries stepwise.

By analyzing first the non-diagonalizable canonical forms J having only one eigenvalue or two complex con-
jugated eigenvalues, we have developed a constructive method to explicitly obtain the symmetry generators
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from the corresponding structure of the Jordan blocks of J. For such systems we have further classified the
Levi factor of the symmetry algebra. Combining these results, we have proved that the general case with
more than one eigenvalue can be essentially reduced to the analysis of the matrices corresponding to the
different eigenvalues, allowing us to obtain the general formula for the dimension of £, as well as a classifi-
cation of the Levi factor. Therefore, for any given canonical form J, the dimension and the symmetries can
be directly deduced from the various Jordan blocks corresponding to the different eigenvalues, and without
being forced to integrate the symmetry condition (2). In particular, we can directly infer from the Jordan
form whether the symmetry algebra L is solvable or not. As an application of the procedure, we have
determined the dimension and the structure of the symmetry algebras for systems with n = 5 equations.
Once the symmetry analysis of linear systems of second order ODEs with constant coefficients completed,
it is natural to ask whether the procedure used can be enlarged to cover more general types of systems.
The potential value of this case resides in its applicability to either systems with non-constant coefficient
matrices or non-linear systems. Although a much more complicated problem from the formal point of
view, a first approach in this direction could be to consider perturbations (i.e., by means of introducing
a perturbation parameter or contraction of realizations [14]) of linear systems of the type analyzed, and
classify the corresponding symmetries. Whether such an ansatz provides alternative criteria to simplify the
analysis of general systems, or allows to decide on the solvability of the corresponding symmetry algebras,
is still an open problem.
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