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Abstract: The symbol U denotes the velocity or momentum (the mass multiplied by the
velocity). Transform the Navier Stokes momentum and density equations into continuous
families of ordinary differential and linear equations for the classical Fourier coefficients. Prove
theorems on existence, uniqueness and smoothness of solutions of the Navier Stokes equations.
Interpret these results for solutions of the Navier Stokes partial differential equations using the

A~

Fourier integral representation U=U,P=P.
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1. Introduction

The main result in this paper can be stated as follows. If the data is smooth, spatially Schwartz,
and the body force and its higher order time derivatives satisfy generalized sector conditions,

then the (space) average of the kinetic energy of U™ is bounded for all forward time. A unique
physical solution (U, P) exists which is smooth in 7 > 0. The solution is the extension of the

unique regular (jointly smooth) short time solution determined by the data. Solutions are unique,
separately smooth and bounded in time and smooth in space for all forward time.

In 1934 Leray (in [9]) formulated the regularity problem and related it to the smoothness
problem. In the year 2000, Fefferman formulated the problem (in [5]). In that same year, Bardos
wrote a monograph on the problem ([3]) which summarized the then literature. The author
interprets the remarks in [3] Bardos to indicate that the problem of regularity/smoothness can be
solved as formulated in (A) of [5] Fefferman.

What is new?

As far as the author knows all frequency domain formulas but one which appear in this paper are
new. Cannone uses the Fourier transform to rewrite the variation of constants formula solving
the Navier-Stokes evolution equations in the formula just prior to (27) on page 15 of Harmonic

Analysis Tools for Solving the Incompressible Navier-Stokes Equations.

The vector form of the Navier-Stokes equations for spatially Schwartz data is



+
U-V=0,xeRt>0 (1-1)
0

The author seeks a unique solution of (1-1) given the data U O,ﬁ which is jointly smooth in
space and time and bounded for all forward time.

In (1-1) U is the velocity vector field and VP is the pressure gradient to be determined, V - Uis
the divergence of the vector field and U -V is the tensor matrix DXU . Equation (1-1) is
equivalent to the formulation in [7] (7)-(11) Fefferman.

The body force F is smooth on [0,00)xR*> F and the initial function U, , are Schwartz (smooth)

on R,

Since U . 1s the acceleration, the momentum equation (first equation of (1-1)) can also be

interpreted as Newton’s second law for incompressible fluids since the net force appears on the
left hand side if both sides are multiplied by the mass m. In fact the momentum equation is
Newton’s second law of motion for fluids combined with a dynamic version of Archimedes’ law

of hydrostatics. If U(z,%) = 0, the equation reduces to Archimedes’ law VP(¢,X) = F(t,%).

The second equation of (1-1) is called the equation of continuity. It is the reduction of the more
general Navier-Stokes equation for the density which follows from the incompressibility of the
fluid.

In this paper the following equations for the Fourier transform of the velocity are equivalent to

(1-1).

D) |5 00.0) 1 [ 0.6 -3~ ) D(.)d7 - 10P(0.5) + F (0.,
(DS
t>20,0eQ’
U(t&)-&=0.6eQ >0 12

U(0,5) = U, (d),d
@ U eL”(Q%), p=123,..,0,5 eW?1>0.

In (1-2) the Fourier transforms of the velocity, the initial velocity, the pressure and the body

force are denoted by U ,U ,I3 ,13. Also i=+/—1 and W’ is the set of whole number triples.
0 p

The law governing the average mechanical energy of an incompressible fluid



Theorem 2-4 establishes the existence of a unique smooth solution defined for all forward time.
The following formulas provide a smooth generalization of Leray’s mechanical energy law ([12]
section 17 formula 3.4) for the Navier-Stokes equation with non zero body force.

S NIOFd - (100 Ry == [|V0 Faids +] [0 - F s, -
R R 0R? 0R? (1-3)
7>0,t>0,k=012,..

Equations (1-3) state that the difference of the space average of the kinetic energy (at time ¢ > 0)

minus that at time # = 0" is equal to the viscosity times the potential energy minus the average
work done by the body force acting on the incompressible fluid where

| vU P=Vu-Vu+Vv-Vv+Vw-Vw,U" = (u,v,w) . The energy formulas (1-3) are equivalent to
the formulas

1 2 1 2
U® | (t,&)déd - U® |*(0,0)dd =
(WQ *(t. @) <zn)3§£' *(0,)
L A - A (1-4)
-n | @ P UM (s, @) dads + UY (s,0)- F (s,@)dads, k =0,1,2,...
(27)’ ! g! 27)° ! g!

established in theorem 2-2.

By Parseval’s theorem, the quantities on the left side of (1-3) and (1-4) are both equal to the

average kinetic energy of U ©.

The problem of finite time blow up

In theorem 2-3 the author shows that finite time blow up of solutions of (1-1) is impossible given
the conditions on the data, the equation of continuity, and the following conditions on the forcing
function

t
[UO-FOdids <n| [[VU® [Pdids,t >0, > 0,k =0,1,2,... (1-5)

R 0r

o —_—

In the frequency domain, inequalities (1-5) take the form

A A t A
[U®(s,0)- F® (s,@)ddds <n[ [|@|UN | dédds,t> 0,7 >0,k =0,1,2,... (1-6)

o’ 0 0°
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These conditions extend Leray’s result of 1934 in [9] that a solution continuous in the time

variable and weakly differentiable in the space variables exists for all forward time when F=0.

Under the conditions (1-3) on F the solutions of (1-1) are bounded. Absolute
stability/boundedness extends the concept of Lyapunov stability/boundedness from
homogeneous nonlinear systems to nonlinear systems with a forcing function.

2. Existence and Extension

The notation Q° = (—,0)’ denotes the set of all continuous frequency triples; /¥ denotes the set

of whole numbers.
Let S(R*) denote the space of spatially Schwartz functions. Here the initial function is in
S(R) i.e.

Sup__s |x? My P@ ZP0)| DkUO <M, ,k=012,..,p ew’ X =(x,y,2).

The notation

U e {C*([0.T]).5 € R’} A {S(R*).t > 0}

denotes the space of functions which are separately smooth in time and space and Schwartz
over space. Thus U is separately smooth on (¢,X) €[0,7]x R® ifit is smooth as a function of ¢

for each fixed ¥ € R’ and smooth as a function of X for each fixed ¢ €[0,77].

The notation
U e {C*([0,T]), & e Q°} A {S(Q°),1 > 0}

used for functions of time and frequency in the Fourier transform domain is analogous.

Lemma 2-1. The Navier-Stokes ordinary differential equations for the Fourier transform of the
solution of the spatially Schwartz problem (1-1b) are

dU(t,&)

dt
t>20,0eQ’ (2-1)
U(t,d)-&=0,0eQ’,t>0

&L Ud)~i [U(t.0-PFU.Hdg-idP(t.&) + F(1,5)

U(0,&) =U,(®),d e’

where the Fourier transform is defined by



1
2r)’

and similarly for F(1,®), P(t,&) .

U(t,@) = 0@, %)} = : (U3 dt.d 2’120 (2-2)
R3

PROOF

Note that the triple integral over R® in the definition of the Fourier transform (2-2) is well
defined for all forward time since, by the Schwartz property in X, F,U , are continuous (in fact

smooth) and integrable over ¥ € R* and continuous and bounded on ¢ € [0,%0) . Lemma 2-3
shows that the Fourier transform of the pressure, calculated below, is likewise well defined.

A
—

The terms a;’_U’ @-P,F follow directly by the application of the Fourier transform to the terms
t

of (1-1) and the differentiation property of Fourier transforms applied to the first partials in the
case of the pressure gradient term.

The transform of the Laplacian term can be calculated integrating by parts twice. Since the three
calculations are identical, it suffices to calculate the transform of the second partial derivative
with respect to the first component of the vector of space variables x

o0

j(jxxe’ii";dxdydz _ J’ J.Uxe—iw(l)x |oo e—i[a)(Z)y+a)(3)z]dde+
R3

—00—00 i (2_3)
o, [U.e7" d% = o] [Ue ™ di =} U(t,d),t > 0.
R? R?

It follows that
AUy =-n|éf U. (2-4)
The Fourier transform of the Euler term is

30 - VO = [0-VOe ™ di = i[U(1.3)d' 1+U(1,6) =1 [U(t,6~ §)~ ) U(t, §)df

A o (2-5)
=i [U(t.$)¢'Ut,0-$)d§
(-DB
The transform of the pressure gradient term is
[VPe ™ dz = iaP. (2-6)
R3

The transform of the equation of continuity is



I(Ux +V, + W) T = iU + o,V + oW ]=id-U=0,t20,6 Q. (2-7)
R3

Divide both sides of (2-7) by i to obtain the third line of (2-1).

Since U € 5(93) = U e L"(Q°), p=1,2,3,...,0 the Schwartz conditions of (2-1a) permit the

Fourier integrals of U, P, F and the terms in (2-1) involving them to be well defined.

END PROOF

Remark 2-1. Equations (2-1) specify an infinite family of ordinary differential equations with a
continuous vector parameter whose solutions are the time dependent Fourier transforms of

U(t,%),F(t,%),U (%), P(t, %).
Definition 2-1. L, F(t,®) = &- F(t,3), & €Q*,1 > 0 (2-8)

Remark 2-2. Forany @, L :C*[0,00) = C*[0,00) . The linear operator L is a map from
vectors of infinitely continuous differentiable functions on [0, %) to a scalar continuous function
on [0,00).

. _ . . d'U .
Proposition 2-1. Any derivative of finite order of the velocity F,k =0,1,2,..isin n(L;).
t

PROOF

By (2-1) the assertion holds for the Fourier transform of the equation of continuityk = 0. Take
the derivatives of order k& =1,2,3,... with respect to ¢ of both sides of

U(t,d)-&=0,6eQ°,t>0 (2-9)
to complete the proof.
END PROOF

Since differentiation of a function with respect to the space variables corresponds to frequency
multiplication of its transform, the following Banach space is the most economical one needed to

establish that solutions of the Navier-Stokes equations are smooth in (¢,%) € [0,00)x R’ .

Definition 2-2. The Schwartz space S is the set of all three component vectors of functions

which are Schwartz in the frequency variable on @ € Q. The solution space for the Navier-
Stokes equations consists of functions which are smooth and bounded for all forward time,



uniformly in @ € Q’ and Schwartz in the frequency for all > 0. Any finite order mixed partial
derivative with respect to frequency is bounded in the L” norm for any p =1,2,...,c0 with

respect to monomial frequency weights of any finite order on the space S(Q°) .

The following lemma shows that the family of differential equations simplifies to a linear
ordinary vector differential equation at @ = 0.

Lemma 2-2. If & =0 the Navier-Stokes ordinary equations for the Fourier transform of the
velocity reduce to
dU

L) = F(6,0),0(0,0)=U, (0). (2-10)

PROOF

Formula (2-10) follows immediately from equation (2-1).

END PROOF

The Fourier transform function is an auxiliary function for a family of equations which involves
it provided it does not appear in an equivalent form. The following lemma establishes that the
Fourier transform of the pressure function is an auxiliary function for the family of (ordinary
differential) equations (2-1). A closed formula for the Fourier transform of the pressure is

supplied.

Lemma 2-3. Equations (2-1) can be placed into the following equivalent form

100
N N - =1 N N N
a:-m@fU+rTg—01o[mmm*U—szmaegﬁa¢o

001
U(0,&) = U, (&),d € Q° (2-11)

U eS([0,T)xQ*),T >0.

The pressure coefficients satisfy the following equations

ﬁ@@ﬁ:}2g@ﬂﬁmamn*ﬁ+@i%@mgzqaegiaiﬁ
|wn ) ) ) (2-12)
ﬁw*ﬁ»=ng%@ia%am@q*0¢@yhﬁi%mgah@e92@¢6
(0]
PROOF



Apply the linear operator L of definition 2-1 to each side of equation (2-1) — where, by 2-5,
Ua')*U = j U(t,é0— @)@ — @) Ul(t,$)d ¢ -by forming the dot product of each term with the
cD}

vector @ € Q° to obtain

5.0 sl )
dt (2-13)

- [iU(t.&-)o-§) U(t.4df & GiP(1,&) + & F(1,0).0 € ' 11 2 0.

By proposition 2-1, U(t,®),U, (t,®) € (L ), & € Q* hence (2-13) reduces to

0=—6- [iU(t,6-§)@~§) Ult.§)dg — - GiP(1,3) + &+ F(1,5),6 € @12 0. (2-14)
d)3

Solve (2-14) for P(t, @) to obtain the first line of the pressure coefficient formulas. Insert the

first line of the pressure formula into (2-1) to obtain the first line of the velocity coefficient
formulas. The second line of the pressure transform formulas are obtained from the first line

from the initial transform U (¢, @) .

The only remaining question is to show that P(z, ) is well defined. Equivalently, is it
bounded for @ # 0?

By the Schwartz property in the frequency parameters,

IM >0:max | F(t,&} |,| F&' |< M. (2-15)
Thus
@-F(t,@} | F(,@}] _
P seor |W|— G
2 s - 2-16
max{sup __, | F'|,sup__ | 3] |} =sup__, | F|,£20. ( )
@
Since the convolution in the numerator is of quadratic order in @,
S JUo=9Na- Vg <020 . (2-17)
ol



Thus, the definition of P(¢,®), & # 0 can be smoothly extended to P(z,®),® = 0,1 > 0 by
calculating

lim_ . P(t,&),t 2 0.. (2-18)

END PROOF

Remark 2-3. From higher order derivatives of (2-1) and the projection of the k™ order equation
of continuity, one can calculate formulas for P (¢,®).

The equation that results from calculating any higher order derivative of (2-13a) is

100
1010 |[[(Ua")*U)P - F®,
001

ww
=~ |2

(j(kﬂ) :_77 | (z>)|2 ﬁ(k) +
t>0,0eQ’ keN (2-19a)
U®0,5)=0,0eQ’,keN

UBt,d)-&=0,t>0,&eQ,keN.

Remark 2-4. For coefficients in discrete Schwartz spaces the integer weights are unrestricted.

Hence any sum of squares can be exceeded by a product which is a single square. The result is
that the Schwartz norm has two equivalent formulations

2 3 ol - o)
sup ., | 0f V0P 0! (| Uy I sup oy |17 Uy | (2-19b)

The first theorem establishes the existence of unique solutions for sufficiently short forward time

starting at time ¢ =0". The following upper bound on the matrix operator of (2-19) is useful in
the proof of the first theorem

(100
@Y _lo1o||<
2T o0
a)12 |a3|200
2 @] (2-20)
| W, 0,0, 00, 100 , "|2 P o
—|q|2| 0,0, 0; 0,0, |- 010 || 0%0 |<%:2'
@ > %
o0, o,0, o; | (001 A
Ooa)}_la)l
Kzl




Theorem 2-1. Suppose
F,U e{C”([0,T]),% € R*}n{S(Q*),r > 0}

A oz 2-21

U, € S(Q). (2-21)
There exists 7 > 0 such that U e C* ([0,7)) ~ S(Q°), satisfies (2-11) and

PeC”([0,T)) N S(Q).
PROOF
The goal is to establish
a. Continuity of U in time

ar >0 U(k)(tz)_ﬁ(k)(tl) [<M(k,d)|t, -1, |<0,Vt,,t, €[0,T],M

A 2-22

= SUPgger uey (). ( )
b. The continuity of U* in time is uniform in k € W

IT 5000 -UR @) < M(@) |1, -t < o0,

1T -06) Kk M@) |1, .

Vt,,t, €[0,T],M =sup,_, sup,.,., U (?).
c. The continuity of U* is uniform in @ eQ’

AT >0:|UP1,)-UP (1) < M |1, -1, |<0,V1,,t, €[0,T],M =

2 ks 2-24

SUP o3 SUP ey SUP o<y<r U (@). ( )
Use the variation of constants formula to solve for the general Fourier transform of the
momentum

Ul(t,d) =

- t . oD’ 100 A fl A (2'25)
e G + j e o =9) oF 010 |[(((Ua")*U)-Flds,t 20,0 Q.
‘ 001

Form the difference to establish continuity of the U in time

10



U(t,,&)-U(t,,&) = e """ @0, —e " O7  +

o c?)c?)’ 100 . .
J.e‘”'“" (t(2)=5) 1010 [(l(U YxU)—Flds —
0 001

" Fd 100

Ie"”“" -1 LL__1010 [(,(U@’)*U) F]ds

0 laf 001

t,>t,>20,0eQ’
Simplify the expression on the right side of (2-26)
U(tz s CD) - U(tl s 5)) =

s o A
{e*ﬂ\w\ 1(2) —e 7|&)| t(l)}UO +

t(2) = =t 100 A A A

[ ermara@m) Z2_1010 | [((Ua') *U) - Flds -

‘M @] 001

0 5 100 i o

I [~ (2)=9) _ gl - s)] —| 010 |[[(((Us")*U)- Flds
0 91 {oo01

t,>t,20,0eQ’.

Examine continuity near time 0 by setting ¢, =¢,# =0 1in (2-27)

U(t,d)-U(0,a) = e —130, +

| (100

I R (1(2)-s) wf‘)z —-1010||[(Ua")*U)— Flds —
0 | @] 001

t>20,0eQ)’.

By (2-20)

(2-26)

(2-27)

(2-28)

11



, (100 A )
je*”"""z(””l QDO 1010 (Ua)*U)|ds <

&)

0 001
25up s SUp ., | (UG) %)@ | [ Vs |= (2-29)
0
4 4 - 2M
2sup__ . sup ., [(U*U)| @ 1# <1120
nlol n
Also
, . (100Y]
sup g [ €7 |2 010 || F s
0 001
! L0 4 4 ! L0
2sup, o [€T Y sup L, | F || @ ds <sup, o, sups, | F || @] [e™ s | (2-30)
0

0

. 1 a M
=2sup__.sup,., | Fll @] o7 <—sup__ . sup., | F <2 772 ,t>0.

It follows that

A M, M
sup | U(1,@) < Lt+2[7'+ 772],;20,77>0. (2-31)

For derivatives of the momentum coefficients of any finite order &k =1,2,3,...the variation of
constants formula yields

09(,5) = (=) | & P* &0,

[ it OO 100 U +U)® — FO14 232
+£e o 81)? [i(Ua" ) *U)P — F®1ds, (2-32)
t20,0eQ’,k=123,..

Form the difference to prove continuity of the k™ derivative of the momentum coefficient in
time,

12



09,0 -0 t,0) = ) |6 ™00, = () |6 700,

o 100
4 = ~ A
n J’ Il ((2)-s) 0)0)2 _lo1o0 (z(U &) *U)*® — F0ds -
@] 001
(2-33)
0 .. (100
—nlaf (1(1)-s)| PO SNGE=0
+j =010 [(((Ua')* )" — F©ds
| 001
t,>t,>20,0eQ’ k=123,
Simplify the difference of differentiated Fourier transforms at two distinct times
(")(t @) — (")(t] @) =(-m* | &|* [e -l 1(2) —e‘”'@'z’("]ﬁo
1(2) — 100 ~ A
+ I et | PO [(z(U YUY — FO s -
) | @ | 001
(2-34)
(1) @ 100 ~ ~ ~
I [e—mcaﬁ(r(z)—s) oAl ()= s)] ~lo10 [(i(Ucf)t)*U)(k) —F(k)]ds
oF 1oo1
t,>t,20,0eQ’ k=123,..
To investigate continuity of U™(t, @) near time 0, evaluate (2-34) at t,=0,t, =t
U@ = (=m* | & e ~110,
. (100
—plaf (t-s)| OD = =
+j ] e | 010 [((UE')*U)*® — F Jds (2-35)
001

t>0,0eQ’ k=123,...

The upper bound on the momentum transform is

13



09,7) <l 1@ P [1-e %0, |
, (100

+ et || 22010 | |1 G0+ 0) |+| ) 1ds (2-36)
! TR P

t>20,0eQ’,k=123,..

The upper bound of (2-36) can be simplified as follows.

Sy, = k| = 2k ~ 2 1
U@ o)l o™ nléP|U, |t

100
e | S oo (116« D) 1+ P s 237)
w
0 001

t>20,0eQ’k=123,..

By the hypothesis on the transforms of the data functions

SUp g | Uy (@) < L (2-382)
sup,o | 711 @ | FO (5,@) [ @ | F(s,0) |< M, (F) < M| &> 17| (2-38b)

Since the variation of constants operator is defined on the smooth/ Schwartz transforms,

U(s,@)®" is Schwartz and the convolution of Schwartz functions is a Schwartz function with
no effect on the smoothness in time,

sup .o | ([(U(s,@)@") *U(s,@)]" |< M (&) < M,k =1,2.3,... (2-39)
By (2-20),

, . (100 ) ) o

[ermren | Z2_to10 ||| (Ua')*U)® | ds < M) 4 10s (2-40)
0 121 1501 n

Also

14



100

t — =

_nlel (- [010] fal
S o 010 ||| F® |ds
@ |
0 001
t » A A f o
sup ,_» [ sup oy | FY || @Pds <sup, g supy | FO (1@ [e "™ ds| (241
0 0

2 ~ 1 a M, (k
=sup__.sup, | F || <—sup__.sup,, | F* < %,t >0,k=123,...

2l
It follows that

M, (k) M, (k)
n

£20,7>0k=123,... (2-42)

sup_ o |UP(t,@) < Lt +2

Not only are the |(j ®)(t, )| bounded for sufficiently short time but for all finite forward time.

SinceU®, F® are Schwartz, P* is Schwartz in Q° for all forward time follow automatically
from the given conditions on the boundary data.

END PROOF

The following proposition is used as a lemma for the next theorem.

Proposition 2-2. The inner product of U *(z, &) with the transformed Euler (convolution) term
satisfies

US, &)U *U(t,@)]" =0,k =01,2,3,...t >0, e Q.

PROOF

The Fourier transform of the equation of continuity is

UNt,&)-é=0,t>0. (2-43)

By the Liebnitz rule, the k™ order Euler term can be written

15



U, &)-[U(t,0)a" *U(t, @) " =

0 (t,8)- i(ﬂ[ﬁ(z, &) 1«0 (1,6) =

A Ok - - (2-44)
U (t,&)- j > z [U(t,6-6)]"(@-6)U*"(t,6)d&
03 =0
k (kY - N -
B f 2( ; j[U (t,0-6)"-UP(t,0)(0-5)-U""(1,6)ds.
o3 =0
The previous quantity is bounded above by
< | [Ut,o-6)" PIUP,6) |(@-6) |0 1,6)] d&
Q}
UP o) |0 .6 [|Uo-0)1" |(6-6)[" d& (2-45)

IA
Qe—
M- M- M-

~ e X

U (t,a) | U (2,6) P|U(t,6-6)]" -(@-6) | do =0.

I
Qe—

I
o

The first equality follows by the Liebnitz rule and the fact that the time derivative distributes
over the convolution, the second by the definition of the convolution. The third line follows by
matrix vector multiplication, the fourth by the Schwartz inequality applied continuously to the

both families of vector dot products in R’ parameterized by @ € Q° , the fifth by the definition
of the inner product of a vector with itself X - ¥ =| X|°. The final inequality follows by applying
the higher order equation of continuity to each term (U (¢, @) - @ = 0,1 = 0,1,2,...,k,t > 0,& Q.
Similarly,

UM (@) [U@.&)d" «U(t,@)]" 2

(k) 2 2 N

— Iz[z j |[UP o) | U" t,6) | Ut,&—6)]" - (0-6)|° do=0,k=01,2,...

o3 1=0

(2-46)

Hence

U (@) [Ut,@)d" *U(t,d)]" =0,t>0,6eQ’k=0,2,... (2-47)
END PROOF

The next theorem extends the domain of definition of solutions of (2-11) by showing that
solutions are bounded for all forward time. A frequency domain formula for the total mechanical

energy of the average velocity and any time derivative of it also appears. This is the frequency
domain analog of the extension of Leray’s energy law. It is equivalent to formula (1-4).

16



Theorem 2-2. Suppose —|{l7(§k) =0},k=0,12,... and

[ [1aP10® | daas,
(2 Yl en'la (2-47)
£>0,7>0,k=0,12,..

a. Then the following formulas are well defined

(2 )’ o
BP0 (s, ) dads + TP (5,8)- F® (s, @)dads, (2-48)
(2 ) 0 Q3 (272' '!é[
k=0,12,...

b. The solution of (2-12) and every finite time derivative u® (t,w),k =0,1,2,.. of it has a unique
extension (with respect to time) which is bounded and continuous in ¢ for all forward time,
continuous (and asymptotically vanishing in Q) and jointly continuous and bounded almost

everywhere on[0,00)x Q* such that U e (L' n L*)(Q*),7 > 0.

PROOF
First note that
TP =04k =0,12,..= [|[UP P (H)dx > 0,k =0,1,2,... (2-49)
R3
Thus
juﬂ“|@mdw>0k 0,1,2,... (2-50)
27)* 5,

By Plancherel’s theorem

(2)ﬂUm|mww«m©ﬂw“HMﬁ<wk 0,1,2,.. (2-51)

Next construct the formulas for the average energy of U*, k = 0,1,2,... Then eliminate the
modified Euler terms to simplify these formulas. Form the dot (Hermitian) product of each
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equation (2-19) with the complex vector U +© (t,d),k =0,1,2,..., integrate over @ € Q° and
integrate from 0 to ¢ to obtain

oy [0 cards L[ (18 P10 Fads
(27[)3 j Y (5,0-§)-(@— U (5,0 (s,8)dgdd (2-52)

o1 b

Prior to integration from 0 to ¢, the transformed Euler term which would appear in (2-48) is

[ [U(s.6-6)-(@-$)U(s.$)U" (s,0)dddds (2-53)

Q3d)3

The higher order time derivatives of the transformed Euler term

i[ [(U(s.0-§)-(@- N0 (s, T (5,8)dgdd,k = 012,... (2-54)

Q3d)3

vanish by proposition 2-2.

It follows immediately by (2-47), that

[0, 0 dd- [|UP ¢, &) dd < 0,0 <t,<t,k=0,12,.... (2-55)
Q3 Q3
In particular

108 P (0,6)dd =My <o0,t 20,k =0,1,2,.. (2-56)
(2 ) foXd ) foXd

By (2-56) and the strict inequality of (2-47) , it follows that the time average of the potential
energy is bounded for all forward time. Thus all terms appearing in formulas (2-48) are well
defined for all forward time.

Since | U I, <o it follows that U™ (¢,@),k = 0,1,2.....is bounded in ¢ for all forward time

uniformly bounded with respect to @ € Q. By the fundamental (extension) theory of ordinary
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differential equations U (¢, &), k = 0,1,2,...is continuous for all forward time uniformly with
respectto @ e Q’.

By the corresponding inequalities (1-5) it follows that U ® (¢,X),k =0,1,2,...is in (L' N L*)(R?)
for all forward time, hence g® (t,®),k =0,1,2,....t > 0 is continuous and asymptotically
vanishing as a function of @. Thus f] ® e C’O (Q’). By the inequalities (2-47),

OO ALYQ )k =0,1,2,...,1> 0.

END PROOF

Lemma2-4. f UY . F® vU® e S(R*) cL*(R*),k =0,1,2,...,t > 0 such that U satisfies
the Navier-Stokes partial differential equation (1-1) and its finite time derivatives satisfy

[JO© - FO (s, %)dids <[ [| VU (s,5%) [dids,t 2 0,k = 0,1,2,... (2-57a)

0R3 0R3

for all forward time if and only if U® - F® | & > U™ eL*(Q%),k =0,1,2,...t > 0 and the
solutions of the Navier-Stokes ordinary differential equations (2-1) and its finite time derivatives
(2-20) satisfy

U (s5,8)- F© (s,@)désds < [| & |U" (s,@)ds,t 2 0,k = 0,1,2,... (2-57b)

[oX 0 Q°

o —_—

for all forward time.

PROOF

By the strict inequality, the integral on the left of (2-57a) over R’ must be finite. In order for the
Fourier transforms which appear in (2-57b) to be well defined

F®.U® vU® eL*(R*),k =0,,2,...,t > 0 if and only if

OO .F9 [P T® eL>(Q),k =0,1,2,...4> 0

Note that, since ﬁ(k),k =0,1,2,...is Schwartz in ¥ € R*, U® . F®is integrable by Holder's
inequality if only U* e L'(R?) without assuming (2-57a).

Now suppose
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t A A t A
j j U® (s,)- F® (s, @)dads < n j j | &P U® (s,d) > dédds,t >0,k =0,1,2,... (2-58)

00} 00}

By the definition of the Fourier transform, the previous inequalities hold if and only if

j [ U9 (s, %) F®(s,%) | [ didapds < nj [[IVT® (s, 5%) | e didads,

0Q°? 0 Q*R? (2-59)
k=0,L2,..,t=0.

But these inequalities hold if and only if

[[0% (s.5%)- F® (s.5)dids <[ [| VO© (s,%) Pdids.t 2 0,k = 0.1.2,... (2-60)
0 R? 0 R?

because | e ’=1, @ Q®, ¥ e R’.
END PROOF

Theorem 2-3. If F (t,), and all time derivatives are Schwartz in @ € Q’ for all forward time

and U o (@) is Schwartz in @ € Q° then any finite time derivative of U(t, &) ( the solution of the

equation of lemma 2-2) is Schwartz in @ €Q”.
PROOF

a. For any fixed ¢,k the k™ derivative is Schwartz in @ € Q°

sup__, | @) |UY |<o0,p e V. (2-61)
b. The weighted upper bound is uniform in k

Sup, . Sup .. | @|"| g® |<oo,VpeW. (2-62)
c. The weighted upper bound is uniform for all > 0.

supzzo SupkeW Sup He0? | (?) |P| U(k) |< CD, vp € W (2-63)
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By the variation of constants formula, it suffices to show that the convolution integral is discrete

Schwartz since @(t, @) = , are Schwartz in @ € Q° by inspection given the hypotheses
on the initial and boundary conditions.

Multiply the time convolution by any monomial formed by the product of any finite powers of
the frequency components

A A
sup o | 07 V0 P! || U [ sup o, e Uy | o ol Vol |+

100
t — = A A A
sup o | @00 || [ E2 010 | [i((Ud')*U)~ Fls | (2-64)
) D |0
n>0,peW’ t>0,k=123,

Simplify the upper bound on the Schwartz weighted Fourier transform of the momentum of (2-
64)

D p2), pG3) (), =
sup o | @V 0P 0! |UM(1,7) 1<

— _nla)? s
sup ;o | 0 Vool || (<4m)* | 2T | F [T e U |

t — =t 100 ~ ~ ~ (2'65)
rsup, o [0Vl || [ | Z2 010 | [i(Ua") * )" — FVlds|
0 o o0
n>0,peW,t>0,0e0 k=123,
Since U, € S(Q%)
Vt>0,peW’
oA N (2-66)
sup,_» ¢ " U, [l o/ Vol P ol [<sup,_ |0V ol Yol U, <M,
Since
UeSQ3) = Ua')*U e S(O*),F € S(Q) (2-67)

it follows by (2-20) (the norm on the matrix operator) that
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1 2 3) 7k
sup . |a)lp( )a)2p( )a)3p( ) | A <

100

t — — A A A
()| OO A 2002
sUp gy | 0 Vf 0l | [0 ] 010 () +U) - Fs|
0
001
(2-68)
t A A
<2[e ™ supsup g |0 Vof Dol | (Us')*Uds |
0
t ., a
+2[e M sup o |0 V0!V | Fids|
0
Now switch to the vector norm Schwartz condition.
It suffices to consider the integral.
t . (100
~ _nlaP (1—s) p OO Z Z -
U s | 617 [ 7L = 010 UG #U)® = F O Jds <
0 001 (2-69)

t A A
2sup e |G| [ € ds | (sup e sup,.g | " [| (U +U)® [ +] FU[))
0

The previous inequality follows by the product inequality, the inequality for the product of
suprema, the inequality relating suprema with respect to one vector parameter vs. one vector

parameter and one variable and the fact that | @|”|.[<sup__ . [a@]”].] .

2sup oo [ @ | [ ds ) x (sup_os sup | 617 [| " xU) |+ F )
0 (2-70)
2
< ;{Ml (k)"'Mz(k)}‘

The inequality above follows by integration for the first factor and the Schwartz bounds for each
term of the second factor.

The homogeneous term has a uniform upper bound

Vt>0,peW’
~2 joY A (2-71)
sup,;_ s ¢ " ool Uy [Ssup, s [0V o] el || U, £ M,
The pressure function
P(t,F) = | 1|2 (7-[U&' *U - F(t,d)]},t >0, Q> -0 (2-72)
@
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is Schwartz in @ since U,U&' are Schwartz by hypothesis, the convolution of discrete

Schwartz functions is Schwartz and the difference of Schwartz functions [U&' *U — F(t,®)] is
Schwartz.

By the same reasoning any finite order time derivative of the pressure transform P(z, &) is
Schwartz.

END PROOF

The following theorem is the main result of this paper.

Theorem 2-4. Suppose U - F® vU®e S(R*),k =0,1,2,...,t > 0 where the U® ,k =0,1,2,...

satisfy the Navier-Stokes partial differential equations and its finite order time derivatives such
that

[[0® F©azds <[]0 -V |Pdids,t 20, > 0.k =01.2.... (2-73)
0D 0D

where F® is jointly smooth in (¢,X), Schwartz in ¥ € R* and bounded in¢ € [0, ). Then every
finite time derivative of the solution of the Navier-Stokes momentum equation is bounded,
continuous and uniquely determined in ¢. It is also smooth in ¥ € R’ for all forward time.

PROOF
The conclusion follows directly by the properties of the inverse Fourier transform representation

U of the velocity function, theorem 2-2 and theorem 2-3. In particular,

Qs

SQ).t20=U=0cl”(R*).t20
€S(Q),t20= € (R°), (2-74)

Qs

e C7([0,00)).0 € Q° = U = U € C*([0,00)), % € R’.

By the formula in lemma 2-2, each component of the pressure gradient satisfies the same
properties as each component of the momentum vector (marginal smoothness in¢,x , uniqueness,

and boundedness for all forward time).

END PROOF
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