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Abstract. We consider weakly coupled map lattices with a decaying
interaction. That is we consider systems which consist of a phase space
at every site such that the dynamics at a site is little affected by the
dynamics at far away sites.

We develop a functional analysis framework which formulates quan-
titatively the decay of the interaction and is able to deal with lattices
such that the sites are manifolds. This framework is very well suited to
study systematically invariant objects. One obtains that the invariant
objects are essentially local.

We use this framework to prove a stable manifold theorems and show
that the manifolds are as smooth as the maps and have decay properties
(i.e. the derivatives of one of the coordinates of the manifold with respect
the coordinates at far away sites are small). Other applications of the
framework are the study of the structural stability of maps with decay
close to uncoupled possessing hyperbolic sets and the decay properties
of the invariant manifolds of their hyperbolic sets, in the companion
paper [FdlLM10].

1. Introduction

1.1. Lattice dynamical systems. Many systems of interest in Physics,
Biology and Mathematics, can be described as an infinite array of smaller
subsystems endowed with local interactions. The evolution of the subsystem
at one site depends on the state of the site itself, and also on the state of
the other sites, but the effect of far away sites is much weaker.

Models of this type have been in the literature for a long time. For ex-
ample, arrays of coupled oscillators are very standard in statistical mechan-
ics and motivated the celebrated Fermi-Pasta-Ulam experiment [FPU55] to
study empirically equipartition of energy. Similar models of dislocations
were introduced in [FK39]. Similar mathematical models are introduced in
biology to model arrays of cells (e.g. neurons) [Hop86, HI97, BEFT05, Izh07].
They also appear in Mathematics as discrete models of Partial Differential
Equations [PY04]. Many mathematical aspects (traveling waves, spatiotem-
poral chaos, fronts, invariant measures) have been studied rigorously. By
now, there is a large body of research and different names for very similar (if
not identical concepts: coupled oscillators, coupled map lattices, extended
systems, etc.). We just refer to several surveys [Gal08, BCC03, MP03, CF05,
Kan93, Pey04, BK98, BK04, FP99] and the references therein, that include
different points of view and different schools.
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The goal of this paper is to develop a convenient functional analysis frame-
work which is useful in the systematic study of these infinite-dimensional
systems with interactions that decay with the distance. We define a class of
interacting dynamical systems whose interactions satisfy some decay prop-
erties (we will refer to these systems as systems with decay). We show that
with the definitions we take, the systems satisfy good estimates, very similar
to the estimates satisfied by finite-dimensional systems.

Using this framework, it is possible to adapt the proof of existence of many
invariant objects in finite-dimensional dynamical systems (stable manifolds
of periodic points, hyperbolic sets, and their invariant manifolds, etc.) to
infinite-dimensional systems. As a consequence of the formalism, the objects
thus constructed enjoy similar decay properties as those assumed for the
system.

In this paper, we provide a proof of a stable manifold theorem in lattice
systems. The novelty is that, applying the formalism, we obtain that the in-
variant manifolds are decay. In the companion paper, [FdlLM10], we apply
this framework to obtain a theory of hyperbolic sets with decay, in partic-
ular, their structural stability and the decay properties of their invariant
manifolds.

The study of hyperbolicity properties in lattice maps has a long story
[BS88, BK95, Jia95, JP98, Jia99, FR00, JdlL00, Jia03, KL04, KL06], among
others. The above papers study not only the geometric properties but also
use them to obtain ergodic properties. We note that, when passing from
geometric properties (invariant manifolds and such) to ergodic properties,
the fact that the systems and their invariant objects have decay properties
(i.e. can be considered as perturbations of a product system) is very im-
portant because, using the decay properties one can deal with the invariant
measure of the full system as perturbations of the product measure.

The formalism we propose does not require, but can easily accommodate
translation invariance. Translation invariance is important for systems aris-
ing in statistical mechanics and in mathematics, but it could be unnatural
for systems appearing in biology or computer science.

Compared with some of the work mentioned above we note that: a) We
deal with infinite systems all the time (one can easily treat with finite-
dimensional systems as particular cases by uncoupling them from the rest).
b) We base the topology of the infinite system on `∞, rather than on point-
wise convergence of the coordinates. This has the advantage that we can use
Banach space techniques rather than relying just on metric spaces (which
do not allow the standard tools of differential calculus). Of course, since the
uniform topology is stronger, some of the conclusions will also be stronger.
The applications – specially those that involve translation invariance – make
it natural to assume uniform convergence of the models.

On the other hand, as it is well known, using uniform convergence in
infinite systems brings forth the problem of the boundary conditions at in-
finity, which has been a problem in statistical mechanics for a long time.
[Rue71, Pre76].
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Related to the problem of conditions at infinity, we have to face the prob-
lem that the operators in `∞ are not determined by their matrix elements.
See a more detailed discussion in Section 2.3.

Once the lattice is modeled as a Banach manifold over some `∞ space we
will consider a suitable class of diffeomorphisms acting on the lattice. For
any diffeomorphism in this class, the dependence of the i-th component of
the map with respect to the j-th variable will be controlled by some decay
function Γ. In [Jia95, JP98, Jia99], this function is an exponential, while in
[JdlL00], Γ can also have an exponential behavior, but is characterized by
satisfying certain relations which allow this class of diffeomorphisms to have
good algebra properties. It should be stressed that these algebra properties
play an important role whenever one intends to use an iterative procedure,
like a fixed point method or an implicit function theorem. We will say that
a diffeomorphism of this class has decay properties.

It should be noted that, in general, if F is a Cr diffeomorphism of the
lattice, modeled as a Banach manifold over `∞, its partial derivatives do
not determine its differential. (This is related to the fact that a linear
operator in `∞ is not determined by its matrix elements.) In particular,
having bounds on the partial derivatives of F does not provide any bound
on the norm of the differential, precision that is not made explicit in the
literature [JdlL00]. The results in [JdlL00] remain true if one adds in the
definition the assumption that the derivatives of the map are determined by
the partial derivatives.

In this paper, we use the same definition of decay properties of decay
functions as in [JdlL00] but we want to make explicit that we allow that
the evolutions we consider, could have derivatives that are not given by the
matrix elements (in other words, we want to allow non-trivial boundary
conditions at infinity). We also carry out a more systematic development of
the theory with a view to further applications.

1.2. Structure of the paper. In Section 2 we develop the framework of
maps with decay in `∞ spaces. We start by considering linear and k-linear
maps with decay, then we define Cr functions with decay (CrΓ functions) and
show some of their properties, relevant in the applications. We continue with
Hölder functions with decay. We finish the Section with a technical lemma,
used later in the study of the lattice and in [FdlLM10].

Section 3 is devoted to a stable manifold theorem for maps between `∞

spaces with decay, describing the decay properties of the manifolds.
In Section 4 the lattice is modeled as a Banach manifold over `∞. Also,

several functions and sets related only to the manifold are introduced: the
atlas, the exponential, an isometric embedding, etc. First, they are intro-
duced in the finite-dimensional manifold and, afterwards, they are lifted to
the lattice.

In Section 5 we introduce the spaces of Cr and Hölder maps with decay
on the lattice. We study the regularity of the composition operator (Φ, h) 7→
Φ ◦ h, where Φ is a Cr map with decay and h a Hölder maps with decay.
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2. Maps with decay in `∞ spaces

We introduce several Banach spaces related to d-dimensional lattices, and
some of their basic properties.

2.1. The Banach space `∞. We start with the definition of `∞(Xi).
Definition 2.1. Let (Xi)i∈Zd be a family of Banach spaces. Let | · |i be the
norm in Xi. We define

(2.1) `∞(Xi) = {x = (xi) ∈
∏
i∈Zd

Xi| sup
i∈Zd

|xi|i <∞}.

It is well known that `∞(Xi) endowed with the norm |x| = supi∈Zd |xi|i
is a Banach space. We denote πj : `∞(Xi) → Xj the obvious projection, i.e.
πj((xi)) = xj . We have |πj | = 1.

Given x = (xi) ∈ `∞(Xi) we have the following inclusions concerning the
balls of Xi and `∞(Xi)
(2.2) B(x, r)  Πi∈ZdB(xi, r)  B(x, r).

We use the notation int for topological interior. Note that

B(x, r) = int (Πi∈ZdB(xi, r)).

The next result follows directly from the definitions.

Proposition 2.2. Let X , Xi, i ∈ Zd, be Banach spaces, U ⊂ X an open set
and f : U → `∞(Xi) a map. Let fi = πi ◦ f . Then

(1) f is continuous at x0 ∈ U if and only if {fi} is an equicontinuous
family at x0.

(2) f is differentiable at x0 ∈ U if and only if fi is differentiable at x0

for all i and the family {f∗i }i, where

f∗i (h) =
(
fi(x0 + h)− fi(x0)−Dfi(x0)h

)
/|h|,

is an equicontinuous family at h = 0. Moreover πiDf(x0) = Dfi(x0).
(3) f is Cr in U if and only if fi is Cr in U , Dkfi(x), for 1 ≤ k ≤ r,

are uniformly bounded with respect to i for all x ∈ U , and {Drfi} is
an equicontinuous family at x, for all x ∈ U .

An example relevant for (1) above is the following Let X ,Xi = R and
fi(x) = |x|1/(|i|+1) Then f(0) = 0, ||f(x)|| = 1 for 0 < |x| ≤ 1 in spite of the
fact that all the components are continuous.

We will say that a family of maps {fi}i∈Zd is uniformly differentiable at
x0 if it satisfies the condition (2) of the previous proposition.

We will say that a map f :
∏
i∈Zd Ui ⊂ `∞(Xi) → `∞(Yi) is uncoupled if

fi(x) has the form f̃i(πi(x)) for some f̃i : Ui ⊂ Xi → Yi. As a consequence
of (3) in the above proposition, we have that

Corollary 2.3. Let Xi,Yi, i ∈ Zd, be Banach spaces, Ui ⊂ Xi be open sets
and f̃i : Ui → Yi be Cr maps, r ∈ N, such that Dkf̃i are uniformly bounded
and {Drf̃i}i is an equicontinuous family at xi for all xi ∈ Ui.

Then, the map f : int (ΠiUi) ⊂ `∞(Xi) → `∞(Yi) defined by fi(x) =
f̃i(πi(x)) is Cr and ‖f‖Ck ≤ supi ‖f̃i‖Ck .

In particular, if the above conditions hold for all r ∈ N, then f is C∞.
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Proof. By Taylor theorem the hypotheses imply that Dkf̃i is equicontinuous
at every point for 0 ≤ k ≤ r. This implies that {Dkfi}i is an equicontinuous
family at every point x = (xi)i ∈ int (ΠiUi). In particular f is continuous.

To get differentiability we use that

|f∗i (h)| =
∣∣∣ ∫ 1

0
[Df̃i(xi + thi)−Df̃i(xi)]hi dt

∣∣∣/|h|, hi = πi(h),

hence {f∗i }i is equicontinuous at h = 0. The equicontinuity also implies that
f is C1.

Applying the same argument to the higher order derivatives we get that
f is Cr. 2

2.2. Decay functions. Following [JdlL00] we introduce the following

Definition 2.4. A decay function is a map Γ : Zd → R+ such that
(1)

∑
i∈Zd Γ(i) ≤ 1,

(2)
∑

j∈Zd Γ(i− j)Γ(j − k) ≤ Γ(i− k), i, k ∈ Zd.

Remark 2.5. In [JdlL00] it is only required
∑

i∈Zd Γ(i) <∞ instead of (1).
However condition (1) is not restrictive because if we can find Γ satisfying
1 <

∑
i∈Zd Γ(i) <∞ and (2), then Γ̃(i) = Γ(i)/

∑
i∈Zd Γ(i) satisfies (1) and

(2).

In [JdlL00] it is proved that given α > d and θ ≥ 0, there exists a > 0
(small enough, depending on α, θ and d) such that

Γ(i) =

{
a|i|−αe−θ|i|, i 6= 0,
a, i = 0

satisfies Definition 2.4.
In what follows, Γ will be a fixed decay function. It will be used to

control the dependence of the components of the maps with respect to their
variables.

The goal of the remaining part of this section is to introduce several spaces
of maps defined in `∞ spaces having decay properties associated to a decay
function Γ and to present their basic properties.

2.3. Linear maps with decay. We define the space of linear maps with
decay Γ by

(2.3) LΓ(`∞(Xi), `∞(Yi)) = {A ∈ L(`∞(Xi), `∞(Yi)) | ‖A‖Γ <∞},

where L refers to the space of continuous linear maps, and

(2.4) ‖A‖Γ = max{‖A‖, γ(A)}

and

(2.5) γ(A) = sup
i,j∈Zd

sup
|u|≤1

πlu=0,l 6=j

|(Au)i|Γ(i− j)−1.

With this norm, LΓ(`∞(Xi), `∞(Yi)) is a Banach space.
We denote by ij : Xj → `∞(Xi) the linear map defined by (ij(v))j = v and

(ij(v))k = 0, for k 6= j, a formalism to consider vectors with at most one
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component different from 0. Then, given A ∈ L(`∞(Xi), `∞(Yi)), it induces
linear maps Aij : Xj → Yi by

Aijv = πi(A ij(v)).

In finite dimensions, Aij are the matrix elements of A. Since |ij(u)| = |u|,
we have that the number γ(A) can be computed alternatively by

γ(A) = sup
i,j∈Zd

‖Aij‖Γ(i− j)−1.

It should be remarked that, in general, a linear mapA ∈ L(`∞(Xi), `∞(Yi))
is not determined by its “matrix elements”, Aij . As an example, consider

E0 = {v ∈ `∞(R) | lim
|j|→∞

vj exists }

and the linear map lim : E0 → R defined by lim(v) = lim|j|→∞ vj . It is
clear that the norm of lim is bounded by 1 on E0. Hence, by the Hahn-
Banach theorem, it admits an extension to `∞(R), τ , with the same norm.
The matrix representation of τ is given by the maps τj : R→ R defined by
τj(α) = τ(u), where u ∈ `∞(Xi) is such that uk = 0, if k 6= j and uj = α.
By the definition of lim, since lim|k|→∞ uk = 0, we have that τj = 0, for
all j. However, it is clear that τ is not 0.

In particular, if A ∈ L(`∞(Xi), `∞(Yi)), it will not be true, in general, that
(Av)i =

∑
j∈Zd A

i
jvj . Notwithstanding, this formula will hold true when the

vector v satisfies that lim|j|→∞ |vj | = 0.

Lemma 2.6. Let A ∈ L(`∞(Xi), `∞(Yi)), and v ∈ `∞(Xi) be such that
lim|j|→∞ |vj | = 0. Then

(Av)i =
∑
j∈Zd

Aijvj .

Proof. Given v ∈ `∞(Xi) let vm ∈ `∞(Xi) be the truncated vector defined
by vmk = vk, if |k| ≤ m and vmk = 0, if |k| > m. We have that vm tends to v,
when m→∞. Indeed, since lim|j|→∞ |vj | = 0,

‖v − vm‖ = sup
|j|>m

|vj |

tends to 0, when m → ∞. Moreover, since vm has only a finite number of
components different from 0, we have that (Avm)i =

∑
|j|≤mA

i
jvj . Then,

‖(Av)i −
∑
|j|≤m

Aijvj‖ ≤ ‖A(v − vm)‖ ≤ ‖A‖‖v − vm‖

tends to 0 when m→∞. 2

The idea behind the definition of linear map with decay is essentially
that if a vector v ∈ `∞(Xi) has its “mass” concentrated around its j-th
component, then Av will also have its “mass” concentrated around the same
component with the same decay. In fact, as we shall see below, this property
characterizes the linear maps with decay Γ.

More concretely, given j ∈ Zd, we introduce the subspace of `∞(Xi) of
vectors centered around the j-th component

(2.6) Σj,Γ = {v ∈ `∞(Xi) | ‖v‖j,Γ <∞},
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where

(2.7) ‖v‖j,Γ = sup
k∈Zd

|vk|Γ(k − j)−1.

In particular, ij(u) ∈ Σj,Γ for all u ∈ Xj and ‖ij(u)‖j,Γ = |u|Γ(0)−1.
Note that for any given pair i, j ∈ Zd we have Σi,Γ = Σj,Γ as spaces. Also,

if i and j are fixed, the norms in Σi,Γ and Σj,Γ are equivalent, the constant
of equivalence depending on i and j. Indeed, if v ∈ Σj,Γ,

‖v‖i,Γ = sup
k

|vk|
Γ(k − i)

≤ ‖v‖j,Γ sup
k

Γ(k − j)
Γ(k − i)

≤ ‖v‖j,Γ sup
k

Γ(k − j)∑
l Γ(k − l)Γ(l − i)

≤ ‖v‖j,ΓΓ(i− j)−1.

Proposition 2.7. Let A ∈ L(`∞(Xi), `∞(Yi)).

(1) If A ∈ LΓ(`∞(Xi), `∞(Yi)), then for any j ∈ Zd and for any v ∈ Σj,Γ,
Av ∈ Σj,Γ and ‖Av‖j,Γ ≤ γ(A)‖v‖j,Γ.

(2) If there exists C > 0 such that for any j ∈ Zd and for any v ∈ Σj,Γ,
Av ∈ Σj,Γ and ‖Av‖j,Γ ≤ C‖v‖j,Γ, then A ∈ LΓ(`∞(Xi), `∞(Yi)) and
γ(A) ≤ CΓ(0)−1.

Proof. Let A ∈ LΓ(`∞(Xi), `∞(Yi)) and v ∈ Σj,Γ. Then, by Lemma 2.6, the
definition (2.5) of γ(A) and (2.7), we have that

|(Av)i| ≤
∑
k∈Zd

|Aik||vk| ≤ γ(A)‖v‖j,Γ
∑
k∈Zd

Γ(i−k)Γ(k−j) ≤ γ(A)‖v‖j,ΓΓ(i−j),

which proves (1).
Now, given j ∈ Zd, u ∈ Xj , we observe that |u| = |ij(u)| = ‖ij(u)‖j,ΓΓ(0).

Hence, if |u| ≤ 1,

|Aiju|Γ(i− j)−1 = |(A ij(u))i|Γ(i− j)−1 ≤ ‖A ij(u)‖j,Γ
≤ C‖ij(u)‖j,Γ = CΓ(0)−1.

Taking suprema with respect to u and with respect to i, j ∈ Zd we get
γ(A) ≤ CΓ(0)−1. 2

Proposition 2.8 (Algebra property). Let Xi, Yi, Zi be Banach spaces. If
A ∈ LΓ(`∞(Xi), `∞(Yi)) and B ∈ LΓ(`∞(Yi), `∞(Zi)). Then,

(a) BA ∈ LΓ(`∞(Xi), `∞(Zi)),
(b) γ(BA) ≤ γ(B)γ(A),
(c) ‖BA‖Γ ≤ ‖B‖Γ‖A‖Γ.

Proof. Proposition 2.7 implies that BA ∈ LΓ(`∞(Xi), `∞(Zi)). It only re-
mains to check the bounds for γ(BA) and ‖BA‖Γ.

For any j ∈ Zd and u ∈ Xj , since ij(u) ∈ Σj,Γ, we have that A ij(u) ∈ Σj,Γ.
Hence, by Lemma 2.6, (BA ij(u))i =

∑
k∈Zd B

i
k(A ij(u))k.
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Then,

γ(BA) = sup
i,j

Γ(i− j)−1‖(BA)ij‖

= sup
i,j

sup
|u|≤1

Γ(i− j)−1|((BA)ij(u))i|

= sup
i,j

sup
|u|≤1

Γ(i− j)−1|
∑
k∈Zd

Bi
k(A ij(u))k|

≤ sup
i,j

sup
|u|≤1

Γ(i− j)−1γ(B)
∑
k∈Zd

Γ(i− k)|(A ij(u))k|

≤ sup
i,j

Γ(i− j)−1γ(B)γ(A)
∑
k∈Zd

Γ(i− k)Γ(k − j)

≤ γ(B)γ(A).

Also
‖BA‖Γ = max(‖BA‖, γ(BA))

≤ max(‖B‖ ‖A‖, γ(B)γ(A)) ≤ ‖B‖Γ‖A‖Γ.

2

2.4. k-linear maps with decay. Let X , Y be Banach spaces. We recall
that L(X , Lk−1(X ,Y)) can be identified with Lk(X ,Y). However, for non
symmetric k-linear maps there are k possible identifications ıj : Lk(X ,Y) →
L(X , Lk−1(X ,Y)), 1 ≤ j ≤ k, defined by
(2.8)

ıj(A)(v)(u1, . . . , uj−1, uj+1, . . . , uk) = A(u1, . . . , uj−1, v, uj+1, . . . , uk).

The maps ıj are isometries.
Furthermore, if Xi and Yi are Banach spaces, as a consequence of (1)

in Proposition 2.2 we have that Lk(`∞(Xi), `∞(Yi)) ∼= `∞(Lk(`∞(Xi),Yi)).
Hence, using the identification (2.8), it is possible to identify Lk(`∞(Xi), `∞(Yi))
with the space L(`∞(Xi), `∞(Lk−1(`∞(Xi),Yi))) in k different ways. Using
now the definition of the space LΓ in (2.3), we introduce the space of k-linear
maps with decay Γ

(2.9) LkΓ(`∞(Xi), `∞(Yi)) = {A ∈ Lk(`∞(Xi), `∞(Yi)) |

ım(A) ∈ LΓ

(
`∞(Xi), `∞(Lk−1(`∞(Xi),Yi))

)
, m = 1, . . . , k},

with the norm
‖A‖Γ = max{‖A‖, γ(A)},

where
γ(A) = max

1≤m≤k
{γ(ım(A))}.

It is clear that ‖A‖Γ = max1≤m≤k{‖ım(A)‖Γ}. With this norm, LkΓ is a
Banach space.

An explicit formula to compute γ(A) is the following
(2.10)

γ(A) = max
1≤m≤k

sup
i,j∈Zd

sup
‖u‖≤1

πlu=0,l 6=j

sup
‖vp‖≤1
2≤p≤k

‖ım(A)i(u)(v2, . . . , vk)‖Γ(i− j)−1.
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If A ∈ Lk(`∞(Xi), `∞(Yi)), its “matrix elements”, Aij1,...,jk : Xj1 × · · · ×
Xjk → Yi, can be introduced analogously to those of linear maps. If A ∈
LkΓ(`∞(Xi), `∞(Yi)), it follows from (2.10) that

(2.11) ‖Aij1,...,jk‖ ≤ γ(A) min{Γ(i− j1), . . . ,Γ(i− jk)}.

Note however that (2.11) is just an upper bound and not a characterization
of belonging to LkΓ. Indeed, the fact that the matrix elements of a linear map
satisfy this condition is not sufficient to ensure that a k-linear map has decay
Γ. In fact, k-linear maps satisfying (2.11) may not satisfy the contraction
or the algebra properties below. For example, it suffices to take an operator
given by a matrix whose elements are Aij1,...,jk = min{Γ(i−j1), . . . ,Γ(i−jk)}.

We introduce the following notation. Given k ≥ 1, let Sk be the symmetric
group. If v = (v1, . . . , vk) ∈ E × · · · × E, being E a set, and τ ∈ Sk, we
define τ(v) = (vτ(1), . . . , vτ(k)).

Next lemma establishes a property concerning contractions of k-linear
maps with decay.

Lemma 2.9 (Γ norms of contractions). Let A ∈ LkΓ(`∞(Xi), `∞(Yi)), and

u ∈ `∞(Xi). Then, for any τ ∈ Sk the map Bτ,u : `∞(Xi)×
(k−1)
· · · ×`∞(Xi) →

`∞(Yi) defined by

Bτ,u(v1, . . . , vk−1) = A(τ(v1, . . . , vk−1, u))

belongs to Lk−1
Γ (`∞(Xi), `∞(Yi)). Moreover

(2.12) γ(Bτ,u) ≤ γ(A)‖u‖.

As a consequence

(2.13) ‖Bτ,u‖Γ ≤ ‖A‖Γ‖u‖.

If τ = Id we will write Bu = BId ,u.

Proof. For simplicity, we only check the case τ = Id.
Inequality (2.13) is trivial if u = 0. If u 6= 0 and v = (vl), we have that

for any i, j ∈ Zd, 1 ≤ m ≤ k, v2, . . . vk−1 ∈ `∞(Xi) such that ‖vp‖ ≤ 1,
2 ≤ p ≤ k − 1, and vl = 0, if l 6= j,

‖ım(Bu)i(v)(v2, . . . , vk−1)‖Γ(i− j)−1

= ‖(Bu)i(v2, . . . , v, . . . , vk−1)‖Γ(i− j)−1

= ‖Ai(v2, . . . , v, . . . , vk−1, u/‖u‖)‖ ‖u‖Γ(i− j)−1

= ‖im(A)i(v)(v2, . . . , vk−1, u/‖u‖)‖ ‖u‖Γ(i− j)−1

≤ γ(A)‖u‖.

Inequality (2.12) follows from taking suprema above. Moreover ‖Bu‖ ≤
‖A‖ ‖u‖ and using that

‖Bu‖Γ = max(γ(Bu), ‖Bu‖) ≤ max(γ(A) ‖u‖, ‖A‖ ‖u‖) = ‖A‖Γ‖u‖

we obtain that (2.13) holds true.
2
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As is the case of linear maps with decay Γ, k-linear maps with decay Γ
are characterized by its action on vectors centered around one component.
Next proposition is analogous to Proposition 2.7, and is a consequence of
the norms of contractions given in Lemma 2.9.

Proposition 2.10. Let A ∈ Lk(`∞(Xi), `∞(Yi)).
(1) If A ∈ LkΓ(`∞(Xi), `∞(Yi)), then, for any v2, . . . , vk ∈ `∞(Xi) and

v ∈ Σj,Γ with j ∈ Zd, we have A(v, v2, . . . , vk) ∈ Σj,Γ and

‖A(v, v2, . . . , vk)‖j,Γ ≤ γ(A)‖v‖j,Γ‖v2‖ . . . ‖vk‖.

(2) If there exists C > 0 such that for any v2, . . . , vk ∈ `∞(Xi), j ∈ Zd,
v ∈ Σj,Γ, τ ∈ Sk, we have A(τ(v, v2, . . . , vk)) ∈ Σj,Γ and

‖A(τ(v, v2, . . . , vk))‖j,Γ ≤ C‖v‖j,Γ‖v2‖ . . . ‖vk‖,

then A ∈ LkΓ(`∞(Xi), `∞(Yi)).

Proof. (1) Proposition 2.7 implies the case k = 1. By induction assume that
(1) is true for k − 1 ≥ 1 and let Bvk be defined by Bvk(v, v2, . . . , vk−1) =
A(v, v2, . . . , vk−1, vk). By Lemma 2.9, Bvk ∈ L

k−1
Γ and γ(Bvk) ≤ γ(A)‖vk‖.

Now by the induction hypothesis we have

‖A(v, v2, . . . , vk)‖j,Γ = ‖Bvk(v, v2, . . . , vk−1)‖j,Γ ≤ γ(Bvk)‖v‖j,Γ‖v2‖ . . . ‖vk−1‖
≤ γ(A)‖v‖j,Γ‖v2‖ . . . ‖vk‖.

(2) Given m ∈ {1, . . . , k} and j ∈ Zd we have

‖ım(A)(v)‖j,Γ = sup
l

(
ım(A)(v)

)
l
Γ(l − j)−1

= sup
l

sup
‖vi‖≤1

(
ım(A)(v)(v2, . . . , vk)

)
l
Γ(l − j)−1

= sup
l

sup
‖vi‖≤1

(
A(v2, . . . , vm, v, . . . , vk)

)
l
Γ(l − j)−1

= sup
l

sup
‖vi‖≤1

(
A(τ(v, v2, . . . , vk))

)
l
Γ(l − j)−1

≤ sup
l

sup
‖vi‖≤1

C‖v‖j,Γ‖v2‖ . . . ‖vk‖

≤ C‖v‖j,Γ

for some permutation τ ∈ Sk. By Proposition 2.7 this implies that ım(A) ∈
LΓ and hence A ∈ LΓ. 2

From Lemma 2.9 and Proposition 2.8 one also obtains the following alge-
bra property, which will prove crucial for later developments.

Proposition 2.11 (Algebra property). If A ∈ LkΓ(`∞(Yi), `∞(Zi)) and Bj ∈
L
lj
Γ (`∞(Xi), `∞(Yi)), for j = 1, . . . , k, then the composition AB1 · · ·Bk ∈

Ll1+···+lk
Γ (`∞(Xi), `∞(Zi)) and

γ(AB1 · · ·Bk) ≤γ(A)‖B1‖Γ · · · ‖Bk‖Γ,(2.14)

‖AB1 · · ·Bk‖Γ ≤‖A‖Γ‖B1‖Γ · · · ‖Bk‖Γ.(2.15)
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Proof. Since γ(A) ≤ ‖A‖Γ, inequality (2.14) implies (2.15).
Let us define l0 = 0. Then, for any 1 ≤ s ≤ k and for any uls−1+1, . . . , uls ∈

`∞(Xi), we have that ‖Bsuls−1+1 . . . uls‖ ≤ ‖Bs‖Γ‖uls−1+1‖ · · · ‖uls‖. Also,
by Proposition 2.9, for any uls−1+2, . . . , uls ∈ `∞(Xi) and τ ∈ Sls , the map
Bτ,s : u 7→ Bsτ(u, uls−1+2, . . . , uls), defined in that proposition, belongs to
LΓ and ‖Bτ,s‖Γ ≤ ‖Bs‖Γ‖u2‖ · · · ‖uls‖.

Hence, by Proposition 2.8, for any u2, . . . , ul1+···+lk ∈ `∞(Xi), ‖u2‖, . . . ,
‖ul1+···+lk‖ ≤ 1 and ls−1 < m ≤ ls, the map

Ãm : u 7→ ım(AB1 . . . Bk)(u)(uls−1+2, . . . , ul1+···+lk),

where ım(AB1 . . . Bk)) was introduced in (2.8), belongs to LΓ and

γ(Ãm) ≤ γ(A)‖B1‖ . . . γ(Bm) . . . ‖Bk‖.
Finally, since ‖Bj‖ ≤ ‖Bj‖Γ, for all 1 ≤ j ≤ k,

γ(AB1 . . . Bk) = max
m

γ(Ãm) ≤ γ(A)‖B1‖Γ . . . ‖Bk‖Γ.

2

2.5. Linear and k-linear maps with decay on product spaces. Given
p ∈ N, we consider the Banach space

∏p
j=1 `

∞(Xi), with the norm

‖v‖ = max
1≤j≤p

‖vj‖, v = (v1, . . . , vp).

Given a k-linear map A :
∏p
j=1 `

∞(Xi) →
∏q
j=1 `

∞(Yi), we can write it in
the form

Al(v1, . . . , vk) =
∑

1≤i1,...,ik≤p
Ali1,...,ik(v1,i1 , . . . vk,ik),

where vj = (vj,1, . . . , vj,p), j = 1, . . . , k, l = 1, . . . , q, and Ali1,...,ik are k-linear
maps form `∞(Xi) to `∞(Yi).

We define

LkΓ(
p∏
j=1

`∞(Xi);
q∏
j=1

`∞(Yi)) ={A ∈ L(
p∏
j=1

`∞(Xi);
q∏
j=1

`∞(Yi)) |

Ali1,...,ik ∈ L
k
Γ(`∞(Xi); `∞(Yi))},

(2.16)

with the norm

(2.17) ‖A‖Γ = max
1≤l≤q

∑
1≤ii,...,ik≤m

‖Ali1,...,ik‖Γ.

Since the product of `∞ spaces we are considering here is finite, we have
that Lemmas 2.9 and 2.11 also hold for LkΓ(

∏p
j=1 `

∞(Xi);
∏q
j=1 `

∞(Yi)), and
we will use them without further notice.

2.6. Spaces of Hölder and Lipschitz functions. Following [JdlL00] we
introduce a space of Hölder functions between `∞ spaces. Let Xi, Yi, Z be
Banach spaces, U an open set of `∞(Xi) and h : U → Z a Hölder function.

For 0 < α ≤ 1, j ∈ Zd and a decay function Γ we define the following
magnitudes:

(2.18) Hα(h) = sup
x 6=y

|h(x)− h(y)|
dα(x, y)

,
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(2.19) γ̃α,j(h) = sup
xl=yl//l 6=j

sup
xj 6=yj

|h(x)− h(y)|
dα(xj , yj)

and, for h : U → `∞(Yi),
(2.20) γα(h) = sup

i,j∈Zd
γ̃α,j(hi)Γ(i− j)−1.

Also we introduce the space

CαΓ (U) = {h : U ⊂ `∞(Xi) → `∞(Yi) | h ∈ Cα(U), γα(h) <∞}.
We endow CαΓ (U) with the norm

‖h‖CαΓ = max
(
‖h‖Cα , γα(h)

)
and CαΓ (U) becomes a Banach space. Recall that ‖h‖Cα = max(‖h‖C0 ,Hα(h)).

When α = 1 we will denote the corresponding space and norm by CLip
Γ

and ‖ · ‖
CLip

Γ
resp.

Remark 2.12. Actually in [JdlL00] the space CαΓ is defined without re-
quiring to be a subset of Cα. It should be noted, however, that a function
h may have γα(h) < ∞ and fail to be Hölder, or even continuous, as the
following example shows. Let E = `∞(R) and τ be a linear extension to
`∞(R) given by Hahn-Banach of the limit map lim : c → R defined on the
subspace c ⊂ `∞(R) of the convergent sequences. Then consider the map
T : E → E defined by

T (y) =
(
|τ(y)|1/(|i|+1)

)
i∈Z

.

T is not continuous at y = 0, but γ̃α,j(T ) is zero for all α.

2.7. Spaces of CrΓ functions. Now we can define Cr functions with decay
between `∞ spaces.

Given an open subset U of `∞(Xi) let

(2.21) C1
Γ(U , `∞(Yi)) = {F ∈ C1(U , `∞(Yi)) | DF (x) ∈ LΓ,∀x ∈ U ,

sup
x
‖F (x)‖ <∞, sup

x
‖DF (x)‖Γ <∞},

with the norm

(2.22) ‖F‖C1
Γ

= max(‖F‖C0 , sup
x
‖DF (x)‖Γ).

Note that with this definition, if F ∈ C1
Γ and v ∈ Σj,Γ then F (v) need not

belong to Σj,Γ because F can be the constant function F : `∞(R) → `∞(R)
such that Fi(x) = |i|

1+|i| . However, if F (0) = 0 then we do have F (v) ∈ Σj,Γ.
For r > 1 we define

(2.23) CrΓ(U , `∞(Yi)) = {F ∈ Cr(U , `∞(Yi)) | DjF ∈ C1
Γ, 0 ≤ j ≤ r− 1}

with the norm
(2.24)
‖F‖CrΓ = max(‖F‖C0 , max

0≤j≤r−1
sup
x
‖DDjF (x)‖Γ) = max

0≤j≤r−1
‖DjF‖C1

Γ
.

From these definitions the following properties hold true

(2.25) CrΓ ⊂ Cr−1
Γ
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and

(2.26) if F ∈ CrΓ(U , `∞(Yi)), then DF ∈ Cr−1
Γ (U , `∞(L(`∞(Xi),Yi))).

Now we establish the formula of the derivative in terms of the partial
derivatives.

Lemma 2.13. Let F ∈ C1
Γ(U , `∞(Yi)), x ∈ U ⊂ `∞(Xi), and v ∈ `∞(Xi)

such that lim|j|→∞ |vj | = 0. Then

DFi(x)v =
∑
j∈Zd

∂Fi
∂xj

(x)vj .

Proof. Since DF (x) ∈ LΓ(`∞(Xi), `∞(Yi)), Lemma 2.6 implies that

DFi(x)v =
∑
j∈Zd

(DF (x))ijvj .

Moreover,

(DF (x))ij =
∂Fi
∂xj

(x).

2

2.8. Decay properties of limits of CrΓ functions. In this section we
collect several results that show that if all the elements of a sequence have
decay properties which are bounded then, the limit (in different senses) also
has the same decay properties.

Lemma 2.14. Let U be an open subset of `∞(Xi) and let Bρ be the closed
ball of radius ρ in CrΓ(U , `∞(Yi)). Assume (Fn) is a sequence such that
Fn ∈ Bρ, n ≥ 0, and, for all 0 ≤ k ≤ r, x ∈ U , DkFn(x) converges in
the sense of k-linear maps to DkF (x), where F is a Cr function in U (in
particular if Fn converges in the Cr norm sense to a function F ).

Then, F ∈ Bρ.

Proof. We first consider the case r = 1.
Assume Fn ∈ Bρ, Fn → F in C1. Let ε > 0. For any i, j ∈ Zd, x ∈ U ,

there exists n0 such that ‖DFn0(x)−DF (x)‖ ≤ εΓ(i− j). Then, for |v| ≤ 1
such that πlv = 0 for l 6= j,

‖DFi(x)v‖ ≤ ‖DFn0
i (x)v‖+ ‖(DFi(x)−DFn0

i (x))v‖
≤ ‖DFn0

i (x)‖ΓΓ(i− j) + εΓ(i− j)

≤ (‖Fn0‖C1
Γ

+ ε)Γ(i− j)

≤ (ρ+ ε)Γ(i− j),

and, hence, F ∈ C1
Γ with ‖F‖C1

Γ
≤ ρ+ ε.

Now we proceed by induction. Suppose that the lemma holds true for
r− 1. Let Fn ∈ Bρ, and that for all 0 ≤ k ≤ r, x ∈ U , DkFn(x) → DkF (x).
Since Fn ∈ Cr−1

Γ , ‖Fn‖Cr−1
Γ

≤ ρ, we clearly have that DkFn(x) converges

to DkF (x), for x ∈ U and, for 0 ≤ k ≤ r − 1, by the induction hypothesis
we have that F ∈ Cr−1

Γ and ‖F‖Cr−1
Γ

≤ ρ.

Moreover, we note that we have DFn ∈ Cr−1
Γ , ‖DFn‖Cr−1

Γ
≤ ρ and DFn

satisfy that their derivatives up to order r−1 converge pointwise in U to the
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Cr−1 function DF . Then, applying the induction hypothesis, DF ∈ Cr−1
Γ

and ‖DF‖Cr−1
Γ

≤ ρ. Hence, F ∈ CrΓ and ‖F‖CrΓ ≤ ρ. 2

Note that in Lemma 2.14 the uniform control we assume is only on Cr.
If we assume some control on the regularity of the last derivative of the Fn,
we can obtain results with convergence in weaker senses.

The following result takes advantage of the Hadamard-Kolmogorov inter-
polation inequalities in compensated domains [dlLO99, Sec. 3]. See [Had98,
Kol49] for the original references.

We recall that an open subset U of a Banach space is called compensated,
if there is a constant CU such that, defining γ(x, y) as the infimum of the
lengths of all C1 paths contained in U joining x, y, we have γ(x, y) ≤ CU‖x−
y‖.

Of course, if U is a ball or, more generally, a convex set, it is compensated
with constant CU = 1.

Lemma 2.15. Let U be an open compensated subset of `∞(Xi). Assume
that the sequence of functions Fn satisfy for some 0 < α ≤ 1

(2.27) ‖Fn‖CrΓ ≤ ρ, Hα(DrFn) ≤M,

where Hα is the Hölder semi-norm introduced in (2.18).
If Fn converges in C0 sense to a function F , then Fn converges in Cr

sense to F ∈ CrΓ, F ∈ Cr+α and

‖F‖CrΓ ≤ ρ.

Proof. We recall the classical Hadamard-Kolmogorov interpolation inequal-
ities (a proof that applies in the generality of functions defined in compen-
sated domains of Banach spaces can be found in [dlLO99, Sec. 3]). We have
that

‖Fn − Fm‖Cr ≤ C‖Fn − Fm‖α/(r+α)
C0 ‖Fn − Fm‖r/(r+α)

Cr+α
.

We note that, as shown in [dlLO99], the constant in the interpolation in-
equalities is related to the compensation constant of the domain.

Therefore, we conclude that Fn is a Cauchy sequence in Cr and therefore
converges in the Cr sense to a Cr function, which has to be F .

Then, we apply Lemma 2.14.
To conclude that F ∈ Cr+α we observe that Hα(DrFn) ≤ M and that

DrFn converges uniformly to DrF , therefore, Hα(DrF ) ≤M . 2

Another variant of the results can be obtained using a result in [LI73]
(reproduced in [MM76]).

Lemma 2.16. Let U be an open subset of `∞(Xi). Assume that the sequence
of functions Fn satisfies

(2.28) ‖Fn‖CrΓ ≤ ρ, Hα(DrFn) ≤M,

for some 0 < α ≤ 1, where Hα is the Hölder semi-norm introduced in (2.18)
and that, for all x ∈ U , we have that Fn(x) converges weakly to a function
F (x). Then

(a) F ∈ Cr+α.
(b) For every x ∈ U , 0 ≤ k ≤ r, we have that DkFn(x) converges weakly

to DkF (x).
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(c) F ∈ CrΓ.
(d) ‖F‖CrΓ ≤ ρ.

Proof. We have that Proposition A2 in [LI73] ( reproduced in [MM76, Lemma
2.5]) implies that under the hypothesis of Lemma 2.16, (a) and (b) follow.
The proof presented in the above references is only written for the case
α = 1, but is valid for any α without need of any modification.

Now we check (c) and (d). We proceed by induction in r. Assume r = 1.
Let ε > 0. For any φ ∈ `∞(Xi)∗, the topological dual of `∞(Xi), with
‖φ‖ ≤ 1, i, j ∈ Zd, x ∈ U , there exists n0 such that ‖φDFn0(x)−φDF (x)‖ ≤
εΓ(i− j). Then, for |v| ≤ 1 such that πlv = 0 for l 6= j,

|φDFi(x)v| ≤ |φDFn0
i (x)v|+ |φ(DFi(x)−DFn0

i (x))v|
≤ ‖φ‖‖DFn0

i (x)v‖+ εΓ(i− j)

≤ ‖DFn0
i (x)‖ΓΓ(i− j) + εΓ(i− j)

≤ (‖Fn0‖C1
Γ

+ ε)Γ(i− j)

≤ (ρ+ ε)Γ(i− j).

We recall that, if X is Banach space, v ∈ X , a simple application of Hahn-
Banach Theorem gives that ‖v‖ = supφ∈X ∗,‖φ‖≤1 |φv|. Hence (c) and (d),
for r = 1, follow.

The induction procedure is identical to the one performed in the proof of
Lemma 2.14. 2

2.9. Properties of composition of CrΓ maps.

Proposition 2.17. Let U ⊂ `∞(Xi) and V ⊂ `∞(Yi) be open sets. Then,
if F ∈ CrΓ(U , `∞(Yi)), G ∈ CrΓ(V, `∞(Zi)), and F (U) ⊂ V, then G ◦ F ∈
CrΓ(U , `∞(Zi)) and ‖G ◦ F‖CrΓ ≤ Kr(1 + ‖F‖rCrΓ)‖G‖CrΓ, for some Kr > 0,
independent of F and G.

Proof. We have to check that Dk(G ◦ F ) ∈ C1
Γ, 0 ≤ k ≤ r − 1.

We remark that G ◦F is Cr and the Faà-di-Bruno formula for Dk(G ◦F )
holds. Applying Lemma 2.11, we have that, for some positive constant Kk,

‖Dk(G ◦ F )(x)‖Γ ≤ Kk(1 + ‖F‖k
CkΓ

)‖G‖CkΓ , k ≤ r,

which implies the result. 2

2.10. Curves with decay. In this section we deal with a technical result
that will be often used later. In many proofs concerning maps on manifolds
it will be necessary to obtain bounds like the ones presented here.

Let I ⊂ R be an interval and β : I → `∞(Xi) a C1 curve. Given j ∈ Zd,
we will say that β has decay around the j component if ‖β‖C0 <∞ and

(2.29) ‖β̇‖j,Γ = sup
t∈I

sup
l∈Zd

|β̇l(t)|Γ(l − j)−1 <∞.

In such a case, one has that the derivative of the l component of β is bounded
by

(2.30) |β̇l(t)| ≤ ‖β̇‖j,ΓΓ(l − j), l ∈ Zd.
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Lemma 2.18. Let Xi and Yi, i ∈ Zd, be families of Banach spaces. Let
U ⊂

∏m
l=1 `

∞(Xi) be an open set. Let A : U → LkΓ(`∞(Xi), `∞(Yi)), k ≥ 0
(here, if k = 0, L0

Γ(`∞(Xi), `∞(Yi)) = `∞(Yi)) be C1, such that

∂A

∂x1
(x1, . . . , xm), . . . ,

∂A

∂xm
(x1, . . . , xm) ∈ Lk+1

Γ (`∞(Xi), `∞(Yi)),

and
‖A‖Γ, ‖

∂A

∂x1
‖Γ, . . . , ‖

∂A

∂xm
‖Γ <∞,

where
‖A‖Γ = sup

x=(x1,...,xm)∈U
‖A(x)‖Γ,

and ‖ ·‖Γ, in the right-hand side, is the Γ-norm of a multilinear map defined
in (2.17).

Let j ∈ Zd be fixed, and let β1, . . . , βm, γ1, . . . , γk : I → `∞(Xi) be C1

curves with decay around the j component such that β1(I), . . . , βm(I) ⊂ U .
Then t 7→ b(t) := A(β1(t), . . . , βm(t))γ1(t) · · · γk(t) is a C1 curve with

decay around the j component with

‖b‖C0 ≤ ‖A‖Γ‖γ1‖C0 · · · ‖γk‖C0

and

‖ḃ‖j,Γ ≤
( m∑
l=1

‖ ∂A
∂xl

‖Γ‖β̇l‖j,Γ
)
‖γ1‖C0 · · · ‖γk‖C0

+ ‖A‖Γ

(
‖γ̇1‖j,Γ‖γ2‖C0 · · · ‖γk‖C0 + · · ·+ ‖γ1‖C0 · · · ‖γk−1‖C0‖γ̇k‖j,Γ

)
.

Proof. Being the bound of ‖b‖C0 trivial, we only need to compute ‖ḃ‖j,Γ.
From (1) of Proposition 2.7 and inequality (2.30), for any i ∈ Zd, it follows
that

| d
dt

(
Ai(β1(t), . . . ,βm(t))γ1(t) · · · γk(t)

)
|

≤|
( m∑
l=1

∂Ai
∂xl

(β1(t), . . . , βm(t))β̇l(t)
)
γ1(t) · · · γk(t)|

+ |Ai(β1(t), . . . , βm(t))γ̇1(t) · · · γk(t)|
+ · · ·+ |Ai(β1(t), . . . , βm(t))γ1(t) · · · γ̇k(t)|

≤
( m∑
l=1

‖ ∂A
∂xl

‖Γ‖β̇l‖j,Γ
)
‖γ1‖C0 · · · ‖γk‖C0

+ ‖A‖Γ

(
‖γ̇1‖j,Γ‖γ2‖C0 · · · ‖γk‖C0

+ · · ·+ ‖γ1‖C0 · · · ‖γk−1‖C0‖γ̇k‖j,Γ
)
Γ(i− j),

which proves the claim. 2

3. A stable manifold theorem for diffeomorphisms with decay

Given a Cr map G in a lattice, the standard stable manifold theorem
states the existence of Cr invariant manifolds associated to a hyperbolic
fixed point. When the map has decay properties it is natural to expect
that the invariant manifolds also have decay properties inherited from the
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ones of G. The next result gives a precise statement in this direction. We
will assume that the derivative of the map at the fixed point is close to an
uncoupled linear map which is hyperbolic.

Theorem 3.1. Let U ⊂ `∞(Xi) be a bounded open set and G ∈ CrΓ(U , `∞(Xi))∩
Cr+1(U , `∞(Xi)) be a diffeomorphism onto its image, with r ≥ 1. Assume
0 ∈ U and G(0) = 0.

Let A ∈ L(`∞(Xi), `∞(Xi)) be a hyperbolic linear map which is uncoupled,
i.e., (Av)i = Aivi, and has an uncoupled splitting, that is, there exists a
splitting `∞(Xi) = Es ⊕ Eu invariant by A with ‖A|Es‖, ‖A−1

|Eu‖ ≤ λ < 1
such that the projections πs,u : `∞(Xi) → Es,u ⊂ `∞(Xi) are continuous and
uncoupled.

Assume that

(3.1) ‖DG(0)−A‖Γ < ε.

Then, if ε is small enough, 0 is a hyperbolic point for G and there exist
balls Bs,u ⊂ Es,u and functions γs,u ∈ CrΓ(Bs,u, Eu,s) such that x ∈ Bs 7→
(x, γs(x)) ∈ Es ×Eu and y ∈ Bu 7→ (γu(y), y) ∈ Es ×Eu are parameteriza-
tions of the stable and unstable manifolds of the origin resp.

The current hypotheses imply that 0 is a hyperbolic point for G and the
standard stable manifold theorem implies that it possesses stable and unsta-
ble invariant Cr manifolds as described and they are unique. Theorem 3.1
claims that these manifolds inherit the decay properties of the map G.

Remark 3.2. As a consequence of Theorem 3.1, if G ∈ CkΓ ∩ Cr+1, with
k ≤ r we have that the obtained parameterizations of the manifolds belong
to CkΓ ∩ Cr+1.

Proof. The proof simply consists of writing the standard graph transform
for G, and checking that it sends a ball in the CrΓ topology into itself. Since,
when G ∈ Cr+1, the graph transform has a unique attracting fixed point in
a ball of Cr (see, for instance, Theorem 1.2 in [CFdlL03]). By Lemma 2.14
the limit, whose graph is the invariant manifold, belongs to CrΓ.

As a first step, we introduce the following norm in `∞(Xi)
(3.2) ‖x‖′ = max{‖πsx‖, ‖πux‖}.
We remark that ‖ · ‖′ and ‖ · ‖ are equivalent. Indeed,

‖x‖ ≤ 2‖x‖′ ≤ 2 max{‖πs‖, ‖πu‖}‖x‖.
In the rest of the proof we will use the norm ‖ · ‖′, which we will denote
again by ‖ · ‖. Now we have ‖πs‖ = ‖πu‖ = 1.

By rescaling the lattice variables we can assume that

(3.3) ‖G−A‖CrΓ(B1/µ,`
∞(Xi)) < 2ε,

where B1/µ is the ball of radius 1/µ. Indeed, for any µ > 0, the map Gµ(x) =
µ−1G(µx) satisfies that DGµ(0) = DG(0) and DkGµ(x) = µk−1DkG(µx).
Hence, given ε > 0, by taking µ small enough we can assume that, for
2 ≤ k ≤ r,

sup
x∈B1/µ

‖DkGµ(x)‖Γ ≤ µk−1 sup
x∈U

‖DkG(x)‖Γ ≤ µk−1‖G‖CrΓ ≤ ε.
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Moreover, we have that for x ∈ B1/µ

‖DGµ(x)−A‖Γ ≤ ‖DGµ(x)−DGµ(0)‖Γ + ‖DGµ(0)−A‖Γ

≤ ‖Gµ‖C2
Γ
‖x‖+ ε

≤ 2ε.

We have that A is hyperbolic and uncoupled. Then we have that ‖A‖Γ ≤
Γ(0)−1‖A‖ and ‖A|Es‖Γ, ‖A−1

|Eu‖Γ ≤ Γ(0)−1λ. We remark that Γ(0)−1λ is
not necessarily smaller than 1. For this reason, we consider a suitable iterate
of A and G. We take N > 0 such that Γ(0)−1λN < λ < 1 and µ such that
‖A+ 2ε‖N < 1/µ. We denote Gµ again by G.

Lemma 3.3. Assume that 2εN ≤ 1. We have that in B1

(1) ‖GN −AN‖C1 ≤ C∗1ε, C∗1 = 2N(2ε+ ‖A‖)N−1.
(2) ‖GN −AN‖C1

Γ
≤ C1ε, C1 = 2N(2ε+ ‖A‖Γ)N−1.

(3) ‖GN−AN‖CrΓ ≤ Crε, Cr = 4 (N+r−1)!
N ! (2ε+‖A‖Γ)(N−1)r, r ≥ 2.

(4) ‖AN|Es‖Γ, ‖A−N|E2‖Γ ≤ Γ(0)−1λN .

Proof. First note that, since 0 is a fixed point of G, DGN (0) = (DG(0))N .
Hence, from (3.3), for x ∈ B1

‖DGN (0)−AN‖Γ ≤ (2ε+ ‖A‖Γ)N−12Nε.

On the other hand, for 2 ≤ k ≤ r and for all x ∈ B1, also from (3.3),

‖DkGN (x)‖Γ ≤
(N + r − 1)!

N !
(2ε+ ‖A‖Γ)(N−1)rε.

Finally, from the two above inequalities, we obtain

‖DGN (x)−AN‖Γ ≤ ‖DGN (x)−DGN (0)‖Γ + ‖DGN (0)−AN‖Γ

≤ N(2ε+ ‖A‖Γ)2N−22ε+ (2ε+ ‖A‖Γ)N−12Nε

≤ (2ε+ ‖A‖Γ)2N−24nε

which proves the first claims. The last claim is straightforward since the
maps A|Es , A

−1
|Eu are uncoupled. 2

We take N > 0 such that Γ(0)−1λN < λ < 1. Now we perform a linear
change of coordinates that conjugates GN to a map such that the splitting
Es⊕Eu is invariant for DGN (0) and moreover shows that 0 is a hyperbolic
fixed point for GN . Although this fact is standard in Banach spaces, we
have to prove that the linear change of variables has decay properties. This
is the first step to get the invariant manifolds tangent to the spaces Es and
Eu, resp.

Lemma 3.4. There exist B ∈ LΓ(`∞(Xi), `∞(Xi)) and K > 0, with ‖B −
Id ‖Γ ≤ Kε, such that the map G̃N = B−1 ◦ GN ◦ B satisfies that DG̃N (0)
leaves Es,u invariant and

(3.4) ‖DG̃N (0)|Es‖Γ ≤ λ+Kε, ‖DG̃N (0)−1
|Eu‖Γ ≤ λ+Kε.
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Proof. We begin by establishing some bounds on DGN (0).
To simplify the notation, in this proof we denote GN by G̃ and AN by Ã.

Using the decomposition `∞(Xi) = Es ⊕ Eu, we can write

Ã =
(
Ãss Ãsu
Ãus Ãuu

)
,

where Ãuu = πu ◦ Ã ◦ ıu, Ãus = πu ◦ Ã ◦ ıs, etc, and ıs,u : Es,u → `∞(Xi)
are the embeddings associated to the splitting. Since the spaces Es,u are
invariant by Ã we obviously have Ãsu = 0 and Ãus = 0. Moreover, by (4)
in Lemma 3.3 and the choice of N , ‖Ãss‖Γ, ‖Ã−1

uu‖Γ < λ. Analogously, we
write

D̃ = DG̃(0) =
(
D̃ss D̃su

D̃us D̃uu

)
.

By Lemma 3.3, ‖D̃ − Ã‖Γ ≤ C1ε, with C1 = 2N(2ε + ‖A‖Γ)N−1. As a
consequence,

(3.5) ‖D̃us‖Γ = ‖D̃us − Ãus‖Γ = ‖πu(D̃ − Ã)ıs‖Γ ≤ Γ(0)−1C1ε

and, in the same way

‖D̃su‖Γ ≤ Γ(0)−1C1ε,

‖D̃ss − Ãss‖Γ ≤ Γ(0)−1C1ε,

‖D̃uu − Ãuu‖Γ ≤ Γ(0)−1C1ε.

(3.6)

In particular, from this last inequality, we have that, ifmε := Γ(0)−1λC1ε <

1, then D̃uu is invertible and

(3.7) ‖D̃−1
uu ‖Γ ≤ λ(1−mε)−1 ≤ λ+ K̃ε,

where K̃ = Γ(0)−1λ2C1. Indeed, since ‖Ã−1
uu (D̃uu − Ãuu)‖Γ ≤ mε < 1, we

have that Id + Ã−1
uu (D̃uu − Ãuu) is invertible in LΓ and we can write

D̃−1
uu = (Id + Ã−1

uu (D̃uu − Ãuu))−1Ã−1
uu ,

and we obtain the bound from the Von Neumann’s series.
From (3.6) we have

(3.8) ‖D̃uu‖Γ ≤ λ+ Γ(0)−1C1ε.

We define K̂ = max{Γ(0)−1C1, K̃}, and λε = λ + K̂ε. We assume that
λ+ 3K̂ε < 1, hence λε < 1.

Now we prove the existence of the linear map B. It is found in two steps,
as follows. First we look for B1 of the form

B1 =
(

Id Bsu
0 Id

)
such that B−1

1 D̃B1 is in box lower triangular form. We have that

D(1) = B−1
1 D̃B1 =

(
D̃ss −BsuD̃us D̃ssBsu + D̃su −BsuD̃usBsu −BsuD̃uu

D̃us D̃usBsu + D̃uu

)
.

The condition D(1)
su = 0 is equivalent to the fixed point equation

(3.9) Bsu = [D̃su −BsuD̃usBsu + D̃ssBsu)]D̃−1
uu .
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Consider the right-hand side of (3.9) as a map defined from the unit ball in
LΓ(Eu, Es) into LΓ(Eu, Es). It is Lipschitz with Lipschitz constant bounded
by

(λ+ 3K̂ε)(λ+ K̃ε) < 1.
Furthermore, the image of 0 is D̃suD̃

−1
uu , and

‖D̃suD̃
−1
uu ‖Γ ≤ λεK̂ε.

Hence, it has a fixed point Bsu such that

‖Bsu‖Γ ≤
λεK̂ε

1− λε(λ+ 3K̂ε)
< Kε

for some K. Next, we look for

B2 =
(

Id 0
Bus Id

)
such that

D(2) := B−1
2 D(1)B2 =

(
D̂ss 0
0 D̂uu

)
.

Proceeding in the same way we find B2 such that ‖Bus‖Γ ≤ Kε, with a
different value of the constant K.

The claim follows by taking B = B1 ◦B2. 2

We write G̃N (x) in the new coordinates (xs, xu) ∈ Es × Eu as

G̃N (xs, xu) = (Ãssxs + Ñs(xs, xu), Ãuuxu + Ñu(xs, xu)),

where

DG̃N (0, 0) = Ã =
(
Ãss 0
0 Ãuu

)
with

(3.10) ‖Ãss‖Γ ≤ λ+Kε, ‖(Ãuu)−1‖Γ ≤ λ+Kε

and

(3.11) Ñ = (Ñs, Ñu) = G̃N − Ã
satisfies

(3.12) ‖N‖CrΓ ≤ Kε.

Since 0 is a hyperbolic fixed point of G̃N , it has stable and unstable invariant
manifolds which can be represented as graphs of functions. Concretely the
stable manifold is the graph of ϕ̃ : Bs ⊂ Es → Eu, with ϕ̃(0) = 0 and
Dϕ̃(0) = 0, where Bs is the unit ball of Es. The function ϕ̃ is the fixed
point of

(3.13) ϕ = G(ϕ),

where

(3.14) G(ϕ)(x) = Ã−1
ss

(
ϕ(Ãssx+ Ñs(x, ϕ(x)))− Ñu(x, ϕ(x))

)
.

This is a form of the graph transform operator (see Theorem 1.2 in
[CFdlL03]). It is well known that, if G ∈ Cr+1 and ε is small enough,
G sends the unit ball of the space Cr(Bs, Eu) into itself and that it has an
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attracting fixed point, ϕ∗, such that ‖ϕ∗‖Cr = O(ε). This fact will be used
in the proof of the next lemma.

The claim of the theorem follows from next lemma.

Lemma 3.5. The fixed point, ϕ̃∗, of the graph transform operator G belongs
to CrΓ(Bs, Eu). Moreover, ‖ϕ̃∗‖CrΓ = O(ε).

Proof. Let B1 and B1,Γ be the unit balls of Cr(Bs, Eu) and CrΓ(Bs, Eu) resp.
We claim that G(B1,Γ) ⊂ B1,Γ. This will imply that given ϕ0 ∈ B1,Γ ⊂ B1,

ϕ∗ := limn→∞ Gnϕ0 ∈ B1. Therefore, by Lemma 2.14, ϕ∗ ∈ CrΓ(Bs, Eu).
To check the claim let ϕ ∈ B1,Γ, and ρ = ‖ϕ‖Γ < 1. We introduce the

auxiliary function
ψ(x) = Ãssx− Ñs(x, ϕ(x)).

Hence we can write G(ϕ) = A−1
ss (ϕ ◦ ψ − Ñu ◦ (Id , ϕ)).

Next we prove that there exists C > 0 such that

sup
x∈B1

‖Dψ(x)‖Γ ≤ λ+ Cε,(3.15)

sup
x∈B1

‖Dkψ(x)‖Γ ≤ Cε, 2 ≤ k ≤ r.(3.16)

Indeed, since Dψ = Ãss +DÑs ◦ (Id , ϕ)(Id , Dϕ), inequality (3.15) follows
from (3.10), (3.12) and the fact that ‖ϕ‖CrΓ < 1.

By the Faà-di-Bruno formula, for 2 ≤ k ≤ r,

Dkψ =
k∑
j=1

∑
i1+···+ij=k
1≤i1,...,ij≤k

aki1,...,ijD
jÑs ◦ (Id , ϕ)Di1(Id , ϕ) · · ·Dij (Id , ϕ),

where aki1,...,ij are combinatorial coefficients. Then inequality (3.16) follows
from inequality (3.12) and ‖ϕ‖CrΓ < 1. In the same way we obtain that
‖Dk(Ñu ◦ (Id , ϕ))(x)‖Γ ≤ Cε for 1 ≤ k ≤ r. Next we check that, if ε is
chosen small enough, in particular such that λ+ Cε < 1,

(3.17) ‖ϕ ◦ ψ‖CrΓ < 1.

Indeed, by inequality (3.15)

sup
x∈B1

‖D(ϕ ◦ ψ)(x)‖Γ ≤ (λ+ Cε)‖ϕ‖CrΓ < 1,

and, if 2 ≤ k ≤ r, by the Faà-di-Bruno formula and inequalities (3.15)
and (3.16), we have that

sup
x∈B1

‖Dk(ϕ ◦ ψ)(x)‖Γ

= sup
x∈B1

∥∥( k∑
j=1

∑
i1+···+ij=k
1≤i1,...,ij≤k

aki1,...,ijD
jϕ ◦ ψDi1ψ · · ·Dijψ

)
(x)

∥∥
Γ

≤ Ckε,

where Ck is a constant depending only on k.
Finally, since

DkG(ϕ) = Ã−1
uu

(
Dk(ϕ ◦ ψ)−Dk(Ñu ◦ (Id , ϕ))

)
,
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the statement follows from inequalities (3.10), (3.12) and (3.17). 2

End of the proof of Theorem If ε is small, 0 is a hyperbolic fixed
point of G in the `∞ topology. Then the stable manifold theorem gives
the existence of the invariant manifolds. They coincide with the invariant
manifolds of GN for all N ∈ N. Since the invariant manifolds of GN are
graphs of CrΓ functions the same is true for the invariant manifolds of G
itself. Note that the linear maps obtained in Lemma 3.4 which put the
invariant subspaces in the coordinate axes are LΓ maps. 2

4. The lattice manifold

4.1. Construction of the lattice. Preliminaries. The goal of this sec-
tion is to define the basic structures we will use in the phase space. Here, we
will specify the distances, the topology and the Banach manifold structure.

Let M be a n-dimensional C∞ compact Riemannian manifold. This hy-
pothesis is not restrictive since we will consider a compact set Λ ⊂M , and a
neighborhood of Λ contained in a connected compact subset of M . However,
assuming M compact simplifies the construction of the lattice.

In M one has the distance

d(x, y) = inf{ length(γ) | γ is a curve joining x and y}.
With this distance M is a metric space and the associated topology coincides
with the topology of M as a manifold. By the Hopf-Rinow Theorem, since
M is compact, all geodesic curves can be continued for all t and the metric
space (M,d) is complete.

We consider a finite family of charts FM = {(Uj , φj)}j∈J , such that M ⊂
∪j∈JUj , the transition maps φk ◦ φ−1

j are C∞ and, for each r, their r-th
derivatives are bounded with respect to all choices of charts of FM . This
implies that all derivatives of φk ◦ φ−1

j are uniformly continuous in their
domain φj(Uj ∩ Uk). Let 2ρ0 be the Lebesgue number of the open cover
{Uj}j∈J , that is, if d(x, y) < 2ρ0, then there exists (Uk, φk) such that x, y ∈
Uk. The compactness assumption on M implies that such a family of charts
does exist.

We shall denote by TFM the family of charts of TM obtained naturally
from FM , that is TFM = {(TUj , Tφj) | (Uj , φj) ∈ FM}. We recall that
every Tφj is linear on each fiber.

We shall denote by p : TM →M the tangent bundle projection.
Exponential map. Let expx be the exponential map of the Riemannian

geometry: expx : TxM → M , which, since M is compact, is well defined in
the whole TxM . Also by the compactness of M , there exists δ0 such that for
all x ∈M , expx is a diffeomorphism from B(0, δ0) ⊂ TxM onto its image in
M . We also consider exp : TM →M ×M defined by

exp(v) = (x, expx v), where x = p(v).

Again by compactness exp is a diffeomorphism from {v ∈ TM | |v| < δ0} to
{(x, y) ∈M ×M | d(x, y) < δ0}.

Connector. By using a connection on M we can define a connector
relating vectors of different tangent spaces. We define ρτ = min{ρ0, δ0}. We
have that if d(x, y) < ρτ , there exists a unique minimizing geodesic joining
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x and y, say γx,y. Hence, we can consider the isometry τ(x, y) : TxM →
TyM defined by the parallel transport along γx,y given by the Levi-Civita
connection on M . We remark that the map

(4.1) τ : Uρτ ⊂ TM ×M → TM,

where Uρτ = {(v, y) ∈ TM ×M | d(p(v), y) < ρτ}, defined by (v, y) 7→
τ(x, y)v, for v ∈ TxM , is C∞, a linear isometry on each fiber and τ|TxM×{x} =
Id.

Nash embedding. Now we describe another way to compare vectors
of different vector spaces. By the Nash embedding theorem [Nas56], there
exists a C∞ isometric embedding e : M → RD for some D ∈ N. Hence,
T e : TM → RD × RD is also an embedding. We use this embedding to
define a distance in TM . If u ∈ TxM and v ∈ TyM we set

(4.2) d(u, v) = max{d(x, y), ‖De(x)u−De(y)v‖},

where ‖ · ‖ is the norm in RD. With this distance, TM is a complete metric
space, and the topology induced by this distance coincides with the topology
of TM as a manifold.

We remark that, since e is an isometry, for any x ∈M and any v ∈ TxM ,

(4.3) ‖v‖TxM = ‖De(x)v‖,

where ‖ ·‖TxM is the norm in TxM defined by the Riemannian metric on M .
Left inverse of De. Given x ∈ M , let Ex and E⊥x be the subspaces

De(x)TxM and its orthogonal resp. Let π(x) and π⊥(x) be their corre-
sponding projections. Note that they depend C∞ on x. Since e is an em-
bedding, for each x there exist left inverses of De(x), that is, linear maps
η(x) : RD → TxM such that

(4.4) η(x) ·De(x) = Id |TxM .

Moreover, it is possible to find η depending C∞ on x. Indeed, if v ∈ RD,
we have that v = π(x)v+ π⊥(x)v, and there exists a unique uv ∈ TxM such
that De(x)uv = π(x)v. Then, we can define η(x) by

η(x)v = uv.

With this choice, we have that ker η(x) = E⊥x . We remark that the map
η : M × RD → TM defined by η(x, v) = η(x)v is C∞.

In particular, we have that e, De and η are uniformly bounded. Moreover
the expression of D2e and Dη in the charts of FM are uniformly bounded.

The lattice. Given d ∈ N, the lattice over M is the set

M =
∏
i∈Zd

M.

A point x ∈M is represented by a sequence (xi)i∈Zd , with xi ∈M . We will
also use the notation xi = πi(x), where πi : M→ M is the projection onto
the i-th component.

Now we proceed to provide M with a distance, which will induce a topol-
ogy. For x, y ∈M we define

(4.5) d(x, y) = sup
i∈Zd

d(xi, yi).
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Note that we use the same symbol d for the distance on the manifold M
and for the distance in M.

Since (M,d) is complete, (M, d) is also complete. Indeed, let (xp)p≥0 be
a Cauchy sequence in M. The inequality

d(xpi , x
q
i ) ≤ d(xp, xq)

implies that for all i ∈ Zd, (xpi )p≥0 is a Cauchy sequence in M . Then it is
convergent in M . Let x∞i be its limit, and x∞ = (x∞i )i∈Zd . Given ε > 0
there exists p0 such that if p, q > p0, d(x

p
i , x

q
i ) ≤ d(xp, xq) < ε. Taking limit

when q goes to ∞ we get d(xpi , x
∞
i ) ≤ ε. Then

d(xp, x∞) = sup
i∈Zd

d(xpi , x
∞
i ) ≤ ε.

We remark that the topology induced by this distance is strictly finer
than the product topology on M.

Given x = (xi) ∈ M we have the following relation between the balls of
M and M which is completely analogous to (2.2):

(4.6) B(x, r)  Πi∈ZdB(xi, r)  B(x, r).

4.2. A manifold structure on M. In this section we provide M with
the structure of C∞ Banach manifold modeled on a `∞ space using the
family of charts FM introduced at the beginning of Section 4.1 for the finite-
dimensional manifold M . We define

FM = {(Uφ, φ) | φ = (φi)i∈Zd is a sequence with (Ui, φi) ∈ FM ,

Uφ = int
∏
i∈Zd

Ui}.(4.7)

That is, if (Uφ, φ) ∈ FM, φ : Uφ ⊂ M → `∞(Rn) is the map defined by
πi ◦ φ = φi ◦ πi.

Proposition 4.1. The family FM provides M with the structure of a C∞

Banach manifold. Moreover, for every x = (xi) ∈ M there exists an iso-
morphism

χx : TxM→ `∞(TxiM),
and (χx)i = Dπi(x), where πi : M→M .

Proof. The proof depends on subtle uniformity properties. Let x = (xi) ∈
M. For any i there is a chart (Uji , φji) of M such that B(xi, 2ρ0) ⊂ Uji ,
where 2ρ0 is the Lebesgue number of the cover {Uj}j∈J . Then the ball
B(x, 2ρ0) ⊂ ΠiB(xi, 2ρ0) ⊂ ΠiUji which implies x ∈ B(x, 2ρ0) ⊂ intΠiUji .
This proves that M⊂ ∪(Uφ,φ)∈FMUφ.

Next we check that the charts φ : Uφ ⊂ M → `∞(Rn) are homeomor-
phisms onto its image. Since the charts φi : Ui → Rn are uniformly con-
tinuous and there is only a finite number of them, the family {φi} is an
equicontinuous family of maps (considered as maps form Uφ ⊂ M to Rn)
at every point of Uφ. Then, by Proposition 2.2, φ is continuous. The same
argument applies to φ−1 and hence φ is a homeomorphism.

Let (Uφ, φ) be a chart of M and Vi ⊂M open sets. From the properties
(1) int (A ∩B) = intA ∩ intB,
(2) ΠiUi ∩ΠiVi = Πi(Ui ∩ Vi),
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(3) φ(ΠiWi) = Πiφi(Wi),
and the fact that φ is a homeomorphism we have that

φ(int ΠiUi ∩ intΠiVi) = intΠiφi(Ui ∩ Vi).
Then if (Vψ = int ΠiVi, ψ) is another chart we have that ψ ◦ φ−1 maps
intΠiφi(Ui ∩ Vi) homeomorphicaly onto intΠiψi(Ui ∩ Vi). Moreover, given
x = (xi) ∈ intΠiφi(Ui ∩ Vi)

ψ ◦ φ−1(x) = (ψi ◦ φ−1(x)) = (ψi ◦ φ−1
i (xi)).

Since there is only a finite number of different transition maps ψi ◦φ−1
i , each

one only depends on one component of x and is C∞ with each derivative
uniformly bounded on its domain, we can apply Corollary 2.3. Therefore
ψ ◦ φ−1 is C∞. Now we establish an isomorphism χx between TxM and
`∞(TπixM). Let v ∈ TxM. It can be seen as an equivalence class of C1

curves on M tangent at x. Let c(t), with c(0) = x be a representative of
the class of v. Let (Uφ, φ) be a chart on M such that x ∈ Uφ. Consider the
diagram

c πi
I → Uφ ⊂M → Ui ⊂M

↘ φ ↓ ↓ φi
`∞(Rn) → Rn

πi

where we have πi ◦ φ = φi ◦ πi. We make the abuse of notation of denoting
by the same symbol πi two different but related projections. The fact that
x ∈ Uφ implies there exists ρ > 0 such that B(x, ρ) ⊂ ΠiUi and then,
by (4.6),

ΠiB(xi, ρ/2) ⊂ B(x, ρ/2) ⊂ B(x, ρ)
which implies that B(xi, ρ/2) ⊂ Ui for all i.

We have that πi ◦ c is a curve on M with πi ◦ c(0) = xi and hence
(πi◦c)′(0) ∈ TxiM . On TxiM we consider the norm induced by the Riemann
structure. SinceDφi(xi) : TxiM → Rn is an isomorphism there are αi, βi > 0
such that

(4.8) αi|v| ≤ |Dφi(xi)v| ≤ βi|v|, for all v ∈ TxiM.

Since the Riemann structure is differentiable, αi and βi can be chosen de-
pending continuously on x. Moreover, since the atlas FM is finite, there
exist α, β > 0 satisfying (4.8) for all φi of the atlas.

Since we have (φi ◦ πi ◦ c)′(t) = (πi ◦ φ ◦ c)′(t) = πi(φ ◦ c)′(t) we obtain
|(φi ◦ πi ◦ c)′(t)| ≤ |(Dφ(c(t))c′(t)|.

On the other hand

|(φi ◦ πi ◦ c)′(t)| = |Dφi(πi ◦ c)(t)(πi ◦ c)′(t)| ≥ α|(πi ◦ c)′(t)|
and therefore

|(πi ◦ c)′(t)| ≤ α−1|Dφ(c(t))c′(t)|
which implies that (πi ◦ c)′(0) ∈ `∞(TxiM). This enables to define χx([c]) =
((πi ◦ c)′(0)).

Now we prove that χx is onto. Let v = (vi) ∈ `∞(TxiM). We obviously
have |vi| ≤ |v|. There exists (Uφ, φ) ∈ FM such that x ∈ Uφ. We have that
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B(xi, ρ/2) ⊂ Ui for all i ∈ Zd, for some ρ > 0. Since we have a finite number
of different φi there exists ν > 0 such that B(φi(xi), ν) ⊂ φi(Ui) for all i.

This permits us to define curves ci : I → M , where I = [−t0, t0] is a
uniform interval. Indeed, let wi = Dφ(xi)vi. Note that |wi| = |Dφ(xi)vi| ≤
β|vi| ≤ β|v|. Then we define ci(t) = φ−1

i (φ(xi) + twi) which are uniformly
defined with t0 < ν/(β|v|).

The curve c(t) = (ci(t)) satisfies that χx([c]) = (vi).
Finally we check that χx is one to one. Suppose that c′(0) 6= 0. Since

Dφ(x) is an isomorphism Dφ(x)c′(0) 6= 0 in `∞(Rn). Then there exist k
such that πkDφ(x)c′(0) 6= 0. Since πkDφ(x)c′(0) = (πk ◦ φ ◦ c)′(0) = (φk ◦
πk ◦ c)′(0) = Dφk(xk)(πk ◦ c)′(0) and Dφk(xk) is an isomorphism then (πk ◦
c)′(0) 6= 0. Recall that TΦ : TM→ `∞(Rn)×`∞(Rn), v 7→ (Φ(x), DΦ(x)v),
where x = p(v). 2

We can use the Riemannian structure on M to define a norm on each
TxM. Indeed, using the isomorphism χx of Proposition 4.1 we can identify
v ∈ TxM with χx(v) = (vi)i ∈ `∞(TxiM) and write |v| = supi∈Zd |vi|.

Once we have defined the manifold structure on M, we can lift to it the
Riemannian exponential map exp, the connector τ , and the embedding e.
In order not to complicate the notation we will use the same symbols for
the lifted objects. Its precise meaning will be clear from the context.

The exponential map on M. Given x ∈ M we define expx : TxM→
M by

πi ◦ expx(v) = expπi(x)(πiv).

In the previous formula, by abuse of notation, we have written πiv instead
of the more formal expression Dπi(x)v. It is justified by the isomorphism
χx of Proposition 4.1. We will use this abuse of notation freely from now
on.

Also we define exp : TM→M×M by

exp(v) = (p(v), expp(v)(v)).

Using the same type of arguments as before we obtain that exp is C∞ and
it is a diffeomorphism from {v ∈ TM | |v| < δ0} to {(x, y) ∈ M ×M |
d(x, y) < δ0}.

The connector on M. Given x, y ∈M we define τ(x, y) : TxM→ TyM
by

(4.9) πiτ(x, y)v = τ(πi(x), πi(y))πiv.

Let Uρτ = {(v, y) ∈ TM×M | d(p(v), y) < ρτ}. We define τ : Uρτ ⊂
TM×M → TM by (v, y) 7→ τp(v),y(v). Notice that, since ρ0 ≤ ρτ , any
point (v, y) ∈ Uρτ can be covered by a chart of TM×M of the form (Tφ, φ).
Then, the expression of τ in two charts (Tφ, φ) = (Tφi, φi) of TM×M and
Tψ = (Tψi) of TM is τφ,ψ = Tψ ◦ τ ◦ (Tφ, φ)−1 = (Tψi ◦ τ ◦ (Tφi, φi)−1) =
(τφi,ψi). Since there is only a finite number of different τφi,ψi , and they
are C∞ functions, by Corollary 2.3 we get that τ is C∞. Moreover, for all
x ∈ M, τ|TxM×{x} = Id and τ restricted to each fiber of TM is a linear
isometry.
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The embedding e of M into `∞(RD). The embedding e : M → RD
can also be lifted to the lattice. Indeed, we define e : M→ `∞(RD) by

(4.10) πi ◦ e = e ◦ πi.
Note that in the above expression and in what follows, we use the same
symbol e for different but related maps. We hope that its meaning is clear
from the context.

Lemma 4.2. The map e : M→ `∞(RD) defined above is a C∞ embedding.
Furthermore, for any x ∈M and any v ∈ TxM,

(4.11) πi ◦De(x)v = De(πix)(πiv).

In particular, ‖De(x)v‖ = ‖v‖TxM.

Proof. To check that e ∈ C∞ we take a chart (Uφ, φ) with x ∈ Uφ and
we consider e ◦ φ−1 : φ(Uφ) → `∞(RD). The components of this map are
e ◦ φ−1

i : φi(Ui) → RD. Since there is a finite number of them and they are
C∞ with bounded derivatives, by Corollary 2.3 we have that e ◦ φ−1 is C∞.

To see that De(x) is one to one let v ∈ TxM be such that De(x)v =
0. Then De(xi)vi = De(xi)Dπi(x)v = D(e ◦ πi)(x)v = D(πi ◦ e)(x)v =
πiDe(x)v = 0 and hence, since De(xi) is one to one, vi = 0 for all i. To
see that e is a homeomorphism onto its image take into account that each
component ej = e : M → RD is a homeomorphism with e, e−1 uniformly
continuous because M is compact. Taking charts, by Proposition 2.2, e :
M→ e(M) is a homeomorphism. 2

As a consequence, we have that T e : TM→ `∞(RD)× `∞(RD) is also an
embedding. As in the finite dimensional case, we can define a distance in
TM by means of the embedding T e, by setting

(4.12) d(u, v) = max{d(x, y), ‖De(x)u−De(y)v‖},
for u ∈ TxM and v ∈ TyM, where d(x, y) is the distance in M defined
by (4.5) and ‖ · ‖ is the norm in `∞(RD).

Lemma 4.3. The topology induced by the distance (4.12) coincides with the
one of TM as a manifold.

Left inverse of De in M. Using (4.11) and (4.4), we can also define a
map η : M× `∞(RD) → TM such that η(x) ◦ De(x) = Id |TxM. Indeed,
given x ∈M, v ∈ `∞(RD),

(4.13) πiη(x)v = η(πi(x))πi(v).

As in the finite-dimensional case, η is C∞ and e, De and η are uniformly
bounded. Moreover the expressions of D2e and Dη in the charts of FM are
uniformly bounded.

4.3. Differentiable functions on M. We will say that a Cr map F :
M → M is uncoupled if, for each i ∈ Zd, there exists fi : N → M such
that πi ◦ F = fi ◦ πi, that is, if its i-th component only depends on the i-th
variable.

In order to check the differentiability of uncoupled maps on M, here we
have the analogous of Corollary 2.3.
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Lemma 4.4. Let fi : M → M , i ∈ Zd, be a family of Cr maps. If there
exists Kr > 0 such that

sup
i∈Zd

sup
(Uφ,φ),(Uψ ,ψ)∈FM

‖ψ ◦ fi ◦ φ−1‖Cr < Kr,

then F = (fi) : M→M is Cr and ‖F‖Cr ≤ Kr.
In particular, if the above condition holds for any r, F is C∞.

Proof. Is is a direct consequence of Corollary 2.3. Indeed, for any (Uφ, φ),
(Uψ, ψ) ∈ FM, the expression in these charts of F is ψ ◦ F ◦ φ−1 and (ψ ◦
F ◦ φ−1)i = ψi ◦ fi ◦ φ−1

i . Hence, by Corollary 2.3, ψ ◦ F ◦ φ−1 is Cr, with
norm bounded Kr. 2

We remark that the condition only deals with a finite number of charts.

5. Maps in M with decay

In this section we extend the definitions of functions with decay between
`∞ spaces introduced along Section 2 to functions on M.

5.1. Hölder and Lipschitz functions on M with decay. Let X ⊂ M
be a subset. Given 0 < α ≤ 1 and a decay function we define the set

CαΓ = CαΓ (X,M) = {f : X →M | f ∈ Cα, γα(f) <∞},

where

(5.1) γα(f) = sup
i,j∈Zd

γ̃α,j(fi)Γ(i− j)−1

with

(5.2) γ̃α,j(fi) = sup
xl=yl
l 6=j

sup
xj 6=yj

d(fi(x), fi(y))
dα(xj , yj)

.

To introduce a distance in the set of Hölder functions we have to compare
distances between differences of images. Since M is not a vector space we
use the trick of comparing differences of the images by the embedding given
by the Nash embedding theorem (see Section 4.2).

First we define

dCα(f, g) = max(dC0(f, g),Hα(f, g)),

where

Hα(f, g) = sup
x 6=y

|e(f(x))− e(g(x))− e(f(y)) + e(g(y))|
dα(x, y)

.

Moreover for f, g ∈ CαΓ we define

(5.3) γ̃α,j(fi, gi) = sup
xl=yl
l 6=j

sup
xj 6=yj

|e(fi(x))− e(gi(x))− e(fi(y)) + e(gi(y))|
dα(xj , yj)

and

(5.4) γα(f, g) = sup
i,j

γ̃α,j(fi, gi)Γ(i− j)−1.
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We endow CαΓ (X,M) with the distance

(5.5) dCαΓ (f, g) = max(dCα(f, g), γα(f, g)).

We remark that if f, g ∈ CαΓ (X,M) then dCαΓ (f, g) <∞. Indeed, we have

γ̃α,j(fi, gi) ≤ sup
xl=yl
l 6=j

sup
xj 6=yj

|e(fi(x))− e(fi(y))|+ |e(gi(x))− e(gi(y))|
dα(xj , yj)

≤ ‖De‖C0

(
γ̃α,j(fi) + γ̃α,j(gi)

)
≤ ‖De‖C0(γα(f) + γα(g))Γ(i− j).(5.6)

We note that this space is complete. Notice that CαΓ (X,M) is a metric
space but not a vector space.

Remark 5.1. An equivalent definition of CαΓ functions is obtained by first
introducing CαΓ (X, `∞(RD)), with the norm given by

‖f‖CαΓ = max{‖f‖Cα , γα(f)},
where γα is defined by (5.1). This is a Banach space. Then, using the
embedding e, we can consider

CαΓ (X,M) = {f ∈ Cα | e ◦ f ∈ CαΓ (X, `∞(RD))},
with the distance

dCαΓ (f, g) = ‖e ◦ f − e ◦ g‖CαΓ ,
which is equivalent to the distance defined in (5.5).

5.2. Continuous functions on M. Let X be a topological space and M
the lattice constructed from a compact manifold M as in Section 4.2 and
hence the functions from X to M may be considered as bounded functions.

We consider

C0(X,M) = {u : X →M | u is continuous}
with the distance d(u, v) = supx∈X d(u(x), v(x)). We use the same symbol
d for the distances in M , M and C0(X,M). We define C0(X,TM) in the
same way.

5.3. The space of sections covering a map with decay. Given X ⊂M
and u : X →M, we will say that ν : X → TM is a section covering u if

(5.7) p ◦ ν(x) = u(x),

where p : TM → M is the tangent bundle projector. Given ν a section
covering u, we have that ν(x) ∈ Tu(x)M ' `∞(Tui(x)M) and therefore it
makes sense to write ν = (νp)p∈Zd .

We first define

(5.8) Sbu(X,M) = {ν : X → TM | p(ν(x)) = u(x), ν bounded }
and, for u continuous,

(5.9) S0
u(X,M) = {ν : X → TM | p(ν(x)) = u(x), ν continuous }

With the norm

(5.10) ‖ν‖Cb,0 = sup
x∈X

‖ν(x)‖ = sup
x∈X

sup
i∈Zd

|ν(x)i|i,

Sbu(X,M) and S0
u(X,M) are Banach spaces.
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We can provide Sbu(X,M) the structure of a `∞ space in the following
way. For i ∈ Zd, let

(5.11) Sbu(X,M)i = {ν : X → TM | p(ν(x)) = πi ◦ u(x), ν bounded },

where p : TM →M is the bundle projection, and πi : M→M is the projec-
tion on the i-th component. Then the map ı : Sbu(X,M) → `∞((Sbu(X,M))i)
defined by

(5.12) πi ◦ ı(ν)(x) = πi ◦ ν(x)

is an isometry.

Remark 5.2. Notice that the analogous isometry between spaces of contin-
uous sections does not exist. For instance, the map ν : `∞i∈Z(S1) → `∞i∈Z(S1)
defined by νj(x) = sin(xj)1/|j|, if j 6= 0, and ν0(x) = 0 has all its components
continuous and uniformly bounded but the map itself is not continuous at
x = 0.

Next we introduce the following subset of Sbu(X,M) of Hölder regular
sections with decay. Given a CαΓ function u : X → M, we define for 0 <
α ≤ 1,

(5.13) Sαu,Γ(X,M) = {ν ∈ Cα(X,TM) | p(ν(x)) = u(x), ‖ν‖CαΓ <∞},

where

(5.14) ‖ν‖CαΓ = max(‖ν‖Cα , γα(ν))

and

(5.15) γα(ν) = sup
i,j

γ̃α,j(νi)Γ(i− j)−1

with

(5.16) γ̃α,j(νi) = sup
xi=yi
i6=j

sup
xj 6=yj

|De(ui(y))νi(y)−De(ui(x))νi(x)|
dα(xj , yj)

.

With this norm, Sαu,Γ(X,M) is a Banach space.
A particular and important case is when u : X → M is the immersion

i(x) = x. In such a case, we will often skip the subindex u in the corre-
sponding spaces of sections.

5.4. A chart in the space of continuous functions. Let u ∈ C0(X,M),
δ0 be the radius given at the beginning of Section 4.1 and B(u, r) be the
ball {v ∈ C0(X,M) | d(v, u) < r}.

We consider the chart A : B(u, δ0) → S0
u,δ0

(X,M) defined by

(5.17) (Av)(x) = exp−1
u(x) v(x) = (exp−1

ui(x)
vi(x))i.

We note that if v ∈ B(u, δ0), then x 7→ (Av)(x) is continuous. Indeed,
we know that exp−1 : {(x, y) ∈ M ×M | d(x, y) < δ0} ⊂ M ×M → TM
defined by (x, y) 7→ exp−1

x y is continuous. Therefore the restriction of it
to {(x, y) ∈ M ×M | x ∈ ŪΛ, d(x, y) ≤ δ0} is uniformly continuous. Let
x0 ∈ X and ε > 0. Let δ = δ(ε) > 0 be given by the definition of uniform
continuity of exp−1 in the above mentioned set.
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Let δ1 > 0 be such that if d(y, x0) < δ1, then d(u(y), u(x0)) < δ. Since v is
continuous, there exists δ2 > 0 such that if d(y, x0) < δ2, d(v(y), v(x0)) < δ.
Then d(ui(y), ui(x0)) < δ and d(vi(y), vi(x0)) < δ and therefore

d(exp−1
ui(y)

vi(y), exp−1
ui(x0) vi(x0)) < ε.

This implies that A is well defined.

Lemma 5.3. A is a homeomorphism and Au = (0i)i, where 0i ∈ Tui(x)M .

Proof. The inverse of A is B, defined by (Bξ)(x) = expu(x) ξ(x). To study
the continuity of A let v0 and v such that d(v, v0) < δ. First note that if f :
Z×Y → Y is uniformly continuous then (fz(x))z∈Z is equicontinuous. In the
product topology, the uniform continuity says that d((z1, x1), (z0, x0)) < δ
implies d(f(z1, x1), f(z0, x0)) < ε. Then, if d(x1, x0) < δ , d(fz(x1), fz(x0)) <
ε. We apply this to exp−1 : M×{v ∈ TM | |v| < δ0} →M , (z, v) 7→ exp−1

z v.
exp−1 is uniformly continuous in M × {v ∈ TM | |v| < δ0} and hence
(exp−1

x )x∈UΛ
is equicontinuous.

Since for all x ∈ X and i ∈ Zd, d(vi(x), v0,i(x)) < δ implies | exp−1
ui(x)

vi(x)−
exp−1

ui(x)
v0,i(x)| < ε, then

sup
x

sup
i
| exp−1

ui(x)
vi(x)− exp−1

ui(x)
v0,i(x)| ≤ ε.

2

5.5. Differentiable functions on M with decay. Let M and N be Ba-
nach manifolds modeled on `∞(Rn), constructed as in Section 4.2 from finite-
dimensional manifoldsM andN , resp., with the same lattice Zd, with atlases
FM and FN .

In particular, the maps exp, τ , the embedding e : M→ e(M) ⊂ `∞(RD),
and its inverse η defined in (4.10) are uncoupled C∞ maps.

Given U ⊂ N , an open set, we start by introducing

(5.18)
CrΓ(U, `∞(Rn)) = {G ∈ Cr(U, `∞(Rn)) | G◦φ−1 ∈ CrΓ(φ(Uφ∩U), `∞(Rn)),

∀(Uφ, φ) ∈ FN , ‖G‖CrΓ <∞},

with

(5.19) ‖G‖CrΓ = sup
(Uφ,φ)∈FN

‖G ◦ φ−1‖CrΓ

and where ‖ · ‖CrΓ on the right-hand side above was introduced in (2.22)
and (2.24).

With the norm defined by (5.19), CrΓ(U, `∞(Rn)) is a Banach space.
Notice that if G : U ⊂ N → `∞(RD) is an uncoupled Cr map, then it is

CrΓ and
‖G‖CrΓ ≤ Γ(0)−1‖G‖Cr ,

where ‖ · ‖Cr is defined as usual as

‖G‖Cr = sup
(Uφ,φ)∈FN

‖G ◦ φ−1‖Cr .
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Next, given U ⊂ N , we define

(5.20) CrΓ(U,M) = {G ∈ Cr(U,M) | e ◦G ∈ CrΓ(U, `∞(RD))},

where e : M→ `∞(RD) is the embedding defined in (4.10).
In CrΓ(U,M) we consider the distance

(5.21) dCrΓ(G, G̃) = ‖e ◦G− e ◦ G̃‖CrΓ .

With this distance, CrΓ(U,M) is a complete metric space.
Analogously, given V ⊂ TN , we introduce

CrΓ(V, `∞(Rn)× `∞(Rn)) = {G ∈ Cr(V, `∞(Rn)× `∞(Rn)) |
G ◦ Tφ−1 ∈ CrΓ(Tφ(TUφ ∩ V ), `∞(Rn)× `∞(Rn)),(5.22)

∀(TUφ, Tφ) ∈ TFN , ‖G‖CrΓ <∞},

where TFN is the natural atlas of TN obtained from FN . With the norm
defined in (5.19), it is a Banach space.

We also set
(5.23)
CrΓ(V, TM) = {G ∈ Cr(V, TM) | T e ◦G ∈ CrΓ(V, `∞(Rn)× `∞(Rn))},

where T e : TM → `∞(Rn) × `∞(Rn) is the embedding obtained from e.
Equipped with the distance

(5.24) dCrΓ(G, G̃) = ‖T e ◦G− T e ◦ G̃‖CrΓ ,

it is a complete metric space.
With these definitions, from the chain rule and Lemma 2.11, we immedi-

ately have

Proposition 5.4. Let M, N and P be Banach manifolds over `∞ spaces ob-
tained from finite-dimensional compact manifolds M , N and P , resp. Given
U ⊂ M, V ⊂ N , let G : U → V , H : V → P be CrΓ maps. Then
H ◦G ∈ CrΓ(U,P).

We recall that an uncoupled Cr map is also a CrΓ map. Hence, by the
previous proposition, the composition of an uncoupled Cr map and a CrΓ
map is CrΓ.

We recall that if x ∈ M, we can identify TxM with `∞(TxiM). Then, it
is also worth to remark that

Proposition 5.5. Let M and N be Banach manifolds over `∞ spaces
obtained from finite-dimensional compact manifolds M and N , resp. Let
U ⊂ N be an open set and let G ∈ CrΓ(U,M). Then, for all x ∈ U ,
DG(x) ∈ LΓ(TxN , TG(x)M) and

‖DG(x)‖Γ ≤ ‖G‖CrΓ .

Proof. Let v ∈ TxN and let (Uφ, φ) ∈ FN be a coordinate chart such that
x ∈ Uφ. By definition (5.20), e◦G◦φ−1 ∈ CrΓ(φ(Uφ∩U), `∞(Rn)) and, since
e is an isometric embedding, we have that, for any i ∈ Zd,

‖(DG(x)v)i‖ = ‖(D(G ◦ φ−1)(φ(x))vφ)i‖ = ‖(D(e ◦G ◦ φ−1)(φ(x))vφ)i‖,

and vφ = Dφ(x)v ∈ `∞(Rn). 2
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5.6. Banach manifold structure on CrΓ(M,M). Let Bδ(F ) = {Φ ∈
CrΓ(M,M) | dCrΓ(F,Φ) < δ} be the ball of radius δ around F in CrΓ(M,M).

Let Diffru(M) be the set of Cr uncoupled diffeomorphisms on M. It
is not difficult to see that for any F ∈ Diffru(M) there exists δ such that
Bδ(F ) ⊂ DiffrΓ(M). The proof of this claim is as follows. Let F be a Cr

uncoupled diffeomorphisms on M, F = (fi). That is, fi : M →M , i ∈ Zd is
a family of Cr diffeomorphisms, with the Cr norms of fi and f−1

i uniformly
bounded in i. In particular, since M is compact, one has that there exists
C > 0 such that d(fi(x), fi(y)) > Cd(x, y), for all x, y ∈M and i ∈ Zd.

Now let Φ ∈ Bδ(F ). If δ is small enough, Φ is a local diffeomorphism in
balls of uniform radius. Furthermore, since

d(Φ(x),Φ(y)) ≥ d(F (x), F (y))−d(Φ(x), F (x))−d(F (y),Φ(y)) ≥ Cd(x, y)−2δ,

we have that Φ is injective. Indeed, if d(x, y) ≥ 3δ, the above inequality
implies d(Φ(x),Φ(y)) > 0. Otherwise, if d(x, y) < 3δ, the claim follows
from Φ being a uniformly local diffeomorphism. Surjectivity follows from
applying the Implicit Function Theorem in uniform neighborhoods. This
proves that Φ is a Cr diffeomorphism. Then, as is proven in [FdlLM10] (see
Lemma D.3 there), if δ is small enough, Φ−1 ∈ CrΓ.

Let us fix UrΓ, an open neighborhood of Diffru(M) in CrΓ(M) included in
DiffrΓ(M). In this section we provide a Banach manifold structure to UrΓ.

Let SrΓ(M) = {σ ∈ CrΓ | p ◦ σ = Id , ‖σ‖CrΓ <∞} the Banach space of CrΓ
sections on M, where

‖σ‖CrΓ = sup
(Uφ,φ)∈FM

‖σφ‖CrΓ ,

with σφ = π2 ◦ Tφ ◦ σ ◦φ−1, the second component of the expression of σ in
the coordinate chart (Uφ, φ).

Let F ∈ UrΓ and Bδ(F ) ⊂ UrΓ. We define AF : Bδ(F ) → SrΓ(M) by

(5.25) AF (Φ)(x) = exp−1(x,Φ ◦ F−1(x)).

In this way, if Φ ∈ Bδ(F ), we can write Φ = expσ ◦ F , where σ = AF (Φ).
The map AF is clearly a homeomorphism onto its image. Furthermore,

for any F,G ∈ UrΓ, the transition map is AG ◦ A−1
F (σ) = σ ◦ F ◦G−1, which

is linear and, by Lemma 2.17, bounded. Hence, it is C∞.

5.7. Regularity of the composition map. In the forthcoming paper
[FdlLM10], we will consider in Sections 3 and 4, operators h 7→ Φ ◦ h and
h 7→ h ◦ F , where Φ ∈ CrΓ(M) is a diffeomorphism, F ∈ Cr(M) is an un-
coupled diffeomorphism on M, and h is supposed to range over CαΓ (X,M),
with X ⊂M.

We will need such compositions to be well defined as functions of CαΓ (X,M),
and furthermore we will need to establish the regularity of the operators with
respect to their arguments.

The sets CrΓ(M) and CαΓ (X,M) are not Banach spaces, but can be mod-
eled as Banach manifolds on SrΓ(M) and SαΓ (X) resp. (see Section 5.6).
Hence, we will rewrite the composition operators using sections instead of
diffeomorphisms. Here we will describe the properties of some general op-
erators of this kind between spaces of sections, to be particularized in the
next paper [FdlLM10].
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We start by considering the operators ν 7→ H ◦ ν and ν 7→ ν ◦ f , where ν
belongs to a space of sections and H and f are appropriate functions to be
specified below.

Let Uρ = {v ∈ TM | |v| < ρ}. Consider g ∈ CrΓ(M,M) and Hg ∈
CrΓ(Uρ, TM) for some ρ > 0 such that

(H1) p ◦Hg = g ◦ p, that is, g is the restriction of Hg to the zero section,
(H2) Hg(TxM) ⊂ Tg(x)M,

and let f ∈ Cr(X,X) be an uncoupled map.
Under these assumptions, it is clear that, if ν : X ⊂ M → TM is a

section covering some function h : X ⊂ M → M, in the sense introduced
in (5.7), then Hg ◦ ν covers g ◦ h, that is, p ◦Hg ◦ ν = g ◦ h. On the other
hand, if f : X → X then ν ◦ f is a section covering h ◦ f .

We define the map from the space of sections covering h to the space of
sections covering g ◦ h by

(5.26) LHg(ν) = Hg ◦ ν,
and the map to the space of sections covering h ◦ f by

(5.27) Rf (ν) = ν ◦ f.
Notice that Rf is linear.

Next we state that LHg is a differentiable map between spaces of Hölder
sections with decay, provided that g and Hg are differentiable enough and
satisfy decay properties, and is a differentiable map with decay when con-
sidered between spaces of bounded sections. We will also show that Rf is
linear bounded when acts on spaces of Hölder sections with decay and is
linear bounded and has decay properties when considered between spaces of
bounded sections.

Given E, a normed space, and ρ > 0, we will denote by Bρ = {v ∈ E |
|v| < ρ} the ball of radius ρ.

Concerning the regularity of the composition map LHg we have

Proposition 5.6. Let g ∈ CrΓ(M,M) and Hg ∈ CrΓ(Uρ, TM) be maps
satisfying hypotheses (H1) and (H2). Let h ∈ CαΓ (X,M). Then the operator
LHg defined by (5.26) has the following properties.
(1) LHg is a Cr−3 map from Bρ ⊂ Sαh,Γ(X,TM) to Sαg◦h,Γ(X,TM).
(2) LHg is a Cr−2

Γ map from the ball Bρ ⊂ Sbh(X,TM) = `∞((Sbh(X,TM))i)
to Sbg◦h(X,TM) = `∞((Sbg◦h(X,TM))i).

Furthermore,

(5.28) (DjLg(ν)ν̂1 . . . ν̂j)(x) = Dj(Hg |Th(x)M)(ν(x))ν̂1(x) . . . ν̂j(x),

for 1 ≤ j ≤ r − 3, in the first case, 1 ≤ j ≤ r − 2, in the second one, and
1 ≤ j ≤ r − 1, in the third one.

Its proof is rather technical and is deferred to Appendix A.
The next result concerns the regularity of the composition map Rf .

Proposition 5.7. Let X ⊂M and let f : X → X be an uncoupled Lipschitz
map. Let h ∈ CαΓ (X,M).

Then the operator Rf defined by (5.27) has the following properties.
(1) Rf is a bounded linear map from Sαh,Γ(X,TM) to Sαh◦f,Γ(f−1(X), TM).
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(2) Rf is a LΓ map
from Sbh(X,TM) = `∞((Sbh(X,TM))i)
to Sbh◦f (f−1(X), TM) = `∞((Sbh◦f (f−1(X), TM))i).

(3) Rf is a bounded linear map from S0
h(X,TM) to S0

h◦f (f
−1(X), TM).

Proof. First we prove (1). Let ν ∈ Sαh,Γ(X,TM). Given i ∈ Zd and x, y ∈ X
such that πj(x) = πj(y) for j 6= i we have that fj(x) = fj(y) for j 6= i, since
f is uncoupled, Then, using the norm in Sαh,Γ and the fact that f is Lipschitz,
we have that

‖Rf (ν)‖C0 = ‖ν ◦ f‖C0 ≤ ‖ν‖C0

and

|De(h ◦ f(x))νj(f(x))−De(h ◦ f(y))νj(f(y))|
≤ ‖ν‖CαΓ Γ(i− j)dα(fi(x), fi(y))

≤ ‖ν‖CαΓ Γ(i− j)(Lip f)αdα(xi, yi),

which proves the first statement.
Now we prove (2). Clearly Rf is bounded. It remains to be proved that

it belongs to LΓ. Given i, j ∈ Zd and ν ∈ S0
h(X,TM) with

πk ◦ ν = 0, for k 6= j and ‖ν‖ ≤ 1

we have that

|(Rfν)i|Γ(i− j)−1 ≤ sup
x∈X

|πiν(f(x))|Γ(i− j)−1 ≤ Γ(0)−1.

This proves that Rf ∈ LΓ.
(3) is straightforward, since the norm in the spaces of bounded and con-

tinuous sections is the same. 2

Proposition 5.6 deals with the dependance on h of the operator (Φ, h) 7→
Φ ◦ h, for a fixed Φ. Now we study the joint dependance with respect to
both arguments.

Given an open set U ⊂ TM, we shall denote CrΓ,fib(U, TM) = {H ∈
CrΓ(U, TM) | H(TxM∩ U) ⊂ TxM}, which is the set of CrΓ functions that
preserve fibers. It is a vector space and a Banach space with the CrΓ norm.

Lemma 5.8. Given ρ, ρ1, ρ2 > 0, consider the sets Uρ = {v ∈ TM | |v| ≤
ρ}, Vρ1,ρ2 = {(x,w) ∈ M × TM | w ∈ TyM, d(x, y) < ρ1, |w| < ρ2} and
assume that the functions j : Uρ ⊂ TM → M and J : Vρ1,ρ2 ⊂ M ×
TM→ TM are C∞, uncoupled and verify that d(p(v), j(v)) < ρ1, whenever
v ∈ TxM with |v| < ρ and

J(x, Tj(v)M∩ Uρ2) ⊂ TxM, v ∈ TxM

with uniformly bounded derivatives. Then, the map Ĥ : Bρ2 ⊂ SrΓ(M) →
CrΓ,fib(Uρ2 , TM) defined by

Ĥ(σ)(v) = J(p(v), σ(j(v))), for v ∈ TxM, x = p(x),

is well defined and C∞. Moreover, for v ∈ TxM and k ≥ 1
(5.29)

(DkĤ(σ)σ1 · · ·σj)(v) = Dk(J|(x,Tj(v)M))(x, σ(j(v)))σ1(j(v)) · · ·σk(j(v)).
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In the forthcoming paper [FdlLM10], in Section 3, we will use this lemma
with j(v) = expx v, v ∈ TxM and J(x,w) = exp−1

x (expy w), x ∈ M,
w ∈ TyM, which clearly satisfy the hypotheses of the lemma. These ex-
amples can be taken as models for j and J . Notice that, since J|(x,Tj(v)M) :
Tj(v)M → TxM is a C∞ map between Banach spaces, the right-hand side
of equation (5.29) makes sense.

Proof. Since σ ∈ Bρ2 ⊂ SrΓ(M), the map Ĥ(σ) is well defined in Uρ2 and,
by Proposition 2.17, is a CrΓ map. We only need to check that H is C∞.

From Taylor’s formula, we have that, for any k ≥ 0 and for any v ∈ TxM,
σ ∈ Bρ2 ⊂ SrΓ(M) and σ̃ small enough,

Ĥ(σ + σ̃)(v) =J(x, σ(j(v)) + σ̃(j(v)))

=
k∑
i=0

1
i!
Di(J|(x,Tj(v)M))(x, σ(j(v)))σ̃(j(v))⊗i

+Rk(σ, σ̃)(v)σ̃(j(v))⊗k,

where

(5.30) Rk(σ, σ̃)(v) =
∫ 1

0

(1− t)k−1

(k − 1)!
(Dk(J|(x,Tj(v)M))(x, σ(j(v)) + tσ̃(j(v)))

−Dk(J|(x,Tj(v)M))(x, σ(j(v))) dt.

Note that here the derivatives are taken over the linear space Tj(v)M. Hence,
for 0 ≤ i ≤ k − 1, we introduce the linear maps φi : Bρ2 ⊂ SrΓ(M) →
Li(SrΓ(M), CrΓ,fib(Uρ2 , TM)) defined by

(5.31) (φi(σ)σ1 . . . σi)(v) = Di(J|(x,Tj(v)M))(x, σ(j(v)))σ1(j(v)) . . . σi(j(v)),

where v ∈ TxM with |v| < ρ2, and the map Rk defined on some thickening of
Bρ2 in Bρ2×SrΓ(M) to Lk(SrΓ(M), CrΓ,fib(Uρ2 , TM)) given by (5.30). Since J
and j are uncoupled C∞ maps, φi and Rk are indeed well defined. To apply
the Converse Taylor’s Theorem, it only remains to check the continuity of
φi, 0 ≤ i ≤ k, and Rk. Then, Converse Taylor’s Theorem will imply that H
is Ck. Since k is arbitrary, the lemma will follow.

The continuity of φi and Rk is a consequence of the same argument. In
fact, if σ, σ̂ ∈ Bρ2 , σ1 . . . σi ∈ SrΓ(M), to bound

(φi(σ)− φi(σ̂))(σ1 . . . σi)(v)

=
∫ 1

0
Di+1(J|(x,Tj(v)M))(x, σ̂(j(v)) + t(σ(j(v))− σ̃(j(v))) dt

× (σ − σ̂)(j(v))σ1(j(v)) . . . σi(j(v))

it is necessary to compute r derivatives of the above expression. Since J
and j are uncoupled C∞ maps, Proposition 2.17 implies that φi is in fact
Lipschitz, and the same holds true for Rk. 2

We will use the following elementary lemma.

Lemma 5.9. Let E,F,G be Banach spaces and U ⊂ E, V ⊂ F open sets
such that 0 ∈ U . Assume that f : U × V → G satisfies
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(a) for all y ∈ V , f(., y) is linear continuous,
(b) for all x ∈ U , f(x, .) is Cr and ‖f(x, .)‖Cr(V,G) ≤ C for x ∈ B(0, δ)

some C, δ > 0.

Then f ∈ Cr(U × V,G).

Remark 5.10. In fact, f can be extended to E × V .

Proof. First we prove that for 1 ≤ j ≤ r, Dj
yf(., y) is linear continuous.

Indeed, taking derivatives with respect to y in the relations

f(x1 + x2, y) = f(x1, y) + f(x2, y), f(λx, y) = λf(x, y)

we get that Dj
yf(., y) is linear. Moreover, given x ∈ U , y ∈ V

‖Dj
yf(x, y)‖ = ‖Dj

yf(
δ

2‖x‖
x, y)‖2‖x‖

δ
≤ 2C

δ
‖x‖

implies that Dj
yf(., y) is continuous. Furthermore Dj

yf(., y) is differentiable
with respect to x and

DxD
j
yf(x, y)∆x = Dj

yf(∆x, y).

Now we claim that for 0 ≤ j ≤ r− 1 we have that DxD
j
yf(x, y) is contin-

uous. Indeed, if ∆x ∈ E with ‖∆x‖ = 1

‖[DxD
j
yf(x, y)−DxD

j
yf(x0, y0)]∆x‖Lj(F,G)

≤ ‖Dj
yf(∆x, y)−Dj

yf(∆x, y0)‖Lj(F,G)

≤ 2
δ
‖Dj

yf(
δ

2
∆x, y)−Dj

yf(
δ

2
∆x, y0)‖Lj(F,G)

≤ 2
δ

sup
ξ
‖Dj+1

y f(
δ

2
∆x, ξ)‖Lj+1(F,G) ‖y − y0‖

≤ 2C
δ
‖y − y0‖.

Now we deal with the case r = 1. We will check that both Dyf and Dxf
are continuous as functions of (x, y). Given (x0, y0) we decompose

‖Dyf(x, y)−Dyf(x0, y0)‖ ≤ ‖Dyf(x, y)−Dyf(x0, y)‖
+ ‖Dyf(x0, y)−Dyf(x0, y0)‖.

The first term is bounded by ‖Dyf(x−x0, y)‖ ≤ 2C
δ ‖x−x0‖ and the second

one by the continuity of Dyf(x0, .). On the other hand, the claim with
j = 0 gives that Dxf is continuous. Hence f ∈ C1. Assume by induction
that the lemma is true for r − 1. We apply the induction hypothesis to
Dr−1
y f . Indeed, we have already seen that Dr−1

y f(., y) is linear continuous.
Moreover by hypothesis (b) Dr−1

y f(x, .) is C1. This implies that Dr−1
y f

is C1 and hence Dr
yf and DxD

r−1
y f exist and are continuous. Moreover

Dj
xD

r−j
y f = 0 for 2 ≤ j ≤ r. Hence f ∈ Cr. 2

Finally, we have
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Proposition 5.11. Let ρ1, ρ2, ρ3 > 0, the sets Uρ3, Vρ1,ρ2 and the function
Ĥ as in Lemma 5.8. Let Bρ3 ⊂ SαΓ,Id (X). Then the map (σ, ν) 7→ Ω(σ, ν)
from Bρ2 ×Bρ3 ⊂ SrΓ(M)× SαΓ,Id (X) to SαΓ,Id (X) defined by

Ω(σ, ν)(x) = Ĥ(σ)(ν(x))

is Cr−3.

Proof. By Proposition 5.6 and Lemma 5.9, the map from CrΓ,fib(TM, TM)×
Sαi,Γ(X) to Sαi,Γ(X) defined by (H, ν) 7→ H ◦ ν is Cr−3, since it is linear
and bounded with respect to H and Cr−3 with respect to ν. Hence, by
Lemma 5.8 the map (σ, ν) 7→ Ĥ(σ) ◦ ν is the composition of a C∞ map and
a Cr−3 map. 2
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Appendix A. Proof of Proposition 5.6

A.1. Construction of curves with decay. In the proof of Proposition 5.6,
as well as in the proofs of other results in [FdlLM10], it is necessary to obtain
bounds of distances between images of different points through maps with
decay. If these maps take values in Banach spaces of `∞ type, these bounds
are obtained applying a suitable Mean Value Theorem, which takes advan-
tage of the decay properties of the maps (see, for instance, Proposition 2.7
and Lemma 2.18). However, in many applications the maps take values on
the lattice manifold M. In this case, to apply Mean Value arguments, we
need to construct curves joining points satisfying certain decay properties.
The construction of such curves is performed in Lemma A.2.

Notation A.1. Let us consider the curves βp : I ⊂ R →M, β : I ⊂ R →
TM and the functions g : M → M, H : TM → TM, f : M → `∞(Rk)
and F : TM → `∞(Rk) × `∞(Rk). Let us assume that H and F send
fibers to fibers, that their restrictions to the zero section are g and f , resp.,
and that p ◦ β = βp, where p is the bundle projection p : TM → M. Let
(Uφ, φ) and (Uψ, ψ) be charts ofM, and let (TUφ, Tφ) and (TUψ, Tψ) be the
corresponding charts of TM. We will denote the expression of the preceding
functions in these charts as

βpφ = φ ◦ βp, βφ = Tφ ◦ β,

gφ,ψ = ψ ◦ g ◦ φ−1, Hφ,ψ = Tψ ◦H ◦ Tφ−1,

fφ = f ◦ φ−1, Fφ = F ◦ Tφ−1.

We also denote πj : `∞(Rk)× `∞(Rk) → `∞(Rk), j = 1, 2, the projections
onto the j-th component, that is, πj(v1, v2) = vj .
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Using the previous notation, we introduce H2
φ,ψ, F 2

φ,ψ and β2
φ by

Hφ,ψ = (π1 ◦Hφ,ψ, π2 ◦Hφ,ψ) = (gφ,ψ,H2
φ,ψ),

Fψ = (π1 ◦ Fψ, π2 ◦ Fψ) = (fψ, F 2
ψ),

βφ = (π1 ◦ βφ, π2 ◦ βφ) = (βpφ, β
2
φ).

Lemma A.2. There exists C > 0, depending only on M , the choice of the
embedding e and the map η introduced in (4.4) and (4.13), resp., such that,
given X ⊂ M, h ∈ CαΓ (X,M) and ν ∈ Sαh,Γ(X,TM), for any j ∈ Zd and
for any x, y ∈ X such that xk = yk, for k 6= j, there exist differentiable
curves β : [0, 1] → TM and βp : [0, 1] →M such that

(1) p ◦ β = βp,
(2) βp(0) = h(x), βp(1) = h(y), β(0) = ν(x), β(1) = ν(y),
(3) |β̇pk(t)| ≤ γα(h)Γ(k − j)dα(xj , yj), k ∈ Zd, where γα(·) was defined

in (5.1),
(4) given any coordinate chart Tφ : TUφ ⊂ TM → `∞(Rn) × `∞(Rn)

such that β(t) ∈ TUφ, let βφ = Tφ ◦ β = (π1 ◦ βφ, π2 ◦ βφ), then

| d
dt

(π2 ◦ βφ)k(t)| ≤ C‖ν‖CαΓ (1 + γα(h))Γ(k − j)dα(xj , yj), k ∈ Zd,

(5) ‖π2 ◦ βφ(t)‖ ≤ C‖ν‖C0 ≤ C‖ν‖CαΓ .
Furthermore, if ν = λν1 + µν2, with ν1, ν2 ∈ Sαh,Γ(X,TM), and β, β1 and
β2 are the corresponding curves, then β = λβ1 + µβ2.

Remark A.3. Using definition (2.29), the above lemma claims that the
curves βp and β satisfy that, for any chart (Uφ, φ) and (TUφ, Tφ) the curves
βpφ = φ ◦ βp and β2 = π2 ◦ Tφ ◦ β have decay around the component j, with

(A.1) ‖β2
φ‖C0 ≤ C‖ν‖CαΓ

and

‖β̇pφ‖j,Γ ≤ ‖h‖CαΓ d
α(xj , yj),(A.2)

‖β̇2
φ‖j,Γ ≤ C‖ν‖CαΓ (1 + ‖h‖CαΓ )dα(xj , yj).(A.3)

We also remark that, given (TUφ, Tφ) a chart of TM, since Tφ is linear on
the fibers, the fact that β = λβ1 +µβ2 is equivalent to π2 ◦βφ = λπ2 ◦β1,φ+
µπ2 ◦ β2,φ.

Proof. We first construct βp. For any k ∈ Zd, let βpk : [0, 1] → M a mini-
mizing geodesic joining hk(x) and hk(y). Since M is compact, such a curve
exists. We can assume that βpk is parametrized by a constant times the arc
parameter. Hence, |β̇pk | is constant and

(A.4) |β̇pk(t)| =
∫ 1

0
|β̇pk(t)| dt = d(hk(x), hk(y)) ≤ γα(h)Γ(k − j)dα(xj , yj).

The curve βp defined by πk ◦ βp = βp,k satisfies (1), (2) and (3).
To construct β, we use the embedding e : M→ `∞(RD). We introduce

vx = De(h(x))ν(x), vy = De(h(y))ν(y).
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We have that vx, vy ∈ `∞(RD). Consider

(A.5) b(t) = vx + t(vy − vx), t ∈ [0, 1].

We define β(t) = η(βp(t))b(t), t ∈ [0, 1], where η(z) is the left inverse of
De(z) defined in (4.13). By construction, β satisfies properties (1) and (2).
Moreover, if ν = λν1 + µν2, since this construction is linear on the fibers,
we have that β = λβ1 + µβ2.

To check that β also satisfies (4), first notice that, since De is uncoupled,

ḃk(t) = De(hk(y))νk(y)−De(hk(x))νk(x).

Hence, by the definition of the space Sαh,Γ(X,TM) in (5.13),

(A.6) |ḃk(t)| ≤ ‖ν‖CαΓ Γ(k − j)dα(xj , yj).

Now, let (TUφ, Tφ) be a chart of TM such that β(t) ∈ TUφ, for some t.
Using the notation introduced in A.1, the expressions of βp, β and η in the
charts φ and Tφ are βpφ = φ ◦ βp, βφ = Tφ ◦ β and ηφ : `∞(Rn)× `∞(Rn) →
`∞(Rn)× `∞(Rn), defined by

ηφ(x)v = Tφ ◦ η(φ−1(x))v = (x, η2
φ(x)v),

resp. The map η2
φ = π2 ◦ ηφ is uncoupled and has derivatives bounded

independently of φ. We have that

βφ(t) = Tφ◦η(βp(t))b(t) = Tφ◦η(φ−1◦φ◦βp(t))b(t) = (βpφ(t), η
2
φ(β

p
φ(t))b(t)).

Since η2
φ is uncoupled, by (A.6) and (A.4), we have that, for any k ∈ Zd,

| d
dt

(π2 ◦ βφ,k)(t)| = | d
dt

(η2
φ(β

p
φ,k(t))bk(t))|

≤ |Dη2
φ(β

p
φ,k(t))β̇

p
φ,k(t)bk(t)|+ |η2

φ(β
p
φ,k(t))ḃk(t)|

≤ C(‖ν‖C0γα(h) + ‖ν‖CαΓ )Γ(k − j)dα(xj , yj),

which proves (4).
Finally, (5) is an immediate consequence of the definition of b(t) in (A.5)

and the fact that η is bounded. 2

A.2. Proof of Proposition 5.6. First we prove (1). We start by checking
that Lg is indeed a well defined map from Sαh,Γ(X,TM) to Sαg◦h,Γ(X,TM).

Let ν ∈ Sαh,Γ(X,TM). We take j ∈ Zd and x, y ∈ X such that xi = yi,
for i 6= j. Let β and βp be the curves given by Lemma A.2 associated to h,
ν j, x and y. We have that, for any i ∈ Zd,

(A.7) |De(gi ◦ h(x))Hg(ν(x))i −De(gi ◦ h(y))Hg(ν(y))i|

≤
∫ 1

0

∣∣∣∣ ddt(De(gi ◦ βp(t))Hg(β(t))i
)∣∣∣∣ dt

Given t ∈ [0, 1], let (TUφ, Tφ) and (TUψ, Tψ) be charts of TM such that
β(t) ∈ TUφ andHg(β(t)) ∈ TUψ, and let βφ, Hφ,ψ and T eψ be the expression
in these charts of β, Hg and T e, resp., according to the notation introduced
in A.1. Following those conventions and the fact that the restriction of Hg

to the zero section is g, we have that Hφ,ψ = (gφ,ψ,H2
φ,ψ) and βφ = (βpφ, β

2
φ).
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Since T eψ = (eψ, Deψ), we also have that π2 ◦ T eψ = Deψ. Furthermore,
since Deψ(x, v) is linear with respect to v, we will write it as Deψ(x)v.

Using these functions, we have that

De(g ◦ βp(t))Hg(β(t)) = π2 ◦ T eψ ◦Hφ,ψ ◦ βφ(t)
= Deψ(gφ,ψ ◦ βpφ(t))H

2
φ,ψ(βφ(t)).

Using inequalities (A.1), (A.2) and (A.3), since Deψ and H2
φ,ψ satisfy the

hypotheses on Lemma 2.18, we apply it to Hg(β(t)) and then to g(βp(t)) to
obtain that De(g ◦ βp(t))Hg(β(t)) has decay around the j component and

| d
dt

(
De(gi ◦ βp(t))Hg(β(t))i

)
|Γ(i− j)−1d−α(xj , yj)

≤ C‖Hg‖C1
Γ
(‖g‖C1

Γ
‖h‖CαΓ + ‖ν‖CαΓ + ‖ν‖CαΓ ‖h‖CαΓ ).

Inserting this inequality in (A.7) we get that Lg(ν) ∈ Sαg◦h,Γ(X,TM).
Now we proceed to check that Lg is Cr−3. We will use the Converse

Taylor’s Theorem (see [Nel69]). Notice that, since Hg is Cr, we have that

Lg(ν + ν̂)(x) = Hg(ν(x) + ν̂(x))

=
q∑
s=0

1
s!
Ds(Hg |Th(x)M)(ν(x))ν̂⊗s(x) +R(ν(x), ν̂(x))ν̂⊗q(x),(A.8)

for 0 ≤ q ≤ r, where

(A.9) R(ν(x), ν̂(x))

=
∫ 1

0

(1− t)q−1

(q − 1)!

(
Dq(Hg |Th(x)M)(ν(x) + tν̂(x))−Dq(Hg |Th(x)M)ν(x)

)
dt.

These two formulas suggest the introduction of the maps ϕs : Sαh,Γ →
Ls(Sαh,Γ, S

α
g◦h,Γ), defined by

(A.10) (ϕs(ν)ν1 . . . νs)(x) = Ds(Hg |Th(x)M)(ν(x))ν1(x) . . . νs(x),

and the map R(ν, ν̂), defined for ν and ν̃ belonging to the space of sections
with ν̃ close to 0, given by equation (A.9). The fact that Lg is Cr−3 and
formula (5.28) will follow from proving that ϕs, for 1 ≤ s ≤ r − 3, and R
are continuous.

Let us fix q = r − 3.
Next we deal with the continuity of ϕs. In fact, we prove that ϕs is

Lipschitz with respect to ν, for 1 ≤ s ≤ r − 2. Let ν, ν̃, ν1, . . . , νs ∈ Sαh,Γ. In
order to bound

(A.11) ‖(ϕs(ν)− ϕs(ν̃))ν1 . . . νs‖CαΓ ,

by the definition of the norm in (5.14), we take j ∈ Zd and x, y ∈ X such
that xi = yi, for i 6= j. Then, we first note that

(A.12) Ds(Hg |Th(x)M)(ν(x))−Ds(Hg |Th(x)M)(ν̃(x))

=
∫ 1

0
Ds+1(Hg |Th(x)M)(ν̃(x) + τ(ν(x)− ν̃(x)))(ν(x)− ν̃(x)) dτ.
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For short, we introduce

(A.13) As+1(z;u, v) =
∫ 1

0
Ds+1(Hg |TzM)(u+ τ(v − u)) dτ, u, v ∈ TzM.

Let β, β̃, β1, . . . , βs and βp be the curves given by Lemma A.2 associated
to the sections ν, ν̃, ν1, . . . , νs, the map h, j ∈ Zd, and x, y ∈ X. Let
∆β = β− β̃ be the curve associated to ν− ν̃. To compute a bound of (A.11),
we need to estimate the difference

De(gi ◦ h(x))((ϕs(ν)− ϕs(ν̃))ν1 . . . νs)i(x)

−De(gi ◦ h(y))((ϕs(ν)− ϕs(ν̃))ν1 . . . νs)i(y)

=
∫ 1

0

d

dt

(
De(gi ◦ βp(t))As+1(βp(t);β(t), β̃(t))i∆β(t)β1(t) . . . βs(t)

)
dt

It is important to remark that although h may not be differentiable with
respect to x, the path βp(t) is differentiable with respect to t.

Given t ∈ [0, 1], let (Uφ, φ) and (Uψ, ψ) be charts of M such that βp(t) ∈
Uφ and g(βp(t)) ∈ Uψ. Let (TUφ, Tφ) and (TUψ, Tψ) be the corresponding
charts of TM. By construction, β(t), β̃(t), β1(t), . . . , βs(t),∆β(t) ∈ TUφ and
their images by Hg belong to TUψ. Let βφ, β̃φ, β1,φ, . . . , βs,φ and ∆βφ be
their expressions in the chart (TUφ, Tφ).

By (3), (4) and (5) in Lemma A.2, there exists some constant C (that
depends on h, but h is fixed) such that

‖β2
φ‖C0 ≤ C‖ν‖CαΓ , ‖β̇2

φ(t)‖j,Γ ≤ C‖ν‖CαΓ d
α(xj , yj),(A.14)

‖β̃2
φ‖C0 ≤ C‖ν̃‖CαΓ , ‖ ˙̃

β2
φ(t)‖j,Γ ≤ C‖ν̃‖CαΓ d

α(xj , yj),(A.15)

‖β2
l,φ‖C0 ≤ C‖νl‖CαΓ , ‖β̇2

l,φ(t)‖j,Γ ≤ C‖νl‖CαΓ d
α(xj , yj),(A.16)

‖∆β2
φ‖C0 ≤ C‖ν − ν̃‖CαΓ , ‖∆β̇2

φ(t)‖j,Γ ≤ C‖ν − ν̃‖CαΓ d
α(xj , yj),(A.17)

where 1 ≤ l ≤ s.
By using the expression in charts of the involved functions, we have that

(A.18) B(t) = De(gi ◦ βp(t))As+1(βp(t);β(t), β̃(t))iβ(t)β1(t) . . . βs(t)

= Deψ(gφ,ψ,i ◦ βpφ(t))As+1,φ,ψ(βpφ(t);β
2
φ(t), β̃

2
φ(t))i∆β

2
φ(t)β

2
1,φ(t) . . . β

2
s,φ(t),

where, since the charts Tφ and Tψ are linear on the fibers, they commute
with the integral and, then,

As+1,φ,ψ(x;u, v) =
∫ 1

0
Ds+1

2 H2
φ,ψ(x, u+ τ(v − u)) dτ

is the expression in coordinates of As+1. We remark that this expression is
well defined along the whole fiber of φ−1(x). It is clear thatAs+1,φ,ψ(x;u, v) ∈
Ls+1

Γ , DAs+1,φ,ψ(x;u, v) ∈ Ls+2
Γ and

(A.19) ‖As+1,φ,ψ(x;u, v)‖, ‖DAs+1,φ,ψ(x;u, v)‖ ≤ ‖Hg‖Cs+2
Γ

.
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Hence, by inequalities (A.14) to (A.17) and (A.19), we can apply Lemma 2.18
to the curve B(t) defined by (A.18) to obtain

‖Ḃ‖j,Γ ≤ C‖Hg‖Cs+2
Γ
‖ν − ν̃‖CαΓ ‖ν1‖CαΓ · · · ‖νs‖CαΓ d

α(xj , yj)

×
(
1 + ‖g‖C1

Γ
+ ‖ν‖CαΓ + ‖ν̃‖CαΓ

)
Hence, inserting this last inequality into (A.11) we obtain

‖(ϕs(ν)− ϕs(ν̃))ν1 . . . νs‖CαΓ ≤ C‖Hg‖Cs+2
Γ
‖ν − ν̃‖CαΓ

× ‖ν1‖CαΓ · · · ‖νs‖CαΓ
(
1 + ‖g‖C1

Γ
+ ‖ν‖CαΓ + ‖ν̃‖CαΓ

)
,

which proves the continuity of ϕs, 0 ≤ s ≤ r − 2.
To finish the proof of the regularity of Lg, it only remains to check that

R(ν, ν̃) is continuous. It will be done in an analogous way.
First notice that, given ν, ν̂ ∈ Sαh,Γ,

(A.20)

R(ν, ν̂)(x) =
∫ 1

0

∫ 1

0

(1− t)r−4

(r − 4)!
Dr−2(Hg |Th(x)M)(ν(x) + stν̂(x))tν̂(x) dsdt.

Hence, for ν, ν̂, ν ′, ν̂ ′ ∈ Sαh,Γ we have that

(A.21) R(ν, ν̂)(x)−R(ν ′, ν̂ ′)(x) = Ãr−2(h(x); ν(x), ν̂(x))(ν̂(x)− ν̂ ′(x))

+ B̃r−1(h(x); ν(x), ν̂(x), (ν − ν ′)(x), (ν̂ − ν̂ ′)(x))ν̂ ′(x),

where

(A.22) Ãr−2(z;u, v) =
∫ 1

0

∫ 1

0

(1− t)r−4

(r − 4)!
Dr−2(Hg |TzM)(u+ stv)t dsdt,

for u, v ∈ TzM, and

(A.23) B̃r−1(z;u, v, w, ŵ) =∫ 1

0

∫ 1

0

(1− t)r−4

(r − 4)!

∫ 1

0
Dr−1(Hg |TzM)(u+stv+ξ(w+stŵ))(w+stŵ)t dξdsdt,

for u, v, w, ŵ ∈ TzM.
We need to obtain a suitable bound of ‖∆R‖CαΓ , where

∆R = (R(ν, ν̂)−R(ν ′, ν̂ ′))ν1 · · · νr−3,

ν1, . . . νr−3 ∈ Sαg◦h,Γ and the CαΓ -norm was defined through formulas (5.14),
(5.15) and (5.16). The C0 norm of (R(ν, ν̂)−R(ν ′, ν̂ ′))ν1 · · · νr−3 is trivially
bounded using that ‖Hg‖ is a CrΓ map. Moreover, it tends to 0 when ‖ν −
ν ′‖CαΓ and ‖ν̂ − ν̂ ′‖CαΓ tend to 0.

Next we compute γα(∆R). Hence, we take i, j ∈ Zd. Then, for any x, y ∈
X such that xk = yk, k 6= j, and xj 6= yj we will compute, following (5.14),

(A.24)
‖De(hi(x))∆Ri(x)−De(hi(y))∆Ri(y)‖

dα(xj , yj)
.

To do so, let β, β̂, β′, β̂′, β1, . . . , βr−3 and βp be the curves given by
Lemma A.2 associated to ν, ν̂, ν ′, ν̂ ′, ν1, . . . , νr−3, h, x, y and j, resp. Let
∆β = β − β′ and ∆̂β = β̂ − β̂′ be the ones associated to ν − ν ′ and ν̂ − ν̂ ′,
resp.
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Then, from (A.21), we have that

(A.25) De(hi(x))∆Ri(x)−De(hi(y))∆Ri(y) =
∫ 1

0

( d
dt
b(t)

)
dt,

where

(A.26) b(t) = De(βp(t))
(
Ãr−2(βp(t);β(t), β̂(t))∆β(t)

+ B̃r−1(βp(t);β(t), β̂(t),∆β(t), ∆̂β(t))β̂′(t)
)
β1(t) · · ·βr−3(t)

The arguments used to prove the continuity of ϕs can be also applied
here as follows. Given t ∈ [0, 1], let (TUφ, Tφ) and (TUψ, Tψ) be charts
of TM such that βp(t) ∈ Uφ and g(βp(t)) ∈ Uψ. Let βφ, etc — using the
notation introduced in A.1 — be the expressions of the curves above in
these charts, and Hφ,ψ, Ãr−2,φ,ψ, etc, the corresponding expressions of the
involved functions. In particular, we have that

Ãr−2,φ,ψ(x;u, v) =
∫ 1

0

∫ 1

0

(1− t)r−4

(r − 4)!
Dr−2

2 H2
φ,ψ(x, u+ stv)t dsdt

and

B̃r−1,φ,ψ(x;u, v, w, ŵ) =∫ 1

0

∫ 1

0

(1− t)r−4

(r − 4)!

∫ 1

0
Dr−1

2 H2
φ,ψ(x, u+stv+z(w+stŵ))(w+stŵ)t dzdsdt,

for x, u, v, w, ŵ ∈ `∞(Rn). With this notation, the curve b(t) defined by (A.26)
can be written as

(A.27) b(t) = Deψ(βpφ(t))
(
Ãr−2,φ,ψ(βpφ;β

2
φ(t), β̂

2
φ(t))∆β

2
φ(t)

+ B̃r−1,φ,ψ(βpφ;β
2
φ(t), β̂

2
φ(t),∆β

2
φ(t), ∆̂β

2
φ(t))β̂

2
φ(t)

)
β2

1,φ(t) · · ·β2
r−3,φ(t).

We observe that both Ãr−2,φ,ψ and B̃r−1,φ,ψ are differentiable maps to the
space of (r − 3)-linear maps, satisfy the hypotheses on Lemma 2.18, with

‖Ãr−2,φ,ψ‖Γ, ‖DlÃr−2,φ,ψ‖Γ ≤ ‖Hg‖CrΓ , l = 1, 2, 3,

and, using also Lemma 2.9,

‖B̃r−1,φ,ψ(z;u, v, w, ŵ)‖Γ ≤ ‖Hg‖CrΓ(‖w‖+ ‖ŵ‖),

‖DlB̃r−1,φ,ψ(z;u, v, w, ŵ)‖Γ ≤ ‖Hg‖CrΓ(‖w‖+ ‖ŵ‖), l = 1, 2, 3,

‖DlB̃r−1,φ,ψ(z;u, v, w, ŵ)‖Γ ≤ ‖Hg‖CrΓ , l = 4, 5.
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Furthermore, by Lemma A.2, the curves βφ, etc, have decay around the
component j and

‖β̇2
φ‖j,Γ ≤ C‖ν‖CαΓ d

α(xj , yj), ‖β2
φ‖C0 ≤ C‖ν‖CαΓ ,

‖ ˙̂
β2
φ‖j,Γ ≤ C‖ν̂‖CαΓ d

α(xj , yj), ‖β̂2
φ‖C0 ≤ C‖ν̂‖CαΓ ,

‖β̇2
l,φ‖j,Γ ≤ C‖νl‖CαΓ d

α(xj , yj), ‖β2
l,φ‖C0 ≤ C‖νl‖CαΓ ,

‖β̇pφ‖j,Γ ≤ Cdα(xj , yj), ‖βpφ‖ ≤ C,

‖ d
dt

∆β2
φ‖j,Γ ≤ C‖ν − ν ′‖CαΓ d

α(xj , yj), ‖ d
dt

∆β2
φ‖C0 ≤ C‖ν − ν ′‖CαΓ ,

‖ d
dt

∆̂β2
φ‖j,Γ ≤ C‖ν̂ − ν̂ ′‖CαΓ d

α(xj , yj), ‖ d
dt

∆̂β2
φ‖C0 ≤ C‖ν̂ − ν̂ ′‖CαΓ ,

where l = 1, . . . , r − 2.
Hence, we can apply Lemma A.2 to the curve b(t) given by (A.27) to

obtain that

(A.28) |ḃi(t)|Γ(i− j)−1d−α(xj , yi)

≤C‖Hg‖CrΓ(‖ν − ν ′‖CαΓ + ‖ν̂ − ν̂ ′‖CαΓ )

× (1 + ‖ν‖CαΓ + ‖ν̂‖CαΓ )2‖ν1‖CαΓ · · · ‖νr−2‖CαΓ .

Inserting this inequality into (A.24), through formulas (A.25) and (A.26) we
deduce that R is Lipschitz and, hence, continuous.

The proof of (2) is simpler. Since Hg is continuous, it is clear that

Lg : Bρ ⊂ Sbh(X,TM) → Sbg◦h(X,TM)

is well defined.
To check that it is of class Cr−2, we use again the Converse Taylor’s

Theorem. Starting with (A.8), with q = r − 2, we consider the maps ϕs,
s = 1, . . . , r − 2, and R defined by (A.10) and (A.9), resp.

By the definition of ϕs in (A.10), using that

sup
0≤s≤r

sup
x∈M

sup
v∈TxM

‖Ds(Hg |TxM)(v)‖Cr ≤ C‖Hg‖CrΓ

and formula (A.12), we have that, for any ν, ν̂ ∈ Bρ ⊂ Sbh(X,TM) and
ν1, . . . , νs ∈ Sbh(X,TM),

(A.29) ‖(ϕs(ν)−ϕs(ν̂))ν1 · · · νs‖Cb ≤ C‖Hg‖CrΓ‖ν− ν̂‖Cb‖ν1‖Cb · · · ‖νs‖Cb ,

provided that s ≤ r − 1. Hence, the continuity of ϕs is established.
To check that R is also continuous, we use formula (A.21), with q = r−2.

Then, given any ν, ν̂, ν ′, ν̂ ′ ∈ Bρ ⊂ Sbh(X) and ν1, . . . , νr−2 ∈ Sbh(X),

(A.30) ‖(R(ν, ν̂)−R(ν ′, ν̂ ′))ν1 · · · νr−2‖Cb
≤ C‖Hg‖CrΓ(‖ν − ν̂‖Cb + ‖ν ′ − ν̂ ′‖Cb)‖ν1‖Cb · · · ‖νs‖Cb .

Hence, Lg is a Cr−2 map and DsLg(ν) = φs(ν).
To check that Lg is a Cr−2

Γ , we need to check that

DsLg(ν) ∈ LsΓ(`∞(Sbh(X,TM)i), `∞(Sbg◦h(X,TM)i)),

using the definition of the space LsΓ in (2.3) .
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We check that the Γ-norm (2.10) of DsLg(ν) is finite. Given i, j ∈ Zd, for
any ν ∈ Uρ ⊂ Sbh(X,TM), ν1, . . . , νs−1, ν

i ∈ Sbh(X,TM) with

πk ◦ νi = 0, k 6= i,

and ‖ν1‖Cb , . . . , ‖νs−1‖Cb , ‖νi‖Cb ≤ 1, any x ∈ X, and any pair of charts
(TUφ, Tφ) and (TUψ, Tψ) such that x ∈ Uφ and g(x) ∈ Uψ, since, by defini-
tion, Ds

2Hφ,ψ(y, v) ∈ LsΓ with norm bounded by ‖Hg‖CrΓ , denoting y = φ(x),
we have that

‖DsLg(ν)jτ(ν1, . . . , νs−1, ν
i)(x)‖

= ‖Ds(Hg |Th(x)M)(ν(x))τ(ν1(x), . . . , νs−1(x), νi(x))‖

= ‖Ds
2Hφ,ψ(y, νφ(y))τ(ν1,φ(y), . . . , νs−1,φ(y), νiφ(y))‖

≤ ‖Hg‖CrΓΓ(i− j),

which proves the claim. 2
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