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ABSTRACT. We consider weakly coupled map lattices with a decaying
interaction. That is we consider systems which consist of a phase space
at every site such that the dynamics at a site is little affected by the
dynamics at far away sites.

We develop a functional analysis framework which formulates quan-
titatively the decay of the interaction and is able to deal with lattices
such that the sites are manifolds. This framework is very well suited to
study systematically invariant objects. One obtains that the invariant
objects are essentially local.

We use this framework to prove a stable manifold theorems and show
that the manifolds are as smooth as the maps and have decay properties
(i.e. the derivatives of one of the coordinates of the manifold with respect
the coordinates at far away sites are small). Other applications of the
framework are the study of the structural stability of maps with decay
close to uncoupled possessing hyperbolic sets and the decay properties
of the invariant manifolds of their hyperbolic sets, in the companion
paper [FAILM10].

1. INTRODUCTION

1.1. Lattice dynamical systems. Many systems of interest in Physics,
Biology and Mathematics, can be described as an infinite array of smaller
subsystems endowed with local interactions. The evolution of the subsystem
at one site depends on the state of the site itself, and also on the state of
the other sites, but the effect of far away sites is much weaker.

Models of this type have been in the literature for a long time. For ex-
ample, arrays of coupled oscillators are very standard in statistical mechan-
ics and motivated the celebrated Fermi-Pasta-Ulam experiment [FPU55] to
study empirically equipartition of energy. Similar models of dislocations
were introduced in [FK39|. Similar mathematical models are introduced in
biology to model arrays of cells (e.g. neurons) [Hop86, HI97, BEFT05, 1zh07].
They also appear in Mathematics as discrete models of Partial Differential
Equations [PY04]. Many mathematical aspects (traveling waves, spatiotem-
poral chaos, fronts, invariant measures) have been studied rigorously. By
now, there is a large body of research and different names for very similar (if
not identical concepts: coupled oscillators, coupled map lattices, extended
systems, etc.). We just refer to several surveys [Gal08, BCC03, MP03, CF05,
Kan93, Pey04, BK98, BK04, FP99| and the references therein, that include
different points of view and different schools.
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The goal of this paper is to develop a convenient functional analysis frame-
work which is useful in the systematic study of these infinite-dimensional
systems with interactions that decay with the distance. We define a class of
interacting dynamical systems whose interactions satisfy some decay prop-
erties (we will refer to these systems as systems with decay). We show that
with the definitions we take, the systems satisfy good estimates, very similar
to the estimates satisfied by finite-dimensional systems.

Using this framework, it is possible to adapt the proof of existence of many
invariant objects in finite-dimensional dynamical systems (stable manifolds
of periodic points, hyperbolic sets, and their invariant manifolds, etc.) to
infinite-dimensional systems. As a consequence of the formalism, the objects
thus constructed enjoy similar decay properties as those assumed for the
system.

In this paper, we provide a proof of a stable manifold theorem in lattice
systems. The novelty is that, applying the formalism, we obtain that the in-
variant manifolds are decay. In the companion paper, [FdILM10], we apply
this framework to obtain a theory of hyperbolic sets with decay, in partic-
ular, their structural stability and the decay properties of their invariant
manifolds.

The study of hyperbolicity properties in lattice maps has a long story
[BS88, BK95, Jia95, JP98, Jia99, FR00, JAILOO, Jia03, KL04, KLO06], among
others. The above papers study not only the geometric properties but also
use them to obtain ergodic properties. We note that, when passing from
geometric properties (invariant manifolds and such) to ergodic properties,
the fact that the systems and their invariant objects have decay properties
(i.e. can be considered as perturbations of a product system) is very im-
portant because, using the decay properties one can deal with the invariant
measure of the full system as perturbations of the product measure.

The formalism we propose does not require, but can easily accommodate
translation invariance. Translation invariance is important for systems aris-
ing in statistical mechanics and in mathematics, but it could be unnatural
for systems appearing in biology or computer science.

Compared with some of the work mentioned above we note that: a) We
deal with infinite systems all the time (one can easily treat with finite-
dimensional systems as particular cases by uncoupling them from the rest).
b) We base the topology of the infinite system on ¢°°, rather than on point-
wise convergence of the coordinates. This has the advantage that we can use
Banach space techniques rather than relying just on metric spaces (which
do not allow the standard tools of differential calculus). Of course, since the
uniform topology is stronger, some of the conclusions will also be stronger.
The applications — specially those that involve translation invariance — make
it natural to assume uniform convergence of the models.

On the other hand, as it is well known, using uniform convergence in
infinite systems brings forth the problem of the boundary conditions at in-
finity, which has been a problem in statistical mechanics for a long time.
[Rue71, Pre76].
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Related to the problem of conditions at infinity, we have to face the prob-
lem that the operators in ¢ are not determined by their matrix elements.
See a more detailed discussion in Section 2.3.

Once the lattice is modeled as a Banach manifold over some £°° space we
will consider a suitable class of diffeomorphisms acting on the lattice. For
any diffeomorphism in this class, the dependence of the i-th component of
the map with respect to the j-th variable will be controlled by some decay
function T'. In [Jia95, JP98, Jia99], this function is an exponential, while in
[JAILOO], " can also have an exponential behavior, but is characterized by
satisfying certain relations which allow this class of diffeomorphisms to have
good algebra properties. It should be stressed that these algebra properties
play an important role whenever one intends to use an iterative procedure,
like a fixed point method or an implicit function theorem. We will say that
a diffeomorphism of this class has decay properties.

It should be noted that, in general, if F is a C" diffeomorphism of the
lattice, modeled as a Banach manifold over £°°, its partial derivatives do
not determine its differential. (This is related to the fact that a linear
operator in ¢°° is not determined by its matrix elements.) In particular,
having bounds on the partial derivatives of F does not provide any bound
on the norm of the differential, precision that is not made explicit in the
literature [JAILOO]. The results in [JAILOO] remain true if one adds in the
definition the assumption that the derivatives of the map are determined by
the partial derivatives.

In this paper, we use the same definition of decay properties of decay
functions as in [JdILOO] but we want to make explicit that we allow that
the evolutions we consider, could have derivatives that are not given by the
matrix elements (in other words, we want to allow non-trivial boundary
conditions at infinity). We also carry out a more systematic development of
the theory with a view to further applications.

1.2. Structure of the paper. In Section 2 we develop the framework of
maps with decay in £*° spaces. We start by considering linear and k-linear
maps with decay, then we define C" functions with decay (C[. functions) and
show some of their properties, relevant in the applications. We continue with
Holder functions with decay. We finish the Section with a technical lemma,
used later in the study of the lattice and in [FdILM10].

Section 3 is devoted to a stable manifold theorem for maps between £*°
spaces with decay, describing the decay properties of the manifolds.

In Section 4 the lattice is modeled as a Banach manifold over £°°. Also,
several functions and sets related only to the manifold are introduced: the
atlas, the exponential, an isometric embedding, etc. First, they are intro-
duced in the finite-dimensional manifold and, afterwards, they are lifted to
the lattice.

In Section 5 we introduce the spaces of C" and Holder maps with decay
on the lattice. We study the regularity of the composition operator (®, h) —
® o h, where ® is a C" map with decay and h a Hoélder maps with decay.
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2. MAPS WITH DECAY IN /*° SPACES

We introduce several Banach spaces related to d-dimensional lattices, and
some of their basic properties.

2.1. The Banach space (. We start with the definition of £°°(X}).

Definition 2.1. Let (X;);cza be a family of Banach spaces. Let |- |; be the
norm in X;. We define
(2.1) 0°(X) ={z = (1;) € H X;| sup |z;|; < oo}
i€z i€z

It is well known that £>°(X;) endowed with the norm |z| = sup;cza |2i|i
is a Banach space. We denote 7; : £°°(X;) — X the obvious projection, i.e.
mj((x;)) = x;. We have || = 1.

Given x = (z;) € £°°(X;) we have the following inclusions concerning the
balls of &; and ¢*°(X})

(2.2) B(z,r) & H;czaB(xs,7) & B(x,r).
We use the notation int for topological interior. Note that
B(z,r) = int (I;cza B(xs,1)).
The next result follows directly from the definitions.

Proposition 2.2. Let X, X;, i € Z%, be Banach spaces, U C X an open set
and f: U — L°(X;) a map. Let f; =m; 0 f. Then
(1) f is continuous at 2° € U if and only if {f;} is an equicontinuous
family at x°.
(2) f is differentiable at 2° € U if and only if f; is differentiable at x°
for all i and the family {f}}i, where

fi () = (fia®+ 1) = fi(a") = DFa")h ) /|1,

is an equicontinuous family at h = 0. Moreover m; D f(x°) = D f;(2).

(3) fis C" in U if and only if f; is C" in U, D¥f;(x), for 1 < k < r,
are uniformly bounded with respect to i for all x € U, and {D" f;} is
an equicontinuous family at x, for all x € U.

An example relevant for (1) above is the following Let X', A; = R and
fi(z) = |z|YH+D) Then £(0) =0, ||f(z)|| = 1 for 0 < |z| < 1 in spite of the
fact that all the components are continuous.

We will say that a family of maps {f;};cz¢ is uniformly differentiable at
20 if it satisfies the condition (2) of the previous proposition.

We will say that a map f : [[;cza Us C £°(&;) — £°°(Y;) is uncoupled if
fi(x) has the form f;(m;(z)) for some f; : U; € X; — Vi. As a consequence
of (3) in the above proposition, we have that

Corollary 2.3. Let X;,Y;, i € Z¢%, be Banach spaces, U; C X; be open sets
and f; : Uy — Y; be C" maps, r € N, such that D f; are uniformly bounded
and {D" f;}; is an equicontinuous family at z; for all x; € U;.

Then, the map f : int (ILU;) C €2°(X;) — €2°(Y;) defined by fi(x) =
filmi(x)) is C" and || fllcx < sup; || fillon -

In particular, if the above conditions hold for all r € N, then f is C'*°.
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Proof. By Taylor theorem the hypotheses imply that D f; is equicontinuous

at every point for 0 < k < r. This implies that {Dk fi}i is an equicontinuous

family at every point x = (x;); € int (IL;U;). In particular f is continuous.
To get differentiability we use that

1 ~ ~
2001 = | [ DR+ th — DEG@hdt| ], b= (),

hence {f;}; is equicontinuous at h = 0. The equicontinuity also implies that
fis Ch

Applying the same argument to the higher order derivatives we get that
fisC". O

2.2. Decay functions. Following [JdIL0O] we introduce the following

Definition 2.4. A decay function is a map I' : Z¢ — Rt such that

(1) Dieza T'(@) <1,
(2) YjezaD(i — 5T — k) <T(i — k), ik € 7.

Remark 2.5. In [JdILOO] it is only required }_, 54 I'(4) < oo instead of (1).
However condition (1) is not restrictive because if we can find I' satisfying
1 <) ieza (i) < oo and (2), then I'(3) = I'(i)/ D, cz4 I'(7) satisfies (1) and
(2).

In [JAILOO] it is proved that given o > d and 6 > 0, there exists a > 0
(small enough, depending on «, # and d) such that

S—a,—0i .
F(i)—{aM e M i #£0,

a, 1=20

satisfies Definition 2.4.

In what follows, I' will be a fixed decay function. It will be used to
control the dependence of the components of the maps with respect to their
variables.

The goal of the remaining part of this section is to introduce several spaces
of maps defined in £*° spaces having decay properties associated to a decay
function I' and to present their basic properties.

2.3. Linear maps with decay. We define the space of linear maps with
decay I" by

(2.3)  Le(€=(X:), £(V) = {A € L(=(X), () | [Allr < oo},

where L refers to the space of continuous linear maps, and

(2.4) [Allr = max{[|A[|,v(A4)}
and
(2.5) v(A)= sup sup [(Au)s| (i —j)"".
ijezd  |ul<1
7rlu:0,l7£j

With this norm, Lp(£>°(X;),£>°(};)) is a Banach space.
We denote by i;j : Xj — £>°(X;) the linear map defined by (i;(v)); = v and
(ij(v)r = 0, for k # j, a formalism to consider vectors with at most one
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component different from 0. Then, given A € L(£>°(X;), £°°(;)), it induces
linear maps A;- : Xj — ) by

A;-v =m;i(Aij(v)).
In finite dimensions, A} are the matrix elements of A. Since [ij(u)| = |ul,
we have that the number v(A) can be computed alternatively by
7(A) = sup [AFTG —5)" "
i,j€Z4
It should be remarked that, in general, a linear map A € L(£>°(&;), £°°();))
is not determined by its “matrix elements”, A%. As an example, consider

Ey={ve™R)| lim v; exists }
li[—o0

and the linear map lim : Ey — R defined by lim(v) = limyj_o vj. It is
clear that the norm of lim is bounded by 1 on Ey. Hence, by the Hahn-
Banach theorem, it admits an extension to £*°(R), 7, with the same norm.
The matrix representation of 7 is given by the maps 7; : R — R defined by
7j(a) = 7(u), where u € £>°(A&;) is such that u, = 0, if £ # j and u; = o
By the definition of lim, since lim g ux = 0, we have that 7; = 0, for
all j. However, it is clear that 7 is not 0.

In particular, if A € L(£*°(&;),£°°(Y)), it will not be true, in general, that
(Av)i = > jezd A;'-vj. Notwithstanding, this formula will hold true when the
vector v satisfies that lim;|_,o |v;] = 0.

Lemma 2.6. Let A € L({>®(X;),0>(V:)), and v € £>2°(X;) be such that
limj| o [vj| = 0. Then

(AU)Z = Z A;Uj.

jezd
Proof. Given v € (*°(X;) let v™ € £>°(X;) be the truncated vector defined
by v = vy, if |k| < m and v)* = 0, if |k| > m. We have that v™ tends to v,
when m — oo. Indeed, since lim|;_ [v;| =0,
lo = o™ || = sup [v)]
|3[>m

tends to 0, when m — oco. Moreover, since v"™ has only a finite number of
components different from 0, we have that (4v™); =3 ; <, Ajv;. Then,

I(A0); = D Afjll < A — o™l < [ AllJo — o™
jl<m

tends to 0 when m — oo. O

The idea behind the definition of linear map with decay is essentially
that if a vector v € ¢*°(X;) has its “mass” concentrated around its j-th
component, then Av will also have its “mass” concentrated around the same
component with the same decay. In fact, as we shall see below, this property
characterizes the linear maps with decay I'.

More concretely, given j € Z%, we introduce the subspace of £>°(X;) of
vectors centered around the j-th component

(2.6) Yir = {v € £2(X) | [|v]l;r < oo},
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where

(2.7) [o]lj,0 = sup |vx|T(k —5)~".

kezd

In particular, i;j(u) € S, for all u € X; and [|ij(u)||;r = |u|T(0)~!.

Note that for any given pair i, j € Z? we have Yir = X;r as spaces. Also,
if 7 and j are fixed, the norms in ¥; 1 and X; are equivalent, the constant
of equivalence depending on ¢ and j. Indeed, if v € ¥; ,

L'k —J)
T(k — i)

(k- j)
< [[vll,r S Tk — I — i)

Proposition 2.7. Let A € L({*°(X;),£°(Vs)).

(1) If A € Lr(£>=(X;),£2(Y;)), then for any j € Z* and for any v € 3,
Av € 5 and || Av|jr < y(A)|v[ljr-

(2) If there exists C' > 0 such that for any j € Z¢ and for any v € Xir,
Av € ¥, and ||Av||jr < C|v||;r, then A € Lr(£>(X;),£>°(Y;)) and
+(4) < CT(0) .

Vk
el ol sup
) !

[ollir = SUP Tk — )

<ol =)~

Proof. Let A € Lr(£*°(X;),£>°();)) and v € ¥jr. Then, by Lemma 2.6, the
definition (2.5) of v(A) and (2.7), we have that

(Av)il < D 1ALkl < v(A)olljr D Tl—k)T(k—5) < v(A)|v]l;rTE—5),
kezd keZd

which proves (1).
Now, given j € Z%, u € X}, we observe that |u| = [i;(u)| = ||i;(u)|/;rT(0).
Hence, if |u| <1,
| AGulT(i — 7)™ = [(Aij()ilDG — )" < [|Aij(w)
< Cllij(u)l;r = CT(0)".

j?F

Taking suprema with respect to v and with respect to i,j € Z¢ we get
y(A) < CT(0)~L m)

Proposition 2.8 (Algebra property). Let X;, Vi, Z; be Banach spaces. If
A€ Lp(f>(X;),0>°(Y;)) and B € Lr(£>*°(Y;),0°(Z;)). Then,

(a) BA € LF(EOO(XZ),goo(Zl)),

(b) v(BA) < ~v(B)v(A4),
(c) IBA|r < ||Bllrl|Alr-

Proof. Proposition 2.7 implies that BA € Lp({>*(&;),£*°(Z2;)). It only re-
mains to check the bounds for v(BA) and ||BA||r.

For any j € Z¢ and u € &}, since i;(u) € ¥;, we have that Ai;(u) € ;.
Hence, by Lemma 2.6, (BAi;(u)); = >z Bi(Ai;(w))g.
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Then,
v(BA) = sup L(i — ) (BA)]|

= sup sup (i — )~ (BA)ij ()il

= sup sup (i — j) 7| > Bi(Aij(u))]
4J |ul<1 kezd

< sup |s1‘1p1F(i — )7 (B) Y T = k)|(Aij(u)l
b fuls kezd

< supT(i - §)BVA) Y T(i — k)T (k — j)
b kezd

<y(B)v(A).

Also

IBA[r = max([| BA||,v(BA))
< max(|| BJ| [[All, (B)y(A4)) < [|Bl[r[Allr-
O

2.4. k-linear maps with decay. Let X, ) be Banach spaces. We recall
that L(X,L*71(X,))) can be identified with L¥(X,)). However, for non
symmetric k-linear maps there are k possible identifications 2; : Lk(?( V) —
L(X,L*1(Xx,))), 1 < j <k, defined by
(2.8)

Zj(A)(U)(ul, sy Uj—1, Uj41y - - - ,uk) = A(ul, ceey Uj—1, UV, U1,y - - - ,uk).

The maps 1, are isometries.

Furthermore, if X; and ); are Banach spaces, as a consequence of (1)
in Proposition 2.2 we have that LF(£>°(X;), £%°();)) = £2°(LF(£°(X;), Vi)).
Hence, using the identification (2.8), it is possible to identify L¥(£%°(X;), £°();))
with the space L(£>°(X;), £>°(L*~1(¢>(X;),);))) in k different ways. Using
now the definition of the space Lr in (2.3), we introduce the space of k-linear
maps with decay T’

(2.9) LE(E™(X), £°(V3) = {A € L*(e°(X), £(W)) |
1m(A) € Lp (EOO(Xi),EOO(kal(EOO(Xi),yi))), m=1,...,k},
with the norm
[Allr = max{||All, v(4)},
where

7(A4) = e, (1 em ()

It is clear that ||Allr = maxi<m<i{l|tm(A4)|r}. With this norm, L is a
Banach space.

An explicit formula to compute y(A) is the following
(2.10)

v(A) = max sup sup sup Hzm(A)i(u)(vg,...,vk)HI‘(z'—j)_l.
lsmskijezd  |ul<1 |upll<1
mu=0,l#j 2<p<k
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If A€ LF((>=(X;),0%°():)), its “matrix elements”, Al Xy XX
&, — Vi, can be introduced analogously to those of linear maps. If A €
LE(0°(X;), 0°())), it follows from (2.10) that

(2.11) 145, . | < 4(A) min{T(i — j1),..., T = jir)}-

Note however that (2.11) is just an upper bound and not a characterization
of belonging to L’fi. Indeed, the fact that the matrix elements of a linear map
satisfy this condition is not sufficient to ensure that a k-linear map has decay
I'. In fact, k-linear maps satisfying (2.11) may not satisfy the contraction
or the algebra properties below. For example, it suffices to take an operator
given by a matrix whose elements are A§‘1,---,jk =min{l'(i—j1),...,T(i—7Jx)}

We introduce the following notation. Given k > 1, let Sy be the symmetric
group. If v = (vy,...,v;) € E X --- X E, being E a set, and 7 € Si, we
define 7(v) = (Vr(1)s- - Vr(k))-

Next lemma establishes a property concerning contractions of k-linear
maps with decay.

Lemma 2.9 (I norms of contractions). Let A € LE({*°(X;),°();)), and

(k—1)
u € (>°(X;). Then, for any T € Sk the map By, : (°(X;) x -+ XL (X;) —
°(Y;) defined by

B:y(vi, ..., vp—1) = A(T(v1, ..., vp—1, 1))
belongs to LE~1(£°(X;),42();)). Moreover
(2.12) V(Bru) < v(A)|ull
As a consequence
(2.13) [Brulle < | Allp[lull

If 7 =1d we will write B, = Biq 4.

Proof. For simplicity, we only check the case 7 = Id.

Inequality (2.13) is trivial if u = 0. If u # 0 and v = (v'), we have that
for any i,j € Z%, 1 < m < k, va,...vp_1 € £°(X;) such that ||v,|| < 1,
2<p<k—1,and o' =0, if [ # 7,

e (Bu)i(v) (v2, ..., vp—1) T (i = )7
= |(Bw)i(va, ..., v,...,00_1)|T( — 5)!
= [ Ai(vz, oy v, s vpas ) ul)| ulITG = 5) 7
= Jlim(A)i(v)(v2, . vp—1, a/ [ul)] ul TG = 5) 7
< v(A)]lu].

Inequality (2.12) follows from taking suprema above. Moreover ||B,| <
| Al |u|| and using that

[Bullr = max(y(Bu), | Bull) < max(y(A) [[ull, [All ull) = [|Allr[|u]
we obtain that (2.13) holds true.
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As is the case of linear maps with decay I', k-linear maps with decay I’
are characterized by its action on vectors centered around one component.
Next proposition is analogous to Proposition 2.7, and is a consequence of
the norms of contractions given in Lemma 2.9.

Proposition 2.10. Let A € LF((>(X;),£2();)).
(1) If A € LE(0>°(X;),02();)), then, for any vs,...,vx € £°°(X;) and
veEX;r withje 7%, we have A(v,va,...,v;) € X;r and

HA(’U,’UQ, s 7”/@)’

v < y(A)lolljrloall - flvkll-

(2) If there exists C' > 0 such that for any ve,. .., v € I{X(X;), j € 79,
veEX;r, T €Sy, we have A(T(v,v2,...,v;)) € i1 and

[A(T(v,v2, .. o)) |0 < Cllvlljrllvall - - (o],
then A € LE(£>®(X;),0°()))).

Proof. (1) Proposition 2.7 implies the case k = 1. By induction assume that
(1) is true for k — 1 > 1 and let B,, be defined by B,, (v,v2,...,v5-1) =
A(v,v2,...,v5_1,v). By Lemma 2.9, B,, € LE™! and v(B,,) < v(A)|jvg|.
Now by the induction hypothesis we have

|j,F||Uz|| s ||Uk—1||

[A(v, va, - - o) |50 = ([ By, (0,02, - vp—1) 0 < A (By,)[|v
<A(A)vllzrlvzll- - flox]l-

4,7
(2) Given m € {1,...,k} and j € Z% we have
e (A) (@)l = sup (tm (A)(0)) LU= 5) 7

= SLllp ||S-l|1|21 (zm(A)(v)(vg, - ,vk))lf(l — )t

= sup sup (A(vg,...,vm,v,...,vk))lf(l—j)_l
U flogfI<1

= Slllp ||Sl|1|p (A(T(U, vy, ..., vk)))lf(l -t
v;||<1

<sup sup Clloflsrlozll. . Ilogl

loill<1
< Clollzr

3T

for some permutation 7 € Si. By Proposition 2.7 this implies that u,,(A) €
Lt and hence A € Lr. O

From Lemma 2.9 and Proposition 2.8 one also obtains the following alge-
bra property, which will prove crucial for later developments.
Proposition 2.11 (Algebra property). If A € LE(>°(Y;),¢>°(Z2;)) and B; €
Lii(éoo(Xi),Eoo(yi)), for j = 1,...,k, then the composition ABy---Bj €
Lt (oo ), 0°(2;)) and
(2.14) V(ABy -+ Bi) <v(A)||Bir - - - || Brllr,

(2.15) |AB1 -+ Bi|lr <[[Allp|[Bulr - - - | Bllr-
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Proof. Since y(A) < ||Al|r, inequality (2.14) implies (2.15).

Let us define l[g = 0. Then, for any 1 < s < k and for any u;, ,41,...,u, €
(>°(X;), we have that ||Bsu,_ 41 wll < [|Bs|lpllug,_ 41l - - [lu, || Also,
by Proposition 2.9, for any u;, ,yo,...,u;, € ¢>°(X;) and 7 € S;,, the map
B:s:u v Bst(u,up, ,+9,...,u;,), defined in that proposition, belongs to
Lr and || Brs|lp < || Bsl|p|luzl| - - - [l |-

Hence, by Proposition 2.8, for any ua, ..., w, 4.4y, € £°(X), |Juz, ...,
g, 4, || <1 and ls—1 < m <, the map

Am LU Zm(ABl cee Bk)(u)(uls_lJrg, cee ,ul1+...+lk),
where 1,,(AB; ... By)) was introduced in (2.8), belongs to Lr and

Y(Am) < YA Bull...v(Br) .. | Bl
Finally, since || Bj|| < || Bj||r, for all 1 < j <k,

V(ABi ... By) = maxy(Ap) <~(A)||Billr- . || Bgllr-
O

2.5. Linear and k-linear maps with decay on product spaces. Given
p € N, we consider the Banach space H‘;’:l 0 (X;), with the norm

Joll = max ol v = (or,e.o ).

Given a k-linear map A : [[f_; £°(X;) — []7_, €>°(;), we can write it in
the form
Al(’ul, ... 7'Uk> = Z Ai'l,...,ik (’1)171'1, ... vkﬂ‘k),
1<iy,..i,<p
where v; = (vj1,...,0p), 7 =1,...,k, l=1,...,¢q, and Aéh
maps form £°°(AX;) to £°°();).
We define

;. are k-linear
ty k

L) [J e ) ={Ae L(J] o) [ e 0) |
(2.16) j=1 j=1 j=1 j=1
AL i € LE((X); 0°(V)},

with the norm

l
(2.17) Il = e D, (il
1§zi,‘..,zk§m

Since the product of £*° spaces we are considering here is finite, we have

that Lemmas 2.9 and 2.11 also hold for LE(TT7_, £°°(X;); [T7=, £°(J%)), and
we will use them without further notice.

2.6. Spaces of Holder and Lipschitz functions. Following [JdIL0O0] we
introduce a space of Holder functions between £*° spaces. Let &, V;, Z be
Banach spaces, U an open set of />°(X;) and h : U — Z a Holder function.

For 0 < a < 1, j € Z% and a decay function T' we define the following
magnitudes:

o 1@ — )
(2.13) Ha(h) = sup ZET
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S () = h(y)|
(219) ’Yoc, (h) = Sup Sup ai
’ =Y/ /1#] i 7Y; d (xj’yj)

and, for h: U — £>°();),
(2.20) Yalh) = sup Fo;(hi)T(i— 7).
i,jez4
Also we introduce the space
CEU)={h:UC LX) = V)| he C*U), ya(h) < o0}.
We endow CF(U) with the norm

Ihleg = max ([IAllcx,va (k)

and CP(U) becomes a Banach space. Recall that ||| ce = max(||h||co, Hq(h)).

When a = 1 we will denote the corresponding space and norm by C’llilp

and || - || ;Lip Tesp.
r

Remark 2.12. Actually in [JdILOO] the space Cp is defined without re-
quiring to be a subset of C'*. It should be noted, however, that a function
h may have v,(h) < oo and fail to be Holder, or even continuous, as the
following example shows. Let E = ¢*°(R) and 7 be a linear extension to
¢>*(R) given by Hahn-Banach of the limit map lim : ¢ — R defined on the
subspace ¢ C £*°(R) of the convergent sequences. Then consider the map
T : E — E defined by

7(y) = (Jr() 1 00)

T is not continuous at y = 0, but J,,;(7") is zero for all a.

i€z

2.7. Spaces of C}. functions. Now we can define C” functions with decay
between £°° spaces.
Given an open subset U of (*°(X;) let

(2.21) CLU, (V) = {F € C* (U, ¢®(V;)) | DF(x) € Ly, ¥z € U,
sup || F(x)[| < oo, sup |[[DF(z)[r < oo},

with the norm
(2.22) [Fllca = max([|F'llco, sup [ DF(z)||r).-
X

Note that with this definition, if F € C} and v € ¥ then F(v) need not
belong to ¥, because F' can be the constant function F' : £*°(R) — ¢>°(R)
such that F(x) = 1J|:|‘i|. However, if F'(0) = 0 then we do have F'(v) € ¥, r.

For » > 1 we define
(2.23) CRU, (V) ={F € C"(U (W) | D’F € C}, 0< j <r—1}

with the norm
(2.24)
1Fllcp = max([[Flico, | max supl|DD'F(2)r) = max [D'Fllc;

From these definitions the following properties hold true
(2.25) crcopt
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and
(2.26) if F € CL(U,£>°(Y;)), then DF € CF YU, 02 (L(4®(X:), Vi)

Now we establish the formula of the derivative in terms of the partial
derivatives.

Lemma 2.13. Let F € CL(U,(°(V;)), € U C €X(X;), and v € €°(X;)
such that lim;|_ [vj| = 0. Then

DFi(z)v = Z

jEZA

Proof. Since DF(z) € Ly (¢*°(X;),0°°();)), Lemma 2.6 implies that
DF,(z)v =Y (DF(x))}v;.

OF;
8.'BJ (l')?)] :

j€Zd
Moreover,
. O0F;
DF(z)): = —(z).
(DF(@); = 5, (@)

O

2.8. Decay properties of limits of CT functions. In this section we
collect several results that show that if all the elements of a sequence have
decay properties which are bounded then, the limit (in different senses) also
has the same decay properties.

Lemma 2.14. Let U be an open subset of £°°(X;) and let B, be the closed
ball of radius p in CL(U,>*();)). Assume (F™) is a sequence such that
F" e B,, n >0, and, for all 0 < k < r, 2 € U, D*F"(z) converges in
the sense of k-linear maps to D*F(x), where F is a C" function in U (in

particular if F™ converges in the C" norm sense to a function F).
Then, F' € B,.

Proof. We first consider the case r = 1.

Assume F" € B,, F"" — F'in C'. Let ¢ > 0. For any i,j € Z% z € U,
there exists ng such that |[DF" (z) — DF(z)|| < el'(i — 7). Then, for |v| < 1
such that mv = 0 for [ # 7,

IDEy(x)v]| < [| DE (z)v]| + [[(DFi(x) — DE (x))v]|
< [[DE(@)[Iel(i — j) + eT'(i — )
< (IF™ gy + )i — j)
and, hence, F € C} with ||FH0; <p+e.

Now we proceed by induction. Suppose that the lemma holds true for
r—1. Let F" € B,, and that for all 0 < k <7, x € U, D¥F"(z) — D*F ().
Since F™ € C17 1, |F™||or—1 < p, we clearly have that D¥F"(z) converges

I
to D*F(z), for x € U and, for 0 < k < r — 1, by the induction hypothesis
we have that F € Cf ! and HF”C{:—l < p.
Moreover, we note that we have DF™ € C. ™1, |DF"|or-1 < pand DF™
I
satisfy that their derivatives up to order r — 1 converge pointwise in U to the
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C™ ! function DF. Then, applying the induction hypothesis, DF & Clﬁ_l
and HDFHCFA < p. Hence, F' € Cf and ||[F[|cx < p. 0

Note that in Lemma 2.14 the uniform control we assume is only on C".
If we assume some control on the regularity of the last derivative of the I,
we can obtain results with convergence in weaker senses.

The following result takes advantage of the Hadamard-Kolmogorov inter-
polation inequalities in compensated domains [dILO99, Sec. 3]. See [Had98,
Kol49] for the original references.

We recall that an open subset I/ of a Banach space is called compensated,
if there is a constant Cp; such that, defining v(z,y) as the infimum of the
lengths of all C'! paths contained in U joining x, y, we have v(z,y) < Cy||lz—
yll-

Of course, if U is a ball or, more generally, a convex set, it is compensated
with constant Cy; = 1.

Lemma 2.15. Let U be an open compensated subset of £°°(X;). Assume
that the sequence of functions F™ satisfy for some 0 < a <1

(2.27) IF™ler <p, Ha(D'F™) < M,

where Hy, is the Holder semi-norm introduced in (2.18).
If F™ converges in CO sense to a function F, then F™ converges in C"
sense to F € C., F € C""* and

IFllcr < p-

Proof. We recall the classical Hadamard-Kolmogorov interpolation inequal-
ities (a proof that applies in the generality of functions defined in compen-
sated domains of Banach spaces can be found in [dILO99, Sec. 3]). We have
that
|F" = F™or < CIIF™ = F )| — P2,

We note that, as shown in [dILO99], the constant in the interpolation in-
equalities is related to the compensation constant of the domain.

Therefore, we conclude that F"™ is a Cauchy sequence in C" and therefore
converges in the C” sense to a C" function, which has to be F.

Then, we apply Lemma 2.14.

To conclude that F € C™™® we observe that H,(D"F") < M and that
D" F™ converges uniformly to D" F, therefore, H,(D"F') < M. a

Another variant of the results can be obtained using a result in [LI73]
(reproduced in [MMT76]).

Lemma 2.16. Let U be an open subset of £>°(X;). Assume that the sequence
of functions F™ satisfies

(2.28) |F" g < po Ha(D'F™) < M,

for some 0 < o < 1, where H,, is the Hélder semi-norm introduced in (2.18)
and that, for all x € U, we have that F™(x) converges weakly to a function
F(x). Then
(a) FeCrte,
(b) For everyx € U, 0 < k < r, we have that D¥F™(x) converges weakly
to DFF(x).
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(c) FeCf.
(d) [1Fllep < p-

Proof. We have that Proposition A2 in [LI73] ( reproduced in [MM76, Lemma
2.5]) implies that under the hypothesis of Lemma 2.16, (a) and (b) follow.
The proof presented in the above references is only written for the case
a =1, but is valid for any a without need of any modification.

Now we check (c) and (d). We proceed by induction in r. Assume r = 1.
Let ¢ > 0. For any ¢ € (*°(X;)*, the topological dual of ¢*°(X;), with
ol < 1,4, € Z%, & € U, there exists ng such that || pDF™ (z)—¢DF(x)|| <
el'(i — j). Then, for |v| < 1 such that mv =0 for [ # j,

[pDFi(z)v] < [pDF (z)v| + |¢(DFi(z) — DF (x))v]

< [l DE (z)vl| + €I — )

< [|IDF(@)[[el(i — j) + el — )

< ([[F"llcp +&)T'(@ = 7)

<(p+e)l(i —j).
We recall that, if X' is Banach space, v € X, a simple application of Hahn-
Banach Theorem gives that [[v|| = supgey- <1 /¢v|- Hence (c) and (d),
for r = 1, follow.

The induction procedure is identical to the one performed in the proof of
Lemma 2.14. O

2.9. Properties of composition of C[. maps.

Proposition 2.17. Let U C {>*°(X;) and V C £>°();) be open sets. Then,
if F e CLU,>*()s)), G € CL(V,>*(2;)), and F(U) C V, then Go F €
Cr(U,£°(2;)) and |G o Fllcr < Kr(1+ ||FH7(:*;)”GHC{27 for some K, > 0,
independent of F' and G.

Proof. We have to check that D¥(Go F) € C}, 0 <k <r — 1.

We remark that G o F' is C" and the Faa-di-Bruno formula for D*(G o F)
holds. Applying Lemma 2.11, we have that, for some positive constant Ky,

IDM(G o F)(@)llr < Kx(L+ [IFllg) Gl k<,
which implies the result. o

2.10. Curves with decay. In this section we deal with a technical result
that will be often used later. In many proofs concerning maps on manifolds
it will be necessary to obtain bounds like the ones presented here.

Let I C R be an interval and 3 : I — £*°(X;) a C' curve. Given j € Z¢,
we will say that 3 has decay around the j component if ||B||co < oo and

(2.29) 18], = sup sup |3(t)T(1 — 5) ! < o0.
tel |74

In such a case, one has that the derivative of the [ component of 3 is bounded
by

(2.30) 1B(®)] < 18;rT(—35), ez
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Lemma 2.18. Let X; and Y;, i € Z¢, be families of Banach spaces. Let
U C T2, 6°(X;) be an open set. Let A : U — LE((X;),0°(V:)), k>0
(here, if k =0, LA(£>°(X;),0°(V;)) = £°();)) be C*, such that

Tm(”l""’”m)""’87(”“"1"“’%) € LEFL(0°(x), 6°(Vy)),
and OA A
A ===
| Allr, H Hr, ,Ilawmllr < 00,
where
|Allr = sup | A(z)]|r,

z=(T1,....,Tm ) EU

and || ||, in the right-hand side, is the I'-norm of a multilinear map defined
n (2.17).

Let j € 72 be fived, and let B1,...,Bms Y1, % : I — £2°(&;) be C
curves with decay around the j component such that p1(I),...,0m(I) CU

Then t +— b(t) = A(B1(t),. .., Bm(@)y1(t) -+ () is a C' curve with
decay around the j component with

1bllco < [[Allpllvalico - - Ivkllco

and
. ™A .
bl < —
[oll;r < (?1 Haxl el G

+ | Alle (M lljelvellco - Iwllco + - + [lrallco - - - ve—1llco | Fwllir) -

i) Imllco - l1yvelleo

Proof. Being the bound of ||b||co trivial, we only need to compute Hb”][‘
From (1) of Proposition 2.7 and inequality (2.30), for any i € Z%, it follows
that

%(Ai(ﬁl(t),...,ﬁma))vl(t) ()]

Z &Cl D)oy B (D)8 71 () -~ (D)

+ \Az‘(ﬂl( )5+ oo Bm ()31 (t) - - - e ()]
A A(BL(L), - B ()71 (E) - - A(2)]

Z IIerllﬁzHg, Mvlloo - ellco

+ ||A|’F(H"Yl irlvzllco - llvwlloo
+ oA lmlleo - -t lleollllir) T = ),
which proves the claim. O

3. A STABLE MANIFOLD THEOREM FOR DIFFEOMORPHISMS WITH DECAY

Given a C" map G in a lattice, the standard stable manifold theorem
states the existence of C" invariant manifolds associated to a hyperbolic
fixed point. When the map has decay properties it is natural to expect
that the invariant manifolds also have decay properties inherited from the
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ones of GG. The next result gives a precise statement in this direction. We
will assume that the derivative of the map at the fixed point is close to an
uncoupled linear map which is hyperbolic.

Theorem 3.1. LetU C (*°(X;) be a bounded open set and G € CL.(U, £>°(X;))N
C™ (U, 1>°(X;)) be a diffeomorphism onto its image, with r > 1. Assume
0 €U and G(0) = 0.

Let A € L(£>*(X;),0>°(X;)) be a hyperbolic linear map which is uncoupled,
i.e., (Av); = A;v;, and has an uncoupled splitting, that is, there exists a
splitting £>°(X;) = E° @ E" invariant by A with [|Ags|, AL <A <1

|
such that the projections w>" : {>°(X;) — ES" C £*°(X;) are continuous and
uncoupled.
Assume that
(3.1) |DG(0) — Allr <.

Then, if € is small enough, 0 is a hyperbolic point for G and there exist
balls B>* C E*" and functions v** € CL(B*", E"®) such that v € B® —
(x,7°(z)) € E* x E* and y € B" — (v*(y),y) € E® x E* are parameteriza-
tions of the stable and unstable manifolds of the origin resp.

The current hypotheses imply that 0 is a hyperbolic point for G and the
standard stable manifold theorem implies that it possesses stable and unsta-
ble invariant C" manifolds as described and they are unique. Theorem 3.1
claims that these manifolds inherit the decay properties of the map G.

Remark 3.2. As a consequence of Theorem 3.1, if G € C{f N O™, with
k < r we have that the obtained parameterizations of the manifolds belong
to CEnCrt.

Proof. The proof simply consists of writing the standard graph transform
for G, and checking that it sends a ball in the CT. topology into itself. Since,
when G € O™, the graph transform has a unique attracting fixed point in
a ball of C" (see, for instance, Theorem 1.2 in [CFdILO03]). By Lemma 2.14
the limit, whose graph is the invariant manifold, belongs to CT..

As a first step, we introduce the following norm in £*°(x;)

(3.2) 2] = max{||7 x|, |=*=|}.
We remark that || - ||" and || - || are equivalent. Indeed,
2]l < 2[lz]” < 2max{||=*|, ="} z].

In the rest of the proof we will use the norm || - ||, which we will denote
again by || - ||. Now we have ||7%|| = ||7%] = 1.
By rescaling the lattice variables we can assume that

(33) IG = Allcg(s,,.0(x)) < 26,
where B, /, is the ball of radius 1/p. Indeed, for any p > 0, the map G, (z) =
p~1G(ux) satisfies that DG, (0) = DG(0) and D*G,(z) = p*~1D*G (uz).

Hence, given ¢ > 0, by taking p small enough we can assume that, for
2<k<r,

sup [[DFG (@) 1 < i~ sup | DFG () I < Gl < =
:1:681/“ zeld
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Moreover, we have that for z € By,
IDGu(x) = Allr < [|DGu(x) = DGL(0)][r + [ DGL(0) — Allr
< Gullczllzll + ¢
< 2.

We have that A is hyperbolic and uncoupled. Then we have that ||Alr <
L(0)~ Al and [|Aps||r, HA|_Elqu < T(0)~'A. We remark that T'(0)~1\ is
not necessarily smaller than 1. For this reason, we consider a suitable iterate
of A and G. We take N > 0 such that I'(0)"!A\Y < X\ < 1 and yx such that
|A + 2¢||V < 1/pu. We denote G, again by G.

Lemma 3.3. Assume that 2e N < 1. We have that in By

(1) |GN — AN||c1 < Cfe, CFf = 2N(2e + || AN

(2) IGN — AN||¢a < Cre, €1 =2N(2= + | Allr)V 1.

3) |GN=AN|cr < Cre,  Cp = AW e AN =D > 2,
(4) AN Ilrs [ AZS e < T(0)~IAN.

|Es |E2

Proof. First note that, since 0 is a fixed point of G, DG (0) = (DG(0))V.
Hence, from (3.3), for x € B;

IDGN(0) — AN||p < (2¢ + || A|r)¥ ' 2Ne.
On the other hand, for 2 < k < r and for all z € B, also from (3.3),

1
(N+Nr'1).(2€ + || Alp) N e,

Finally, from the two above inequalities, we obtain
IDGY (z) — AN < |DGN () = DGN(0)[[r + | DGN (0) — AN||p
< N(2e+ HAHF)2N_225 + (2e + HAHF)N_12N5
< (2e + ||Allr) 2 24ne

ID*G™ (2)]r <

which proves the first claims. The last claim is straightforward since the
maps A gs, Aljglu are uncoupled. a

We take N > 0 such that T'(0)™*AY < X\ < 1. Now we perform a linear
change of coordinates that conjugates GV to a map such that the splitting
E* @ EY is invariant for DG™ (0) and moreover shows that 0 is a hyperbolic
fixed point for GV. Although this fact is standard in Banach spaces, we
have to prove that the linear change of variables has decay properties. This
is the first step to get the invariant manifolds tangent to the spaces E° and
EY, resp.

Lemma 3.4. There exist B € Lr({>°(X;),£>(X;)) and K > 0, with ||B —
Id||r < Ke, such that the map G = B~ o GN o B satisfies that DG n(0)
leaves E*" invariant and

(3.4) IDGN(0)ps|lr < A+ Ke, IDGN(0) e < A+ Ke.
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Proof. We begin by establishing some bounds on DG (0). . )
To simplify the notation, in this proof we denote GV by G and AN by A.
Using the decomposition E"O( i) = E° @ E", we can write

- (A, A
A — ~SS ~S’1L> ,
(Aus Auu
where Ay, = 10 Ao, Ay, = 70 A o1®, ete, and 15 D B9 — (°(X)
are the embeddings assoc1ated to the Sphttlng Since the spaces E%" are

invariant by A we obviously have Az = 0 and AuS = 0. Moreover, by (4)
in Lemma 3.3 and the choice of N, ||Ass]|r, [|ALIr < A. Analogously, we

write B B
~ ~ D D
— DG 0 — ~ S8 ~ S’Lt) .

By Lemma 3.3, |[D — A|r < Cie, with C; = 2N (2 + ||Alr)V~'. As a
consequence,

(3.5) IDuslie = [1Dus = Auslle = [|7*(D = A)*[lr <T(0)'Cie
and, in the same way
HbsuHF < F(O)ilclga
(3.6) |Dss = Assllp <T(0)7'Cie,
1Dus = Awuallr < T(0)"'Che.
In particular, from this last inequality, we have that, if m. := L'(0)~'A\Cie <
1, then D,,, is invertible and
(3.7) IDZHIr < M1 —me) ' <A+ Ke,
where K = IN( ) 1)\201 Indeed, since HA ( . — Aw)Hp <mg. <1, we
have that Id + A (D — Auu) is invertible in Lp and we can write
Dy = (1d + Ay (Duw — Auu)) ™ A
and we obtain the bound from the Von Neumann’s series.
From (3.6) we have

(3.8) | Dyullr <A +T(0) " Che.

We define K = max{I'(0)~'C, K}, and A. = A\ + Ke. We assume that
A+ 3Ke < 1, hence A, < 1.

Now we prove the existence of the linear map B. It is found in two steps,
as follows. First we look for By of the form

_(Id By,
B = <o Id )
such that By DB is in box lower triangular form. We have that

e Dss — BsuDys DssBgy + Dgy — BsyDusBsy — BsuD
D(l):B 1DB :< ss — Psullus ssDsu su sutdusDsu su uu>
S Dus Dus Bow + Duu

The condition Dg) = 0 is equivalent to the fixed point equation
(3-9) Bsu - [Dsu - BsuDusBsu + DssBsu)]D;ul
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Consider the right-hand side of (3.9) as a map defined from the unit ball in
Lr(E", E®) into Lp(E", E®). It is Lipschitz with Lipschitz constant bounded
by

(A+3Ke)(\ + Ke) < 1.
Furthermore, the image of 0 is D, D;}, and

|Dsu Dyl < AcKe.

uu

Hence, it has a fixed point By, such that
AEK €

Bl < = < Ke
Bl 1— A(\+3Ke)

for some K. Next, we look for
Id 0
Bz = (Bus Id>

_ Dgs 0
D® =B pWpy = (75 7).
2 "\ 0 Du
Proceeding in the same way we find By such that ||Bys|r < Ke, with a
different value of the constant K.
The claim follows by taking B = B; o Bs. O

such that

We write Gy (z) in the new coordinates (2%, z%) € E® x E* as

Gn(z°,2%) = (Agex® + Ni(z®, 2%), Az + Ny (2%, z%)),

where ~
DGx(0,0) = A= (AS’S fll)
with
(3.10) JAslle <A+ Ko, 1(Aw) I < A+ Ke
and
(3.11) N=WN,N,)=Gn—-A
satisfies
(3.12) [Mer < Ke.

Since 0 is a hyperbolic fixed point of G, it has stable and unstable invariant
manifolds which can be represented as graphs of functions. Concretely the
stable manifold is the graph of ¢ : BS C E® — E% with ¢(0) = 0 and
Dg(0) = 0, where B® is the unit ball of E®. The function ¢ is the fixed
point of

(3.13) ¢ =G(p),
where
(3.14) G(p)(z) = AZ (p(Ass + Ni(2, 0(x))) — Ny, ().

This is a form of the graph transform operator (see Theorem 1.2 in
[CFAIL03]). Tt is well known that, if G € C™! and ¢ is small enough,
G sends the unit ball of the space C"(B*, E*) into itself and that it has an



DYNAMICAL SYSTEMS ON LATTICES 1 21

attracting fixed point, ¢*, such that ||¢*||c» = O(g). This fact will be used
in the proof of the next lemma.
The claim of the theorem follows from next lemma.

Lemma 3.5. The fixed point, p*, of the graph transform operator G belongs
to CL.(Bs, E*). Moreover, |[¢*|cr. = O(e).

Proof. Let By and By r be the unit balls of C"(B*, E*) and C[.(B*, E") resp.
We claim that G(Bir) C By r. This will imply that given ¢o € Bir C By,
©* = limy, .o G"po € Bi. Therefore, by Lemma 2.14, ¢* € C[.(B*, E").
To check the claim let ¢ € Bir, and p = [|¢|lr < 1. We introduce the
auxiliary function

P(z) = Assz — Ns(z, ().
Hence we can write G(¢) = Al (p oy — N, o (Id, ¢)).
Next we prove that there exists C' > 0 such that

(3.15) sup ||[Dy(x)|lr < A+ Ce,
TEB
(3.16) sup | D*y(z)|r < Ce, 2<k<r.
zEB

Indeed, since Dy = Ags + DN o (Id, ) (Id, Dy), inequality (3.15) follows
from (3.10), (3.12) and the fact that [|¢|[cr < 1.
By the Faa-di-Bruno formula, for 2 < k < r,

k
Dhy=>"" 3" af  DIN,o(ld,p)D"(Id,p)--- D" (Id, ),
J=1 iy +tij=k
1§i1,...,ij§k

k

110

from inequality (3.12) and [|¢|lcr < 1. In the same way we obtain that
| DF(Ny o (Id, @) (z)||r < Ce for 1 < k < r. Next we check that, if ¢ is
chosen small enough, in particular such that A + Ce < 1,
(3.17) leodllop <1.

Indeed, by inequality (3.15)

sup [[D(p 0 9)(@)lle < (A + Ce)llelloy <1,
z 1

and, if 2 < k < r, by the Faa-di-Bruno formula and inequalities (3.15)
and (3.16), we have that

sup || D* (¢ o ¢)(«)Ir
r€EB,

where a are combinatorial coefficients. Then inequality (3.16) follows

k
=sup [|(D. D af DipoyDip-- D) ()|,
PEBL =1 ity =k

lgil,...,ijgk

S Ck€7

where C}, is a constant depending only on k.
Finally, since

DFG(p) = Ayt (D*(p o) — DF(N, 0 (1d, 9))),
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the statement follows from inequalities (3.10), (3.12) and (3.17). O

End of the proof of Theorem If ¢ is small, 0 is a hyperbolic fixed
point of G in the ¢*° topology. Then the stable manifold theorem gives
the existence of the invariant manifolds. They coincide with the invariant
manifolds of GV for all N € N. Since the invariant manifolds of GV are
graphs of CT. functions the same is true for the invariant manifolds of G
itself. Note that the linear maps obtained in Lemma 3.4 which put the
invariant subspaces in the coordinate axes are Lr maps. O

4. THE LATTICE MANIFOLD

4.1. Construction of the lattice. Preliminaries. The goal of this sec-
tion is to define the basic structures we will use in the phase space. Here, we
will specify the distances, the topology and the Banach manifold structure.

Let M be a n-dimensional C'* compact Riemannian manifold. This hy-
pothesis is not restrictive since we will consider a compact set A C M, and a
neighborhood of A contained in a connected compact subset of M. However,
assuming M compact simplifies the construction of the lattice.

In M one has the distance

d(x,y) = inf{length(y) | v is a curve joining = and y}.

With this distance M is a metric space and the associated topology coincides
with the topology of M as a manifold. By the Hopf-Rinow Theorem, since
M is compact, all geodesic curves can be continued for all £ and the metric
space (M,d) is complete.

We consider a finite family of charts Fys = {(Uj, ¢;) }je, such that M C
UjesUj, the transition maps ¢y, o qﬁj_l are C°° and, for each r, their r-th
derivatives are bounded with respect to all choices of charts of Fj;. This
implies that all derivatives of ¢y o ¢j_1 are uniformly continuous in their
domain ¢;(U; N Uy). Let 2py be the Lebesgue number of the open cover
{U;}jes, that is, if d(x,y) < 2po, then there exists (Uy, ¢y) such that z,y €
Uk. The compactness assumption on M implies that such a family of charts
does exist.

We shall denote by T Fj; the family of charts of T'M obtained naturally
from Fpy, that is TFy = {(TU;,T¢;) | (Uj,¢5) € Fu}. We recall that
every T'¢; is linear on each fiber.

We shall denote by p: TM — M the tangent bundle projection.

Exponential map. Let exp, be the exponential map of the Riemannian
geometry: exp, : T,M — M, which, since M is compact, is well defined in
the whole T, M. Also by the compactness of M, there exists dg such that for
all x € M, exp, is a diffeomorphism from B(0,dp) C T, M onto its image in
M. We also consider exp : TM — M x M defined by

exp(v) = (z,exp, v), where = = p(v).
Again by compactness exp is a diffeomorphism from {v € TM | |v| < o} to
{(x,y) € M x M | d(z,y) < do}
Connector. By using a connection on M we can define a connector

relating vectors of different tangent spaces. We define p; = min{pg, dp}. We
have that if d(x,y) < pr, there exists a unique minimizing geodesic joining
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x and y, say 7,,. Hence, we can consider the isometry 7(x,y) : T,M —
TyM defined by the parallel transport along v, , given by the Levi-Civita
connection on M. We remark that the map

(4.1) 7:U, CTM xM —TM,

where U, = {(v,y) € TM x M | d(p(v),y) < pr}, defined by (v,y) —
7(z,y)v, for v € T, M, is C*°, a linear isometry on each fiber and 77, arx (2} =
Id.

Nash embedding. Now we describe another way to compare vectors
of different vector spaces. By the Nash embedding theorem [Nas56], there
exists a C* isometric embedding e : M — R for some D € N. Hence,
Te : TM — RP x RP is also an embedding. We use this embedding to
define a distance in TM. If u € T, M and v € T, M we set

(4.2) d(u,v) = max{d(z,y), | De(x)u — De(y)v| },

where || - || is the norm in R”. With this distance, TM is a complete metric
space, and the topology induced by this distance coincides with the topology
of T'M as a manifold.

We remark that, since e is an isometry, for any x € M and any v € T, M,

(4.3) [0z, = || De(z)v]l,

where || - ||, az is the norm in T, M defined by the Riemannian metric on M.

Left inverse of De. Given x € M, let E, and E; be the subspaces
De(z)T,M and its orthogonal resp. Let 7(x) and 7t (x) be their corre-
sponding projections. Note that they depend C'*° on z. Since e is an em-
bedding, for each x there exist left inverses of De(x), that is, linear maps
n(z) : RP — T, M such that

(4.4) n(x) - De(x) = 1d 7, p-

Moreover, it is possible to find  depending C™ on x. Indeed, if v € RP,
we have that v = 7(x)v + 71 (z)v, and there exists a unique u, € T, M such
that De(z)u, = m(x)v. Then, we can define n(z) by

N(T)v = Uy.

With this choice, we have that kern(z) = E;-. We remark that the map
n: M x RP — TM defined by n(z,v) = n(x)v is C>°.
In particular, we have that e, De and 7 are uniformly bounded. Moreover
the expression of D%e and Dn in the charts of Fj; are uniformly bounded.
The lattice. Given d € N, the lattice over M is the set

M=]] M.

iezd
A point € M is represented by a sequence (z;);cz4¢, with 2; € M. We will
also use the notation z; = m;(z), where m; : M — M is the projection onto
the i-th component.
Now we proceed to provide M with a distance, which will induce a topol-
ogy. For z,y € M we define
(4.5) d(z,y) = sup d(z, y;)-

i€Zd
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Note that we use the same symbol d for the distance on the manifold M
and for the distance in M.

Since (M, d) is complete, (M, d) is also complete. Indeed, let (z?),>0 be
a Cauchy sequence in M. The inequality

d(a?, %) < d(a?,2)

implies that for all i € Z¢, (2¥)p>0 is a Cauchy sequence in M. Then it is
convergent in M. Let x° be its limit, and 2> = (2°);cza. Given ¢ > 0
there exists pg such that if p, ¢ > po, d(2?, 2) < d(aP,2?) < e. Taking limit
when ¢ goes to co we get d(z?,25°) < e. Then
d(zP,z>°) = sup d(zf, 2°) < e.
i€Zd

We remark that the topology induced by this distance is strictly finer
than the product topology on M.

Given = = (z;) € M we have the following relation between the balls of
M and M which is completely analogous to (2.2):

(4.6) B(z,r) & U;cpaB(zi,r) & B(z,T).

4.2. A manifold structure on M. In this section we provide M with
the structure of C*° Banach manifold modeled on a ¢°° space using the
family of charts Fjs introduced at the beginning of Section 4.1 for the finite-
dimensional manifold M. We define

fM = {<U¢7¢> ’ (b = (¢i)iEZd is a sequence with (U’L7¢Z) € fMu
(4‘7) U¢ = int H UZ}
i€Z4
That is, if (Ug,¢) € Fm, ¢ : Uy C M — (°(R") is the map defined by

T 0 ¢ = ¢; o,

Proposition 4.1. The family Faq provides M with the structure of a C'™
Banach manifold. Moreover, for every x = (x;) € M there exists an iso-
morphism

Xa @ TuM — 0°°(Ty, M),
and (xz)i = Dmi(x), where m; : M — M.

Proof. The proof depends on subtle uniformity properties. Let z = (z;) €
M. For any i there is a chart (Uj;, ¢;,) of M such that B(z;,2p9) C Uj,,
where 2pg is the Lebesgue number of the cover {U;};e;. Then the ball
B(z,2po) C I1;B(x;,2p0) C IL;U;; which implies « € B(x,2pp) C int IL;Uj;,.
This proves that M C U, ¢)ex\Us-

Next we check that the charts ¢ : Uy C M — (°°(R") are homeomor-
phisms onto its image. Since the charts ¢; : U; — R™ are uniformly con-
tinuous and there is only a finite number of them, the family {¢;} is an
equicontinuous family of maps (considered as maps form U, C M to R")
at every point of Us. Then, by Proposition 2.2, ¢ is continuous. The same
argument applies to ¢! and hence ¢ is a homeomorphism.

Let (Ug, ¢) be a chart of M and V; C M open sets. From the properties

(1) int (AN B) = int ANint B,
(2) ILU; N1ILYV; = Hi(UZ‘ N V;),
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(3) S(ILW;) = 1L (W),
and the fact that ¢ is a homeomorphism we have that
d)(int ILU; Nint Hsz) = int Hz(ﬁl(UZ N Vz)

Then if (V,, = intIL;V;,¢) is another chart we have that ¢ o ¢! maps
int IT;¢;(U; N'V;) homeomorphicaly onto int IT;2;(U; N'V;). Moreover, given
T = (:El) € int ngbz(UZ N VZ)

Yog H(z) = (W0 d H(x)) = (Yo ¢y (z:)).

Since there is only a finite number of different transition maps ; o qﬁi_l, each
one only depends on one component of x and is C* with each derivative
uniformly bounded on its domain, we can apply Corollary 2.3. Therefore
o ¢! is C®. Now we establish an isomorphism x, between T, M and
0°(Tr,eM). Let v € TypM. It can be seen as an equivalence class of !
curves on M tangent at x. Let ¢(t), with ¢(0) = x be a representative of
the class of v. Let (Uy, ¢) be a chart on M such that « € U,. Consider the
diagram

C Yy
I — U¢ cCM — UcCcM
N ¢l L &i
Uy

where we have m; o ¢ = ¢; o m;. We make the abuse of notation of denoting
by the same symbol 7; two different but related projections. The fact that
x € Uy implies there exists p > 0 such that B(x,p) C II;U; and then,
by (4.6),
I, B(zi, p/2) C B(x,p/2) C B(x,p)

which implies that B(z;, p/2) C U; for all i.

We have that m; o ¢ is a curve on M with m; o ¢(0) = x; and hence
(m;i0c)(0) € Ty, M. On T, M we consider the norm induced by the Riemann

structure. Since D¢;(x;) : Tp,; M — R™ is an isomorphism there are «;, 5; > 0
such that

(4.8) a;lv] < |Dgi(xi)v] < Bilvl, for all v € T, M.

Since the Riemann structure is differentiable, a; and 3; can be chosen de-
pending continuously on x. Moreover, since the atlas Fjs is finite, there
exist «, 8 > 0 satisfying (4.8) for all ¢; of the atlas.

Since we have (¢; o m; 0 ¢)'(t) = (m; 0 p o) (t) = mi(¢ o) (t) we obtain
[(¢i omioc)(t)] < [(D(c(t))c (t)].

On the other hand

|(¢i o mioc) (t)] = [Di(mi o ) (t) (i 0 ) (t)] = axl(mi 0 ¢)'(t))]
and therefore
|(mi0¢)/ (8)] < a7 [Dg(c(t))c' (t)]
which implies that (m; 0¢)'(0) € £>°(T,,,M). This enables to define x,([c]) =
((mi 0 ¢)'(0))-

Now we prove that x, is onto. Let v = (v;) € £°°(T;,M). We obviously
have |v;| < |v|. There exists (Ug, ¢) € Faq such that € Uy. We have that
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B(zi,p/2) C U; for all i € Z4, for some p > 0. Since we have a finite number
of different ¢; there exists v > 0 such that B(¢;(x;),v) C ¢;(U;) for all i.

This permits us to define curves ¢; : I — M, where I = [—tg,to] is a
uniform interval. Indeed, let w; = D¢(x;)v;. Note that |w;| = |Do(z;)vi| <
Blvi| < Blv|. Then we define ¢;(t) = ¢; *(¢(2;) + tw;) which are uniformly
defined with ¢ty < v/(B|v|).

The curve c(t) = (¢;(t)) satisfies that x,([c]) = (v;).

Finally we check that y, is one to one. Suppose that ¢/(0) # 0. Since
D¢(z) is an isomorphism D¢(x)c/(0) # 0 in £°°(R™). Then there exist k
such that m Do (z)c’ (0) # 0. Since mpDp(x)c’ (0) = (7 0 d o ¢)'(0) = (¢ ©
7 0 ¢) (0) = Doy(xp) (g 0 ¢)'(0) and D¢y (z) is an isomorphism then (74 o
¢)'(0) # 0. Recall that T® : TM — (°(R"™) x £°(R"™), v — (®(x), DP(x)v),
where z = p(v). O

We can use the Riemannian structure on M to define a norm on each
T, M. Indeed, using the isomorphism y, of Proposition 4.1 we can identify
v € Ty M with x,(v) = (vi)i € £°°(Ty, M) and write |v| = sup;cza |vi.

Once we have defined the manifold structure on M, we can lift to it the
Riemannian exponential map exp, the connector 7, and the embedding e.
In order not to complicate the notation we will use the same symbols for
the lifted objects. Its precise meaning will be clear from the context.

The exponential map on M. Given x € M we define exp, : T, M —
M by

;0 exp,(v) = CXPr, (z) (mv).

In the previous formula, by abuse of notation, we have written m;v instead
of the more formal expression D7;(x)v. It is justified by the isomorphism
Xz of Proposition 4.1. We will use this abuse of notation freely from now
on

Also we define exp : TM — M x M by

exp(v) = (p(v), exPy(y) (v))-

Using the same type of arguments as before we obtain that exp is C*° and
it is a diffeomorphism from {v € TM | |[v| < dp} to {(z,y) € M x M |
d(x7 y) < 60}

The connector on M. Given z,y € M we define 7(z,y) : TuM — T, M
by

(4.9) miT(x, y)v = 7(mi(x), ™ (y))miv.

Let U,, = {(v,y) € TM x M | d(p(v),y) < pr}. We define 7 : U, C
TMx M — TM by (v,y) = Tp)y(v). Notice that, since pg < pr, any
point (v,y) € Up,, can be covered by a chart of T M x M of the form (T'¢, ¢).
Then, the expression of 7 in two charts (T'¢, ¢) = (T'¢;, ¢;) of TM x M and
Ty = (Te;) of TM is 74 = Tho70 (T, ¢)~L = (Tohior o (Tei, ;)7 1) =
(Tgi;)- Since there is only a finite number of different 7, ,, and they
are C'°° functions, by Corollary 2.3 we get that 7 is C'°°. Moreover, for all
T € M, T, mxfz) = 1d and 7 restricted to each fiber of T M is a linear
isometry.
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The embedding e of M into (*(R”). The embedding e : M — R
can also be lifted to the lattice. Indeed, we define e : M — (*°(RP) by

(4.10) T; 0€e = €0 ;.

Note that in the above expression and in what follows, we use the same
symbol e for different but related maps. We hope that its meaning is clear
from the context.

Lemma 4.2. The map e : M — (>°(RP) defined above is a C™ embedding.
Furthermore, for any x € M and any v € Ty M,

(4.11) m; o De(z)v = De(m;x)(m;v).
In particular, ||De(z)v|| = ||v||m,Mm-

Proof. To check that e € C™ we take a chart (Uy,¢) with 2 € Uy and
we consider e o ¢! : ¢(Uy) — £°°(RP). The components of this map are
eo d)fl : ¢i(U;) — RP. Since there is a finite number of them and they are
C*> with bounded derivatives, by Corollary 2.3 we have that eo ¢! is C™.

To see that De(x) is one to one let v € T, M be such that De(z)v =
0. Then De(z;)v; = De(x;)Dmi(x)v = D(e o m)(z)v = D(m oe)(x)v =
m;De(x)v = 0 and hence, since De(z;) is one to one, v; = 0 for all <. To
see that e is a homeomorphism onto its image take into account that each
component e; = e : M — RP is a homeomorphism with e, e~! uniformly
continuous because M is compact. Taking charts, by Proposition 2.2, e :
M — e(M) is a homeomorphism. O

As a consequence, we have that Te : TM — £2(RP) x (>°(RP) is also an
embedding. As in the finite dimensional case, we can define a distance in
TM by means of the embedding T'e, by setting

(4.12) d(u,v) = max{d(z,y), | De(x)u — De(y)v| },

for u € T,M and v € TyM, where d(z,y) is the distance in M defined
by (4.5) and || - || is the norm in £>°(RP).

Lemma 4.3. The topology induced by the distance (4.12) coincides with the
one of TM as a manifold.

Left inverse of De in M. Using (4.11) and (4.4), we can also define a
map 71 : M x {*(RP) — TM such that n(z) o De(x) = Id |7, A+ Indeed,
given x € M, v € (*®(RP),

(4.13) min(x)v = n(mi())mi(v).
As in the finite-dimensional case, n is C* and e, De and 7 are uniformly

bounded. Moreover the expressions of D?e and D7 in the charts of Fp, are
uniformly bounded.

4.3. Differentiable functions on M. We will say that a C” map F :
M — M is uncoupled if, for each i € Z%, there exists f; : N — M such
that m; o F' = f; o m;, that is, if its é-th component only depends on the i-th
variable.

In order to check the differentiability of uncoupled maps on M, here we
have the analogous of Corollary 2.3.
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Lemma 4.4. Let f; : M — M, i € Z%, be a family of C" maps. If there
exists K. > 0 such that

wp s o fiod o < Kn,
ZEZd (U¢7¢)7(U7,/) ﬂp)eFJ\/f

then F = (f;) : M — M is C" and ||F||cr < K.
In particular, if the above condition holds for any r, F is C*°.

Proof. Is is a direct consequence of Corollary 2.3. Indeed, for any (U, ¢),
(Uy,1p) € Fu, the expression in these charts of F is ¢po Fo¢™! and (¢ o
Fog¢ ), =10 fio qb;l. Hence, by Corollary 2.3, ¥ o F o ¢! is C", with
norm bounded K. O

We remark that the condition only deals with a finite number of charts.

5. MAPS IN M WITH DECAY

In this section we extend the definitions of functions with decay between
£°° spaces introduced along Section 2 to functions on M.

5.1. Hélder and Lipschitz functions on M with decay. Let X C¢ M
be a subset. Given 0 < « < 1 and a decay function we define the set

Cf = CR(X,M) ={f: X = M| f € C% ra(f) <o},

where

(5.1) Ya(f) = sup Fa;(f)T(i - )~
i,j€Z4

with

(5.2) Ya,j(fi) = sup sup @), [ilv)

By, d*(x;,y;)

To introduce a distance in the set of Holder functions we have to compare
distances between differences of images. Since M is not a vector space we
use the trick of comparing differences of the images by the embedding given
by the Nash embedding theorem (see Section 4.2).

First we define

dca(fvg) = maX(dCO(fvg)v Ha(fv g)),

where

L Jelf(#) — elg(e)) — e(F(9)) + (o)
Ho(f,9) = sup (e y) :
Moreover for f,g € Cp we define
63) Gosttad = pup s 1S =0 ) =) + et
EM e Lj> Yj

and

(5.4) Ya(f,9) = sup Fa,j (fir 9:)T (i = 5) 7"
2,J
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We endow CP(X, M) with the distance
(55) dcl‘i‘(f7g) = maX(dC’a(fag)ﬁa(fag))-
We remark that if f, g € CF(X, M) then deoa(f,g) < co. Indeed, we have
Sostho) < s sup 2L =<0 + ) — o)
op i
(5.6) < || Dellco (Fa,i (fi) + Fa,j(9i) < [IDellco(valf) + Yal9))T(E = j).

We note that this space is complete. Notice that Cf(X, M) is a metric
space but not a vector space.

Remark 5.1. An equivalent definition of C} functions is obtained by first
introducing C&(X, ¢>°(RP)), with the norm given by

[flleg = max{||flloe; va ()},

where 7, is defined by (5.1). This is a Banach space. Then, using the
embedding e, we can consider
CR(X, M) ={f € C* |eo f € CR(X, (*(RP))},
with the distance
dea(f,9) = |leo f —eogllcg,
which is equivalent to the distance defined in (5.5).

5.2. Continuous functions on M. Let X be a topological space and M

the lattice constructed from a compact manifold M as in Section 4.2 and

hence the functions from X to M may be considered as bounded functions.
We consider

CUX, M) ={u:X — M| uis continuous}
with the distance d(u,v) = sup,cx d(u(z),v(z)). We use the same symbol
d for the distances in M, M and C°(X, M). We define C°(X,TM) in the

sale way.

5.3. The space of sections covering a map with decay. Given X C M
and u : X — M, we will say that v : X — T'M is a section covering u if

(5.7) pou(@) = u(x),
where p : TM — M is the tangent bundle projector. Given v a section
covering u, we have that v(z) € T,yM =~ (°(T,, ;M) and therefore it

1
makes sense to write v = (1),cza-

We first define
(5.8) SUX, M) ={v:X - TM|p((z)) =u(z), vbounded }
and, for u continuous,
(5.9) SOX,M)={v:X - TM|p(v(z)) =u(z), vcontinuous }
With the norm

(5.10) [l cvo = sup [|[v(z)|| = sup sup |v(z)i;,
zeX zeX je7d

SP(X, M) and S%(X, M) are Banach spaces.
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We can provide S’(X, M) the structure of a £> space in the following
way. For i € Z%, let
(5.11)  SH(X,M); ={v:X — TM | p(v(z)) = m; ou(x), v bounded },

where p : TM — M is the bundle projection, and m; : M — M is the projec-
tion on the i-th component. Then the map 1 : SL(X, M) — £>°((St(X, M));)
defined by

(5.12) miow(v)(z) = mov(x)
is an isometry.

Remark 5.2. Notice that the analogous isometry between spaces of contin-
uous sections does not exist. For instance, the map v : £52,(S') — £32,(S1)
defined by v;(z) = sin(z;)"/V!, if j # 0, and vp(z) = 0 has all its components
continuous and uniformly bounded but the map itself is not continuous at
z = 0.

Next we introduce the following subset of S%(X, M) of Hélder regular
sections with decay. Given a Cp function u : X — M, we define for 0 <
a <,

(6.13)  Spr(X, M) ={v € CUX,TM) | p(v(2)) = u(x), [vllcg < oo},

where

(5.14) [Vllce = max(||v]ce, va (V)
and
(5.15) Ya(v) = s Fang ()T (i = )~
with
S () — sup s | De(ui(y))vi(y) — De(u;(z))vi(z)|
(5.16) Ya,j (Vi) = sup sup e :

Ti=Yi xj#y;
]

With this norm, SﬁF(X, M) is a Banach space.

A particular and important case is when u : X — M is the immersion
i(x) = . In such a case, we will often skip the subindex u in the corre-
sponding spaces of sections.

5.4. A chart in the space of continuous functions. Let u € C°(X, M),
do be the radius given at the beginning of Section 4.1 and B(u,r) be the
ball {v € CO(X, M) | d(v,u) < r}.

We consider the chart A : B(u, dp) — 58750 (X, M) defined by

(5.17) (Av)(z) = exp;(lx) v(x) = (exp;_l(z) vi(x));.

We note that if v € B(u,dp), then x — (Av)(x) is continuous. Indeed,
we know that exp™! : {(z,y) € M x M | d(z,y) < 6o} C M x M — TM
defined by (z,y) + exp, !y is continuous. Therefore the restriction of it
to {(x,y) € M x M | z € Up,d(z,y) < dp} is uniformly continuous. Let
xo € X and € > 0. Let § = d(g) > 0 be given by the definition of uniform
continuity of exp~! in the above mentioned set.
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Let 01 > 0 be such that if d(y, o) < d1, then d(u(y), u(xo)) < J. Since v is
continuous, there exists do > 0 such that if d(y, zo) < 2, d(v(y),v(xp)) < 6.
Then d(u;(y), ui(zo)) < ¢ and d(v;(y), vi(xo)) < ¢ and therefore

d(exp;l(y) vi(y), exp;il(xo) vi(z0)) < €.
This implies that A is well defined.
Lemma 5.3. A is a homeomorphism and Au = (0;);, where 0; € Ty, (oM.

Proof. The inverse of A is B, defined by (B§)(z) = expy () §(x). To study
the continuity of A let vy and v such that d(v,v9) < d. First note that if f :
ZxY — Y is uniformly continuous then (f,(z)).cz is equicontinuous. In the
product topology, the uniform continuity says that d((z1,x1), (20,20)) < 9
implies d(f(z1,21), f(z0,20)) < €. Then, if d(x1,20) <, d(f(x1), f-(x0)) <
e. We apply thistoexp™ : Mx{v € TM | |v| < b} — M, (2,v) — exp; L v.
exp~! is uniformly continuous in M x {v € TM | |v| < §y} and hence
(exp, 1) +cT, 18 equicontinuous.

Since for all x € X and i € Z9, d(vi(w),vo,(z)) < & implies | exp;il(m) vi(x)—

exp;il(w) vo,i(z)| < €, then

sup sup | exp;il(w) vi(x) — exp;il(x) vo,i(z)| < e.
x 7

O

5.5. Differentiable functions on M with decay. Let M and N be Ba-
nach manifolds modeled on £>°(R™), constructed as in Section 4.2 from finite-
dimensional manifolds M and N, resp., with the same lattice Z¢, with atlases
Fa and Fr.

In particular, the maps exp, 7, the embedding e : M — e(M) C £2(RP),
and its inverse 71 defined in (4.10) are uncoupled C'*° maps.

Given U C N, an open set, we start by introducing

(5.18)
CHU,L*R™)) ={G € C"(UL=(RM)) | Gog™! € CL(¢(UpNU), £2(R)),
V(Ug, ¢) € Fa, |Gl < oo},

with

(5.19) IGleg = sup  [[God ey

and where || - |lcz. on the right-hand side above was introduced in (2.22)
and (2.24).

With the norm defined by (5.19), CL.(U, £>°(R")) is a Banach space.
Notice that if G : U ¢ N/ — ¢*°(RP) is an uncoupled C™ map, then it is
Ct and
1Gller <T0)MGller,
where || - [|cr is defined as usual as

IGllcr = sup_ [Gog™ cr.
(Ug,9)EFN
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Next, given U C N, we define
(5.20) CHU,M) ={G € C"(U.M) | eo G € CL(U, £*(R7))},

where e : M — £>°(RP) is the embedding defined in (4.10).
In C[(U, M) we consider the distance

(5.21) dcr(G,G) = |leo G —eoGcr.

With this distance, C[.(U, M) is a complete metric space.
Analogously, given V C TN, we introduce

CR(V, £°(R™) x £2°(R™)) = {G € C"(V, £>°(R™) x £*°(R")) |
(5.22) GoT¢ ' € CL(THTU,N V), £2°(R™) x £>°(R™)),
V(I'Uy, T¢) € TFp, ||Gllcg < oo},

where T F) is the natural atlas of TN obtained from Fy. With the norm
defined in (5.19), it is a Banach space.

We also set
(5.23)

Cr(V,TM)={G € C"(V,TM) | Teo G € CL(V,£>(R") x £>°(R"))},

where Te : TM — (>°(R™) x ¢>°(R") is the embedding obtained from e.
Equipped with the distance

(5.24) dcr(G,G) = |[Teo G — Teo G|cr,

it is a complete metric space.
With these definitions, from the chain rule and Lemma 2.11, we immedi-
ately have

Proposition 5.4. Let M, N and P be Banach manifolds over {>° spaces ob-
tained from finite-dimensional compact manifolds M, N and P, resp. Given
UcCcM,VCN,letG:U—-V,H:V — P beCl. maps. Then
HoG e CL(U,P).

We recall that an uncoupled C" map is also a Cf. map. Hence, by the
previous proposition, the composition of an uncoupled C" map and a Cf.
map is CF.

We recall that if z € M, we can identify T, M with ¢*°(T;,M). Then, it
is also worth to remark that

Proposition 5.5. Let M and N be Banach manifolds over {*° spaces
obtained from finite-dimensional compact manifolds M and N, resp. Let
U C N be an open set and let G € CF(U,M). Then, for all x € U,
DG(x) € Lr(ToN, TgyM) and

IDG@)]r < [Glley.

Proof. Let v € TpN and let (Ug, ¢) € Fpr be a coordinate chart such that
z € Uy. By definition (5.20), eoGo¢™! € CR(p(UpyNU), £ (R™)) and, since
e is an isometric embedding, we have that, for any i € Z¢,

I(DG(@)v)ill = (DG o 6~ (¢(@))ve)ill = I(D(e o G o ¢™")(¢(w))ve)ill,
and vg = Do(x)v € £L°(R"™). O
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5.6. Banach manifold structure on C{ (M, M). Let Bs;(F) = {® €
CHM, M) | dey.(F, ®) < 6} be the ball of radius ¢ around F' in Cf.(M, M).

Let Diff],(M) be the set of C" uncoupled diffeomorphisms on M. It
is not difficult to see that for any F' € Diff], (M) there exists § such that
Bs(F) C Diff,(M). The proof of this claim is as follows. Let F' be a C”
uncoupled diffeomorphisms on M, F = (f;). That is, f; : M — M, i € Z%is
a family of C" diffeomorphisms, with the C" norms of f; and fz._1 uniformly
bounded in . In particular, since M is compact, one has that there exists
C > 0 such that d(fi(z), fi(y)) > Cd(z,y), for all z,y € M and i € Z.

Now let ® € Bs(F'). If ¢ is small enough, ® is a local diffeomorphism in
balls of uniform radius. Furthermore, since

d(®(x), ®(y)) = d(F(x), F(y))—d(®(z), F(x))—d(F(y), ®(y)) = Cd(z,y) =25,

we have that ® is injective. Indeed, if d(z,y) > 30, the above inequality
implies d(®(x),®(y)) > 0. Otherwise, if d(z,y) < 39, the claim follows
from ® being a uniformly local diffeomorphism. Surjectivity follows from
applying the Implicit Function Theorem in uniform neighborhoods. This
proves that ® is a C" diffeomorphism. Then, as is proven in [FdILM10] (see
Lemma D.3 there), if § is small enough, =1 € C¥.

Let us fix Uf, an open neighborhood of Diff;,(M) in C[.(M) included in
Difff:(M). In this section we provide a Banach manifold structure to Uy.

Let Sp(M) ={o € C. [poo =1d, [lo[/cr. < oo} the Banach space of Ct.
sections on M, where

lollez = sup  |logllcrs
(Ug,9)EF M

with oy = moT¢pooo ¢~ 1, the second component of the expression of o in
the coordinate chart (Uy, ¢).

Let F € U] and Bs(F) C Uf.. We define Ap : Bs(F) — Sf.(M) by

(5.25) Ap(®)(z) = exp(z,® 0 F1(2)).

In this way, if ® € Bs(F'), we can write ® = expo o F', where 0 = Ap(P).

The map Ap is clearly a homeomorphism onto its image. Furthermore,
for any F,G' € U}, the transition map is Ag o A}l (0) = 0o F oG, which
is linear and, by Lemma 2.17, bounded. Hence, it is C*°.

5.7. Regularity of the composition map. In the forthcoming paper
[FAILM10], we will consider in Sections 3 and 4, operators h — ® o h and
h — hoF, where & € C[(M) is a diffeomorphism, F' € C"(M) is an un-
coupled diffeomorphism on M, and h is supposed to range over Cf(X, M),
with X C M.

We will need such compositions to be well defined as functions of CF (X, M),
and furthermore we will need to establish the regularity of the operators with
respect to their arguments.

The sets C[.(M) and Cp(X, M) are not Banach spaces, but can be mod-
eled as Banach manifolds on S{(M) and SP(X) resp. (see Section 5.6).
Hence, we will rewrite the composition operators using sections instead of
diffeomorphisms. Here we will describe the properties of some general op-
erators of this kind between spaces of sections, to be particularized in the
next paper [FdILM10].
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We start by considering the operators v — H ov and v +— v o f, where v
belongs to a space of sections and H and f are appropriate functions to be
specified below.

Let U, = {v € TM | |v| < p}. Consider g € C.(M, M) and H, €
CF(U,, T M) for some p > 0 such that

(H1) po Hy = g o p, that is, g is the restriction of Hy to the zero section,

(HQ) Hg(TxM) C Tg(x)./\/l,
and let f € C"(X, X) be an uncoupled map.

Under these assumptions, it is clear that, if v : X ¢ M — TM is a
section covering some function h : X C M — M, in the sense introduced
in (5.7), then H, o v covers g o h, that is, po Hjov = g o h. On the other
hand, if f: X — X then v o f is a section covering h o f.

We define the map from the space of sections covering h to the space of
sections covering g o h by

(5.26) Ly,(v)=Hgyov,
and the map to the space of sections covering h o f by
(5.27) Rs(v)=vo f.

Notice that Ry is linear.

Next we state that L, is a differentiable map between spaces of Holder
sections with decay, provided that g and H, are differentiable enough and
satisfy decay properties, and is a differentiable map with decay when con-
sidered between spaces of bounded sections. We will also show that Ry is
linear bounded when acts on spaces of Holder sections with decay and is
linear bounded and has decay properties when considered between spaces of
bounded sections.

Given E, a normed space, and p > 0, we will denote by B, = {v € F |
|v| < p} the ball of radius p.

Concerning the regularity of the composition map Ly, we have

Proposition 5.6. Let g € CL(M, M) and Hy € CL(U,, TM) be maps
satisfying hypotheses (H1) and (H2). Let h € Cf(X, M). Then the operator
Ly, defined by (5.26) has the following properties.

(1) Ly, is a C"* map from B, C Spp(X, TM) to Sgop, p(X, TM).

(2) L, is a CL.~% map from the ball B, C SY(X,TM) = (>°((S}(X,TM));)

to Shop, (X, TM) = £°((8},,(X, TM));).
Furthermore,

(5:28) (DL ... 05)(x) = Di(Hypyy () ((@))in(a) . 55(a),

for 1 < j <r—23, in the first case, 1 < j < r — 2, in the second one, and
1 <j<r—1, in the third one.

Its proof is rather technical and is deferred to Appendix A.
The next result concerns the regularity of the composition map R .

Proposition 5.7. Let X C M andlet f : X — X be an uncoupled Lipschitz
map. Let h € Cf (X, M).
Then the operator Ry defined by (5.27) has the following properties.
(1) Ry is a bounded linear map from Sy’ (X, TM) to S,?ofm(f_l(X), TM).
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(2) Ry is a Lt map
from S (X, TM) = £=((SH(X, TM));)
to Sh (1 (X), TM) = £2((S}, (f~1(X), TAD)),).
(3) Ry is a bounded linear map from SY(X,TM) to S,?Of(f_l(X),TM).

Proof. First we prove (1). Let v € S (X, TM). Giveni € Z%and z,y € X
such that m;(x) = m;(y) for j # ¢ we have that f;(z) = f;(y) for j # 4, since
f is uncoupled, Then, using the norm in S and the fact that f is Lipschitz,
we have that 7

IRf@)llco = [lv o flico < [lvllco
and

|De(ho f(x))v;(f(x)) — De(ho f(y))v;(f(y))|
< wllepl(@ = 5)d* (fi(z), fi(y))
< vllepT(@ = 5)(Lip £)*d* (zi, yi),
which proves the first statement.

Now we prove (2). Clearly R is bounded. It remains to be proved that
it belongs to Lr. Given i,j € Z% and v € S)(X, T M) with
mpov =0, for k#j and || <1
we have that
(Ryp)II(i =)™ < supm(F@)IT =) <T(O)
This proves that Ry € Lr.

(3) is straightforward, since the norm in the spaces of bounded and con-
tinuous sections is the same. a

Proposition 5.6 deals with the dependance on h of the operator (®,h) —
® o h, for a fixed . Now we study the joint dependance with respect to
both arguments.

Given an open set U C T'M, we shall denote C}. g (U, TM) = {H €
Cr(U,TM) | HT,MNU) C T, M}, which is the set of C[. functions that
preserve fibers. It is a vector space and a Banach space with the C} norm.

Lemma 5.8. Given p, p1,p2 > 0, consider the sets U, = {v € TM | |v| <
o Vi — ((@w) € M x TM | w0 € T,M, d(z,y) < pu, [u] < pa} and
assume that the functions j : U, C TM — M and J : V,, , C M x
TM — TM are C*, uncoupled and verify that d(p(v),j(v)) < p1, whenever
v € TuyM with |v| < p and

J(l’,TJ(U)M N Up2) Cc oM, ve T, M
with uniformly bounded derivatives. Then, the map H : B,, C S{(M) —
C’l’i’ﬁb(UPZ,T/\/l) defined by
H(o)(v) = J(p(v),0(i(v))),  forveTuM, xz=p(x),

s well defined and C*°. Moreover, for v € T, M and k > 1
(5.29)

(D*H(0)or -+ 07)(v) = D*(Jja 13, ;) (20 (1)1 () - - - o1 ().
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In the forthcoming paper [FdILM10], in Section 3, we will use this lemma
with j(v) = exp,v, v € TuM and J(z,w) = exp;l(expy w), © € M,
w € TyM, which clearly satisfy the hypotheses of the lemma. These ex-
amples can be taken as models for j and J. Notice that, since Jl(x,Tj M)
TiyM — Ty M is a C°° map between Banach spaces, the right-hand side
of equation (5.29) makes sense.

Proof. Since o € B,, C SF(M), the map H(o) is well defined in U, and,
by Proposition 2.17, is a C[. map. We only need to check that H is C°.

From Taylor’s formula, we have that, for any £ > 0 and for any v € T, M,
o € B, C S{(M) and & small enough,

Ao +8)(v) =J(2,0(i(v) +3((r)
k
=3 D ey 00) 0 G0) 3G (0)
=0

+ Ry,(0,5)(v)5 (j(v))%F,
where

101 _ p\k—1
630 Ru(0,0)0) = [ S 0 U a0) w060 +13G(0)

0
— D ) (@, o i(0))) .

Note that here the derivatives are taken over the linear space Tj,,)M. Hence,
for 0 < i < k — 1, we introduce the linear maps ¢; : B,, C Sfp(M) —
LY(SAM), CT i, (Up,, TM)) defined by

(5.31) (¢i(0)o1...0:)(v) = D'(J(w,1, M) (@, 9 (§(0)))01((v)) ... 7 (i(v)),

where v € T, M with |v| < pa, and the map Ry defined on some thickening of
By, in By, X SE(M) to LF(SFH(M), CF 1, (Up,, TM)) given by (5.30). Since J
and j are uncoupled C*° maps, ¢; and Ry, are indeed well defined. To apply
the Converse Taylor’s Theorem, it only remains to check the continuity of
¢i, 0 <i <k, and Ri. Then, Converse Taylor’s Theorem will imply that H
is C*. Since k is arbitrary, the lemma will follow

The continuity of ¢; and Ry is a consequence of the same argument. In
fact, if 0,6 € B, 01...0; € SL(M), to bound

(61(0) — $:(6)) (01 0)(v)
1
- / D iz a0) (@ 6G(0)) + o (0)) — 5(1(v)) dt

0
x (0= 6)(j(v)o1(i(v)) ... oii(v))
it is necessary to compute r derivatives of the above expression. Since J

and j are uncoupled C'* maps, Proposition 2.17 implies that ¢; is in fact
Lipschitz, and the same holds true for Ry. O

We will use the following elementary lemma.

Lemma 5.9. Let E, F,G be Banach spaces and U C E, V C F open sets
such that 0 € U. Assume that f: U x V — G satisfies
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(a) forally €V, f(.,y) is linear continuous,
(b) for allx € U, f(x,.) is C" and ||f(x,.)||lcrv,q) < C for x € B(0,0)
some C,§ > 0.

Then f € C"(U x V,G).
Remark 5.10. In fact, f can be extended to E x V.

Proof. First we prove that for 1 < j < r, Di f(.,y) is linear continuous.
Indeed, taking derivatives with respect to y in the relations

f@1+x2,y) = f(o1,y) + flo2,y),  [Qw,y) = Mf(2,y)
we get that D f (.,y) is linear. Moreover, given z € U, y € V

g 2IIJGII

15 f (z, y)l!—llef(2H T Y=

implies that D, f (.,y) is continuous. Furthermore Di f(.,y) is differentiable
with respect to = and

Dy D f(z,y)Az = D] f(Az,y).

Now we claim that for 0 < j < r — 1 we have that D, D; f(:x y) is contin-
uous. Indeed, if Az € E with ||Az| =1

I[DoD} f(x,y) — Do D} f (20, 50)] Az || i (r )
< ||Djf(AfU y) — Djf(Ax yO)HLJ‘(F,G)

< fHDJf( Az,y) — D”f( Az, yo)llLi(r.e)

2
< 5sup||D]Hf( Az, &) ivime) |y — voll

<y —yol|-
< 2y~ ol

Now we deal with the case r = 1. We will check that both D, f and D, f
are continuous as functions of (z,y). Given (z,y9) we decompose

Dy f(x,y) — Dy f(zo,y0)|l < Dy f(z,y) — Dy f(z0,9)l
+ | Dy f(z0,y) — Dy f(xo, yo)||-

The first term is bounded by || D, f(z — xo, y)|| < % ||z — zo|| and the second
one by the continuity of D, f(zo,.). On the other hand, the claim with
j = 0 gives that D, f is continuous. Hence f € C'. Assume by induction
that the lemma is true for » — 1. We apply the induction hypothesis to
D;fl f. Indeed, we have already seen that D;fl f(.,y) is linear continuous.
Moreover by hypothesis (b) D;_l f(x,.) is C'. This implies that D;_l f
is C' and hence Dy f and D;,;D;_1 f exist and are continuous. Moreover
DDy f=0for2<j<r. Hence feC. m

Finally, we have
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Proposition 5.11. Let p1, p2,p3 > 0, the sets U,,, V), 5, and the function
H as in Lemma 5.8. Let B,, C Sf14(X). Then the map (o,v) — Q(o,v)
from By, x By, C Sp(M) x Sfq (X) to Sfyq (X) defined by

o, v)(x) = H(o)(v(x))
is C" 3.

Proof. By Proposition 5.6 and Lemma 5.9, the map from CT. g (TM, T M) x
ST (X) to S (X) defined by (H,v) — Hov is C"=3, since it is linear
and bounded with respect to H and C"~2 with respect to v. Hence, by

Lemma 5.8 the map (o, v) — H(o) o v is the composition of a C°° map and
a C"3 map. O
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APPENDIX A. PROOF OF PROPOSITION 5.6

A.1. Construction of curves with decay. In the proof of Proposition 5.6,
as well as in the proofs of other results in [FdILM10], it is necessary to obtain
bounds of distances between images of different points through maps with
decay. If these maps take values in Banach spaces of £ type, these bounds
are obtained applying a suitable Mean Value Theorem, which takes advan-
tage of the decay properties of the maps (see, for instance, Proposition 2.7
and Lemma 2.18). However, in many applications the maps take values on
the lattice manifold M. In this case, to apply Mean Value arguments, we
need to construct curves joining points satisfying certain decay properties.
The construction of such curves is performed in Lemma A.2.

Notation A.1. Let us consider the curves P : I C R —- M, : I CR —
TM and the functions g : M — M, H : TM — TM, f : M — (*(RF)
and F : TM — (®(RF) x ¢*°(R¥). Let us assume that H and F send
fibers to fibers, that their restrictions to the zero section are g and f, resp.,
and that p o 8 = (P, where p is the bundle projection p : TM — M. Let
(Ug, ¢) and (Uy, 9) be charts of M, and let (T'Ug, T'¢) and (T'Uy, T%) be the
corresponding charts of TM. We will denote the expression of the preceding
functions in these charts as

By =¢op, By =Te¢op,
gop =1ogog !, Hgyp=TpoHoTe¢™ !,
fo=foo Fy=FoT¢ .

We also denote 7; : £°(RF) x £°(RF) — ¢>°(RF), j = 1,2, the projections
onto the j-th component, that is, 7j(vi,v2) = v;.
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Using the previous notation, we introduce H; > Fg " and ﬁq% by

Hyy = (m1 0 Hyp,ma 0 Hy ) = (96,0, Hy ),
Fw = (7'('1 o F¢,7TQ 0F1/;) = (fl/ani)?
B = (10 By, m2 0 B) = (B, 53)-

Lemma A.2. There exists C' > 0, depending only on M, the choice of the
embedding e and the map n introduced in (4.4) and (4.13), resp., such that,
given X C M, h € C&(X, M) and v € S¢(X,TM), for any j € Z¢ and
for any x,y € X such that xp, = yg, for k % j, there exist differentiable
curves (3 :[0,1] — TM and (P : [0,1] — M such that
(1) pof=pP,
(2) BP(0) = h(z), BP(1) = h(y), B(0) = v(z), B(1) = v(y),
(3) 1B2()] < va(R)D(k — 5)d%(zj,y;), k € Z¢, where 7o (-) was defined
in (5.1),
(4) given any coordinate chart T¢ : TUy C TM — £°(R™) x £>°(R")
such that 3(t) € TUy, let By =T¢o = (m 0 By, m203y), then
(20 B)s(0)] < Clles (1 + valW)D(k — ) (aym), ke 2,
(5) llm2 0 Be(®)ll < Cllvlico < Cllvlice-
Furthermore, if v = Avy + pvo, with vy,ve € S}OL"F(X, TM), and 3, #1 and
Bo are the corresponding curves, then 8 = A\31 + ufo.

Remark A.3. Using definition (2.29), the above lemma claims that the
curves 37 and (3 satisfy that, for any chart (U, ¢) and (TUy, T'¢) the curves
g = ¢ o AP and 32 = 7y 0 T'¢ o 3 have decay around the component j, with

(A1) 183llco < Cllvllce

and

(A.2) 1351150 < [Ihllcad® (x5, y5),

(A.3) 1831150 < Clivlea (1 + [|hllcg)d® (x5, y;)-

We also remark that, given (T'Uy, T'¢) a chart of T'M, since T'¢ is linear on
the fibers, the fact that § = A3 + s is equivalent to w0 85 = Ama 0 81 ¢ +

pma 0 B2 4.

Proof. We first construct GP. For any k € Z%, let By :10,1] — M a mini-
mizing geodesic joining hx(x) and hg(y). Since M is compact, such a curve
exists. We can assume that ﬂg is parametrized by a constant times the arc
parameter. Hence, |ﬁ£ | is constant and

1
(A4) |67(6)] = /0 R ()| dt = d(hy.(x), hi(y)) < Ya(RT(k = §)d* (25, ;).

The curve §P defined by 7, o 5P = (3, satisfies (1), (2) and (3).
To construct 3, we use the embedding e : M — ¢*°(RP). We introduce

ve = De(h(z))v(z), vy, = De(h(y))v(y)-
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We have that v,,v, € (*(RP). Consider
(A.5) b(t) = vy +t(vy —vz), te]0,1].

We define 5(t) = n(6P(t))b(t), t € [0,1], where n(z) is the left inverse of
De(z) defined in (4.13). By construction, [ satisfies properties (1) and (2).
Moreover, if v = Av; + uve, since this construction is linear on the fibers,
we have that 8 = A3 + ufs.

To check that (3 also satisfies (4), first notice that, since De is uncoupled,

bi(t) = De(hi(y))vi(y) — De(hi(x))vi(x).
Hence, by the definition of the space S,‘fvr(X, TM) in (5.13),

(A.6) ()] < [VllepT(k = 7)d* (25, ;).

Now, let (T'Ug,T¢) be a chart of T’M such that 3(t) € TUy, for some t.
Using the notation introduced in A.1, the expressions of GP, 8 and 7 in the
charts ¢ and T'¢ are ﬁg =¢o P, By =T¢o 3 and ny : £2°(R™) x (*(R") —
0 (R™) x £>°(R"™), defined by

ns(@)v =Thon(¢™" (z))v = (z,n3(x)v),

resp. The map 773) = my o 1y is uncoupled and has derivatives bounded
independently of ¢. We have that

By (t) = Toon(B7(1)b(t) = Tpon(¢~ odofP(£))b(t) = (B5(), 5 (65(1)b(t))-
Since 773) is uncoupled, by (A.6) and (A.4), we have that, for any k € Z,

d

0 Bur) (O] = |5 (R 0)br(1)

< D3 (85 (855 1 (Dbr(0)] + 03 (85 1 (£)) b (D)]
< C([Wllcova(h) + l[vllog)T(k = 5)d* (), y;),
which proves (4).

Finally, (5) is an immediate consequence of the definition of b(¢) in (A.5)
and the fact that n is bounded. a

A.2. Proof of Proposition 5.6. First we prove (1). We start by checking
that L, is indeed a well defined map from Sj (X, TM) to Sg,, (X, TM).

Let v € S¢r(X,TM). We take j € Z% and z,y € X such that z; = y;,
for i # j. Let7ﬂ and (P be the curves given by Lemma A.2 associated to h,
v j, x and y. We have that, for any i € Z,

(A7) [De(gi o h(z))Hy(v(x))i — De(gi o h(y)) Hy(v(y))il

1
<[5 (Delai o @) Hy 5000
0

Given t € [0,1], let (TUy,T¢) and (TUy, T%) be charts of T M such that
B(t) € TUg and Hy(B(t)) € TUy, and let 34, Hy  and Tey, be the expression
in these charts of 3, H, and Te, resp., according to the notation introduced
in A.1. Following those conventions and the fact that the restriction of H,
to the zero section is g, we have that Hy , = (94,45 Hq%w) and 3y = (Bz, ﬁé)

dt
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Since Tey, = (ey, Dey), we also have that 7y o T'ey, = Dey. Furthermore,
since Dey(x,v) is linear with respect to v, we will write it as Dey(z)v.
Using these functions, we have that

De(g o 3°(t))Hy(B(t)) = m2 0 Tey 0 Hyy 0 By(t)
= Dey (9o, © B3 (1)) Hg (B (t)).

Using inequalities (A.1), (A.2) and (A.3), since Dey, and H¢2>,w satisfy the
hypotheses on Lemma 2.18, we apply it to Hy(8(t)) and then to g(5P(t)) to
obtain that De(g o fP(t))H,(5(t)) has decay around the j component and

d . -1 -a
7 (De(gi 0 7(£) Hy(3(2)):) [0 (i = 5) "™ (x5, ;)

< ClHllep lgllepiblics + Ivlleg + IvlicglIhllep)-
Inserting this inequality in (A.7) we get that L4(v) € Sg), (X, TM).

Now we proceed to check that £, is C"—3. We will use the Converse
Taylor’s Theorem (see [Nel69]). Notice that, since Hy is C”, we have that

Ly(v+0)(x) = Hy(v(x) + 0(2))
(A.8) = 3" D (Hyg ) 0@)0% (@) + Rv(w), ()5 (2),
s=0

for 0 < g <r, where

(A9)  R(v(x),p(x))

1 _ +\q—1
N /0 (1((]_t)1)' (Dq(Hg|Th(I>M)(U(x) + tﬁ(w)) B Dq(Hg|Th(I)M)V($)) dt.

These two formulas suggest the introduction of the maps ¢, : Spp —
L (S5 s Sgop ), defined by

(A.10) (ps(V)v1...v5)(x) = DS(Hg|Th(I>M)(u(z))1/1($) .vs(z),

and the map R(v, 1), defined for v and o belonging to the space of sections
with 7 close to 0, given by equation (A.9). The fact that £, is C"~2 and
formula (5.28) will follow from proving that ¢, for 1 < s <r —3, and R
are continuous.

Let us fix g =7 — 3.

Next we deal with the continuity of ¢s. In fact, we prove that g is

Lipschitz with respect to v, for 1 < s <r —2. Let v,v,11,...,v5 € Sy In
order to bound
(A.11) [(ps(v) = @s(@))v1 ... vsllcas

by the definition of the norm in (5.14), we take j € Z¢ and z,y € X such
that x; = y;, for ¢ # j. Then, we first note that

(A12) D*(Hyyy ) (@) = D*(Hypp, ) (5())

1
_ /0 D (Hypp,  p)(0(@) + 7(u(z) — #(2) () — () dr.
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For short, we introduce
1
(A13) Asti(zyu,v) = / Ds+1(Hg|TZM)(u +7(v—w))dr, u,veT.M.
0

Let (3, B, b1, ..., Bs and [P be the curves given by Lemma A.2 associated
to the sections v, U, vq, ..., vs, the map h, j € Z%, and z,y € X. Let
AB = 3— 3 be the curve associated to v — . To compute a bound of (A.11),
we need to estimate the difference

De(gi o h(2))((ps(v) = @s(#))v1 ... v5)i(x)
— De(gi o h(y))((s(v) = ps(@))vr .. vs5)i(y)

1 ~
— /0 Z(DE(QZ o BP(t))Ass1(BP(t); B(t), B(t)) i AB(E) (L) - . .ﬂs(t)> dt

It is important to remark that although A may not be differentiable with
respect to x, the path (§P(t) is differentiable with respect to ¢.

Given t € [0,1], let (Uy, ¢) and (Uy, 1)) be charts of M such that 5P(t) €
Uy and g(BP(t)) € Uy. Let (TUy,T¢) and (TUy,T%) be the corresponding
charts of TM. By construction, 8(t), 3(t), B1(t), ..., Bs(t), AB(t) € TU, and
their images by Hy belong to TUy. Let 3y, B¢, Bi,ps ---» Bsp and ABy be
their expressions in the chart (TUy, T'¢).

By (3), (4) and (5) in Lemma A.2, there exists some constant C' (that
depends on h, but h is fixed) such that

(A14)  IB3llco < Clvllcg, 183l < Clivliegd® (25, ;).
(A15) (B2l < Cli7llcg, 183l < ClIZlcgd® (25, ;).
(A16)  [I574llco < Clulicg, 1826@)ll;r < Cllmllcad® (x5, 95),
(A7) [|ABlloo < Cllv = Dlleg,  1AB e < Cllv = Pllogd® (x5, 5),

where 1 <[ < s.
By using the expression in charts of the involved functions, we have that

(A.18)  B(t) = De(gi o (1)) Ast1(B"(1); ﬂ( ), B)iBE)B1(1) ... Bs(t)
= Dey (95,1 © B () Ast1,6,0(B5(8); 55(1), B3 (£))iABE(£) 57 6 (1) - .. 52,4(1),

where, since the charts T'¢ and T% are linear on the fibers, they commute
with the integral and, then,

1
Ast1,60(T5u,0) = / D3PUHE (2, u+7(v — ) dr
0

is the expression in coordinates of As11. We remark that this expression is
well defined along the whole fiber of ¢~1(z). It is clear that Ag; 1 4. (7;u,v) €
LY DAgy gp(z5u,v) € LEF? and

(A.19) lerr (s, ) 1D Acrr g5 (@, 0| < [ Hylgs
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Hence, by inequalities (A.14) to (A.17) and (A.19), we can apply Lemma 2.18
to the curve B(t) defined by (A.18) to obtain
1Blr < ClliHgllger2llv = Zlleglvillcs - vslead® (x5, 5)
x (L4 llglly + Ivlleg + [17lleg)

Hence, inserting this last inequality into (A.11) we obtain
1(ps(¥) = s(@)vr - vslleg < CllHgllgara |V = Plleg

x e - Ilvslica (1 + llglloy + Ivliea + 17lleg),

which proves the continuity of g, 0 < s <r — 2.

To finish the proof of the regularity of L4, it only remains to check that
R(v,v) is continuous. It will be done in an analogous way.

First notice that, given v, € S/C;,F’
(A.20

)
1 1 _ 4\r—4
R(v,0)(z) = /0 /0 MD”(HQTM ) w(@) + sto(a))to(z) dsdt.

Hence, for v,0,V/, 0" € S§' . we have that

where

~ 1 1 (1 _ t)T‘*4 9
(A22) Ar,g(z; u, U) = /0' /0 WDT_ (HQ\TZM)(U + stv)t det,
for u,v € T, M, and

(A23) Brfl(z;uav7w7w) =

1 pl(q _ pyr—4 pl
/ / (1(7“t)4)' / D" (Hy g, ) (urtsto-€(wtstib)) (wt stad)t dedsdt,
0 0 - : 0

for u,v,w,w € T, M.

We need to obtain a suitable bound of |AR|ca, where

AR = (R(v,0) — R(V, V" ))v1 -+ vp_g,

Vi, ... V-3 € Sg,p, p and the CR-norm was defined through formulas (5.14),
(5.15) and (5.16). The C° norm of (R(v,?) — R(V','))vy - - - vp_3 is trivially
bounded using that || Hg|| is a C. map. Moreover, it tends to 0 when |v —
V'||ce and || — 2'[|ce tend to 0.

Next we compute v,(AR). Hence, we take 4,7 € Z%. Then, for any =,y €
X such that xp, = yg, kK # j, and x; # y; we will compute, following (5.14),

| De(hi(z)) ARi(x) — De(hi(y)) AR:(y)|

(A.24)

da(xjayj)
To do so, let 8, 3, B, B, Bi, ..., Br_s and (P be the curves given by
Lemma A.2 associated to v, 0, v/, ¥/, vy, ..., vp_3, h, z, y and j, resp. Let

AB=8—p and AB = 3 — /3 be the ones associated to v — v/ and ¥ — 7/,
resp.
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Then, from (A.21), we have that

d

1
(A25)  De(hla) AR(z) ~ Deltu)AR(w) = [ (Gh(0) at.

where

(A.26) b(t) = De(BP(t)) (AT_Q(BP(t); B(t), B(1)AB(t)
+ Br_1(BP(£); B(t), B(t), AB(Y), Aﬁ(t»ﬁ”(t))ﬂl (t)--- Brs(t)

The arguments used to prove the continuity of ¢s can be also applied
here as follows. Given t € [0,1], let (TUy,T¢) and (TUy,T) be charts
of TM such that 8P(t) € Uy and g(5P(t)) € Uy. Let B4, etc — using the
notation introduced in A.1 — be the expressions of the curves above in

these charts, and Hg y, A,_24 .y, etc, the corresponding expressions of the
involved functions. In particular, we have that

~ 1 1 (1 _ t)r—4
Ar_,6,4(z;u,0) z/ / ﬁDg_QHQ%W(x,u—i- stv)t dsdt
0o Jo (r—4)

and

Br—l,(f),w(x; u,v,w, UA.J) =

1 1 r—4 1

1—t

//()/ Dy HE (w,ut sto+z(w+ std)) (w+ stab)t dzdsd,
o Jo (r=4)! Jo ’

for x, u, v, w,w € £*°(R™). With this notation, the curve b(t) defined by (A.26)
can be written as

(A27) b(t) = Dey(B(t))(Ara, (35 62(6), B2 AB(2)
o By (053 G3(0), G2(6), ABR(), ABR0)B3(1) ) B25(6) -+ 25 4(0).

We observe that both flr,w)ﬂ/, and BT,LW are differentiable maps to the
space of (r — 3)-linear maps, satisfy the hypotheses on Lemma 2.18, with

IAr 2650, | DiAr—2,6pllr < [|Hgllez, 1=1,2,3,
and, using also Lemma 2.9,

1Br—1,6,0 (2t v, w, @)||lp < [[Hgllcp ([Jw]] + @),
[1D1Br 1,65 (z; w, v, w, w)|[p < [[Hgllep ([wll + [l@]),  1=1,2,3,
1 D1Br—1,6,4(z;w, v, w, @) |0 < [|Hglley, l=4,5.
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Furthermore, by Lemma A.2, the curves (4, etc, have decay around the
component j and

182150 < Cllvlicad® (z;, y;), 183]lco < Cllvllce,
183115 < Cliollcad® (z5,;), 183]lco < Cll2llcg,
o 2
182 sll50 < Clvillcad® (x5, y5), 18isllco < Cllvllcg,
1851150 < Cd*(xj,y;), 18511 < C,
d d
II%A@% ir < Cllv = V||lcad®(z),y;), ||%Aﬂ35’|00 < Cllv —'||ce,

d . o d . o
||%A5$>er < C||p =9 |lcad™(x4,y;), ||%Aﬁ¢2>ﬂco < Cllo =g,

where [ =1,...,r — 2.
Hence, we can apply Lemma A.2 to the curve b(t) given by (A.27) to
obtain that
(A28) [bi()|T (i = §)~'d*(zj, 1)
<ClHllcr(llv = Vlcg + 17 = ¥[lce)
x L+ [Ileg + 1Zlcg)lvlicg - lve—allcp-

Inserting this inequality into (A.24), through formulas (A.25) and (A.26) we
deduce that R is Lipschitz and, hence, continuous.
The proof of (2) is simpler. Since H, is continuous, it is clear that

Ly: B, CSH(X,TM) — S, (X, TM)

is well defined.

To check that it is of class C""2, we use again the Converse Taylor’s
Theorem. Starting with (A.8), with ¢ = r — 2, we consider the maps s,
s=1,...,7—2, and R defined by (A.10) and (A.9), resp.

By the definition of ¢, in (A.10), using that

sup sup sup |[|D*(Hgp \()(0)llcr < CllHgllc;
0<s<rzxzeMvel, M

and formula (A.12), we have that, for any v, € B, C SP(X,TM) and
Vi s € SYX, TM),

(A29) [[(ps(v) =ps(@)v1- - wsller < CllHgllcpllv =2lievllvilics - - [vslices

provided that s < r — 1. Hence, the continuity of ¢, is established.
To check that R is also continuous, we use formula (A.21), with ¢ = r —2.
Then, given any v,0,v/,7' € B, C S?(X) and v1,...,v—o € SH(X),

(A.30) [I(R(v,2) = R(W, 0"))v1 - - vp—al oo
< CllHgllep (v = Dlles + 1V = Plles)lles - sl ce-

Hence, £y is a C™2 map and DL, (v) = ¢s(v).
To check that £, is a 017272, we need to check that

D*Ly(v) € L(0(Sh(X, TM);), £7°(Syon (X, TM)y),
using the definition of the space L} in (2.3) .
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We check that the I-norm (2.10) of D*L,(v) is finite. Given i,j € Z4, for
any v € U, C SY(X,TM), v1,...,vs_1,V" € SE(X,TM) with

Wkoyi:()’ k # 1,

and [|v1]lcby - - - [Vs—1llce, |V8]|cp < 1, any @ € X, and any pair of charts
(TUy, T¢) and (TUy, T) such that z € Uy and g(x) € Uy, since, by defini-
tion, D5Hy (y,v) € Ly with norm bounded by || Hy||cr, denoting y = ¢(z),
we have that

|D*Ly(v);T(vi,. .., Vs—1, 1/’)(1‘)”
= [1D°(Hyyq,  p) @(@))7(01(2), - s Vs (@), v'(@))

= D5 Hpu(y, vs () T(1,6(Y), - - vs1,6(y), v ()]
< [[HgllopL(i = ),

which proves the claim. O
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