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Abstract

We introduce a model of granular matter and use a stress ensemble to analyze shearing.
Monte Carlo simulation shows the model to exhibit a second order phase transition,
associated with the onset of dilatancy.
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1. Introduction.

Static granular matter, such as a sand pile, can exist in a range of densities. In its
densely packed state, the more common form, it expands under shear, while when its
grains are loosely packed it contracts under shear [RN]. We introduce a model within
which the transition between these qualitative behaviors is singular in the precise
traditional sense of a second order phase transition. (For two dimensional treatments
see [AS, PLRJ, and for an interpretation as a glass transition see [CH].)

Our “granular hard cubes” model is a granular variant of the classical hard cubes
model of equilibrium statistical mechanics [HHB], the latter being a simplification of
the classical hard sphere model in which the spheres are replaced by nonoverlapping,
parallel unit cubes. In our granular version, following Edwards [EO], we only allow
configurations in which the parallel cubes are mechanically stable under gravity, where
gravity is acting parallel to edges of the cubes. We require that the centers of our cubes
be approximately at the vertices of an fcc lattice, which we orient so that gravity acts
along the 001 axis, so the fcc lattice is thought of as parallel 2-dimensional square
lattice layers. We enforce this approximate structure by requiring that each cube sit
on exactly four cubes in the layer below it; see Fig. 1.

Figure 1. Layers of parallel cubes.

We want to model the reaction of a sandpile to shear and in particular we need
a model which exhibits a critical state density, a density separating a high density
regime of states, in which the material expands under shear, from a low density regime
in which it contracts under shear [RN]. As we show, this is easy to arrange. The more
interesting question is whether the model predicts that the transition through that
critical state density is smooth, or is singular.



To understand why it is natural for a granular model to have a critical state
density it is useful to use the following “stress” ensemble. Instead of constant density
we introduce a pressure parameter, and in place of constant strain we introduce a
shear stress parameter. In other words the states of the model, which, in the general
approach of Edwards [EO] are probability densities of configurations of grains, optimize
the free energy

F(p, f):= S —pV + faV, (1)

where S = In(Z, ) is the entropy, V is the volume in physical space, and « is the
shear strain. The parameter p is pressure, f is shear stress, and

Zp = //exp(—pV—l— faV)dVda. (2)

This is equivalent to saying that a configuration C' has an unnormalized probability
density:
Pr(C) =exp(—pV + faV). (3)

It follows from this probability density that, in the absence of shear, the state of
lowest possible particle density, called random loose packing, occurs at zero pressure
[AR1] and some shear strain a = «ag. Therefore at sufficiently low pressure if one
shears the system from «y, the density has no way to change except to increase. So at
sufficiently low density there is a regime in which the system contracts.

On the other hand, at least since Reynolds [Re] one understands the expansion of
(dense) granular matter under shear, which he termed dilatancy, in geometric terms,
as the need for parallel layers of spheres to get out of each others’ way under a strain
deforming the layers, either by separating and/or by thinning within the layers. So we
adjust the model to arrange for this (thinning) phenomenon, as follows.
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Figure 2. a) A view from above of a layer in a configuration, with a definition of the
angle a; b) A cubic grain, with bumps on top and bottom faces.

To react to the strain (see Fig. 2a) we mimic the spherical caps that grains in
one layer present to grains in neighboring layers by adding “bumps” to the top and
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bottom of our cubes; see Fig. 2b. Such cubes will, when we strain a sufficiently dense
configuration in response to the shear, feel the bumps in the layers above and below
it, and this will produce a dilatancy effect by thinning the layers. By considering
optimally symmetric configurations one quickly finds ¢4 := (1 +w)™!, where w is the
width of a bump, as an estimate of the density required for dilatancy; see Fig. 3. In
our simulations we use w = 0.15, and so ¢4 ~ 0.59. The qualitative dilatancy effect is
not sensitive to the precise value of w, though the value ¢4 is.

So the bumps, together with the universal behavior at low pressure or density,
explain the existence of a critical state density. The main question then is: as density
is varied, does the transition through the critical state density proceed in a smooth
or in a singular manner? We will show there is an unambiguous second order phase
transition at dilatancy onset, at density near ¢y;. This suggests, by analogy with
matter in thermal equilibrium, that the material in the two regimes differs in other
characteristics as well, for instance it would be expected that the yield force behave
differently in the two regimes. In [SNRS] the yield force is measured as a function of
density, and a second order phase transition is found at a density roughly 0.598. The
critical state density was not carefully measured because of the experimental setup, but
approximately coincided. Our result suggests the two phenomena are simply different
manifestations of the same transition.

We also note that the behavior of granular matter at the random close packing
density, about 0.64, has been interpreted in [Ra, AR2] as a first order phase transition
in which the high density regime is an ordered phase. Together with our results here,
this means that the usual freezing transition of equilibrium fluids, at which the material
acquires the solid features of an ordered (typically crystalline) internal structure as well
as a strong resistance to shear, seems to be split into two stages in granular materials,
with the resistance to shear occuring at dilatancy onset at density about 0.6 and the
ordered internal structure occuring at the random close packing density of about 0.64.

Figure 3. A regular arrangement of grains at maximum density, from above. The
configuration can be partitioned into unit cells defined by the dotted lines.



2. Simulating the Model.

As noted above, our model consists of hard, parallel, oriented unit cubic grains,
with two small cubic bumps of width w < 1 attached to the middle of their upper
and lower faces. We use w = 0.15. Each grain must sit on exactly four other grains
(except grains on the outside of the configuration), but not on the bumps, and grains
cannot overlap. Thus, the grains appear on discrete vertical levels, so the distance in
the vertical or z-direction between the centers of grains on adjacent levels is equal to
1; see Fig. 4.

Figure 4. An arrangement of grains, viewed from above.

Each simulation begins with a perfectly regular arrangement of N = n? grains in
a large cubic structure, so that there are n? grains in each level, with n in each row
and each column of a level, and n total levels. (For ease in notation we associate a
row with the z-direction and a column with the y-direction; note that the model has
a well-defined row and column structure.) The grains on the side boundaries of the
cubic structure are allowed to make coordinated moves corresponding to changes in
configuration volume and shape, but they are not allowed to move singly.

We allow three types of Monte Carlo steps. With probability 1 — 1/N we choose
a random grain inside the boundary to move in either the x- or y-direction; and
with probability 1/N we allow a configuration to change shape or volume. When a
configuration changes volume, the x- and y-coordinates of each grain, on each level,
are scaled by the same factor A. When it changes shape, the z-coordinate of each grain
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in the kth column of each level is scaled, for some «, by the factor ak.

To prevent grains from getting stuck between the boundary grains, we impose
top-bottom periodic boundary conditions, and we remove the bumps from the grains
nearest to the boundary and on the boundary.

As is standard in Monte Carlo, to simulate the distribution (3) we choose steps
with relative acceptance probabilities given by V¥ exp(—pV + faV). (The factor V¥
arises from the necessity of rescaling position coordinates to live in a fixed-size box
[Mc]). Here « is the angle of deformation of a configuration (see Fig. 2b), where
from symmetry we can assume « > 0 without loss of generality. The volume V of a
configuration is the volume of the convex hull of the set of centers of all the grains.
The volume can be computed directly from the scale factor A described above.

3. Results of the Simulations.

We ran Markov chain Monte Carlo simulations on the model, with the Monte
Carlo steps designed so that the stationary distribution of the Markov chain has the
probability density
exp(—pV + faV)

Zp,f

myp,f(C) = (4)
described above. We want to measure how the (average) density ¢ = N/V changes
as shear stress f varies near f = 0. (For convenience we do not include the bumps in
the calculation of ¢, but since particle number N is fixed in our simulation, the “true”
volume fraction is just a constant multiple of ¢.) That is, we want to estimate the
derivative

9(¢)

e

of the average of ¢ as a function of p. From the definition of m,, ¢ it is easy to see that

D := (5)

D = D(p) = N{a)po — [(@hpo] [(Vapol. (6)

where (), r denotes average with respect to m,, . Thus, to estimate D(p) from our
simulations we set f = 0 and calculate the sample averages of Na, ¢, and Va. With
the free energy F(p, f) = S —pV + faV, which is the quantity minimized by the state
my, £, one can see from a direct calculation that

D) = (6o, (2—5) \f_o, ™)

which shows that the function D(p) is a quantity for which a discontinuity might
reasonably be described as a second order phase transition.
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Figure 5. The graph of D(p) = T , for systems of 14° = 2744, 12° = 1728,
=0

103 = 100, and 8% = 512 grains (datal-data4, resp.). The insert gives error bars on
the system with 143 grains.

We investigate systems of 8 = 512, 10% = 100, 123 = 1728 and 143 = 2744 grains
at pressures p; < ... < pi, where the pressures chosen are different for each size system.
In the simulations we begin at low pressure p;, and then slowly increase p until just
after the derivative D(p) falls sharply below zero, roughly corresponding to pressure
pr. The last configuration in the simulation of p; is used as the starting configuration



of the simulation of p;;;. We use the standard biased autocorrelation function to
determine a “mixing time”, measured as the number of Monte Carlo steps required
before the autocorrelation first crosses zero. We run our simulations long enough so
that the simulation of each p; contains, on average, at least 20 mixing times, and we
run 200 independent copies of each simulation to obtain the averages (Na),.0, (¢)p.0,
and (V) 0. From these averages we compute D(p) from (6). (We also ran some of
our simulations much longer, with fewer copies and pressures, and noted agreement
with the already-obtained data on D(p).) Then, for error bars on D(p), we repeat the
entire experiment 8 times and use the Student’s ¢-distribution.

Our simulations suggest that D(p) develops a discontinuity as the system size
increases (see Fig. 5). Changing variables we note that D, as a function of (¢),,0,
develops a discontinuity near the (average) volume fraction ¢4 ~ 0.59 discussed in the
introduction; we plot (¢), o against p in Fig. 6b and D against (¢), o in Fig. 6a.

Note that for p < 1, D(p) exhibits regular behavior in which D(p) is roughly
constant, D(p) = n ~ 0.001. Then for 1 < p < 2, D(p) has some oscillation which is
characteristic to the system size. Then for p > 2, D(p) steadily increases to a peak,
then sharply decreases through zero. We believe that D(p) is discontinuous in the
limit of infinite system size, but the rate of change of D(p) is so large it is difficult
to measure its variation with system size. Instead we consider two measures of the
interval R in which the discontinuity is developing, and then note that R gets smaller
and smaller as system size increases.

We expect that the oscillation observed in D(p) in the interval 1 < p < 2 is
caused by finite-size effects, so that it disappears in the limit N — oo. Furthermore
we expect the critical pressure p. to fall at either the end or the beginning of the
oscillation region. These two possibilities underlie, respectively, our measurements R
and Ry, defined below. Let 1 be the average value of D(p) over p < 1. The left
endpoint of R is the smallest value of p where p > 2 and D(p) = 7, and the right
endpoint of R is the value of p where p > 2 and D(p) ~ 0. The widths of R; are
approximately 1.75 4+ 0.05, 1.15 £ 0.05, 0.75 + 0.05, and 0.50 £ 0.05 for systems of
N = 83,103, 123 and 143 grains, respectively. On the other hand, the left endpoint
of Ry is defined as the smallest value of p such that D(p) differs significantly from 7,
while the right endpoint of Ry is the same as the right endpoint of R;. We estimate
that the widths of Ry are approximately 3.55 4+ 0.05, 1.55 + 0.05, 1.25 4+ 0.15, and
1.15 4 0.05 for systems of N = 82, 103, 123 and 143 grains, respectively.

In either case, based on the decreasing sizes of the intervals R; and Rs, we believe
that the jump from D(p) ~ v to D(p) < 0 occurs over an interval which is vanishing in
the infinite volume limit, which, given the relation between D(p) and the free energy
F(p, f) in (7), is reasonably termed a second order phase transition. And as noted in
the introduction, there is experimental evidence for this interpretation in [SNRS].
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Figure 6. a) D(p) as a function of (¢),0; b) (¢)p,0 as a function of p. In both plots,
datal-datad represent systems of 143 = 2744, 123 = 1728, 102 = 100, and 83 = 512
grains, respectively.
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