Branching of Cantor manifolds of elliptic tori
and applications to PDEs

Massimiliano Berti, Luca Biasco

Abstract. We consider infinite dimensional Hamiltonian systems. First we prove the existence of
“Cantor manifolds” of elliptic tori -of any finite higher dimension- accumulating on a given elliptic
KAM torus. Then, close to an elliptic equilibrium, we show the existence of Cantor manifolds of
elliptic tori which are “branching” points of other Cantor manifolds of higher dimensional tori. We
also provide a positive answer to a conjecture of Bourgain [§] proving the existence of invariant elliptic
KAM tori with tangential frequency constrained to a fixed Diophantine direction. These results are
obtained under the natural nonresonance and nondegeneracy conditions. As applications we prove
the existence of new kinds of quasi periodic solutions of the one dimensional nonlinear wave equation.
The proofs are based on averaging normal forms and a sharp KAM theorem, whose advantages are
an explicit characterisation of the Cantor set of parameters, quite convenient for measure estimates,
and weaker smallness conditions on the perturbation.

Contents
(1__Introduction| 1
[2  Cantor manifolds of tori close to an elliptic torus| 5
[3 Branching of Cantor manifolds of elliptic tori 7
[4  Application to nonlinear wave equation| 9
[5 A sharp basic KAM theorem| 11
6 Proof of Theorem 2.1l 16
(7_Proof of Theorem I3.1 19
[[1 Measure estimates . . . . . . . . . . . . 21
8 Proof of the basic KAM Theorem [5.1] 26
BRI TechnicalTemmatal . . . . . . . . . . . . .. . 26
[8.2 A class of symplectic transformations|. . . . . . . ... ... Lo 28
83 The KAMStED] . . . . o o v e e e e 29
B4 KAM iterationl . . . . . . . . . . 35
A ppend 42

1 Introduction

A central topic in the theory of Hamiltonian partial differential equations (PDEs) concerns the exis-
tence of quasi-periodic solutions. In the last years several existence results have been proved using



both KAM theory, see e.g. Wayne [28], Kuksin [22], Poschel [25], [23], Eliasson-Kuksin [I6] (and
references therein), or Newton-Nash-Moser implicit function techniques, see e.g. Craig-Wayne [14],
Bourgain [§]-[10], Berti-Bolle [5] and with Procesi [6]. We mention also to the recent approach with
Lindstedt series by Gentile-Procesi [I8]. An advantage of the KAM approach is to provide not only
the existence of an invariant torus but also a normal form around it. This would allow, in principle,
to study the dynamics of the PDE in its neighbourhood.

All the existing literature considers quasi-periodic solutions of PDEs in a neighbourhood of an
elliptic equilibrium, see for a survey Kuksin [22], Craig [13], or perturbations of finite gap solutions of
integrable PDEs, see Kuksin [22], Kappeler-Péschel [20].

In this paper we want to study the dynamics of infinite dimensional Hamiltonian systems near an
elliptic torus, developing, in particular, an abstract KAM theory for proving the existence of “Cantor
manifolds” of elliptic invariant tori tangent to a given elliptic torus.

For finite dimensional Hamiltonian systems, the dynamics close to a lagrangian KAM torus has
been deeply investigated by Giorgilli-Morbidelli [T9], proving, in particular, the existence of invariant
tori with asymptotic density exponentially close to 1. On the other hand the existence of lower
dimensional tori in a neighbourhood of an elliptic torus requires, also in finite dimension, a more
refined KAM theorem (it is a corollary of our general results). The difficulty comes from the presence
of the elliptic directions.

Our first result states, roughly, the following (see Theorem for a precise statement):

Given a finite dimensional torus with an elliptic KAM normal form around it, we prove, under the
natural non-resonance and non-degeneracy assumptions, the existence of “Cantor manifolds” of elliptic
tori -of any finite higher dimension- accumulating on it.

This result is based on two main steps. We first perform a Birkhoff normalisation (see the “av-
eraging” Proposition assuming the weakest, natural, non-resonance conditions on the tangential
and normal frequencies of the torus (see (2.12))). These are similar to those used in Bambusi [I],
Bambusi-Grébert [3], for an elliptic equilibrium. The next step is to apply some KAM Theorem. Due
to the third order monomials on the high mode variables in —, the KAM theorems available in
the literature would apply only requiring stronger non-resonance assumptions, see Remark Then
we use the sharper KAM Theorem Note that these refined estimates are required only for small
amplitude solutions and not for perturbations of linear PDEs as considered in [2I], [22], [28] where
the size of the perturbation is an external parameter.

As a second result we prove an abstract theorem describing a branching phenomenon of Cantor
manifolds of elliptic tori of increasing dimension (see Theorem for a precise statement):

Close to an elliptic equilibrium there exist, under the natural non-resonance and non-degeneracy as-
sumptions, Cantor manifolds of elliptic tori which are “branching points” of other Cantor manifolds
of higher dimensional tori.

This result relies on an application of Theorem [2.1l The main difficulty is to check that, after
the first application of the KAM theorem close to the equilibrium, the perturbed frequencies of the
deformed elliptic torus, fulfil the non-resonance conditions required in Theorem [2.1] This is achieved
in section 7, thanks to the explicit form of the Cantor set of non-resonant parameters provided by the
basic KAM Theorem [B.11

Theorem[3.1]can be also seen as a “building block” for constructing small amplitude almost periodic
solutions for PDEs without external parameters. Actually, with the present estimates, we can prove
the existence of only finitely many branches of finite dimensional elliptic tori. The existence of almost
periodic solutions has been proved in Péschel [26] with a similar scheme, for the nonlinear Schiodinger
equation, with potentials as external parameters, and adding a regularising nonlinearity.

These abstract results, valid for infinite dimensional Hamiltonian systems, can be applied to Hamil-

tonian PDEs like Schiodinger, beam and wave equations. For concreteness we focus on the nonlinear
wave equation (NLW). Moreover NLW is more difficult for KAM theory than the Schrédinger and



beam equation for the weaker asymptotic growth of the frequencies. As an application of Theorem
we show in Theorem [A.1] the existence of a new kind of quasi-periodic solutions of

{utturz+mu+f(u)0

u(t,0) =u(t,m) =0 (1.1)

for almost all the masses m > 0 and for real analytic, odd, nonlinearities of the form

fwy = > auf, a3 #0, (1.2)

k>3,0dd

These quasi-periodic solutions are different from the ones of [25] since they accumulate to a torus and
not to the origin.

As already said, a basic tool for the previous results is an application of the sharp KAM Theorem
of section [f] Its main advantages are:

- (i) the KAM smallness condition are weaker than in [2]|], see comments after KAM Theorem ,
This is achieved by a modification of the iterative scheme of [22], [24], as described in section

- (it) The final Cantor set of parameters, satisfying the Melnikov non-resonance conditions for all the
KAM iterative steps, is completely explicit in terms of the final frequencies only, see ,

A new aspect of Theorem is the complete separation between the iterative scheme for the
construction of invariant tori and the existence of enough non-resonant frequencies at every step of
the iterative process, see [5] for a similar construction in the Nash-Moser setting. In previous KAM
theorems the Cantor set of non-resonant parameters is known “a posteriori” ([23]). The key point
here is that the final frequencies are always well defined also if the iterative KAM process stops after
finitely many steps (and so there are no invariant tori for any value of the parameters). The present
formulation simplifies considerably the necessary measure estimates, see, as applications, Theorems
and section The characterisation in of the Cantor set in terms of the final fre-
quencies only is new also for finite dimensional elliptic tori; for lagrangian tori in finite dimension see
[12],[I1]. Tt simplifies also the measure estimates of degenerate KAM theory, see for example [4] for
an extension to PDEs. In particular it allows to avoid the notions of “links” and “chains” used in
[27]. Actually, thanks to the explicit characterisation of the Cantor set we are able to answer
positively to a conjecture by Bourgain in [§], proving

- the existence of elliptic invariant KAM tori with tangential frequency constrained to a fized Dio-
phantine direction, see Theorem ' for the application to NLW equation see Theorem ,

This kind of results was proved for finite dimensional Hamiltonian systems by Eliasson [I5] and
Bourgain [§] who raised the question if a similar result can be achieved also for infinite dimensional
Hamiltonian systems. For a result for NLW in this direction see [I7].

We hope that the results and techniques of this paper will be used to develop a more general
description of the dynamics of the PDE close to an elliptic torus, proving, for example, stability
results as in Bambusi [I], Bambusi-Grébert [3].

Before presenting precisely our results, we introduce the functional setting and the main notations
concerning infinite dimensional Hamiltonian systems.

Acknowledgments: We thank Michela Procesi for useful comments.

Functional setting and notations

Phase space. We consider the Hilbert space of complex-valued sequences

IARRES {z = (z1,22,...) : ||#| ip = Z |22 %P e < —|—oo}
Jj=1

with @ > 0, p > 1/2, and the toroidal phase space

(z,y,w) € T, x C" x 4,7, w:=(2,2) € P = L¥P x (VP



where T7 is the complex open s-neighbourhood of the n-torus T" := R"/(27Z)".

Hamiltonian system. Given H : T}, x C" x £’ — C we consider the Hamiltonian system
(@, 9,0) = X (2, y,w) (1.3)
with Hamiltonian vector field
Xy o= (O, H, —0, H, —iJO, H) € C" x C" x (7
where

— 0 —I . pa,p a,p a,p a,p
J'_(I O)'K X 4PP — fYP x f0P

Given two functions H, F : T} x C" x ;" — C we define their Poisson bracket
{H,F} :=0,H - 0yF — OyH - 0,F —iJO,F - 0, H . (1.4)
Analytic functions. Given a complex Banach space E, we consider analytic functions
f:D(s,r)xII = E (1.5)
possibly depending on parameters £ € II C R™ defined on the open neighbourhood of the origin
D(s,r) := {\Imx| < s,y <7, Jwllay < 7"} CTYyxC" x P, 0<s,r<1,

where [y[ := sup |y;|. We define the sup-norm

j=1,....n

lori=flornm= s |f@@ywéles. (1.6)
(z,y,w;€)€D(s,r)xIT

We denote simply by |- |s the sup-norm of functions independent of (y,w).
Any analytic function can be developed in a totally convergent power series

P(z,y,w;&) = Y Pij(a;&)y'w’
4,j>0

where o
i—times Jj—times

Py(z) == Py(x;€) € ,c( C'x ... xCPx 18P x .. x ﬁgﬂ’,c) (1.7)

are multilinear, symmetric, bounded maps. For simplicity of notation, we will often omit the explicit
dependence on £. By the Riesz Representation Theorem, we identify the 1-forms Pjo(x) € (C")*,
resp. Ppi(z) € (¢4P)*, with vectors Pio(z) € C", resp. Poi(x) € €5, writing

Plo(ilf)y = Plo(ilf) Y, resp. POl(.T)’LU = POl(.’E) W,

where “-” denotes the scalar product on C", resp. ¢;*’. Moreover we identify as usual the bilinear
symmetric form Pys(z) € L(£,7 x £;°F,C) with the operator Pya(z) € L(¢;", £,°") defined by

Poa(z)w? = Poa(z)w-w , Yw € 6P

We define
Pcs := Pyo + Porw + Proy + Poow - w. (1.8)
In general we identify the P;; in (L.7) with the vector valued multilinear forms, for j > 1,
i—times (j—1)—times

Pyj(x), 0,05,P(x,y,w) € L( C" x...xC" x £yP x ... x EZ”’,EZ’P) : (1.9)
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If the Hamiltonian vector field maps Xp : D(s,7) — C" x C" x £3'P with p > p, then, for j > 1,

|Pijls = sup || Py (258 < o0
(z;€) €T xII
i—times (j—1)—times
where || - || denotes the operatorial norm on £(C™ x ... x C™ x 5" x ... x £y £3P).

The [ ]-operator. We define the operator [-] acting on monomials Q := q(x)y'2%2%, i,a,a € N>, by

Ol = {<Q>=<q>yizaz“ if a=a (1.10)

0 otherwise

where (¢) := (27)™" / q(x)dx denotes the average with respect to the angles.

n

Lipschitz norms. Given a function f as in (1.5) we define the Lipschitz semi-norm

S CT B (T )
E.CETLEAC 1€ — (]
and, given A > 0, the Lipschitz norm
| : |¢,s = | : |7‘,s + /\| : |1“lg . (112)

We will always use the symbol “\” in this role, not to be confused with exponentiation. We denote
the Lipschitz norm of functions independent of (y,w) more simply by | - |2

Miscellanea. Given | € Z°° we define

=320 W= D257 01s (Da = max (1] 32 5%
j>1

j=1 Jj=1

)

and the unit versors e; := (0,...,0,1,0,...) with zero components except the j-th one. We define the
space

oo

0= {Q = (21,02, Q5 €R ¢ [ = sup 57010 < +oo}
-

and the Lipschitz norm

i i Q&) — QU|-s
QP 5 == sup [(E)|—s + A" where [Q"%:=  sup 94E) = Qe)ls (1.13)
gell ccemexc €=
Finally, for 7 > n — 1, n > 0, we define the set of Diophantine vectors
n T] n
= : - k| > . .
Dy.r {weR bl 2 g YEEZ \{o}} (1.14)
2 Cantor manifolds of tori close to an elliptic torus
The KAM-normal form Hamiltonian
H=H(z,y,2,2) =N+P=w-y+Q-22+ Z Py () y'w? (2.1)
2i+j>3
possesses the elliptic invariant torus
To =T" x {0} x {0} x {0} (2.2)

with tangential and normal frequencies w := (w1, ..., wy) € R", Q1= (Qp41,...) respectively. In (2.1
the variables are w = (z, Z) with z = (241, ...). We assume



e FREQUENCY ASYMPTOTICS. The €2; € R and there exists d > 1 such that
Q=44+..., j>1, (2.3)
where the dots stand for lower order terms in j.

If d = 1 we denote by x the largest positive number such that

Qi — Q] L . . 1 if d>1
——2 =1+0(7"), Vi>j, d p:= 2.4
i~ G77), Vi> g, and {5/(n+1) if d=1. 24)
e REGULARITY. The vector field Xp is real analytic and
_ o> if d>1
Xp:D(s,r) = C" x C" x £’ with Zi =P 1 ” (2.5)
p>p if d=1.

We aim to prove the existence of finite dimensional elliptic tori of any arbitrary dimension nn > n
accumulating onto the elliptic torus 75. We denote the augmented frequencies

(’D:: (wla"'vwnvﬂn+17"'79'ﬂ)GRﬁ? Q:: (Qﬁ+17"')7 (26)
the coordinates

Z:(éaé)v Z:= (Zn-‘rla-"azﬁ)) z = (zﬁ-l-lv-")v w:(’LZI,’LzJ), ﬁ):(zaz)a ’LZI:(Z,Z),

and the actions

N N N 1 _ B - 1 B
U= 9, 7:= §(Zn+1zn+1, S ZRZR), 4= §(Zﬁ+12ﬁ+1, )

We decompose any | = (l,,41,...) € Z™ as
=1 with [:= (g1, 03), 1= (ag1,...)- (2.7)
Given P;; (see ([1.7))) we define the coefficients P;3;, for 7, j € N with 7+ j = j, by the relation
H-jyiwj = Z Pijjyiﬁ)jwj.
J+i=J
We introduce the symmetric n-dimensional “twist” matrix

. R 2[Paoo]  [Pr20]
AeMat(nxn), A:= (2.8)
[Pi2o]  2[Poao)

where the matrices [Pagol, [Poao], [Pi20] are defined byE|
[Paooly - y := [Paooy’] [Poaol§ - § = [Poao®"], [Piaoly - § := [Praoy®®] (2.9)
and the [ ] operator in (1.10). We also define [Pyg2], [Po22], by
[Pro2)y - Z = [Proayt®],  [Poalij - Z := [Pogov®i’]

and ) o
b= ( [Pro2]  [Fozz] ) € L(C", EPy, (2.10)
the last property being valid thanks to the regularizing property (2.5)). We set
_f2d-1)""4+n+1 fd>1
T { (n+2)(6, — )5, +1  ifd=1 (2.11)

with d, fixed below.

!The matrices [Paoo] € Mat(n x n), [Poao] € Mat((2 — n) x (2 — n)), [Pi20] € Mat((? — n) x n). Similarly
[P1o2] € Mat(co X n), [Po22] € Mat(oo X (n— n))




Theorem 2.1. (Higher dimensional tori close to an elliptic torus) Consider an Hamiltonian

H as in satisfying , , and, ifd =1, p > 9/14 (see ) Fixz n > n. There exists a

constant ¢ > 0 such that, if the following assumptions hold:

e (Melnikov conditions) For some a > 0,

l .
|w-k+Q-l|2a1i>|}i|T, vk ez, 1=@1,0) €Anp, (k1) #£0, (2.12)
where T is defined in with 8, = p — p, and
- - 5 4 ifd>1
N = < < — — =
Mapi={ll <Dl <2fu{lil=DJiI=1}, D {6 -

o (Twist) A is invertible.

e (Non-resonance) V0 < |I| < 2 there hold

(- BA7'Q) -1 #0. (2.13)

e (Smallness) The third order terms satisfy

(IP11ls + [Posls)? < car, (2.14)

then there exists an n-dimensional Cantor manifold of real analytic, elliptic, diophantine n-dimensio-
nal tori accumulating onto the n-dimensional elliptic torus 1.

The above Cantor manifold has the same geometric structure described in [23]. The constant ¢
depends on n, T,s,d, A, B,n,w,8, A, B.

Remark 2.1. By , and the regqularizing property of B, implies

inf |(Q—BA™'Q)-1] >0.
o<|l|<2

Indeed |(2 — BA™'®) - 1] > 1/2 up to a finite subset of {0 < |I| < 2}.

The proof of Theorem is based on two main steps. The former is the “averaging” Proposition
in which we use the Melnikov conditions (2.12)), that are similar to those used in [I]-[3] close to an
elliptic equilibrium. The latter is an application of the basic KAM Theorem case-(H2).

Remark 2.2. Condition (H2) of Theorem[5.1) is strictly weaker than the KAM condition in [24] (see
comments after Theorem and applies under the natural Melnikov conditions . The KAM
Theorem [2]]] would require the stronger Melnikov conditions 42.12' with D=6 ford>1and D=7

ford=1 and p=2/3 (as for NLW, see ({.5)). See also Remarks @ and 6.3

3 Branching of Cantor manifolds of elliptic tori

We consider an Hamiltonian
H=A+Q+R (3.1)

where R is a higher order perturbation of an integrable normal form A + @. In complex coordinates
(¢, <) and, setting

1 _ _ 1 _
I:= 5(@1(17 sy Gnln) s Z = §(<n+1<n+1v"‘)v



the normal form consists of the terms
1
Ai=a-I+b-Z, Q::§AI~I+BI-Z (3.2)
where a, b and A, B denote, respectively, vectors and matrices with constant coefficients. Fixed n > n,
we assume that:
(A) The normal form A + @ is nondegenerate in the following sense:
TwisT.  (Aq) detA #0
NONRESONANCE.
(As)  b-l#0, VI<[]<2
(As) a-k+b-1#£0 or AE+BT#0,VkeZ", leAyp, (k1)#0.
Moreover, if d=1, a-k+b- (l~,0) +h#0 or Ak+BT(l~7O) #0,
Vo< |k| <Ko, | <D—-2, 1<h<Lo+n(D-2).
The constants Ky, Ly depend only on d, D, a,b, A, B, see ((7.34).
(B) FREQUENCY ASYMPTOTICS. There is d > 1 and 6, < d — 1 such that b; = j% 4 ... + O(4°).

(C) REGULARITY. The vector fields X, Xg are real analytic from some neighbourhood of the origin
of £ into €7 with p > p defined in (2.5). By increasing ., if necessary, we may also assume

p—p<b.<d—1. (3.3)

Concerning the higher order perturbation R we assume

Bl = O(2l) + OUCIE,) s 2= GuprnGuszne ), 8> 14307, pe(9/141],  (34)
where p is defined as in (2.4) and, for d = 1, k is the largest positive constant such that
b; —b; . L
Z,_jj—l‘<a*1 "OVi>g (3.5)

for some a, > 0. For d = 1, by increasing J,, if necessary, we can assume —d, < k.
Fix n > n. We define the augmented frequency vectors

a:= (a,bnﬂ,...,bﬁ) S Rﬁ, ]5 = (bﬁ+1,bﬁ+2 ), (36)
the symmetric “twist” matrix
A eMat(n xn), A;:=1 Bij ifj<n<i<n (3.7)
4 . . . ~
{ CiEiCjéjRIC:E:O> ifn <i,j<n

and
2 . By ifj<n<i
B € Mat(f x 00), Bj;:= J Hygsn<oi
( : ’ { (02 e e, Ric=c=0)  ifn<j<n<i
(A) We assume
TWIST. (A1) detA #0
NONRESONANCE.

(Ag) b-1#0, VlieA;p, where Aj p is defined in 1) .
Moreover, if d =1, inf |b-I] > 0.
lEAL D

T,

(As)  (b—BA7'a)-1#0,VI = (las1, laga,-..) with [[|=1,2.



Clearly (Ay) is stronger than (As).

Theorem 3.1. (Branching of Cantor maryfolds of elliptic tori) Fiz i > n. Suppose H =
A+ Q + R satisfies assumptions (A),(B),(C), (A) and (3.4 (-) Then

e (i) there exists an n-dimensional Cantor manifold of real analytic, elliptic, diophantine, invari-
ant n-dimensional tori.

e (ii) Fach of these n-dimensional elliptic tori possesses another Cantor manifold of real analytic,
elliptic, diophantine n-dimensional tori, which is tangent to the torus with asymptotically full
density.

The new result is clearly (ii). Part (i) was proved in Kuksin-Poschel in [23].

We prove Theorem as follows. After a Birkhoff normal form step, we introduce the actions as
parameters, and, applying Theorem (H3), we find a Cantor manifold of n-dimensional tori close
to the origin with asymptotically full density (part (i)). For proving part (i) we only require

(A1), (A2),(B),(C),(34) and a-k+b-1#0 or Ak+BTl#0, VkeZ", |l| <2, (k1) #0, (3.9)

as in [23]. In order to prove part (ii) the crucial point is to show that, thanks to assumptions (A3)
and (A), it is possible to take the parameters still in a set of asymptotically full measure, such that
the hypotheses of Theorem [2:1] hold. This is verified in subsection [7.1] strongly exploiting the explicit
form of the Cantor set Il in proved in the basic KAM Theorem

Another minor advantage of the application of the improved KAM Theorem is the following.
Since condition (H3) is strictly weaker, when d = 1, than the KAM condition in [24] (see comments
after Theorem , Theorem simultaneously applies to both cases d > 1 and d = 1.

Actually we can also improve the result of Theorem (¢) proving the existence of elliptic tori
with tangential frequency restricted to a fixed Diophantine direction, extending to infinite dimensional
systems the results of Bourgain [8] and Eliasson [I5].

Theorem 3.2. Assume (A1), (Az2), (B), (C), , a#0and (b—BAta)-1#0,V1<|l| <2. Then
if © € Doy r (se€ ) with ag := pg ™, po == |@ —a| >0, and ¢ > 0 is small enough, then

[ T|(2cpo)™" — 1 as po— 0, (3.10)

where T C [1—e¢pg, 1+ cpo] are the t such that tw is the tangential frequency of a n-dimensional torus

found in Theorem [3.1}(i).
Note that the hypotheses of Theorem imply (3.9)).

4 Application to nonlinear wave equation

Now we apply the results of section to the NLW. We first write the NLW equation (|L.1)) as an infinite
dimensional Hamiltonian system introducing coordinates q, p € ¢*?, a > 0, p > 1/2, setting

=Y Yy v =Y oAy where A= VI, b = VARG,
j>1 \/7 Jj=1

The Hamiltonian of NLW is

u2 1
Jjz1

| :/Osf(t)dt, Gq) = /O”g(z%)\j—l/wj) dx

Jz1

where



For 1 < n <7 we choose arbitrarily the “tangential sites”
T :={i1,...yin} €L :={i1,-rin,int1,---,in} C NT. (4.1)

By [25] there is a symplectic map transforming Hypw in its partial Birkhoff normal form on the
Z-modes o
H=A+G+G+K

where X¢, X5, X are analytic from some neighborhood of the origin in ¢* into ¢*P*+*

_ 1 _ o — 64— 96;; 1 . _ 1 .
G= 3 Z Gijzizizjzj, Gij = p )\i)\jj ) 2§ = 7(%‘ +ipj), z; = ﬁ(%‘ —ip;),

. 2
iorjE€L

G is of order four and depends only on z;, i ¢ 7 , K is of order six and depends on all the variables z;,
i € N (for more details we refer to [25] or [1]).

In order to write H in the form we renumber the indexes in such a way that the first n modes
correspond to the Z-modes and the first # modes to the Z-modes. More precisely we construct a re-
ordering N* — N, j  i; which is bijective and increasing from {1,...,n} onto Z, from {n+1,...,7}
onto Z \ Z and from N* \ {1,...,7} onto N* \ Z. Calling the variables

Cj::Zija vjz]-v
the Hamiltonian H assumes the form (3.1))-(3.2) with

a:= Ny A ), b= Ny, A= (G i<hk<n s B = (Giyi)i<k<n<n,  (4.2)
and

1 _ -
R:= 3 Z GinirCnCnCulr + G+ K . (4.3)
hor k<n,h,k>n

Let us verify the hypotheses of Theorem |3.1} By [25] the matrix A in (4.2) is invertible, actually

4
A Y, =2 _ 1<hk<n. 4.4
(A7 )k 5 (4n—1 5hk> apay , <hk<n (4.4)

Then (A1) holds. Assumption (Az) holds because the frequencies ); are simple and non zero. Still in
[25] it is verified that (B), (C) are satisfied with

d=1, d,=-1, p=p+1,
as well as with (see and (3.5))
g=6, p=2/3>9/14, K=2. (4.5)
Assumptions (A3) (which is new with respect to [25]) will be a corollary of the next lemma.

Lemma 4.1. Y0 < || < oo, the function f; : (0,00) — R, fi(m) := (b — BA~'a) - is analytic and
non constant.

ProoF. By (4.2) and (4.4) we get (BA™');; = 4a;b; ' /(4n — 1) and

-1 A<

— pT1 ;2 i _ - =
fl(m)—Zlij (am + 3 +i3) with a: et B e

i>n

Let j. := max{j > n : I; # 0} and i, := max{i; : [; # 0}. For m > i? we expand the analytic
functions b;(m) ™" in power series

1 k 1 1 1
—1 _ -2 . L o
b’ ——\Fg ck(zj/m) with co.—l,ck.——2<—2—1)~-<—2—k—|—1>/k!7é0.

k>0
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Then
1 _ .
fi(m) = ay/m Z L+ ﬁchpkm ¥ where pp = Z ljz?quij
n<j<j« k>0 n<j<j«
2

and qg; = L; + ﬁ , Li:= (1 —a)i®+ 3. We prove that f;(m) is not constant showing that
pr # 0 for k large enough. Note that |qg, | > 1/k? for k large enough: if L;, # 0 then qp;, — L;, # 0,
otherwise |qy;. | = |ai?(2k +2) ™" > 1/k? for k large. Moreover |qy;,| < 2i7, Vk. Hence

— (i =1 > (llgki, | = 82672 = 1] (6 — 1)*F2i2 — o0

k| > 2| g,

ask — oo. 1

Corollary 4.1. Assumption (As) is satisfied with the exception of a countable set of m’s in (0,00).
PROOF. Ifl € Ay pand Ak+BTl =0, thena-k+b-l = (b—BA 'a)-l # 0 except at most countably
many m’s. Analogously, if Ak +BT(/,0) =0, thena-k+b-(1,0)+h = (b—BA 'a)-(,0)+h #0.®

The last condition of Theorem to verify is (A), where &, b, A, B, defined in 1) 1) l ,
are like a, b, A, B in (4.2) changing 7 with n. Then (A1) holds as well as (A3), except countably

many m. Finally, assumption (As) holds for almost every m € (0,00) as a consequence of Theorem
3.12 of [3] (see also Theorem 6.5 of [I]). More precisely l i/{lf [b(m) - {] > 0 is a consequence of the
€Na,D

nonresonance condition (r-NR) of [3] with r =D +2, N = /1. Then Theorem applies.

Theorem 4.1. Suppose [ is real analytic and holds. Fixz n > n. For all the choices of indices
Z,T asin , for almost all the masses m the conclusions (i)-(ii) of Theorem apply to the NLW
equation .

Conclusion (i) was proved in Péschel [25] for all m € R with the restriction 1I<n_in ij41—1% <n—1
<i<n

On the other hand, the quasi-periodic solutions obtained in (ii) are new, since they accumulate onto a
n-torus and not at the origin. They are not the n-dimensional tori bifurcating from the fourth order
Birkhoff normal form of ([L.1J).

As a consequence of Corollary we can prove the existence of quasi-periodic solutions with
tangential frequency restricted to a fixed direction, see [I7] for a similar result.

Theorem 4.2. Suppose that f is real analytic and holds. Then, excluding a countable set of
masses m € (0,00), the conclusion of Theorem applies to the NLW equation .

5 A sharp basic KAM theorem
We consider a family of integrable Hamiltonians

N := N(z,y,2,7;€) == e(&) +w(&) -y + Q&) - 22 (5.1)

defined on T x C" x £¥P x {*P. The frequencies w = (wq,...,wy) and Q = (41, Lny2, . ..) depend
on m-parameters

EelICcR™, m<mn, IIcompact with positive Lebesgue measure, p := diam(II).

For each £ there is an invariant n-torus 7o = T" x {0} x {0} x {0} with frequency w(§). In its
normal space, the origin (z,Zz) = 0 is an elliptic fixed point with proper frequencies (£). The aim is
to prove the persistence of a large portion of this family of linearly stable tori under small analytic
perturbations H = N + P.

We assume

11



(A*) PARAMETER DEPENDENCE. The map w : II — R", £ — w(§), is Lipschitz continuous.
(B*) FREQUENCY ASYMPTOTICS. There exist d > 1 and d. < d — 1 such that
Q) =%+ eR, ix1,
where Q; = i% + ... and Q* : Tl — ¢2% is Lipschitz continuous.
By (A*) and (B*), the Lipschitz semi-norms (defined as in ) of the frequency maps satisfy
W]+ Q" < M < +o0. (5.2)

(C*) REGULARITY. The perturbation P is real analytic in the space coordinates, Lipschitz in the
parameters, and for every £ € II the hamiltonian vector field maps Xp : D(s,r) — C" xC" x £;°"

with p satisfying (2.5). More precisely, using the notations (1.6, (1.11), we assume
| Xplrsmn+ | Xp[P o < 400 where E:=C" x C" x £3. (5.3)
Moreover, we also assume (|3.3|).

We introduce the group (under composition) of maps

SS = {\Ij : (33+,y+7UJ+;€) = (mvva) of the form (54)
= w0(r4;8), w=woo(rs;E) + wor(zy;&)wy
Y = Y00(T+; &) + yo1 (v4;  )wy + y10(z+; )Y+ + voz (z4; Hwy - wy

where xg0, ¥ij, wi; are analytic and bounded on T} and Lipschitz on H}.

In Theorem the symplectic map yielding the KAM normal form (5.8) has the form & = I + ¥
with U like in (5.4), as in [24]. It will be the composition of infinitely many time-1-flow maps (each
having the form I + ¥, ¥ € &) generated by Hamiltonians in Fy defined in ({8.7)).

Theorem 5.1. (Sharp basic KAM theorem) Suppose that H = N + P satisfies assumptions
(A™), (B¥), (C*). Let oo > 0 be a parameter and assume that

. A A i 9j Pl . o« . Va
O := max{l, |P11l5, | Poslss Z |8y8{vp|s,r} with \ = i satisfies © < e (5.5)
2i+j=4
Then there is v := y(n,T,s) > 0 such that, if one of the following KAM-conditions

, |Poold  |Po1l? [Prol2 | Po2l2
o (H1) ¢ := max{ 202 roB2 ,

« [0
|Poold  |Po1ld  [Prol? | Pozl2
o (H2) &5:= max{r2a5/s4 ) ra3/§ 5 s s

<7

=

5/4
(0%
by and mus 2=

)
[0 (@]

|Pool?  [Pould [Piold | Pozld

o
o (H3) 53:—max{r2au, | o o }SV and |P11\§,|P03|2§;

where p:=1ifd>land 0<pu<1lifd=1,

holds, then there exist:
—d

o (Frequencies) Lipschitz functions wee : I — R™, Qoo : I — £2¢, satisfying
lwoo — W], |0 — Q|%‘_p <~ lag; (5.6)

and |weo |'P, |Qm||li%* < 2M.
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e (KAM normal form) A Lipschitz family of analytic symplectic maps
D D(s/4,7/4) X To D (Toos Yoo, Woeo3 &) — (z,y,w) € D(s,r) (5.7)
of the form ® =1+ W with ¥ € &, 4, where Il is defined in , such that,
H>(5€) i= H o ®(5€) = Woo (§)Yoo + Qoo (§) 20070 + P> has P =0 (5.8)

see @) Moreover

|PiT — Piils/a <y lei(|Prals + aPe/2) (5.9)
PSS — Poslsya <7 ei(|Posls + | Prals + aP7/2).
e (Smallness estimates) The map U satisfies
al=Pa al=Po al=py _
|3C00|2‘/47 \%0\?/47, |y01\;\/477 |y10|2/4, lY02]2 45 |w01|?/47 |w00|2/47 <7 le (5.10)
according (Hi);=1,2,3 holds, where
o if (H1)
3/2 if (HI H2
Pa:=145/4 if (H2) Dy = / ' (H1) or (H2) (5.11)
. 1 if (H3).
1 if (H3)
e (Cantor set) The Cantor set is explicitely
II if (H1 H?2 H3) — 1
w0 it (HY) or (H2) or (H3) - (d> 1) 1)
Do Nw™ (Dan,7) it (H3)—(d=1)

where Dou 7 s defined in with n = o, and

l
.o = {g €I ¢ Jwool€) - k+Qu(€) 1] > 207 i>|z|f L Yk, 1) € Z0 x 2\ {0}, ]I] < 2} . (5.13)
Then, V¢ € 1, the map Too — P(20,0,0;&) is a real analytic embedding of an elliptic, diophantine,
n-dimensional torus with frequency woo(§) for the system with Hamiltonian H, see ,

Note that is the KAM normal form in an open neighborhood of the invariant elliptic torus.
Regarding the smallness conditions we note that:
- In (H1) we make assumptions only on Py, Po1, Pio, Poe. This is quite natural because, if they
vanish, then the torus 7y in is yet invariant, elliptic, and in normal form.
- In (H2) we relax the smallness assumption on Py, at the expense of a smallness condition on Ppy.
Note that in (H2) we do not require any assumption on Pys. We apply (H2) looking for tori in a
neighborhood of a fixed torus (where, in general, Py3 does not vanish), see the proof of Theorem
- In (H3) we further relax the smallness assumptions on Py and Py, at the expense of stronger
conditions on Pj; and Ppz. We apply (H3) looking for tori close to an elliptic equilibrium (where,
after a Birkhoff normal form, both P;; and Py3 are small), see the proof of Theorem

COMPARISON WITH THE KAM THEOREM [24]. The KAM condition in [24] on Xp in (2.5) is

oz_l\Xp|;\)S < const with A=a/M, (5.14)

where | Xp|}, = |Xp|rspn+ )\|Xp|},,i’2’E}H is defined in 1] and

B = {(w,,w) € C" x C" x 37 with norm |(z, y,w)|r 1= lal +2ly| + 7 wllap }
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We note that (5.14) implies the KAM condition (H3). For example, since Py = (9, P)(,0,0), we
deduce, by hat |Pro|} < consta. Similarly (5.14) implies all the other conditions in (H3). In
the case d = 1 condition (H3) is strictly weaker than (5.14), since p < 1. This is why, we prove the
result of [25] for NLW (where p = 2/3), avoiding the use of theorem D in [24] (see Theorem and
the proof of Theorem (1)).

On the other hand the KAM conditions (H1)-(H2) are quite different than (5.14). The iterative
scheme in [22], [24] would not converge assuming only (H1) or (H2). We discuss below the differences
of the KAM iteration process used to prove Theorem

Finally note that, if |Py3|? = O(1), then implies & > constr. This causes difficulties for
verifying the measure estimates because, as r — 0, also the size of the parameters domain shrinks to
zero, see remark

The KAM Theorem is completed by the following remarks.

Remark 5.1. (Analytic case) If the Hamiltonian H is analytic in & € II with II € C™ we can
prove the existence of limit-frequency maps & — (woo (), Qoo (€)) that are of class C* and, Vg > 1,

lwoo — Wlca s |0 — Qp—p.ce < Cg)eoat 1. (5.15)

See remark. Moreover in the KAM conditions (H1)-(H3) we can substitute | Pij|2 with |Pi;|s thanks
to Cauchy estimates.

Remark 5.2. (Lipeomorphism) If w : II — w(Il) is a homeomorphism which is Lipschitz in both
directions (Lipeomorphism), with

v

lw P <L and ¢ < L

(5.16)

then weo = 1T — woo (IT) is a Lipeomorphism with |w ! ['P < 2L.

Remark 5.3. (Dependence on n) The constant v depends on the dimension n of the torus like,

~—cT

for ezample, v = 77 where 7 := (T +n)In ((r+n)/s) and ¢ > 0 is an absolute constant, sece Remark
[823 We have not tried to improve such super-exponential estimate to get larger values of 7.

Let us briefly comment on the assumptions of Theorem
Remark 5.4. The condition © > 1 in is mot restrictive because, rescaling the variables
y—p'y, w—pw, H—p*H, (5.17)

we can always verify max{|Pi1|s, | Pos|s, Z |8;8£)P|S’T} > 1. On the other hand note that the KAM
2itj=4
conditions (H1)-(H3) are invariant under the above rescaling.

Remark 5.5. The KAM condition (H3) is obtained, for d = 1, performing a normal form step before
the KAM iteration, see section[8.4 Such condition is used for the wave equation. Note that if p — 0
the condition (H3) improves, but, on the contrary, the measure |Dau -| decreases (see -(5.19)).

The scheme of proof of Theorem is different than in [24]. In order to find the symplectic map
® which transforms the Hamiltonian H into the KAM normal form H, := H o ® in (5.8)), i.e.

P25 = Pys + Poyw + Py + Pyw -w =0,
we perform infinitely many symplectic maps ®,, v > 1, as in [24]. Each Hamiltonian has the form
HY = N" + P* where NY=w, (&) - y+ Q&) 22 (5.18)
and P is analytic on D(s,,r,) with r, > ro/4 > 0 for all v > 0. It is natural to look at the map

v v v v v+1 v+1 v+1 v+1
(Poo> Pors Pros Poa) = (Poo » Por » Pio > Poa )
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after any KAM step. An explicit calculus shows that the new Pg;rl is not a quadratic function of PZ,:

in the terms (Py;t, PY%™) there are linear combinations of Py, PY;, see Lemma(8.13) with coefficients
Py, Pls, Ply, Pyy. These terms come from the transformation of the cubic and quartic terms of P”
under ®”. However, after three iterations, the map

v v v v v+3 v+3 v+3 v+3
(P007P017P107P02) = (Poo »Por 7 Pro 7, Pog )

turns out to be quadratic, see Lemma [8.16] Then the superexponential convergence of the iterative
process is guaranteed under the smallness conditions (H1)-(H3) on the initial Pyg, Po1, P1o, Po2, where
« and r occur with different weights. Note that the exponents of  come from the natural rescaling
, while the different exponents of « by explicit computations. Unlike the usual KAM scheme in
[22], [21], [24], the KAM normal form H converges directly on an open neighborhood of the torus.

Note that also the KAM iterative scheme in [24] is not quadratic, see, for example formula (13) in
[24]. This problem is solved letting the domain of the normal form shrink to zero (see also [21]), so
that at the end of the iteration the normal form converges on the KAM torus only. The convergence
on an open neighborhood of the torus is then recovered by a posteriori arguments.

The Cantor set Il

Note that the Cantor set Il in depends only on the final frequencies (wWoo, Qo). It could be
empty. In such a case the iterative process stops after finitely many steps and no invariant torus
survives for any value of the parameters. However wso, {00, and so I, are always well defined.

The idea is as follows. Each KAM step can be performed only for the parameters £ such that the
frequencies w, (£), 0, (§), satisfy the second order Melnikov non-resonance conditions (8.42). Actually
this set could be empty. However we can always extend the frequency maps w, (&), Q,(§), to the
whole set of parameters ¢ € II, see the iterative Lemma (52)1,. This extension is Lipschitz
continuous and, if the Hamiltonian is analytic, it is C°°, see remark Finally we verify in Lemma
that if £ belongs to the Cantor set Il then all the Melnikov non-resonance conditions required
to perform the previous KAM step are all satisfied. We exploit that (w,,2,) converge to (woo, oo)
superexponentially fast.

Note that we do not claim that the frequencies of the final invariant torus satisfy the second order
Melnikov non-resonance conditions, fact already proved in [24]. We state a stronger claim, namely
that if the parameter ¢ is in I, then the torus is preserved.

The number of parameters m in Theorem is arbitrary. It could be strictly less than n (degen-
erate KAM theory). In the PDE applications of this paper we have m = n and the frequency map is a
Lipeomorphism. In such a case the final frequency we is a Lipeomorphism too, see remark Then
the following measure estimate follows by classical arguments [21], [22], [24], [20] (see also subsection

7).
Let x be the largest number such that (2.4 holds uniformly on IT and set p as in (2.4]).

Theorem 5.2. (Measure estimate I) Let w : I1 — w(II) be a Lipeomorphism and hold. If
Q) 140, Y]i|=1,2, Veée, (5.19)

HEETl : w(e) k+Q() 1=0}|=0, Vkez" 1eZ® ||<2, (ki) #0, (5.20)
then, taking 7 as in (2.11), I\ | — 0 as o — 0. If, moreover, w(€), Q(£) are affine functions of &

[T\ T, | < Cp"ta* where p = diam(II) . (5.21)

The following theorem states that, given a Diophantine versor @, there exist many invariant elliptic
KAM tori with tangential frequency tw, t € RY.
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Theorem 5.3. (Measure estimate IT) Assume that w(§), Q(§) are affine functions of &, O¢w is
invertible, and

(Q - agg(agw)—lw) o [ #0, vo<ll<2. (5.22)

Suppose that 0 ¢ w(Il). If v defined in Theorem is small enough, there exists K > 1 such that for
every versor @ € Dgq -,
|woo (IT\ o) NWRT | < Kat (5.23)

(here | - | denotes the one dimensional Lebesque measure).

Condition (5.22)) is similar to condition (2) of [I5] where it is required for 0 < |I| < 3 (see also (2.13))
with 7 = n). By Fubini theorem ([5.23)) implies (5.21]) integrating along the directions @.

6 Proof of Theorem 2.1

We have

% = [ Y Py wj] and Bj-Z = [ 3 Pijgyiijﬂ .

2i+j=4 2i+7=2

Proposition 6.1. (Averaging) Let H be as in , Suppose that holds. Then there exists
a constant C := C(n,T,s,d,n) > 1 large enough, 0 < ry < r/4 small enough and a symplectic map

D (I+ay+aw+) € D(S+7T‘+) - (Iayaw) € D(S,’I"), S+ = 5/47
close to the identity, such that, defining
H ==Ho®=:N+ P,

the Hamiltonian vector field X p+ has the same regularity of Xp, P =04f2i+j<2 amﬂ

Plyiili) = [ngyiw%i] if 2i454+7<D+1 and j+j<4,j<2 or j=1. (6.1
Moreover

I[PL] — [Pyl < OK3 /v, k3= |Puls + |Posls, V2i+7i+ji=4, 7=0,2,4, j=0,2. (6.2)

3]

In other words, in the case d > 1, D =4,

~ ~ A A A 1. ~ ~ D~ Az A
HY = -y +Q- 212 + Poos(a4 )@} + *A+?J+ G+ Bify - 242+ Py g)df (6.3)
+ Pfg (@)@ by + Z I—’i';'j(x+)y+w+w+ + Z T x+)y+w+w+,
2i4+j+j=5,7#1 2i+7+75>6
while, in the case d =1, D = 6,
A A A A~ ~ A ]- n A A a A ~ ~ A
HY = @y +Q- 242y + Poos(z1)d? + *A+y+ Gy + Byiy - 2424 4 Pohy(a)w} (6.4)
+ Pl oios + Y7 [ 077 (@+) @30 ] Y. Phlayiwhal,
2i4+j+j=5,6, )<2 2i+j+7=5,6 ,7>3

E + E : i =7 A
+ Pz]](x+)y+w+w+ + 1]] $+)y+w+w+ ’
2i+j+7="7,7#1 2i+j4+7>8

where A, € Mat(n x 7)) and By € L(C",(P7P) satisfy
1A+ = Al |B+ = Bl < C(|Pus + [Posls)a™" (6.5)

2 In particular the terms P14i07 PlJBI, PO+30’ POJF217 POJr127 Plﬁlv P0+31, P(;Zl vanish.
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PROOF. We start with some general considerations. We define the degree of a monomial
F = Fjy'w! = Fpy'a’d!  as  degF:=2i+j=2i+7+7.
The Poisson brackets of two monomials is a monomial with
deg{F,G} = degF +degG—2 or {F,G}=0. (6.6)
We denote X% the hamiltonian flow generated by F at time ¢. Then

HoXp =Y L,H/j! where LLH:={L}j'HF} and L}LH:=H. (6.7)
Jj=0

Let H= N + P be as in 1) and suppose that F' = Fl-jjyizbjﬁ)j solves the homological equation
{N,F} + Pyy'uhi? = [Py ala?] . (6.8)

By and we see that the terms of H and H o Xll, with degree less or equal than degF’ of are
the same, except for Pijjyiijj which is normalised into [Pijjyiwju?j] . On the other hand the terms
of degree equal to degF' + 1 are changed by a quantity of order |F|ks.

For brevity for the rest of this proof a < b means that there exists a constant ¢ = ¢(n,7,s,D,n) > 0
such that a < ¢b.

By the Melnikov condition there is a solution F' = Fijjyiwj @’ of the homological equation
for every (4,], ) satisfying the conditions in . Indeed the existence of F' and the estimate

|Fig5ls(—1/p) < |Pigls/cx (6.9)

follows as in Lemmata 1-2 of [24]; we just note that the small divisors involved in the definition of
every monomial f(z)y"3%5%2%3% of F are w -k + Qa — a) + Qa — a), with Q := (i1, ..., %),
keZ" a,ac N a,ae N> and |a+a| =7 |a+al =7 (then |a+a| <7 |a+al <j).

We now proceed normalising the terms of degree three with

(Z.ajvj) - (la 170)7 (13071)7 (07330)7 (072a 1)7 (07172) . (610)

Let us define F®) = ZFijjyiu?ju?j where the sum is taken over the indexes in . Let s3 :=
5(1—1/D). For r3 > 0 we have that |0, F 3|, <73, |0, F®) |, <rs, |0 F®|s, <r3, since 2i+j+7 > 3.
Therefore we can choose r3 small enough such that X : D(ss,r3) — D(s,r). Moreover the terms
of order three of H o X}.(s are the same of H except for Piz;y'd/d’ with indexes as in that are
normalised; note that, being of odd degree, they actually annihilate. On the other hand the term of
degree four are slightly changed by a quantity of order |F(3) |sski3< K3 /a by .

We now normalise the terms of degree four with

(4,7,)) = (1,1,1),(0,3,1),(2,0,0),(1,2,0),(1,0,2),(0,4,0),(0,2,2) . (6.11)

Let us define F® = ZFijjyiﬁ)jd}j where the sum is taken over the indexes in (6.11). If r4 > 0 is

small enough and s3 := s(1 — 2/D) we have that X ) : D(s4,74) — D(s3,73). The terms of order
three and four of H o X 1.5, 0 X}« are the same of H o X 1., except for those with indexes as in
that are normalised. Note that the terms corresponding to the first two triples in annihilate.
The normalisation of all the other terms of degree up to D + 1 is analogous. B

Remark 6.1. The cubic terms Pyos (J:+)1I)i on the high modes can not be removed by some averaging
procedure because the tangential and normal frequencies satisfy only the second order Melnikov non-

resonance conditions .
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We introduce parameters A
§ € (O’p*]na p* € (077“_2’_/4),

and new symplectic variables
(Tsy Yy Wi) = (T4, G — &, W4) € D(84,74) C 'H‘i x C™ x 0P se <sp, e <\/p, /2
where the n-dimensional angles are defined by
Tij =245, V1< j<n, 2(& + y*j)(efiz*j,ei””*j) =w4;,Vn<j<n.

After this symplectic change of coordinates the Hamiltonian H' becomes

H* =N+ P =w,(&) 4 + (&) - 22+ Y Phi(zai&)ylw! (6.12)

2i+35>0

with R R R
we(&) =0+ ALE, 0.(8) :=Q+ B4&, (6.13)

and, by lb , denoting for simplicity |- | :=| - ;‘*,

it d>1, |Pol. |Pal =002, Pl |Pal =002, |Phl=00%), |Psl=0(1), (6.14)
it d=1, |Pyl, [Pal =00?), P, |Phl=00%), |Phl=0?), |Psl=0(1). (6.15)

*

Moreover for o, > 0 and A := a, /M, with M := ||A_|| + || B || (recall (5.2)).
We now apply the KAM Theorem Take

. =90%2 p. =12 where ¥ € (9/10,1) if d>1, ¥ € (9/14,p) if d=1. (6.16)

Remark 6.2. Other choices of o, > 90212 are clearly possible, giving different estimates on the
Cantor manifold.

Theoremfollows applying Theorems Wit}ﬂ H=H* P=P" r:=r, a:=q,etc. Let
us verify the hypotheses of the above theorems. It is immediate to check (A*), (B*), (C*). Let © as

in (5.5) (with respect to the perturbation P*); note that © = O(1) with respect to &. By (6.14)-(6.16])
the KAM condition (H2) of Theorem holds.

O(rf(lfﬁ)) for d > 1
al/p. = _ 0 as 7.—0. 6.17
“/p {O(rf(“ 19)) ford=1 - (6.17)

Since A, = A(Id + A~'(A, — A)), by the twist condition, (6.5) and (2.14) we get that A, is
invertible with . . R R .
IATH = A7H < 20 A7H2) Ay - A, (6.18)
taking c in ([2.14)) small enough. Therefore, & — w,(£) is a diﬁeomorphism see
We ﬁnally verify that the frequencies w,, €. satlsfy 5.19) and - The non-resonance assump-
tion 2) implies |Q - 1| > a, V1 < |I] < 2, and s

1| .-
0.1 = Q-1 —[Bs&-1| > a—2p.| By || a=2p.([|By| +¢) > a/2

if r, is small enough. So (5.19) holds.

3 We apply Theorems and with o := . Here as is the parameter defined in (6.16) which is small with 7.
and has not to be confused with the fixed a appearing in the statement of Theorem
4 Recall that « is fixed and independent of px and 7+ (see also the previous footnote).
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Since wy (§) - k 4+ Q. (§) - L is an affine function of &, the condition holds if
O-k+Q-1#£0 or A k+BIlI#0.
Suppose that A,k + Bll =0, then k = —AIIBJTFZ and
G k+Q l=(Q— B AT'0) 1= (Q— BA )1+ (B(frl_A;1>+<B_B+>A;1)@.z¢o

by (2.13) and remark 2.1} (6.5), (6.18) taking c in (2.14)) small enough.

Then theorems [5.1]and [5.2]apply and we obtain a family of elliptic 7-dimensional tori parametrized
by ¢ € I, where the set I1,, has asymptotically full measure as » — 0 by (5.21)) and (6.17)).

Remark 6.3. The KAM theorem in [2]|] does not apply. Indeed, with only the estimates —
the KAM condition implies

o J const a (P22 4 1) = consta L (rPP 2 4 ) ifd>1
P B0 const o N p 2 4 1) = consta (rT'72 4 1) ifd=1

const > a™t

which, is incompatible with the measure estimate o < 72" (recall ).

7 Proof of Theorem [3.1]

We divide the proof in several steps.
Step 1) Partial Birkhoff Normal Form on 7 > n modes

By the non-resonance assumption (Az) where D > 4, we transform H in partial Birkhoff normal
form, up to order 4, on the first 7 > n modes, namely

H=4a-I+b-{C+

—4-T4+b-CC+ AT

1. A aa Az oA A
+ AL T+ BI-(C+O(ClCllz,) + OCla,) + OCliChE,,) (7-1)

c/\rb

where 4, b are defined in , the matrices A, B in . ¢ := min(g, 6), and
Co= (Gorro i)y Ci= (GG ), ¢=(0O), T:=80, T:=(.1).

The proof of this statement follows as in [23], [25], [2]. Note that the term O(|§|||é||3p) can not be
removed because (Ag) requires only second order Melnikov non-resonance conditions for n > f.

Step 2) Parameters and action-angle variables on n modes

We introduce parameters
£€(0,0", pe(0,1), (7.2)
and angle-action variables (x,y) on the first n modes, setting
G =20 +y)e ™, 1<j<n. (7.3)
Then I = £ + y and the Hamiltonian (7.1)) assumes the form

H=w(@) y+Q&- 22+ Y Pix:&y'w’ with w(@):=a+Af, Q&) :=b+B{, (74)

4,7>0

z=(Cut1,---), w:=(z,2), and

P = OB ==%), v2i+ 5 <3, Py — Pyl = 0(gl#7%), ¥2i+j =4, (7.5)
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The Hamiltonian H is real analytic on D(s, ), for some 0 < s < 1,0 <r < p/2.
Step 3) Apply the KAM Theorem and Theorem to H
The assumptions (A*), (B*), (C*) of Theorem [5.1] are implied by (B), (C), as in [23]. We take

a:=90%2% p:=r>" 9c(i,p) where fi:=max{2(14+pu)g " ,3(9—-1)""<pu<l (7.6)

by .

Remark 7.1. The parameter domain I1 can not be the whole (0, p]™ (see ) because, by , the
Hamiltonian H will be analytic in D(s,r) only excluding |£| < Cr?. This difficulty can be handled as
in [23], section 7, step 5. For simplicity of exposition we skip this technical detail in the following.

The KAM condition (H3) reduces, by —, to
g3 = O(max{r9=2720 ;00=D=3) <y and  O(r9 =371 <1, (7.7)
which are both verified for r small enough because (g — 3)9 —1 > 0 and
e3—0 as r—0.

By Theorem there is, V€ € I1, defined in (5.12)), an analytic symplectic map ®(+;&) : D(s/4,7/4)
— D(s,r) such that

H™ = Ho®=we(§) Yoo + Qo(§) - 2020 + P with P77 =0,V2i+j <2.

Moreover the assumptions (5.19)), (5.20) of Theorem hold by ([7.4) and (A). By Theorem the

Cantor set of parameters I, has asymptotically full measure

|H/Hoo| _ O(aﬂpn—l
(11| p"

By (5:9), (5-10) with p, = 1, and (76), we get

[P — Ph| < O(|Ph ] +7)es
|Pos — Pos| < C(1Pgs| + [P +7)es

) =0 )50 as r—0. (7.8)

|P — P5| < Cey, V2i+j=4, (7.9)

where |- |:=]- |§‘/4 and C := C(v,0). Moreover, , , ,

{|wm<s> —a| <y laes + A < Cr??

7.10
1020 (€) — bly_p < 7 Laes + | B¢ < Cr2. (7.10)

Step 4) Apply Theorem to H*®
Assumptions (2.3)), (2.5) of Theoremhold by (7.4). The non-resonance assumption (2.12]) holds

for any £ €
ve {Homw—l(paw) i od=1

where

<l>d n
: : . . > N .
11, {fEH \woo(ﬁ) k+Qoo(§) l| 2a1 WTNI{EZ s lEAn,D} C Il (7 11)

and Ap p is defined in (2.12). In the next section we prove that also IIy has asymptotically full
measure

I\ 11 Lok
| |}I| ol :O(p pna )zO(rz(“_ﬂ))HO as r—0. (7.12)
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Step 5) Check the Twist condition
The matrices A, B defined in (2.8), (2.10) (with P = P>) satisfy, by (7.9), (7.5), (7.6),
|A— Al < Cles +r797Y), |B=B| < Cles + %), (7.13)

The matrix A is invertible by (Al) The twist condition follows for r small enough.
Step 6) Check the non-resonance condition

By , , for every 0 < |I| <2

(= BA™'%) -1 - (b-BA'a)-

— 0 as r—0. (7.14)
Assumption (A3) and remark imply

inf |(b—BA'a)-I| >0,
0<|l|<2

and (2.13)) follows by (7.14]) for r small enough.

Step 7) Check the smallness condition (2.14
By (7.9), we get, for r small enough,

P+ |PSS| < 2|Pf| + 2|Py| + Ofesr T3S 6, (9-3)0 +e57). 7.15
11 03 11 03
Then

)
(1P + [Pgs ) < Cr?o=3"2 42250 as r—0.

PROOF OF THEOREM We apply Theorem to H in (7.4). The hypotheses of Theorem
hold, in particular condition @ is (b —BAta)-1#0,V1<]l| <2. Moreover 0 ¢ w(IT) because
a # 0 and p (namely r) is small enough. We fix py := ¢p. The segment [1 — cpg, 1 + cpo]o C weo(IT)
for ¢ small enough. Moreover, oy := p(lJJ”: = (cp)Hc > Ka by 7 for r and ¢ small enough, where
K > 1 is the constant defined in Theorem Then @ € Dkq,» and follows by and since

a’/p— 0asr— 0 by (7.6).

Remark 7.2. Actually woo(IT) is not a neighborhood of the frequency a, since II = (0, p]™ is not
a neighborhood of 0. Nevertheless this small technical point is bypassed as follows. For 1 < j < n,

inverting the signs in the definition , namely G = 1/2(& — yj)e+i“j , the new tangential frequency
n becomes w(§) =a+A(&,...,—=&;,...,&n). Taking all the possible choices of 1 < j < n and +

signs, & € 11 span a whole neighbourhood of the frequency a, except for n hyperplanes passing through
a (but not through the origin).

7.1 Measure estimates
The next proposition implies ((7.12)) concluding the proof of Theorem (3.1

Proposition 7.1. [IT\ IIy| < c¢p" 'a* where p is defined in and the constant ¢ depends on
a,b,A,B,n,n,d, D, ay, Kk, 0.

We have to estimate

M\Iy= J Rul) (7.16)
keZn,leha. b

where Ry; are the “resonant zones”

Ry(ar) == {5 TN ¢ Jwoo () - k4 Quo(€) - 1] < 2a(l)q } '

14 k|7

In the case d > 1 there are at most finitely many nonempty resonant zones Ry;(«). This is a
consequence of the next lemmata. The case d = 1 is more complex.
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Lemma 7.1. Letd > 1. There are D, > 1, o, > 0, such that

()a > DI

l 5y s Vi e Ath . (717)

PRrROOF. We consider only the more difficult case | = (l~7 A), [=e; — ej, i > j. We have
(g >i'— (i —1)%=Dna? >t —Dpd > i471/2 for i1 > 2Dpd. (7.18)
Defining dp := max{d,,0}, o, :=d — 1 — 6y > 0, we have
ll|o.|l]5. < Di%* Di% = D241, (7.19)
Let D, :=2D%*a% If i > 2DA% then follows by (7.18); if #~! < 2Da, by (7.19). m

Remark 7.3. Ford =1, D > 3 (as in this paper) the bound is false. Taking for example
=109 .= €atj — €5 — en with j > N we have

Ay =1, 105, > a%, 1V, > j7 = 00 as j — c0.
This motivates assumption (As) for d = 1. The bound is true for d =1, D = 2, see [Z]).
Lemma 7.2. There exists By > 0 (depending on d,b, 7, D) such that
b1 > 46o(l)g, Vi€ Anp. (7.20)
PROOF. We consider only the subtlest case [ = (I,1), |l| = 2, [ = e; — ej, i > j. We have
bl > bi=bjl—cr,  (Da<i?—j"+ca, (7.21)

for some ¢; :=¢1(D,bpy1,...,bs), ca :=ca(d, 7, D) > 0. By (Az) and (B) there is 51 > 0 such that

|bi —bj| > 26,(i% — 5%, Vi>j. (7.22)
By (7.21)), (7.22)), for 8y < 31/4 we have that
Bi(i4— i > Prea+er = |b-1]>48p(l)g. (7.23)

Let d > 1. If i > iy we have i — j¢ > dig_l, SO follows for ig large. On the other hand, the set
of [I| <D —2,j <i<igis finite and ()4 < Did. Hence follows by (Aj,) for By small enough.
Let now d = 1. Take h large such that 51h > B1co +¢1. Then holds for i — j > h. On the other
hand, if ¢ — j < h, we have (I); < h+ 7D and follows by (Az) for By small enough. m

In the following r is small enough.
Lemma 7.3. |Qoo(§) . l| > 3ﬂ0<l>d, Vf ell, l € Aﬁ,D.
Proor. By (7.10), p —p > —d., and Lemma we have

1260 () - 1] = b 1] = |Us. 120 (€) = bl-s. = 4Bo(l)a — Cllls.7>".

[

If d > 1 Lemma [7.1] implies |I|5. < D, (l)4 and the thesis follows for r small enough. If d = 1 we have
d. <0 (see (3.3)). Therefore |l|5, < D + 1 and we conclude again for r small. B

Lemma 7.4. If Ry(a) #0, o < o, then

k| > 0()q with 0:= Bo/(1+ a]). (7.24)
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PROOF. If there exists £ € Ry(a) then [woo(€) - k + Qoo (§) - | < 2a(l)q and, using Lemma [7.3]
[Fl[woo (§)] 2 [k - woo (E)] = Qoo (€) - I = 2a(l)a = 3fo(l)a — 2a(D)a = Po(l)a -

By (7.10) we have |wso(€)| < |a| + 1 for r small enough, implying (7.24]). ®
From now on we always assume a < (y taking r small enough. By the previous lemma we shall
restrict the union in (7.16) when |k| > 6(l)4. In particular we shall always assume k # 0. In the

following a < b means that there is a constant ¢, depending on the same quantities as the constant of
Proposition such that a < ¢b. Moreover M, L defined in (5.2)), (5.16) respectively, are, here,

M = [|All+ B[, L=[|A7Y].
Lemma 7.5. If |[k| > 8LM]|l|s, then Ri(a) < p™ ta/(1+ |k[7).

PROOF.  Assume that r is small enough such that e3 < ~v/(2LM). By remark the frequency
map we is invertible from TI to T := wy, (IT) with |w!["P < 2L. We introduce the final frequencies

oo

¢ = woo(€) as parameters over the domain II. Then Q(¢) := Qo (w'(¢)) satisfies (see remark
195, < Q0| WP < 2M2L = AML. (7.25)
Choose a vector v € {—1,1}" such that v -k = |k| and write ( = sv + w with s € R and w L v. Then
¢k +QC) 1= slk| + Qsv+w) - L= fu(s) (7.26)

and the resonant zones write

Ryi(@) = woo (Rua(a) = {C =svtwell: |fu(s)| < 207 jji‘;r}.

By (7.26)), we have
fri(s2) = fri(s1) > (s2 — s1)|k| =AM LJl|s, (s2 — s1) > [k|(s2 — 51)/2

because |k| > 8LM]|!

s.. Fubini’s theorem implies

- 2 e OF
R < = (diamII)"'2 .
‘ kl(a)‘ — ‘k|( lam ) a1+ |k|7’

Going back to the original parameter domain II by the inverse map wo_ol and noting that diam1I <

2MdiamII (by remark , (I'g < 67 |k| (by Lemma [7.4), the final estimate follows. W

We estimate the other resonant zones Ry;(«) using that the unperturbed frequencies in (7.4) are
affine functions of ¢ and assumption (Az). We have

Woo (&) -k +Q(E) - 1 = ary + brr - €+ Ry (&) (7.27)
where
ag:=a-k+b-1€eR, by :=Ak+BTleR", (728)
and
Rii(§) = (woo(§) —w(&)) -k + (Lo (§) — Q(E)) - L. (7.29)

Assumption (Aj) implies that
= min{|akl|, |bkl‘} >0, VkeZ", le Aﬁ)D, (k‘,l) 0.
Moreover (7.29)), (5.6), imply

IRu(€)] <esallkl+[Us,), |Rul™ <es(|kl+]

5.) - (7.30)
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Lemma 7.6. Fiz K, > 0. For all 0 < |k| < K., l € Ay p, (k,1) #0,
a< 05kl/4 — |Rkl(a)| < p”’la/ékl . (731)

Proor. Ifd>1, by Lemma (7.24), and d. < 0, we get

|l

< {(l}d <K, /0 ifd>1 .32)

D+1 ifd=1.

CASE I: |ag| = 0. By (7.27)), (7.30), (7.32) we get, for r small enough,

woo (&) b+ Qoo (&) -1l > aw| = (JANKI + [IBIINr = [Ria| > Jart| — cKur®” > 630/2

implying that Ry (a) = 0.
CASE 1II: |bgg| = g1 Set & = & = byy|bry| ™ 's + w with s € R, w L by By (7.27), (7.30), (7.32)) the
function fii(s) = woo(&s) - k + Qoo (&s) - I satisfies, taking r small,

b 1)
gr1(s2) — gri(s1) > %(52 —51) = %(52 —51).

Arguing as in Lemma [7.5] by Fubini’s theorem we obtain

prlalla . p"Tlalk]

Ri(a)] < ’
| Rt ()] (L + k™) = 0101 + |k|7)

and the thesis follows (since 7 > 1). B

We now distinguish the cases d > 1 and d = 1.
e Case d > 1

Let
L, :=8D, LM~ !, K, :=8LM max s, -

o, <

Lemma 7.7. |Ry ()| < p" ta/(1+|k|), Vk € Z", 1 € As p.

ProoF. If [k| < K., |l|,. < L., (7.7) follows by Lemma[7.6] Then we can suppose that |k| > K, or
[l|5, > L. If Riy(a) # 0 and |l|,, > Ly, then

17 29
k=000 = 0l |lls. /D = SLMIils. .

On the other hand, when |l|,, < L. we have |k| > K, > 8LM|l|s,. So, in both cases Lemma
applies proving (|7.7]). m

Lemma 7.8. card{[: (I)q < 0 'k|} < |]<;|de1 )

Proor. We claim that
e(a>lae1, ¢ :=2D%*. (7.33)

We consider only the case | = (I,e; — ¢;), i > j. We have [l|q_; < Di?"'. If i%! < 2Dm?, then
cy(l)a > ¢ > Di""" > |l|a_1. Otherwise by (7.18) (I)a > i*""/2 > Di®"" /¢, > [l]a—1/c, and (7.33)
follows. Therefore

card{l : (I)g <O k|} <card{l : |l|g_1 < c,0 ' |k|} < |k:\d%1 .
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By (7.16), (7-24) and Lemmata [7.7] we deduce

M < Y Ru) < 35 alk=/0+ 1) & ot
[k|>6(1) k
namely Proposition [7.1]in the case d > 1.
e Cased=1
Set
Ko=8(D+1)ML,  Lo:=K/f. (7.34)

Lemma 7.9. inf{dy; : 0 < |k| < Ky, (I)1 < Lo} > 0.

PrOOF. Let I = (I,1). Since the set {(I)1 < Lo} N {|I| = 0} is finite, we consider |I| = 1 or 2. If
[ =1V = +e;, j > i we have ay = a-k+b-([,0) £b; — Foo as j — oco. The same holds for
[ =+(e; +¢j), 4,7 > n. It remains only the case [ = +(e; —¢;), i > j . Then I =19 = +(epy; — e;)
for some 1 < h < Lo+ (D —2) (since Lo > ()1 > h—|l| > h—7(D —2)). As j — oo we have

ag =a-k+b-(1,0) £ (bpy; —b;) wa-k+b-(1,0) £h,

bry = Ak 4+ BT(1,0) + BT(0,+(enrj — ;) — Ak +BT(1,0).

We conclude by Assumption (Az). B

Lemma 7.10. For all k € Z™, | € As.p, there hold |Ry ()| < p" /(1 + |k|7).

Proor. If |k| > Ky > 8LM]|l|5, because |l|s, < (D + 1) (recall 0, < 0) the estimate follows by
Lemma If |k| < Ko we conclude by Lemmata [7.6| and ]

We can not estimate U;Ry;(«) with Z | Ry (a)| because, even with the constraint (I); < |k|/6,
1

there exist infinitely many [ = (l~, ent; —€j), j > n, with (I); < aD + h, Vh > 1. We need more
refined estimates. We decompose

AffL7D:A1UA27 AQ::{ZZ(LZ),[:i(€h+j—ej),j>'fl,h21}7 Al::A’fL7D\A2.

Lemma 7.11. card(Ay N {(1)y < [k[/0}) < |k[*.

PROOF. We consider only the case |I| = 2, | = +(e; + ¢;), i,j > 7 (the cases |I| = 0,1 are simpler).
We have || < D —2and |i + j| < |k|6~ +aD < |k|, implying the lemma. m

Lemmata imply
L

n—1
1+|k‘7p Q. (7.35)

<

We now consider the more difficult case | € Ay. We define

Quing () 1= {§ €11 ¢ [woo (€) -k + e ©) - (1.0) + h] < Gy }

where

S e 20lk] 2L+ [BlDp , axh
g1+ (k[T 5 I
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Lemma 7.12. Let 1 < h < 07 '|k| +7a(D —2), j > 7. Forr small enough

- . n—1 a p i
Qi ()] < p <1 R + o + j”) . (7.36)

Moreover, if 19 = (I,19)) € Ay, V) = e,4; — ej, then Ry (a) C Qpinj ().

Proor. If |k| > Ky, arguing as in the proof of Lemma for r small enough we get \Qk[hj ()] <
p" 1kn;/|k| and the estimate follows since h < 07! |k| + (D — 2). On the other hand, if |k| < Ko we
have h < Lo+ f(D — 2); by assumption (A3) and arguing as in the proof of Lemmata[7.6 and for
r small enough we have |Q,z,; ()] < p" '61p; and the estimate follows as above.

We now prove that Ryi) () C Qpp,; (). We have Qoo (€) - 19 = Qo (&) - (1,0) + Qoo (€) - (0,19)).
By and we have

Q606 - (0,19) — |

< 200(€) - (0,097) =119 =B 19| + BE - 19| + [byyp — by — A
< 2y laeg|lDs, + IBlpliY]s, + ahi™"
< 2Bl + 1)ps* + ahji™"
or r small enough 2a < p); the thesis follows since 1 <6 y Lemma |7.4, B
fi 11 h 2 he thesis foll i l 6~ 1k| by L 7.4

We choose .
. 14 k™| T
Jo = (H) . (7.37)
a
Since Ry () C Qi (@) € Qi (@) for j > jo, we have
_ aj 1
U Bruor (@) £ D [Ruor (@)] + 1Quig | < 0" | = + L+ — (7.38)
~ L~ 0 L+ |k[™ 0 55% b
j>n n<j<jo

by Lemma [7.10{ and (7.36). By (7.38)), (7.37), (7.6) choosing ¥ € (max{fi, u + 8.(1 + x) "'}, u) (note
d. < 0) we get, for r small enough (recall that —d, < k)

a/’b

U Ry ()| < Pnflﬁ .
(1 + k)5

ji>n
Since (1), < |k|/0 implies h < (D — 2) + |k|/0, and card{l : |I| < D — 2} < 1 we have
a,“”

Y (7.39)
(1+ |7 =T

U Rula)

LEA>

By (|7.39) and (7.35) we get
a 2
U Rul)| < P”_l% :
leAn.p (1 + [k[7)5=T
Summing over k and by the choice of 7 in (2.11)) we get Proposition also when d = 1.

8 Proof of the basic KAM Theorem [5.1]

8.1 Technical lemmata

We first give some lemmata on composition of families of analytic functions depending in a Lipschitz
way on parameters. We recall that the Lipschitz norms defined in (1.12)) satisfy the algebra property

fold. <If

Selgld,
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Lemma 8.1. If h(-;£) is analytic in T" and ||}, < o/2 then

2
9(w:€) = h(w +(w;€);€)  satisfies |9l < RIS + SRl Y-, < 2[RI (8.1)

IfV € &y (see (5.4) satisfies

[T00l3_s  |yools—s w0113, 1ol lyos] wools—o  [worl3-, <9 (8.2)
c 7 rz 7 p 0 W0ls—o [H02ls—0> T T o — 16’ '
with 0 < & <1, then, for oll H(-;€) analytic in D(s,r),
ﬁ(x,y,w;g) = H((x,yﬂu) + W(ay,w;{“);f) satisfies |H|S orbr < 2|H\§"T. (8.3)

PROOF. Since h(-;€) is analytic in T7, by Cauchy estimates,

[Y]s—0 < 2 = |9l < 10uhls—g |17, + [P < Ihl |02, + R[dP

S§—0 —
and (8.1]) follows. The proof of (8.3) is similar. B
We now estimate derivatives of the composed functions.

Lemma 8.2. Given H : D(s,r) x Il — C. There exists co > 0 such that, if

®:D(5,7)3 (4,y4+,ws) — (x,y,w) € D(s,r) with 0 <7 < g, 0<s< ;’
and ® =1+ V¥ with ¥ € & satisfies
|Zool?  lyoold  [youl? A x o lwoold  wor3
S S S A A S S < 8'4
s ) r2 ) r 3 |y10|3 ) |?102|s ’ ST 3 s o, ( )
then H := H o ® is analytic on D(s,7), V¢ €11, and
Bys 1 HI25 <30, V2i+j =4, where ©:= max{l, 3 |ayiij|g,,,} (8.5)
2itj=4
(we use the short notation H o ® to mean H(-,£) o ®, V& € I1).
ProOF. For ¢y small enough, conditions (8.4) imply (8.2]) with
35 3r 3s ;s S 5 37“—4F>1
§— —, 7T — —,0:=——§>—,0:= —.
4"’ 4"’ 4 4’ 3r — 3

Then (8.3)) implies, for ¢y small enough,

10, o H

A
Y+wi 5

- (|yo1l2 + [yo2137)? + 29,

3r
’74

< 2[jg,

A
r 3
T S ;

wH3e s (14 [wor]2)(lyor]3 + [yozl37)
o+ 2102 HI2, lyoa 2 + 10,2 HI2, (1 + fwon [3)2] (1 + ynol2) < 30,
using that, by Cauchy estimates,

|0ys H <4r o H|Y, < 4r7'e.

3 s 1677202 H|Y, < 169720, |02 H
4 4

s, r —

A
3s 3r
44

The other estimates are analogous. B

We conclude with a lemma on Fourier series. Fixed an integer K > 0, we denote

Tif(z8) = Y ful®e*® and Ty :=1-Tk.

keZn |k|<K
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Lemma 8.3. Let f(-;€) be analytic on T%. There is C := C(n) such that, V0 < o < s, Ko > 1,

KR\ fli,, oK "™ T '}, o™ Tk flig, " T flis <CIfI. (8.6)

S—0o )
ProOOF. We have

Tt a0 < 3 IRIIARlel®E=) < 1710 3 ke < £, 3 amimete

|k|>K |k|>K I>K

and the last sum is bounded by C(n)o~'K"e %7 if Ko > 1. The other estimates are analogous. B

In the following we will always assume Ko > 1.

8.2 A class of symplectic transformations

We introduce the space of Hamiltonians

Fs = {F(x;f) = Foo(7; ) + For1(w;€) - w + Fio(x;6) - y + Foa (w5 §)w - w (8.7)
where Fj; are analytic and bounded on T} and Lipschitz in £ € H} .

Note that the terms that we want to eliminate from the perturbation through the KAM iteration have
such a form. We shall also take “auxiliary” Hamiltonians in Fs; whose time one flow generates the
KAM symplectic transformations, see Lemma [8.9}

The next lemmata will be used to estimate the perturbation after the KAM step, see Lemma [8.11
The time one flow map generated by Hamiltonians in F; has the form [ + ¥ with ¥ as in , see
Lemma Lemma [8.4] shows that F; is closed under composition with such maps. We estimate the
transformed map in a slightly smaller analytic strip for the convergence of the KAM iteration.

Lemma 8.4. (Composition) If F € F,, ¥ € &_,, 0 < 0 < s, with |zeo|2_, < 0/2, then S :=
Fo(I+7)e€ Fs_y and

Soo = Foo+ Fio - Yoo + For - woo + Foawoo - woo
So1 = I+ wgl)ﬁbl + yglﬁ’lo +2(I + wgl)ﬁ’ogwoo
S0 = (I+ylo)Fuo

Soa = Fio-yoo + (I +wl,)Foo(I 4 wor)

where Fij = Fij(er) = Fij (.TJ+ + 1’00(1’+)). By , |F” ;‘70. S 2|F”|;\
It is a merely algebraic calculus that the space F is closed under the Poisson brackets (see (1.4).
Lemma 8.5. (Poisson bracket) Let R, F € F, then G :={R,F} € Fy, Y0 < s’ < s, and

Goo = Fio-Ryg — Rio - Fyg —iRo1 - JFpu

Go1 = Fio- R\ — Rio - Fyy + 2iFp2J Ro1 — 2iRg2J Fon
Gio = Fio-Ryy— R - Fl

Gos = Fio- Ry — Rio- Fly — 4iRoaJ Foo .

Given F € Fy, we consider the associated Hamiltonian system (see (1.3]))

j? = Flo(l‘)
y = —Fylz) — Fy(z)w — Fio(z)y — Foa(z)w - w (8.8)
w = —iJFOl({E) - QIJFOQ((E)’LU
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with initial condition (2°,y° w®) = (x4, yy,w,). For all & € I, the hamiltonian flow at time ¢

X%(ag) : (Jf+,y+,?,l)+) = (mtaytth)('x+7y+aw+)

defines a symplectic diffeomorphism which is close to the identity for 0 < ¢ < 1 and F small. In the
next lemma we estimate each component of these symplectic diffeomorphisms separately. These finer
estimates are required by our approach. This is a difference with respect to [24].

Lemma 8.6. (Hamiltonian flow) Let 0 < 0 < s <1 and F € F; satisfy, for some XA > 0,

|Fiol} < 0/12, |Feol) < 1/12. (8.9)
Then, for all t € [0,1], X& =T + V" with V' € &,_, satisfying
12 6
|26013-0 < 21F1003 5 [960l2-0 < ;(|F00\? +9(\F01|?)2> » |ylold—s < ;|F10|?, (8.10)

36 27
lybala_o < ;|F01|?7 lybala <;|F02|§, [whold_o < 6|Fo1]2, [whi]d o < 6[Fo2l2 -

s—o — s—o — s—o —
Moreover, if, for 0 < § <1,

orc oro oo oo
F S< 9 F SS b F SS b
72 [Fols < 216 [ Fiol 24 | Foo| 108

then X4(€) : D(s — o, —6r) C D(s,7), VO < t < 1, V¢ € IL.

| Fools < (8.11)

PROOF. In the Appendix. B

Finally we study the composition of two symplectic maps of the form I + ¥ with ¥ € &;. The

symplectic transformation (5.7) of Theorem is the composition of infinitely many maps of this
form, see the iterative Lemma (56),.

Lemma 8.7. (Composition of diffecomorphisms) Let 0 < s < 5, ® = [ + ¥ with ¥ € &, and
O =T+ T with U € & satisfy 2|xoo|2/(5 — ) <n < 1. Then the composite map has the form

dod =TI+ with Ue& and

|£00 — Zools < (1 +1)|Zools, |Woo — wools < (14 n)|Wools + 2|wo1|35|wools
|01 — wo1ls < (1 4+ n)|Worls(1 + |worls)

900 — yools < (1 + 0)|Fools + 2|Fo1]s|wools + 2|Frols|yools + 2[Fo2]s|wool?

[Fo1 — yo1ls < (1 +n)|7o1ls(1 + [worls) + 2|F10l5|yo1]s + 4|Fo2]5|wools (1 + |wor|s)

1910 — y1ols < (1 +m)|F10[5(1 + [y10]s)

902 — yozls < (14 n)[go2ls(1 + [wor|s)* + 2/F10ls]yoz]s (8.12)
where for brevity | - |5 := |- g‘, | |s:=]" |i‘

PROOF. We have W — W = W o (I + ¥). The estimate on &gy follows by Zoo(z4) — zoo(zy) =
Zoo (x+ + xoo(x+)) and 1) All the other estimates follow analogously. B

8.3 The KAM step

At the generic v-th step we have an Hamiltonian H” = N 4+ PV like in (5.18)). Both w,, Q, are
Lipschitz in II, with |w, |"P + |Ql,|1i%* < M,. We set
. «
0, = max {1, |P4 12, | P 2 oL, PY N, b with A, = 8.13
max ‘ 11|s,, | 03|s,, 21%::4‘ Yy w Sy Ty Wl Mu ( )

We simplify notations in the next section dropping the index v and writing “+” for v+ 1. So P = P”,
Pt =Pt ete.
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The symplectic change of coordinates

We write
H=N+P=N+R+(P—-R) where R:=TkgP<> (8.14)
and P<y is defined in . Then we consider the homological equation
{N,F}+ R =[R] (8.15)
where
[Rl:i=é+&-y+Qz-2, é:=(Po), @:=(Puo), Q:=diag;>,(02 . Py=ow=o) (8.16)

and (-) denotes the average with respect to the angles.

Lemma 8.8. (homological equation) Suppose that, uniformly on 11,

l
(€) k4 061l 2 e (D A0, <Kl < 2. (817)
Let 0 < o <s. Then, VR € Fs, the equation has a solution F € Fy_, satisfying [F] =0 and
K| Py . a
|FZJSG—W7 0<2i+j<2, OS)\SM, (8.18)

with X :=K(n,7) > 1. We can take K = (7 + 1)+ for some absolute constant ¢ > 0.

PROOF. The proof is given in [24], Lemmata 1-2 with the only difference that (8.17)) holds for every
k. The truncation |k| < K does not affect the estimates, since Tk P;; and, therefore, F;; are Fourier
polynomials of order K. B

By Lemma [3.8 and [8.6] we deduce:

Lemma 8.9. (symplectic map) There ezist Cy := Co(n,7) > 1 large enough -we can take Cy := K¢
for some absolute constant ¢ > 0 with K defined in Lemma[8.& such that, if

|Pool2  |Po1l2 A (50405
—s —= P Pyo 8.19
r2 ) r ) ‘ 10|57 | 02]s > 16C ( )
where
B:=21+n+2, (8.20)
0<20<s<1,0<d<1,0< A< a/M, the symplectic maps
Q' =T+ V' := XL : D(s—20,7r—6r) — D(s — 0,7 — r/2) (8.21)
are well defined Vt € [0,1], and V' € £,_o, satisfy
| 10| | Pool3 (1Po1]3)?
‘x00|s 20 < CO —1° | 00|s 20 — 2 O'ﬁ +C 20 2025,1 ’
A | 10\5 |Po1]2 | Poz2
‘yio‘s—zo < (o aoB | 01|s 20 < Co aoh |y02|s 20 < Co aoB
|Por|3 | Po2 |3
[wholi—2e < Co 51 | Wi l3—20 < Co g (8.22)

Note that — imply (with | - |} ,, instead of |- |2 ).

The Hamiltonian transformed under the symplectic map ®* := X}, defined in (8.21)) is
1
HY :=Hod" :N+N+/ {1=t)N+tR, F}oXtdt +(P—R)odt = N* + PT (8.23)
0
where Nt := N+ N and N := [R] is defined in 1'
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The new normal form N+

We now estimate N := N + N where N := é+ & -y + Qz - 2. We identify { with the vector
Q - (Qi)iZnJrl ’ QZ = <8§i5ip|y:0,w:0> :

Lemma 8.10. |& < |Pyls, [&]" < [Pio[fP, [Qp—p < [Pozls, 12, < [PozliP and

&k + Q-1 < |Prolslk| + 2|1 Poals (g, V(K1) € Z" x 7% (8.24)

PROOF.  We have Q; = ((Po2)e;, ej), where (-,-), and e; (respectively (-,-); and &) denote the
scalar product and the j-th element of the basis in £;" (respectively ¢;"”). We have €; = i" Pe; and,

ifue fg’ﬁ, U= Zﬂiéi = Zuiei, then u; = *P@;. Denoting u := (Pog)e;, we get
- ,

7
7P| = PP (uy i)y | = PPl = |G| = |(u, @)l < Hlullap < [Poals

(recall that |Ppa|s = su%) ||P02(Z’)H£(gg,pjs,ﬁ)) implying |Q|\ﬁ_p < |Po2ls. Similarly |©] < |Pig|s. Then
zeTs

@ k4 Q1) < Gk + 190s. 15, < [DI1E] + 12— 2(0)a < [Prolslk] + 2/ Poal (1)

using and |

5. < |llaz1 <2(1)g, V|I| < 2. The same estimates holds for | - |'P. m

The new perturbation P™

Notation. For the rest of this section, A < B means that A < X°B where K is defined in Lemma 3.8
and ¢ > 0 is some absolute constant.

By (8.23), and since N = [R], we have to estimate P™ = P* + P where
1
P = / {(1—#)[R] +tR,F}o Xtdt, P:=(P—R)od".
0

We estimate P* in Lemmam and P in Lemmam
We introduce the rescaled quantities

P A P A P, A P A
o |200|s Doy Pols [Pl [Pl (8.25)
reopa raPe « e}
where p,, py are defined in (5.11)). Since p,,pp > 1, if
dol
b,c,d < 8.26
a7 ’c7 — 1600 ( )

(the constant Cy is defined in Lemma[8.9)), then (8.19) and, so, (8.22) hold.
Note that the Pj; in (8.27), 0 < 2i + j < 2, are “quadratic” in the variables a,b,c,d (i.e. P;;).

ij

1
Lemma 8.11. P* := / {1 —t)[R] +tR,F}o Xkrdt € Fs_o, and
0

|PO*O|;\—20 < U276ﬁr2apa (CLC + 62) ) |P6<1|;\—20 < GziGﬁTQ‘pbb(C + d) )
IPols 0y < 0¥ %Pac?, |P52|?720 <o? Pad(c+d), (8.27)

where (3 is defined in .
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1 1
PROOF. We estimate / t{R,F} o Xk dt. The term [ (1 —t){[R],F} o Xk dt is analogous. The
0

statement follows by Lemma (with s — s — 3?07 s —0o — s—20), Lemma (with G = {R, F'}),
Lemma and (8.1J), 7 (8.18)), (8.19), (8.25) (8.26]). Indeed, using r,a < 1 and 2pp > p, + 1, we

get

A
| Pool

s—20

A A A A A A A
1Gools_sz +1Gr0li_ 2z [Y00[5-26 + [Gorl sz [wools—20 + |G02|5,3§(\w00|s_20)2

| Frol2—o|Ti Pool + |Tic Prol | Ego| + | Fou| | T Por
(175 Piol Frol + T Prol | Ffg| ) =120~ (a + )

A

+(|F10||TKP61| + Tk Prol|Foy | + T Por|| Foo| + |TKP02||F01|)01_2B7“04pb_1’9
+ (1F20l I Ti Pl + |Tic Prol | B + [Tic Pozl | Foa] ) o477 202 =202
< a0 93| Poo 31 Puol + [Por [ + | Prof*ra® ™ (a + 1)
H(1Piol + [ Poal [Poal(1 + ra®18) + | Pl 2]
< o lg?98 {TQap“Hac +r2aPrb? 4 riaPat (a4 b?)c?
+r2a% (¢ 4+ d)b? + r2a?Pr 202 d?| < 027802 qPagc

where in the second term of the chain of inequalities all the norms are | - [2__, in the third term all
the norms are | - |}, and we used Cauchy inequalities. Next

A A A A A A
|Fo1ls—20 < |G01|S,37<r + |G10|5737<7|y01|5720' + \G02|s,370|w00|5720

< |F10|;\70|TKP(/)1| + [Tic Prol| Fgy | + |Foal|Tw Pot| + [Ti Poz|| Fou|
+(I Tk Piol[Frol + | Tk Prol|Fio| + | Faol I Ti Poo| + [Tk Prol [ Foo| + [T Pozl| Foal) x
xol=2PraPr=1p
< gl 48Py [b(c+ d) + be? + bd(c + d)] < Ul—4ﬁrapbb(6+ d)

where in the second line all the norms are |- |2__. Moreover

1Piol2 00 < |Grol? 52 < IFrol2_o| Tk Plold_o + [Flold_ oI Tk Prol2_y <0 P ac?.

s—20 s— 32

Finally

Poala—ae < Grol3 s [yo2l 225 + [Go2l}_se

< (1wl _,|Tx Po| + | Tk Prol|Fiol) o' > d
+|Tk Poa || Fro| + [Foo| Tk Pro| + | Tx Poz|| Foz|
< o' Pa(Pd+ cd+ d*) < o *Pa(c + d)d

where in the second line all the norms are |-|2__. ®

s—o*

We define the higher order terms of the perturbation

Py = Z P;; (z)y'w? so that P = P<o+ Priyw + Pysw® + Py (8.28)
2itj>4

(P<y was defined in (1.8)). Note that 0,8, P = 9,07, Py if 2i + j = 4. We also define

Dy = ‘I’szo,mr:o} = ($+ + 200(24;€), yoo(z 43 &), woo (w45 f)) .

By Lemma 8.9 ®go : D(s — 20) — D(s — 0,7 — ér/2), V¢ € 1L
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Lemma 8.12. We have

[Py 0 ®oo| < © (6 yool? + 6~ [yoollwool* + |wool*)
|(8yPy) © ool < O (6 yool + [wool?) , (8, Ps) o Poo| < O((67)yoo| + |wool)

(9w P1) © Poo| < O((67) ™ [yoo|* + 8~ yoo| [woo| + [woo|*)
(9% P1) © Poo| < O(0 1\1/00\ +[wool?) s (D Pa) © ®ool <O (7)™ yoo| + [wool)
(85, Ps) © ®oo| < O(6r) ™", [(9,,Ps) 0 Boo| < O(6r)~>
where all the norms | | :=| |2, and © is defined in ,
Proor. We only prove the estimate for 93 Py o ®gg where, for brevity, 02 := Ouww. For all

(z,y,w; &) € D(s,r — 6r/2) x II, since 82 Py(x,0,0;¢) = 0 (by definition of P,), we have
105, Pa (. y, w; )| = 105, Pa(, y, w3 §) — 95, Pa(,0,0;6)|
< sup 10,0y Pa(z, ty, tw: )| ly| + Sup 100 P, ty, tw; ) [w]lap < O(0r) "yl + [[w]la.p)
(]| - || denote the operatorial norm) because, by Cauchy estimates, and the definition of ©,
1030y Paly (1— 3, < (67)7H|05,0y Pals,r < ©(67) (8.29)
Then V|y| < (r — 6r/2)2, |[w]lap < 7 — 67/2,
|05 Pa(y g wi )]s 010500 Pac, yy w3 ) |s—o < O((0r) ™yl + [[wlla,p) - (8.30)
Then, since Lemmalmpheb 200|205 < 0/16, |yoo| < (r — 0r/2)%, |wools—20 < 7 — 072,

|y00|s—20

|02 Py o ®ools—20 < sup |3S,P4(377yoo($+;§)7w00($+;f)?C)\<@( o7

+ |w00|s—20> :
zeT?, (eIl
With similar estimates [95 Py 0 ®oolhh < OA ™ (|yool2_24(67) ™" + [woold_5,). ®
We now estimate P := (P — R) o ®T. Note the “linear” term in the variables a, b, ¢, d.
Lemma 8.13. P := (P—R)o®" = (Piyw+ Pysw® + Py + TKP<2) o®T € Fy_o, and
08ﬂ74|]500\?_20 < |P11|2‘r3ap“+pb72(ab +b%) + |P03|§‘7‘3(13pb73b3 + @5717"4042”“72@2 + b4)
+K"e Kop2aPe (a4 b?)

o8~ 3|p01‘s ey < |P11|§\r2apa_1(a+b2)+|_F)03|g\,r2a2pb—2b2+@5— 3 Patpo— 2( +b2)b
+K"e  KopaPrp
o2 P2 s, |P1[2ra? ™ + 05 r?aPa " a4+ b?) + K"e X 7ac

25 1|P11 _Pll‘ |P11|§‘(c+d)+@6_1rap“_1(a+b)
0?77 Pos — Pos|2_54 (I1P1il2 + [Posld)d + ©6 'raPe(a + b)

where (B is defined in .
PROOF. Let for simplicity & := ®. We have

s—20

<

o2 Poald o, < (P2 +|Pos|)ra?* b+ 05 el (0 + b%) + K"e Kad
<
<

Po=(P-R)o®) o, o Fu=0, (P-Ro®) _ (8.31)
N ~ 1

Py =0, ((P —R)o (I)) ly+=0,w4=0" Por = 587»2”+w+ ((P —R)o (I))ly+=01w+=0 ’

B 1,

P = ay+w+ (P—R)o )|y+=07’w+=0 » Fos = gaw+w+w+ (P—R)o (I))Iy+=0,w+=0 )
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For brevity we set |- | :== |- [}, |- |, := ||} 5,. The Pﬁ(m*‘) =T Pij(zt +200(xy)), 0 < 2i+j < 2,

satisfy, since |zoo|2 o, < 00 /16 (by Lemma ,

_
|Pjl. < |TgPijls—e < K"e "7|Pyl. (8.32)

All the following estimates are a consequence of (8.31)), the definition of P, in ({8.28]), Lemmata
and (8.25), (8.26), (8.32) and 2py, > p, + 1. Setting Q := Py + T P<y we have

|]500|* < |P11||y00|*|w00|* + |P03Hw00|‘:’ + |Q o CI’00|*
< |P11|0274ﬁr3ap“+p”72(ab + b3) + |P03|0'37357‘30t3pb73b3
+0 (67 yool? + 6 ool lwoo |2 + wool?)
1 1 1 1 2
+[Pgg |« + [Po1 |«|wool« + [ Pigl«|yool« + [ Posl«|wool
< |P11|0274ﬁr3ap“+pb72(ab + b3) + |ng|cr?’73'3r3oz?’p”73b3
+@6—10,4—8ﬁT4(a2pa—2(a + 62)2 + 0(4pb_4b4)
+K"e Kog2=48p2gpa (a+ >+ cla+b?) +db®).

Next
1Poils < |Pua|(|yor]«lwool« + [T +worl«|yools) + |Posllwool 21T + worl« + |0, (Q 0 @)y, 0.1, o]
< |Pi|o? % r2aPa 7 (a4 b?) + |Pos|o® = PriaPr=20% 4 (9,Q) © Pool«|yo1]«
+](0w Q) © Poo| | + wor |«
< [Pu|o® *Pr?aP e (a + %) + | Poslo® r2a® 20 O (6 |yool« + wool?) o1«
+O((67) Myool? + 6 yool«lwool« + |wool?)
+| Pyt || I + wotl« + [Pigle|yor ]« + | Poz|«|wool« [T + worl-
< | Pi|o? 2P (0 4 b2) + |Pos|r?o® P a2 4 @5 1o 083 e P2 (g 4 p?)b
+K"e Kogl=28pqrop
Moreover

|1510|* < |Pr|Jwool« T + y1ols + 10y, (Q © @)1y, —0.0, =0
< |Pualot P ra? b+ O Hyools + [wool?) + | Pigl« I + y1ol«
< |P11|0'172'6’r‘05p571b—|— @5710,274[‘37,20[17(171(01_'_ b2) +Kn€7KUOzC.

By and we have |yo1|« < 6r and then
|Poals < |P11] (Iyo2]« [wool« + [T + woil«|yo1|+) + |Pos||wool«| I + wor|?

HOR w, (@0 @)1y, 0,0, =0l

< (|Pu1| + |Pos|)o* *Prare=1p + 1(82,Q) © Pool«|yo1 |7 + [(8;.,Q) © Pool« T + wor|«|yor |«
+(8,Q) © Pool«|yoz]« + [(95,,Q) © Pool+ |1 + wor 2

< (|Pu] + [Pos))a? *Pra?*= b+ 0 ((6r) " [yool« + [wool+) [yor |«
+0(57  yool« + |wool?) [yoz |« + © (6 |yool« + [woo|2) + | Pig|«|yozls + [Posl« I + wor|?

< (|Pua| + [Pos)o® *Pra” b+ 05 (|yo1|2 + oo« + |wool«|yo1 |« + [wool?)
+|Pig|«|yo2]« + [ Posl«

< (|Pu| +|Pos|)o® *Prar 1o+ 05 o *Pr2are a4+ b?) + K"e K70 *Fad .

The estimates of |]511 — P11]« and |]503 — Pys|« follow in the same way. B
Recollecting the previous informations we state the following key lemma of the KAM step.
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Lemma 8.14. (KAM step) Assume . Then, V€ € 11 satisfying , there is a symplectic
map
Ot (;€): D(s — 20,7 —6r) = D(s —o,r) with 0<20<s, 0<6<1,

satisfying , such that
HY:=Ho®" =Nt 4+ Pt =(N+N)+Pt=(N+[P])+P"
and PT = P* + P satisfies the estimates of Lemmata and .

We define a4, by, cq,dy like a,b, ¢, d in 1) with P, s, := s — 20, oy, 7, instead of Pij, s, 0,7,

17

Lemma 8.15. Assume , Or? < 18a and | P11 |} < 9aP< /r, |Pos|2 < 9aP! /r, where

De =3 —Pa — Py =< 5/4 if (H2) ) it (3) (8.33)

1/2  if (H1) .
and g {1/2 if (H1) or (H2)
1 if (H3)

We have that

ay < Cilac+b* 4 a® + K"e_K”a)/(SUB

by < Ci(a—+0b*+be+bd+ K"e Kb /50"

cy < Cib+cHat K"efK”c)/&TB

di < Ci(b+cd+d®+a+ K e K°d) /60" (8.34)

where 3 := 167 + 8n + 12 and C; = K° for some absolute constant ¢ > 0 (K defined in Lemma .
Proor. By Lemma (see the estimates of Lemmata and [8.13)), 5 = 86 — 4, we get

a'éa

L < ac+ b4 (ab+b3)aPrPe2 4 p3aBPetPimra=3 L 957 (6 + b )r2aPe T2 + K"e K%
oPby < betbd+ (a+b2)aretPereml 4 p2aPr P2 4 95 (b + b3)r2aPe 2 + Kme Ko
UBCJF < A+ baP P2 L 05 (a+ bH)raPe 2 4 Khe Ko

oPd, < cd+d* 4 baPr P2 L paP P2 L @5 a4+ bH)r?aPe T 4 Ke Kod

which imply (8.34) thanks to ©r? < 18, (5.11)), (8.33) and (8.26). m

8.4 KAM iteration

We fix x such that
1<y<2Y3, 1> 0. (8.35)

Below an “absolute constant ” (denoted by ¢, ¢;,c’,...) is a constant depending (possibly) on x only.

Lemma 8.16. Let {(a;,b;,c;j,d;)}o<j<v a sequence of positive numbers satisfying

aj1 < RN aje; 02 4 a2 + Kle K qy)

bii < RTNag 02 4 bjey + bidy + KPe K b))

cir1 < Wb 4+ E daj+ Kle M e))

dign < RN Fedy + dE 4 ap+ Kle KV d)), VO<j<v-1, (8.36)

where k> e® and K, > 25 + 61nk + 16n>. There exist 0 < 7o := vo(k, x) < 1/3 such that
ap, bo, o, do <eg < Yo — aj, bj, Cj, dj < ’}/0_1 €0 €_Xj s V0 Sj <v. (837)

In particular one can take o = k=% for some ¢ = e(x) > 1.
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PROOF. In the last three inequalities in (8.36)) appear the linear terms a;, b;. This seems in contrast
with a superconvergent iterative scheme, i.e. (8.37). However we recover a quadratic scheme iterating
three times, i.e. the estimate of (a;43,bj43,Cj+3,d;+3) in terms of (aj,b;,¢;j,d;) is quadratic. The
detailed computations are given in the Appendix. B

For v € N we define
_ 50
e 0,:=0027", 09:=— sy+1::sy—2oy\5,

o b r
o 5, =273, ruH::(1—5V)TV\TOH(1—5V)>5°, D, = D(s,,7,),

v=0
Qo _ Qo _ Qay (%)
1 > = D112 D M, = My(2-27Y) S 2My, A = N, 0
e l>ap>a 2(+ )\2 of ) /" 2My M, A,
v SK* 6 2
[ ] KV = K(]4 s K() = 5 K,1 ZZO, K* =2 —|—61n/$+16n .
S0
Note that K,o0, = K,2¥ > 1. Let us define
K 1= 401 (4/50)" (8.38)

where C; = K¢, § = 167 + 8n + 12 are introduced in Lemma and K = (n+7)°"*7) in Lemma
(here ¢ denotes absolute, possibly different, costants). We set

Yo := Y0(k, x) as in Lemma with & in (8.38) . (8.39)
Note that, for some 1 < ¢ < ¢o,
e <K <P 1T <y <70 with 7= (T+n)In((T+n)/s0). (8.40)

In the following lemma we set | - |, := | - |

v for brevity.

Lemma 8.17. (Iterative Lemma) Let H° = N° + P° : Dy x II_; — C be analytic in Dy with
I, CR™, N%:=ey+wo() -y + Q(€) - 22 in normal form and |wo|"™® + |Qo|lf(’5* < My. Define

ap == |P000|0 0= |P001|0 o 1= ‘Pﬂ)|0 do == |P82|0
Cordade T U rgakt oy ' oy

There exist C = ’yac* > 1, v =75 <1 (for some absolute constants ¢, > ¢* > 1 ), such that, if the
smallness conditions

max{ag,bo,co,do} =:€0 < Y, To|Plilo < abe, 1o|Pslo < apf, 200r0 < Vao, (8.41)

are satisfied (the constant Oq is defined as in for PO), then:
(S1), V0 < j < v there exist HI = NI 4+ pi . D; x 1,1 — C, analytic in Dj;, with NI =
ej +wi(§) -y +Q(§) - 22 in normal form and

l
1L 12{561_[;'71 flw;i(€) -k + (8 -1 >aj14<r>/i|7’ V(k, 1) #0, [kl < K;, [l §2}~ (8.42)

Moreover, V1 < j < v, HI =Htodl ‘where <I>j‘: Dj x Hj_1 — Dj_1 are a Lipschitz family of real
analytic symplectic maps of the form ® =1 + W with W/ € &, satisfying

|@hols [yloly < CL2PPD0 sy Jydyl; < C2CP D0 Ddade " a; g + 07 4),

Yd1l s [whol; < CL2®P7 DG Drgal ™ b, 1 Jydyls, lwdy |y < CL2G3FD0UNg; y (8.43)
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where

P, Pl Pi. Pil.
jm bl g =l Wl g T @40
TjOéj T]O[j O[] O[]

(S2), V0 < j < v there exist Lipschitz extensions @;, Qj of wj, §1; defined on II_1 and, for j > 1,
~ ~ ~ ~ li j—1 & A A A li j—1
|0 = @1l @5 — @51l < [Py sy s 1K = Qjalpp 195 = Q51 <[Py sy, (8.45)

|, [P+ 19,11 < M; (8.46)
(S3), {(aj;,bj,¢j,d;)Yo<j<v satisfy with K defined in .
(S4), YO < j <v—1, the aj,bj,c;,d; <~ 'eo e with Yo defined in .
(S5), V1 <j<v—1 we have ©; <90 (see ), and
[P = Py <2777 Cuso(IPDLo + ™%, (8.47)

|Pgs = Pg5 ;< 2797 Cucol| Pislo + [Phlo + o ~1/?). (8.48)
(S6), V1 < j < v, the composed map & := d o d%o...0 &/ = [ + W with W ¢ s, satisfies

&0l + |Fols 188215+ @15 < CF(1L = 27)eo, (8.49)
[Goly < CHA =27 )rgag" e, |G ls s [@dol; < C2(1 =279 )roaf’ 'eo .
PrOOF.  The statements (S1)o, (52)o, (595)0, follow by the hypothesis of the lemma, (8.41) and
setting @g 1= wo, Qo = Q. The (54)o holds by (8.41) because vo < 1/3 (see Lemma|8.16). The (S6),

follows by (S1)g. Note that (S3) trivially holds since there is nothing to verify in (8.36) for v = 0.
Then, by induction, we prove the statements (Si),+1,7=1,...,6.

(S4),+1 follows by (8.41), (93), and Lemma [3.16]

(S1),41. By (54),41 we have, since €9 < v, = 75",

I ceml 5,08
Ay, by, cp,dy <y ege <7 e <

< oo (8.50)

for ¢, large enough. Indeed, since o, := 5027"/8, 6, := 27773, B := 27 +n + 2, we get

7XV » cﬂ C(T-’rn)
sup S = sup s e X 25D < (ﬁ) < (T +n) :
v>0 0,0,  v>0 So 50

Then follows, for c, large enough, by and Cp = K¢ = (7 + n)CI(T“l), see Lemma

Then, by , v¢ e Il,, Lemmaapplies with N =N, P=P,, s =8,,0 =0,,T =7,
a=ay, 6 =6, M = M,. There exists a real analytic symplectic map ®**! : D,y x 1, — D,
Lipschitz in II,,, such that,

Hu+1 - HY o(I)u+1 —. NV+1 + PV+1, NV+1 = NY + [pV] .

The estimates (8.43)) follow by (8.22)) and (8.44), taking C, large enough (namely ¢* large enough).
(S2),4+1. The frequency maps w, 1 9,41 are defined on II,, and, by Lemma satisfy the estimates

lwyp1 —wy| < |P1V()|su slwpy1 — WV|hp < |P1VO|E,I,) (8.51)

1001 = Qulpop < |Piales 101 — I, < [Pl (8.52)

37



By the Kirszbraun theorem (see e.g. [23]), used componentwise, they can be extended to maps @, 1,
2,11 defined on the whole II_; preserving the same sup-norm and Lipschitz seminorms (8.51)-(8.52)
As a consequence, and since | |—s, <| |5—p (recall (3.3)), we get

|L~UV+1|lip + |Qu+1|li%* < M, + ‘Pll/0|luip + |P52|Ep <M, + X (e + dy)
= Mu(l + ¢y + dl/) < Mu+1
by (54), and for ¢, large enough.
(S3),+1 follows by (8.34) and the definition of k. The assumptions of Lemma hold by (8.50)), by

(S5).
0,r2 < 90¢r2 §9®0r0 < 9a0/2< 18a,

and |P{y], < 9a2e/r,, |PY%l], < 9ab /r,, that follow by (S5),. Indeed, by (8.48) with j = v, and,
since p, > pe > py, we get by (8.41)

v a—1/2 a—1/2
PGl < |PS%lo+ Cueo(|PSslo + [P0 + abe ™ 2) < 2|PSo + |[PAlo + aBe ™2 (8.53)

< 3rgtad +af 1/2 <drgtad’ <9r;tal!
for ¢, large enough (with respect to ¢*). The estimate |Py;|, < 9ab¢/r, follows as well.
(S5),4+1. By the last inequality of Lemma (S4),+41, (8.41) and ©, < 90, we deduce
[P = Pl < Ko €02 e X (| Pyl + | Pgsly + Ourvale ™)
< 27 Cueo(IPho + |Pslo + )

with ¢* large enough. The proof of (8 - for j=v+1is analogous

Finally, by (56), and c, large enough, we apply Lemma o with ® = & = I + ¥**!'. Then
yields ©,11 < 960 because ayiij”H = Oyiryi P! for 2i 4+ j = 4.
(S6),.1 By (51), we can apply Lemma 8.7 with & = &, & = &**+! & = U¥*+! Then ¥+ Eoin
and (56),41 follows. The estimate for ;" follows by the bound in (56) for |§go|» and the inequalities

B12)
‘llgo o — Joolv+1 < |Z‘/5(T1‘u+1 + 2D+350 1|$03_ |l+11900
+2(156 | lwid o1 + [Folulybd o1 + T2 lvlwig 21
(S1)p41
< 022—1/ 1r2aga 150

with ¢* large enough and, then, ¢, large enough (w.r.t. ¢*). All the other estimates are analogous. B
Corollary 8.1. For all £ € 1o, = Ny>oll, the sequence OV = I + U converges uniformly on
D(s0/2,70/2) to an analytic symplectic map ® = I + ¥ where U € &, /5 satisfies
\ \ ozl_ al~Pe a(l)—Pb
—C
|00l 5y /o \Z/oo\sf/gT \3101\50/QT 510122 20 1902120 195 1001 ]2 5 [w00 ]2 o o e0 (8.54)

and the perturbation PZ5(-,€) = 0.

PROOF. The @+ — & = ¥+ 6 d" is a Cauchy sequence by (8.43), (54),,1 and (S6),. Estimates
8.54)) follow by || and since | - |;\C‘://24 < A4|- |;\§/2. Finally P25(+,§) = 0, V€ € Il,,, follows by
8.44) and (54),. =

Let us define

Woo := lim @,, Qs := lim Q, .
V—00 V—00

It could happen that II,, = ) for some vy. In such a case II,, :~(Z) and the iterative process stops
after finitely many steps. However, we can always set @, := ©,,, 2, = Q,,, YV > 19, and weo, Qoo
are always well defined.
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lip

Lemma 8.18. |&, — wool, [ — Qoolp—p, [@ — weo|'P, Q) — Qoolprp < Yo Capege X

Proor. By (85), (4), (S4),, we have
oo oo .
~ ~ ~ — — — Y
|©) — woo| < ‘ZWHI —wj‘ <7 1(106026 X< g fapepe X .
Jj=v Jj=v
The other estimates are analogous. B

End of the proof of Theorem
CAsE 1: HypoTHESEs (H1), (H2), or (H3)-(d > 1). We apply the iterative Lemma with

S0 =38, To =T ag:=a, N> : =N, P°:=P, ©g:=0O, My:=M, I_, :=1I.

27

The smallness assumption (8.41)) follows by (5.5), (H1), (H2), (H3), (8.33), taking v < 7.. Theorem
follows by the conclusions of Lemma Corollary [8.1] and Lemma [8.18 Finally we prove the
characterisation of the Cantor set in terms of the limit frequencies (woo, Qoo)-

Lemma 8.19. Il CII, := Ny>oll,.

PrROOF. By (3.3) we get |l|p—5 < |l|a—1 < 2(l)q. If € € I, we have, Vv > 0, V|k| < K, |I| <2,

(Da OF
1+ ‘k|T 1+ |k‘""

jwi (§) -k +€2,(8) - 1] = 2a = |wn (&) — woo (E)[[E] = 212 — Qoclp—p(l)a > (8.55)

because, by Lemma for v small enough,

[0} «

|Wv(§) - Woo(§)| < 5 ) uQv - Qoouﬁ—p < m

(1+ KK,
Since a > «,,, by (8.55)) we deduce I, C I, Vv > 0. B
CAse 2: HypotHEsIs (H3)-(d = 1). We first perform one step of averaging. The homological
equation

{N, F'} + Poo = (Poo)
has a solution F' := Ep, for all ¢ € II such tha w(§) € Don » (see (1.14)). The symplectic map
H.— vl .
®:= Xy :D(s/2,r/2) — D(s,r) has the form
by, vy, wi) = (2,94 + doo(r1), wy)

and [fioo|s/2 < & #|Pools, where, here and in the following, |- |s and ||,/ are short for || and |- |;‘/2
respectively. Then H := H o ® = N + P satisfies

|]500\S/2 < o | Pools|Prols + a2 Poo|? < e3r?a + e3rt < 2e2r%a
|1501\s/2 < |Poils + @ #|Pi1|s|Pools < |Por|s + @/ ?e3r? < aesr
|Prols2 < |Puols + o *|Pools < |Prols + e37* < e30

|Pozlsja < |Pozls + " |Pools < €30

and so A R A R
£ := max {T_Qoé_1|P00|s/2, o ' Porlsjz, @ Prols2 s a_1|P02|s/2} <e3.

5Actually it is sufficient to require in 1} only finitely many non-resonance conditions, i.e. for |k| < K.
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Moreover . .
|P11 — Puils/2 | Pos — Poslsj2 < |fiools2 < o #|Pools < e3r® < e3a,

whence |1511|S/2 , |]503\s/2 < 2a/r, if 7 is small enough. By Lemma we get © < 30. We apply the
iterative Lemma with

H° ::ﬁ, N°:.=N, PO ::]5, S0 ==, To = g, ap=a, =30, My:=M, ¢g:=¢,
M :=T\w ' (Dan+).
Then (8.41)) follows since € < g3 < v, taking 7 small enough (with respect to vy ).
We now prove remark [5.1] for analytic Hamiltonians.

Remark 8.1. We only modify the statement (S2), stating the existence of C°°-extensions of the
frequency maps weo, Noo. We follow the cut-off procedure of [5]. The small divisor condition
holds with «;/2 instead of o in the neighborhood

N(IL) = {g eI,y : dist(e, 1) < cajK;““)} (8.56)
where ¢ is a small constant. Then H'TL exists for all € € N(IL,) and, the KAM iteration implies
Wit —wjls 141 = Qlp—p < Cajege™ .

By a cut-off procedure we define C°-functions QjJrl — Qj for all the parameters £ € 111 coinciding
with Q11 — Q; on II; and equal to zero outside N (I1;). Moreover, by , the derivatives of such
extended frequency maps satisfy

sioeffoj(m)q, Vg 1.

1D (1~ Q)lpp < Cajene™ /(oK 7)< Cla) 2

An analogous estimate hold for wj 41 — @;. Summing in j > 1 we get .
We now discuss the estimates of remark [5.3

Remark 8.2. By Lemmal[8.17 the small constant v := v(n, T, s) of Theorem can be taken vy :=
where 7o is defined in (8.39). Then (8.4() implies the estimate for v given in Remark .

Proof of remark By (56.6), (1.13), A = a/M, we get
woo = w[™, 100 — QT < Mei/y (8.57)

By 1) D we have |weo [P, |Qoo\|li%* < M+ Me; /v < 2M. Let &,& € II and w; := weo(§;),
j =1,2. We have |£; — & = Jw (wi1) — w! (wa)| < Llwy — wp| and

W (61) —woo(&2)] 2 w1 —w2| = [(woo — w)(£1) = (Woo —w)(&2)]
> (L7 = |weo — w|'™®) &1 — &|
> (LT =y Me)|6 — & > (2L)7Hé — &l
Therefore wy, is injective and |w [P < 2L.
Proof of Theorem We have w(§) = a+ AE, detA # 0, Q(§) = b + B¢ and (B*) implies

E

b; = i + lower order terms, i >n, Be L(C" (%), 0, <d—1. (8.58)
Since II is compact and 0 ¢ w(II) there exist 0 < t_ < ¢4 such that

Woo (I N@RY C [t ty]w.
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By remark for g; small enough, the perturbed frequency map ws, is invertible. Then, for all
t € [t—,t4] such that t@ € ws (II) we define

Qoo (t) == Qoo (w3 (tw)) = b+ BA™ (tw — a) + r(t)
where r(t) is a Lipschitz map satisfying, by (5.6 and (8.58]),
s, & "% < eei < ey (8.59)

The map 7(t) can be extended to a Lipschitz map on the whole R preserving the bounds (8.59) by
the Kirszbraun theorem applied componentwise. Defining

) =t0-k+Qu(t)-1=(b—-BAa)- I +t(k+A'BTl)-0+r(t)-1 (8.60)

we have to estimate the resonant set

Woo (TT'\ TTeo) N@RY C U Ry where Ry = {t €t ty] : [fu(t)| < 12?'1]2"1} :
keZn |1 <2, (k,1)#0
Let Ay :={|l| <2 : I; =0, Vi>ip}. Note that A;, is a finite set.
Lemma 8.20. There exists 81 > 0 (small enough) and ig (large enough) such that
a<pBi, 1éN,, |kl <{)a/8t+ = Rp=0. (8.61)
PRrOOF. We first prove that if ig is large enough then
|(b—BA ta+tBAT'®) 1| > (I)a/4, Vte[t_,ty], 0<|I| <2, 1¢A,,. (8.62)

We consider only the subtlest case [ = e; —e;, i > j. Since I ¢ A;,, we have i > ig. By (8.58|) we get
b1 > (1)4/2 for iy large enough. If d > 1 then (I)q = i — j% > di?"!. Then (8.62) follows for iy
i

large enough since, by (8.58)), [(BA™'a +tBA™ ') 1| < Ci® and 6, <d—1. Ifd =1, 5, < 0 and it
is enough to prove that i — j > Cj% for some C > 1. For all j > jy such that C’jg* < 1 the thesis
follows because ¢ —j > 1. For all j < jj the thesis follows taking ig > jo+C. By (8.60)), (8.62)), (8.59),
if t4 k| < (l)q/8 and a < 3y is small enough, then

2a<l>d

1 1
> (1), — - > = 2d
|fri(t)] > 4<l>d consto —ty|k| > 9<l>d > 1 k[

implying that Ry, = (. m

Lemma 8.21. For @ € Diq,r with K > 2/t_ then Ryo = 0. Moreover for a small

|Rpi| < constloj?}jr , VkeZzZ", || <2, (k1) #£0. (8.63)

PROOF. Since @ € Dq,r with K > 2/t_ then, for t € [t_,t4],

Fro) = [t k| > t_|@ -k > 20/(1+ [k]7) = Ruo=0.
We then discuss [ # 0. Moreover, by Lemma we consider only [ € A;; or |k| > (I)4/8t;. By the
hypotheses and , arguing as in Remark

c:=(b—-BA'a)-1  satisfies |g|>6>0, VO<|I] <2. (8.64)
Now set my; := (k+A7'BTI) - @. If [my| < 6/(3t,), by (8.60), (8.64), (8.59), for o small enough,

(8.61)
@I ol - § 20> § 57 220 g .
If |mkl| Z 5/ 3t+) we have ‘fkl(tg) — fkl(tl)LZ |t2 — t1|(|mkl| — 20’)’) 2 |t2 — t1|5/(4t+) for Y small
enough and (8.63) follows with const = 8t /5. m
Now the proof of proceeds as in [24] or in subsection above (recalling Remark now
holds also for d = 1 since n = n, D = 2). Note that and are the analogue of
Lemma [7.4] and Lemmata [7.7] (case d > 1), [7.10] (case d = 1) respectively.
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9 Appendix

PRrROOF OF LEMMA We take 0 < t < 1. For brevity we write | - | instead of | - \’\.
STEP 1. The solution of the first equation in (8.8) with 2° = 2, has the form

t

' =ay +xf(xy) where z{y(zy)= [ Fio(zy +afo(zy))dr.
0

By and (8.1) we get |zhy|s—o < 0/2 and the estimate (8.10) for xf, follows.
STEP 2. Substituting ' in the third equation in (8.8) we get

W' = —iJF} — 2T Fjw' = b' + Alw'  where F}; := Fjj(zy + aby(zy)) . (9.65)
By 1) we have |Fitj|5_(, < 2|F}j|s and so

0 |s—o < 2|Fo1ls, |A%s—o <4|Foals < 1/3. (9.66)

Let M* be the solution of the homogeneous system M = A'M? with M° = I. We have

t 1 11
|Mt__[|570_ S/ |AT|870|MT|570dT S 5 Sup |Mt|sfa S -+ 3 sup |Mt_-[|sfcr
0 3 o<i<1 3 o<t<1
whence o -
( ) (18.9)
IMt|s_, < 3 and |M'—1I|,_, < 3 sup |A',_, _! 6|Fo2|s _! — (9.67)
2 2 o<t<1 2
Then, by Neumann series,
(M) Moo <D IMF =T, <2 (9.68)

320

The solution of the non-homogeneous problem (9.65) with w® = w, is

t
w' =wy + (M' = Dwy + Mt/ (M)~ dr =: wy + why (v4)wy + why(w4) . (9.69)
0

The estimates (8.10)) on wf, and wf; follow by (9.69)), (9.67), (9.68), (9.66).
STEP 3. Finally, substituting #* and w" in the second equation (8.8)), we get

gt = —Fly — Ehw' — Flow' - w! — Flyyt =: bt 4+ Aly! (9.70)
where Ffj = Fl (24 + aby(aq)), A" = —F!,, and, using 7
b= _(Fgo + Fgwho + Fgpwo - w(t)o) - (ﬁ&(f +wy) + 2(who) TEG, (1 + w61)>w+
(T + b)) B (1 + why) )y -y (9.71)

Since |zhy|s—o < /2, by Cauchy estimates and (8.1 we get

- 4 A 4 (8.9
|Fitj|sfa' S 2|Filj|sf% é E|Fz]|s — |At|570 é E|F10|5 ? g . (972)

Let M? be the solution of ]\jjt = A*M? with M° = 1. Reasoning as in Step 2 we get

N . 3 . 6 B9 1 N
|Mt|sfa S ’ |Mt - I|570 S §|At|57.§ S ;|F10|s ? 5 and ‘(Mt) 1|sfcr S 2. (973)

N W
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The solution of the non-homogeneous system (9.70) with 3° =y, is

t
y* y++(Mt—I)y++Mt/(MT)_ledT
0

Yt + Yoo (@+) + yo1 (@) wi + yio (24 )y+ + Yoo (x4 )wy - wy

where, by (9.71),

t
Yoo = _Mt/o(MT)_l(F()To+F()T1w80+F0Tzw80'w50)dT
t
o = =N [ (G ) + 2ugo) T+ ) dr
Yio = M' 1
t
e = =N () TR+ ) )

The estimates li on yfj follow by 1} li and the previous estimates for wgg, wo1.

We finally prove that X% : D(s — o,7 — 0r) — D(s,7). If (z4,y+,ws) € D(s — 0,7 — dr) then

Ima'(z)] = Imzy +Imaly(v)] < s—o+|zhylsee < s—0+2Fi0ls < s.

The estimates |y’ (x4, y4,wy)| < 72, |w'(z4,wy)|a,p <7, follow as well by (8.10), (8.11). m
PROOF OF LEMMA [8.16] Let 7o := 43¢ ™% where

i )i+l i I i 401\ 5)i i 3y, i+2
f{ﬁJle(X 1)x , I 1(2 x)x’ kI le(X 41 x)x, kI 1e(2=Xx7)x }
0

Note that 5o > £~¢™("%) for some & = &(x) > 1, since II>1f1 ke > enA) for gome & = a(y, a) >
j

1, (recall k > e®). By the choice of x we have 0 < 4 <1
We claim that

4_j+4 -1 4__j+2 ) 4_j .
a; <eggeX TX by <Ay egeX T ¢y, dy <Ay “egeX X vo<j<v. (9.74)

Note that G) follows by 1) since 7, 2ex" < Y5t We prove |) by induction over j. The case

j = 0 follows by ag, bg, co, do < 7¥o. Then we prove that ((9.74) holds for j + 1. We have

) G 2 2 n —K,20
ajy1 < KT (aje; + b5 +aj + Kle a;)
2vE 2 i41~—2 AT ~—Q _—9yIiT2 I t4 i1 4_ j+4_K*2j
< X Rt (Fy e ™ TX £ 72T 47X ) gorl TIR X X
4 j+5
S Eoex X
since, Vj > 0,
- 4 -~ 1 i 4 _ 0 J - 4 -~ 1 o 3 Jj+2
€09 20X <Fo < =k Lo +1-x")x . €07y 20X <Fp < g,{ J=12=x")x ,

1

4 - i _ Jj+4
0¥ < Ap < chTIT BTN

. J+5_ i+ pe o)
RITIE eI X X K2 <,

The first three estimates directly follow by the definition of 4y. The last one holds since, by

K,>2046lnk+16n%, 1+ 71° — ™ - K20 <™ - K, 29 < —K,277!
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andﬂ G4+ Ink+nlnK, — K.2771 < 0. We have

bjt+1

since, Vj > 0, kI T Kl TX

gL, . 2 e . n,—K,27
< R (aj + b5 +bj(c; +dj) + Kle b;)
A - _LJt4 o A J+2 . 4 g+2__ . F ~_ - 4 J+2_ J
< eX €0HJ+1(6 X _‘_%2506)( 2x _,_27035()6)( X X)_i_% 150/$]+1Kfex X K2
~—1 4_ . J+3
< jg eoeX X

J43_ 42 g oi
X K2 <1 and

—_

Go < g0 gited ey < 5o < ST,
F52eX ey < F < é’i_j‘le(f“_xg))‘j )

reasoning as above (note that x? +1 > x*). Finally

) GH1, ) 2 n —K.20
cjir1 < KT (aj+bj+cj + Kle ¢;5)
4 ; j+4 i+2 4 i ) 4 .
I =1, —x ~—4 —2x7 5 —2 1 —x—K.27
< X! T (e + A e 4 g e soe ) + 4 Tegr! TR X X
N_ 4_ g+l
< A 2506x X

. . ; G+ i e 9
since, Vj > 0, kI 1Kl TX X' =B <1 and

52 < dp < 2ri 000t s L oe et s 5 < it a0y
— — 8 b — 8 ) —_ — 8 .
The estimate d; 11 < ’3’62606X47Xj+1 follows as well. &
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