
ON THE STRUCTURE OF THE ESSENTIAL SPECTRUM
OF ELLIPTIC OPERATORS ON METRIC SPACES

VLADIMIR GEORGESCU

ABSTRACT. We give a description of the essential spectrum of a large class of operators on metric measure
spaces in terms of their localizations at infinity. These operators are analogues of the elliptic operators on
Euclidean spaces and our main result concerns the ideal structure of theC∗-algebra generated by them.

1. INTRODUCTION

The question we consider in this paper is whether the essential spectrum of an operator can be described in
terms of its “localizations at infinity”. Later on we shall give a general and precise mathematical meaning
to this notion, but for the moment let’s stick to the naive interpretation of localizations at infinity of an
operatorH as “asymptotic operators” obtained as limits of translatesat infinity of H. However, we stress
that translations have no meaning for the class of spaces of interest here and very soon we shall abandon
this interpretation.

We begin with the simplest situation whenX = R
d. Note that we are interested only in operatorsH

which are self-adjoint (quantum Hamiltonians). DenoteUa the unitary operator of translation bya ∈ X
in L2(X), so that(Uaf)(x) = f(x + a), and say thatHκ is an asymptotic Hamiltonian ofH if there
is a sequencean ∈ X with |an| → ∞ such thatUan

HU∗
an

converges in strong resolvent sense toHκ .
ThenSpess(H) = ∪κSp(Hκ) holds for very large classes of Schrödinger operators. We refer to the paper
[HM] of Helffer and Mohamed as one of the first dealing with this question in a general setting and to that
of Last and Simon [LaS] for the most recent results obtained by similar techniques (geometric methods)
and for a complete list of references. On the other hand, the importance of asymptotic operators (or “limit
operators”, as they call them) has been emphasized in a series of papers in the nineties by Rabinovich,
Roch, and Silbermann and summarized in their book [RRS]. They are especially concerned with the case
X = Z

d and they do not use geometric methods, but their results can be applied to the case of differential
operators onLp(Rd) with the help of a discretization method.

Results of this nature have also been obtained in [GI1, GI3] by a quite different method where the de-
scription of localizations at infinity in terms of asymptotic operators is not so natural and rather looks like
an accident. To explain this point, we recall one result. LetX be an abelian locally compact non-compact
group, defineUa as above, and for any characterk of X let Vk be the operator of multiplication byk on
L2(X). Let E ≡ E (X) be the set of bounded operatorsT on L2(X) such that‖V ∗

k TVk − T‖ → 0 and
‖(Ua − 1)T (∗)‖ → 0 whenk → 1 anda → 0. A self-adjoint operatorH satisfying(H − i)−1 ∈ E
is said to be affiliated toE ; it is easy to see that this class of operators is very large. Let δ ≡ δ(X) be
the set of ultrafilters onX finer than the Frech́et filter. If H is affiliated toE then for eachκ ∈ δ the
limit lima→κ UaHU∗

a = Hκ exists in the strong resolvent sense and we haveSpess(H) = ∪κ∈δSp(Hκ).
Thus the essential spectrum of an operator affiliated toE is determined by its asymptotic operators.

The proof goes as follows. The spaceE is in fact aC∗-algebra canonically associated toX, namely the
crossed product of the algebra of bounded uniformly continuous functions onX by the natural action of
X. Moreover, the spaceK ≡ K (X) of compact operators onL2(X) is an ideal ofE . Note that by ideal
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in aC∗-algebra we mean “closed bilateral ideal” and we call morphism a∗-homomorphism between two
∗-algebras. It is easy to see that for eachκ ∈ δ and eachT ∈ E the strong limitτκ := lima→κ UaTU∗

a

exists and that the so definedτκ is an endomorphism ofE so its kernelker τκ is an ideal ofE which
clearly containsK . The main fact is∩κ∈δ ker τκ = K and the proof is not so easy. But from here
we immediately deduce the preceding formula for the essential spectrum of the operators affiliated to
E . Indeed, it suffices to recall that the essential spectrum ofan operator in aC∗-algebra likeE which
containsK is equal to the spectrum of the image of the operator in the quotient algebraE /K .

We shall callE (X) theelliptic C∗-algebra of the groupX. It is probably not clear that this has something
to do with the elliptic operators so we justify now the terminology. TheC∗-algebra generated by a set of
self-adjoint operators on a given Hilbert space is by definition the smallestC∗-algebra which contains the
resolvents of these operators. LetX = R

d and letP be a real elliptic polynomial of orderm onX. Then
E (X) is theC∗-algebra generated by the self-adjoint operators of the form P (i∇)+S whereS runs over
the set of symmetric differential operators of order< m whose coefficients areC∞ functions which are
bounded together with all their derivatives.

We stress that althoughE (X) is generated by a small class of elliptic differential operators, the class
of self-adjoint operators affiliated to it is quite large andcontains many singular perturbations of the
usual elliptic operators. This is obvious from the description of E (X) we gave before and many explicit
examples may be found in [DG1, GI3].

The main object of this paper, theC∗-algebraE (X) defined in (2.4), plays the same role as the preceding
algebra for the case of a general class of metric spaces (for which the notion of differential operator is
not defined). In Section 6 we show that ifX is a unimodular amenable group thenE (X) is the crossed
product of the algebra of bounded uniformly continuous functions onX by the left action ofX. Thus we
may recover as a corollary of Theorem 2.1, our main result, the results of [GI1, GI3] for locally compact
abelian groups and those due to Roe [Ro2] in the case of finitely generated discrete (non-abelian) groups
(see also [RRR]). We mention that amenability is not necessary if we work with the reduced crossed
product, an analogue of Yu’s Property A is sufficient.

At an abstract level, the main point of the approach sketchedabove is to shift attention from one ope-
rator to an algebra of operators. Instead of studying the essential spectrum (or other qualitative spectral
properties, like the Mourre estimate) of a self-adjoint operatorsH on a Hilbert spaceH, we consider a
C∗-algebraE of operators onH which containsK = K(H) and such thatH is affiliated to it and try to
find an “efficient” description of the quotientC∗-algebraE /K . For this, we look for a family of ideals
Jκ of E such that

⋂
κ

Jκ = K because then we have a natural embedding

E /K →֒
∏

κ
E /Jκ (1.1)

and we think of this as an efficient representation ofE /K if the family {Jκ} is rather small and, in
our concrete situation, the idealsJκ have a geometrically simple interpretation. This is in an important
point and we get back to it later on. For the moment note that any representation like (1.1) has important
consequences in the spectral theory of the operatorsT ∈ E , for example ifT is normal andTκ is the
projection ofT in E /Jκ then its essential spectrum is given by

Spess(T ) =
⋃

κ
Sp(Tκ). (1.2)

We make some more comments on the role of ideals in the spectral analysis of the operatorsT ∈ E .
Consider an arbitrary idealJ ⊂ E and denoteT/J the image ofT in the quotient algebraE /J .
ClearlySp(T/J ) ⊂ Sp(T ) and if J contains the compacts thenSp(T/J ) ⊂ Spess(T ). It is natural
in our framework to callT/J localization ofT at J (this is justified in the abelian case in Section 4.4).

We refer to [ABG, BG1, BG2, DG2, Geo] for a general discussionconcerning the operation of localiza-
tion with respect to an ideal and for applications in the spectral theory of many-body systems and quantum
field theory but we shall mention here an example which clarifies (we hope) our point of view. LetH be
the Hamiltonian of a system ofN non-relativistic particles interacting through two-bodypotentials and
let Vjk be the potential linking particlesj andk. For each partitionσ of the system of particles letHσ
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be the Hamiltonian obtained by replacing theVjk such thatj, k belong to different clusters ofσ by zero.
Then the HVZ theorem says thatSpess(H) =

⋃
σSp(Hσ) where the one-cluster partition is not included

in the union. In fact, this is an immediate consequence of thepreceding algebraic formalism: theN -body
C∗-algebra is easy to describe andHσ is the localization ofH at a certain ideal which is easy to describe.
The point is that we do not have to take some limit at infinity togetHσ, although this could be done (this
would mean that we use “geometric methods”).

Now let’s get back to our problem. Assuming we have chosen the“correct” algebraE (X), we must
find the relevant ideals. In the abelian group case, this is easy, because there is a natural class of ideals
associated to translation invariant filters finer than the Frech́et filter [GI1]. In trying to find the analog of
such filters for arbitrary metric spaces one easily finds Proposition 6.6 and see that what we call coarse
filters are good candidates. This explains our definition (2.5) where we introduce the idealsJξ which
play the main role in our constructions. Note that they are defined by the behavior of the operators at
certain regions at infinity.

One should note that this strategy denotes a certain bias toward the role played by the behavior at infinity
in X (thought as physical or configuration space): we think that it has a dominant role since we hope that
our choices of ideals is sufficient to describe the quotientE /K . There is no a priori reason for this to
be true: there are physically natural situations in which ideals defined in terms of behavior at infinity in
momentum or phase space must be taken into account [GI1]. However, it does not seem so clear to us
how to defined such physically meaningful objects in the present context.

Now comes a crucial point: for a general metric space these geometrically defined ideals do not suffice to
computeK (X), i.e. we do not have

⋂
κ∈δE(κ)(X) = K (X) with a notation introduced in (5.28). After

several unsuccessful attempts to prove equality here I accidentally learned that this is not true, in fact an
ideal strictly larger than the compacts appears naturally in the algebraE (X), the so-calledghost ideal.
The counter-example is due to Higson, Laforgue and Skandalis [HLS] and is important in the context
of the Baum-Connes conjecture. And this happens in the simplest case of discrete metric spaces with
bounded geometry (the number of points in a ball of radiusr is bounded independently of the center of
the ball) whenE (X) is theuniform Roe algebra. The ideal structure of the uniform Roe algebra [Ro1]
is studied in detail in a series of papers by Chen and Wang [CW1,CW2, Wa] and we adapted to our case
their idea of kernel truncation with the help of positive type functions in caseX has Yu’s Property A.

Our interest in the case of general metric spaces was roused by a recent paper of E. B. Davies [Dav] in
which aC∗-algebraC (X) (much) larger thanE (X) is introduced and studied, cf. our Remark 3.3. Davies
points out a class of ideals ofC (X) and describes their role in understanding the essential spectrum of
the operators affiliated to it. In Section 4.2 we present the filters which are implicitly used in [Dav] and
in Section 6.4 we give a simple characterization of the algebraC (X) in the case of abelian groups.

We refer to [GI2] for a detailed discussion and historical comments in relation with our approach but
emphasize the previous work of J. Bellissard, who was one of the first to stress the necessity of considering
C∗-algebras generated by Hamiltonians in the context of solidstate physics [Be1, Be2], and that of
H. O. Cordes [Cor] who, already in the seventies, studiedC∗-algebras of pseudo-differential operators on
manifolds and computed their quotient with respect to the compacts in various situations.

2. MAIN RESULTS

A metric spaceX = (X, d) is properif each closed ballBx(r) = {y | d(x, y) ≤ r} is a compact set. This
implies the local compactness of the topological spaceX but is much more because local compactness
means only that the small balls are compact. In particular, if X is not compact, then the metric cannot
be bounded. We are interested in proper non-compact metric spaces equipped with Radon measuresµ
with support equal toX, soµ(Bx(r)) > 0 for all x ∈ X and allr > 0, and which satisfy (at least) the
following condition

V (r) := sup
x∈X

µ(Bx(r)) < ∞ for all realr > 0. (2.3)
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To simplify the notations we set dµ(x) = dx, L2(X) = L2(X,µ), andBx = Bx(1). We denoteB(X)
theC∗-algebra of all bounded operators onL2(X) andK (X) the ideal ofB(X) consisting of compact
operators. ForA ⊂ X we denote1A its characteristic function and ifA is measurable then we use the
same notation for the operator of multiplication by1A in L2(X).

SinceX is locally compact the spacesCo(X) andCc(X) of continuous functions onX which tend to zero
at infinity or have compact support respectively are well defined. We use the slightly unusual notation
C(X) for the set ofbounded uniformly continuousfunctions onX equipped with the sup norm. Then
C(X) is aC∗-algebra andCo(X) is an ideal in it. We embedC(X) ⊂ B(X) by identifyingϕ ∈ C with
the operatorϕ(Q) of multiplication byϕ (this is an embedding because the support ofµ is equal toX).
We shall however use the notationϕ(Q) if we think that this is necessary for the clarity of the text.

Functionsk : X2 → C on the product spaceX2 = X×X are also called kernels onX. We say thatk is a
controlled kernelif there is a real numberr such thatd(x, y) > r ⇒ k(x, y) = 0. With the terminology of
[HPR], a kernel is controlled if it is supported by an entourage of the bounded coarse structure onX com-
ing from the metric. We denoteCtrl(X

2) the set ofbounded uniformly continuous controlled kernelsand
to eachk ∈ Ctrl(X

2) we associate an operatorOp(k) on L2(X) by (Op(k)f)(x) =
∫

X
k(x, y)f(x)dx.

It is easy to check (see Section 3) that the set of such operators is a∗-subalgebra ofB(X). Hence

E (X) ≡ E (X, d, µ) = norm closure of{Op(k) | k ∈ Ctrl(X
2)} (2.4)

is aC∗-algebra of operators onL2(X). We shall say thatE (X) is theelliptic algebraof X.

There is a naturalC(X)-bimodule structure onE (X) becauseC(X)E (X) = E (X)C(X) = E (X)
and it is easy to check thatK (X) = Co(X)E (X) = E (X)Co(X) ⊂ E (X). For reasons explained
above we are interested in giving a “geometrically meaningful” representation of the quotientC∗-algebra
E (X)/K (X). For this purpose we introduce the class of “coarse ideals” described below.

If F ⊂ X andr > 0 is real we denoteF (r) the set of pointsx which belong to the interior ofF and are
at distance larger thanr from the boundary, more preciselyinfy/∈F d(x, y) > r. A filter ξ of subsets ofX
will be calledcoarseif F ∈ ξ ⇒ F (r) ∈ ξ for all r. Note that the set of complements of a coarse filter
is a coarse ideal of subsets ofX in the sens of [HPR]. There is a trivial coarse filter, namelyξ = {X},
which is of no interest for us. TheFréchet filter, by which we mean the set of sets with relatively compact
complement, is clearly coarse, we denote it∞. All the other coarse filters are finer that∞.

To each coarse filterξ onX we associate an ideal ofE (X) by defining

Jξ(X) = {T ∈ E (X) | inf
F∈ξ

‖1F T‖ = 0} = {T ∈ E (X) | inf
F∈ξ

‖T1F ‖ = 0} (2.5)

where theinf is taken only over measurableF ∈ ξ. We shall see that the setIξ(X) of ϕ ∈ C(X) such
thatlimξ ϕ = 0 is an ideal ofC(X) andJκ(X) = Iκ(X)E (X) = E (X)Iκ(X).

Let β(X) be the set of all ultrafilters ofX (this is the Stone-Čech compactification of thediscretespace
X) and letδ(X) be the set of ultrafilters finer than the Fréchet filter. For eachκ ∈ β(X) we denoteco(κ)
the maximal coarse filter contained inκ and we setC(κ)(X) = Ico(κ)(X) andE(κ)(X) = Jco(κ)(X).
These are ideals inC(X) andE (X) respectively and we have

E(κ)(X) = C(κ)(X)E (X) = E (X)C(κ)(X). (2.6)

Then to each ultrafilterκ ∈ δ(X) we associate the quotientC∗-algebra

Eκ(X) = E (X)/E(κ)(X) (2.7)

and call it localization ofE (X) at κ We denoteκ.T the image ofT ∈ E (X) through the canonical
morphismE (X) → Eκ(X) and we say thatκ.T is thelocalization ofT at κ.

We may now state our main result. Note that condition (ii) is aversion ofProperty Aof Guoliang Yu.

Theorem 2.1. Let (X, d) be a proper non-compact metric space andµ a Borel measure onX such that

(i) µ(Bx(r)) > 0 andsupx µ(Bx(r)) < ∞ if r > 0; moreover,infx µ(Bx(1/2)) > 0;
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(ii) for eachε, r > 0 there is a Borel mapφ : X → L2(X) with ‖φ(x)‖ = 1, suppφ(x) ⊂ Bx(s)
for some numbers independent ofx, and such that‖φ(x) − φ(y)‖ < ε if d(x, y) < r.

Then
⋂

κ∈δ(X)E(κ)(X) = K (X). Equivalently, we have a canonical embedding

E (X)/K (X) →֒
∏

κ∈δ(X)

Eκ . (2.8)

In particular, the essential spectrum of any normal operator T ∈ E (X) is equal to the closure of the
union of the spectra of its localizations at infinity:

Spess(T ) =
⋃

κ∈δ(X)Sp(κ.T ). (2.9)

The choice of1/2 in (i) is, of course, rather arbitrary, and an assumption of the forminfx µ(Bx(r)) > 0
for all r > 0 would be more natural. Note that a large part of the theory canbe developed assuming only
the first part of condition (i), so each time we use the second part of (i) or (ii) we shall say it explicitly.

Several versions of Yu’s Property A appear in the literature(see [Tu] for the discrete case), we have
chosen that which was easier to state and use in our context. Later on we shall state and use a more
abstract version which can easily be reformulated in terms of positive type functions onX2.

In view of applications to self-adjoint operators affiliated to E (X), we recall [ABG] that anobservable
affiliated to aC∗-algebraA is a morphismH : Co(R) → A . We setϕ(H) := H(ϕ). If P : A → B
is a morphism between twoC∗-algebras thenϕ 7→ P(ϕ(H)) is an observable affiliated toB denoted
P(H). SoP(ϕ(H)) = ϕ(P(H)). If A andB are realized on Hilbert spacesHa,Hb, then any self-
adjoint operatorH onHa affiliated toA defines an observable affiliated toA , but the observableP(H)
is not necessarily associated to a self-adjoint operator onHb because the natural operator associated to
it could be non-densely defined (in our context, it often has domain equal to{0}). The spectrum and
essential spectrum of an observable are defined in an obviousway [ABG].

Now clearly, if H is an observable affiliated toE (X) thenκ.H defined byϕ(κ.H) = κ.ϕ(H) is an
observable affiliated toEκ(X). This is thelocalization ofH at κ and we have

Spess(H) =
⋃

κ∈δ(X)Sp(κ.H). (2.10)

We shall not give in this paper affiliation criteria specific to the algebraE (X) but the results of Section
6 and the examples form [GI3] should convince the reader thatthe class of operators affiliated toE (X)
is very large. On the other hand, ifH is a positive self-adjoint operator such thate−H ∈ E (X) thenH
is affiliated toE (X). Or this is condition is certainly satisfied by the Laplace operator associated to a
large class of Riemannian manifolds due to known estimates on the heat kernel of the manifold. We thank
Thierry Coulhon for an e-mail exchange on this question.

3. THE ELLIPTIC C∗-ALGEBRA

In this sectionX = (X, d, µ) is a metric space(X, d) equipped with a measureµ and such that:

• (X, d) is a locally compact not compact metric space and each closedball is a compact set,
• µ is a Radon measure onX with support equal toX andsupx µ(Bx(r)) = V (r) < ∞ ∀r > 0.

The other assumptions of Theorem 2.1 are not used for the moment. If k is a controlled kernel then the
least numberr with the propertyd(x, y) > r ⇒ k(x, y) = 0 is denotedd(k). We recall that

Ctrl(X
2) = {k : X2 → C | k is a bounded uniformly continuous controlled kernel}. (3.11)

If k ∈ Ctrl(X
2) thenOp(k) is the operator onL2(X) given by(Op(k)f)(x) =

∫
X

k(x, y)f(x)dx. From

‖Op(k)‖2 ≤ sup
x

∫
|k(x, y)|dy · sup

y

∫
|k(x, y)|dx, (3.12)
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which is the Schur estimate, we get

‖Op(k)‖ ≤ V (d(k)) sup |k|. (3.13)

If k, l ∈ Ctrl(X
2) then we denotek∗(x, y) = k̄(y, x) and(k ⋆ l)(x, y) =

∫
k(x, z)l(z, y)dz. Clearly

Op(k)∗ = Op(k∗) andOp(k)Op(l) = Op(k ⋆ l). The following simple fact is useful.

Lemma 3.1. If k, l ∈ Ctrl(X
2) thenk ⋆ l ∈ Ctrl(X

2), we haved(k ⋆ l) ≤ d(k) + d(l), and

sup |k ⋆ l| ≤ sup |k| · sup |l| · min{V (d(k)), V (d(l))}.

Proof: If we sets = d(k) andt = d(l) then clearly

|(k ⋆ l)(x, y)| ≤ sup |k| · sup |l| · µ (Bx(s) ∩ By(t))

which gives both estimates from the statement of the lemma. To prove the uniform continuity we use

|(k ⋆ l)(x, y) − (k ⋆ l)(x′, y)| ≤ sup
z

|k(x, z) − k(x′, z)|

∫
|l(z, y)|dz

≤ sup
z

|k(x, z) − k(x′, z)| · sup |l| · V (t)

and a similar inequality for|(k ⋆ l)(x, y) − (k ⋆ l)(x, y′)|.

ThusCtrl(X
2), when equipped with the usual linear structure and the operationsk∗ andk ⋆ l, becomes a

∗-algebra andk 7→ Op(k) is a morphism intoB(X) hence its range is a∗-subalgebra ofB(X). Hence
the elliptic algebraE (X) defined in (2.4) is aC∗-algebra of operators onL2(X).

The uniform continuity assumption involved in the definition (3.11) ofCtrl(X) hence in that ofE (X)
is important because thanks to it we haveE (X) = C(X) ⋊r X if X is a unimodular locally compact
group, cf. Section 6. HereC(X) is the C∗-algebra of left uniformly continuous functions onX on
whichX acts by left translations and⋊r denotes the reduced crossed product. In particular, the equality
C(X) ⋊r X = E (X) gives a description of the crossed product independent of the group structure ofX.
The following example shows the role played by the uniform continuity condition.

Remark 3.2. From the results of Section 6 we see that ifX = R one can describe the elliptic algebra
in very simple terms. LetUa, Va be the unitary operators inL2(R) given by(Uaf)(x) = f(x − a) and
(Vaf)(x) = eiaxf(x). ThenE (R) is the set of operatorsT ∈ B(R) such that‖(Ua − 1)T (∗)‖ → 0 and
‖VaTV ∗

a − T‖ → 0 asa → 0. HereT (∗) means that the relation holds forT andT ∗. We clearly may
takek(x, y) = ϕ(x)θ(x − y) with ϕ ∈ C(R) andθ ∈ Cc(R) and thenOp(k) = ϕ(Q)ψ(P ) ∈ E (R)
with ψ the Fourier transform (conveniently normalized) ofθ. The advantage now is that we can see what
happens ifϕ is only bounded and continuous. Then it is easy to check thatϕ(Q)ψ(P ) ∈ E (R) if and
only if ‖(ϕ(Q + a) − ϕ(Q))ψ(P )‖ → 0 whena → 0. For example, ifϕ(x) = eix2

the last condition is
equivalent to‖(eiaQ − 1)ψ(P )‖ → 0, which is equivalent toψ(P ) = η(Q)S for someη ∈ Co(R) and
S ∈ B(R). But thenψ(P ) is compact as a norm limit of operators of the formζ(Q)ψ(P ) with ζ ∈ Co(R),
which is not true ifψ 6= 0. Thus,the operator associated to a kernel of the formk(x, y) = eix2

θ(x − y)
with θ ∈ C∞

c (R) and not zero does not belong toE (R).

Remark 3.3. We recall thatT ∈ B(X) is a controlled operator[Ro1] if there isr > 0 such that if
F,G are closed subsets ofX with d(F,G) > r then1F T1G = 0. The class of controlled operators
has also been isolated in [Dav] and in [GG2] (under the name ”finite range operators”). Observe that
the Op(k) with k ∈ Ctrl(X

2) are controlled operators but ifX is not discrete then there are many
others and most of them do not belong toE (X) (cf. Remark 3.2). Then the norm closure of the set of
controlled operators is theC∗-algebraC (X) of pseudo-localoperators, which clearly containsE (X).
If X is a proper metric space this is the “standard algebra” from [Dav]. If X is a discrete metric space
with bounded geometry thenC (X) = E (X) is the ”uniform RoeC∗-algebra” from [CW1, CW2, Wa].
Anticipating on some of our later results, note thatif ξ is a coarse filter onX then the set ofT ∈ C (X)
such thatinfF∈ξ ‖1F T‖ = 0 is an ideal ofC (X) (see the proof of Lemma 5.1). But ifX is not discrete
this class of ideals is too small to allow one to describe the quotientC (X)/K (X) even in the simplest
cases (see Proposition 6.14).
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Since the kernel ofϕ(Q)Op(k) is ϕ(x)k(x, y) and that ofOp(k)ϕ(Q) is k(x, y)ϕ(y), we clearly have

C(X)E (X) = E (X)C(X) = E (X).

This defines aC(X)-bimodule structure onE (X). We note that, as a consequence of the Cohen-Hewitt
theorem,if A is a C∗-subalgebra ofC(X) then the setAE(X) consisting of productsAT of elements
A ∈ A andT ∈ E (X) is equal to the closed linear subspace ofE (X) generated by these products.

Proposition 3.4. We haveK (X) = Co(X)E (X) = E (X)Co(X) ⊂ E (X).

Proof: If ϕ ∈ Cc andk ∈ Ctrl then the operatorϕOp(k) has kernelϕ(x)k(x, y) which is a continuous
function with compact support onX2, henceϕOp(k) is a Hilbert-Schmidt operator. Thus we have
Co(X)E (X) ⊂ K (X) and by taking adjoints we also getE (X)Co(X) ⊂ K (X). Conversely, an
operator with kernel inCc(X

2) clearly belongs toCc(X)E (X) for example.

E (X) is a non-degenerateCo(X)-bimodule and there is a natural topology associated to sucha structure,
we call it the local topology onE (X). Its utility will be clear from Section 6.

Definition 3.5. The local topologyon E (X) is the topology associated to the family of seminorms
‖T‖θ = ‖Tθ(Q)‖ + ‖θ(Q)T‖ with θ ∈ Co(X).

This is the analog of the topology of local uniform convergence onC(X). Obviously one may replace
the θ with 1Λ whereΛ runs over the set of compact subsets ofX. If T ∈ E (X) and{Tα} is a net of
operators inE (X) we writeTα → T or limα Tα = T locally if the convergence takes place in the local
topology. SinceX is σ-compact there isθ ∈ Co(X) with θ(x) > 0 for all x ∈ X and then‖ · ‖θ is a norm
onE (X) which induces on bounded subsets ofE (X) the local topology.

The local topology is finer than the∗-strong operator topology inherited from the embeddingE (X) ⊂
B(X). We may also consider onE (X) the (intrinsically defined) strict topology associated to the small-
est essential idealK (X); this is weaker than the local topology and finer than the∗-strong operator
topology, but coincides with the last one on bounded sets.

Lemma 3.6. The involutionT 7→ T ∗ is locally continuous onE (X). The multiplication is locally
continuous on bounded sets.

Proof: Since‖T ∗‖θ = ‖T‖θ̄ the first assertion is clear. Now assumeSα → S locally and‖Sα‖ ≤ C and
Tα → T locally. If θ ∈ Co thenTθ is a compact operator so there isθ′ ∈ Co such thatTθ = θ′K for
some compact operatorK. Then we write(SαTα − ST )θ = Sα(Tα − T )θ + (Sα − S)θ′K.

Clearly K is the smallest ideal ofE but there is a second ideal which appears quite naturally in the
theory. This is theghost idealdefined as follows:

G (X) := {T ∈ E (X) | lim
x→∞

‖1Bx(r)T‖ = 0 ∀r} = {T ∈ E (X) | lim
x→∞

‖T1Bx(r)‖ = 0 ∀r}. (3.14)

The fact thatG is an ideal ofE follows from the equality stated above which in turn is proved as follows:
for eachε > 0 there is a controlled kernelk such that‖T − Op(k)‖ < ε hence ifR = r + d(k) we have

‖T1Bx(r)‖ < ε + ‖Op(k)1Bx(r)‖ = ε + ‖1Bx(R)Op(k)1Bx(r)‖ < 2ε + ‖1Bx(R)T‖

which is less than3ε for largex.

It is known thatK (X) ⊂ G (X) strictly in general [HLS, p. 349] and the role of the Property A is exactly
to exclude this possibility. We refer to [CW1, CW2, Wa] for a detailed study of this question in the case
of discrete spaces with bounded geometry and in the rest of this section we consider it in the present
framework.

Lemma 3.7. If infx µ(Bx(1/2)) > 0 then there is a subsetZ ⊂ X and for each realr ≥ 1 there is
a numberN(r) ∈ N such thatX = ∪z∈ZBz(r) and for anyx ∈ X the number ofz ∈ Z such that
Bz(r) ∩ Bx(r) 6= ∅ is at mostN(r).
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Proof: Let Z be a maximal subset ofX such thatd(a, b) > 1 if a, b are distinct points inZ. Then we
haveX = ∪z∈ZBz (the contrary would contradict the maximality ofZ). Now fix r ≥ 1, let x ∈ X,
denoteZx the set ofz ∈ Z such thatBz(r) ∩ Bx(r) 6= ∅, and letNx be the number of elements ofZx.
Choosea ∈ Z such thatx ∈ Ba. ThenBx(r) ⊂ Ba(r + 1) hence ifz ∈ Zx thenBz(r)∩Ba(r + 1) 6= ∅
sod(z, a) ≤ 2r + 1. Since the ballsBz(1/2) corresponding to thesez are pairwise disjoint and included
in Ba(2r +2), the volume of their union is larger thanνNx, whereν = infy∈X µ(By(1/2)), and smaller
thanV (2r + 2), henceNx ≤ V (2r + 2)/ν. Thus we may takeN(r) = V (2r + 2)/ν.

Lemma 3.8. Assume thatinfx µ(Bx(1/2)) > 0. Then forT ∈ E (X) we have

T ∈ G (X) ⇔ lim
x→∞

‖1Bx
T‖ = 0 ⇔ lim

x→∞
‖T1Bx

‖ = 0. (3.15)

Proof: Let T ∈ G (X) with ‖1Bx
T‖ → 0 asx → ∞ and letr > 1; we prove that‖1Bx(r)T‖ → 0

if x → ∞. Let ε > 0 and, with the notations of Lemma 3.7, letF be a finite subset ofZ such that
‖1Bz

T‖ < ε/N(r) if z ∈ Z\F . We consider pointsx such thatd(x, F ) > r+1 and denoteZ(x, r) the set
of z ∈ Z such thatBz ∩Bx(r) 6= ∅. ThenZ(x, r) has at mostN(r) elements andBx(r) ⊂ ∪z∈Z(x,r)Bz

hence‖1Bx(r)T‖ ≤ N(r)maxz∈Z(x,r) ‖1Bz
T‖ < ε becauseF ∩ Z(x, r) = ∅.

An operatorT ∈ B(X) is calledlocally compact[Ro1] if for any compact setK the operators1KT and
T1K are compact. Clearlyany operator inE (X) is locally compact.

Lemma 3.9. If T ∈ B(X) is a controlled locally compact operator and‖1Bx
T‖ → 0 asx → ∞, then

T is compact.

Proof: Assume thatT ∈ B(X) is locally compact and has the property1F T1G = 0 if F,G ⊂ X satisfy
d(F,G) > r for some fixedr. To prove the compactness ofT it suffices to show that‖1RT‖ → 0 as
R → ∞, where1R is the characteristic function of the set of pointsx such thatd(x, o) > R for some
fixedo ∈ X. We set|x| = d(x, o) and below denote byz points inZ. Then

‖1R+1Tf‖2 ≤
∑

|z|>R

‖1Bz
Tf‖2 =

∑

|z|>R

‖1Bz
T1Bz(r+1)f‖

2 ≤ sup
|z|>R

‖1Bz
T‖2

∑

z

‖1Bz(r+1)f‖
2

and the last sum is≤ C(r)2‖f‖2 by Lemma 3.7. Thus‖1R+1T‖ ≤ C(r) sup|z|>R ‖1Bz
T‖.

Our next purpose is to show that under the conditions of Theorem 2.1 we haveK (X) = G (X). For
this we use an idea from [CW1] (truncation of kernels with the help of functions of positive type) and the
technique of the proof of Theorem 5.1 from [Pi].

Let H be an arbitrary separable Hilbert space (in Theorem 2.1 we takeH = L2(X)) and letφ : X → H
be a Borel function such that‖φ(x)‖ = 1 for all x. DefineMφ : L2(X) → L2(X;H) = L2(X) ⊗H by
(Mφf)(x) = f(x)φ(x). ThenMφ is a linear operator with‖Mφ‖ = 1 and its adjointM∗

φ : L2(X;H) →

L2(X) acts as follows:(M∗
φF )(x) = 〈φ(x)|F (x)〉. Let T 7→ Tφ be the linear continuous map onB(X)

given byTφ = M∗
φ(T ⊗ 1)Mφ. Clearly‖Tφ‖ ≤ ‖T‖.

Let k : X2 → C be a locally integrable function. We say that an operatorT ∈ B(X) has inte-
gral kernelk if 〈f |Tg〉 =

∫
X2 k(x, y)f̄(x)g(x)dxdy for all f, g ∈ Cc(X). If k is a Schur kernel, i.e.

supx

∫
X

(|k(x, y)| + |k(y, x)|)dy < ∞, then we say thatT is a Schur operator and we have the estimate
(3.12) for its norm. AndT is a Hilbert-Schmidt operator if and only ifk ∈ L2(X2). From the relation
〈f |Tφg〉 = 〈fφ|T ⊗ 1gφ〉 valid for f, g ∈ Cc(X) we easily get:

Lemma 3.10. If T has kernelk thenTφ has kernelkφ(x, y) = 〈φ(x)|φ(y)〉k(x, y). In particular, if T is
a Schur or Hilbert-Schmidt operator thenTφ is a Schur or Hilbert-Schmidt operator respectively. And if
T is compact thenTφ is compact too.

This follows easily from the relation〈f |Tφg〉 = 〈fφ|(T ⊗ 1)gφ〉 valid for f, g ∈ Cc(X).

Lemma 3.11. Assume that〈φ(x)|φ(y)〉 = 0 if d(x, y) > r. Then for eachT ∈ B(X) the operatorTφ is
controlled, more precisely: ifF,G are closed subsets ofX with d(F,G) > r then1F Tφ1G = 0.
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Proof: We have to prove that〈1F f |Tφ1Gg〉 = 0 for all f, g ∈ L2(X) andT ∈ B(X). The mapT 7→ Tφ

is continuous for the weak operator topology and the set of finite range operators is dense inB(X) for
this topology. Thus it suffices to assume thatT is Hilbert-Schmidt (or even of rank one) and then the
assertion is clear by Lemma 3.10.

Observe that ifθ : X → C is a bounded Borel function thenMφθ(Q) = (θ(Q) ⊗ 1)Mφ henceθTφ =
(θT )φ andTφθ = (Tθ)φ with the usual abbreviationθ = θ(Q). In particular, Lemma 3.10 implies:

Lemma 3.12. LetT ∈ B(X). If T is locally compact thenTφ is locally compact. If‖1Bx(r)T‖ → 0 as
x → ∞, then‖1Bx(r)Tφ‖ → 0 asx → ∞.

Proposition 3.13. Under the conditions of Theorem 2.1 we haveK (X) = G (X).

Proof: Let T ∈ G (X) andφ as above. ThenT is locally compact henceTφ is locally compact, and
we have‖1Bx

Tφ‖ → 0 asx → ∞ by Lemma 3.12. Moreover, ifφ is as in Lemma 3.11 thenTφ is
controlled so, by Lemma 3.9,Tφ is compact. Thus it suffices to show that anyT ∈ E (X) is a norm limit
of operatorsTφ with φ of the preceding form. SinceT 7→ Tφ is a linear contraction, it suffices to show
this for operators of the formT = Op(k) with k ∈ Ctrl(X

2). But thenT − Tφ is an operator with kernel
k(x, y)(1 − 〈φ(x)|φ(y)〉) hence, if we denoteM = sup |k|, d = d(k), from (3.12) we get

‖T − Tφ‖ ≤ M sup
x

∫

Bx(d)

|1 − 〈φ(x)|φ(y)〉|dy.

Until now we did not use the fact thatH = L2(X) in Theorem 2.1. If we are in this situation note that
we may replaceφ(x) by |φ(x)| without loss of generality and then〈φ(x)|φ(y)〉 is real. More generally,
assume that theφ(x) belong to a real subspace of the (abstract) Hilbert spaceH so that〈φ(x)|φ(y)〉 is
real for allx, y. Then1 − 〈φ(x)|φ(y)〉 = ‖φ(x) − φ(y)‖2/2 so we have

‖T − Tφ‖ ≤ (M/2) sup
x

∫

Bx(d)

‖φ(x) − φ(y)‖2dy.

Under the conditions of Theorem 2.1 it is clear that one may chooseφ such that this be smaller than any
given number.

4. COARSE FILTERS ONX AND IDEALS OF C(X)

4.1. Filters. We recall some elementary facts; for the momentX is an arbitrary set. Afilter on X is a
nonempty setξ of subsets ofX which is stable under finite intersections, does not containthe empty set,
and has the property:G ⊃ F ∈ ξ ⇒ G ∈ ξ. If Y is a topological space andφ : X → Y thenlimξ φ = y
or limx→ξ φ(x) = y means thaty ∈ Y and ifV is a neighborhood ofy thenφ−1(V ) ∈ ξ.

The set of filters onX is equipped with the order relation given by inclusion. Thenthe trivial filter {X}
is the smallest filter and the lower bound of any nonempty setF of filters exists:inf F = ∩ξ∈Fξ. A set
F of filters is calledadmissibleif ∩ξ∈FFξ 6= ∅ if Fξ ∈ ξ for all ξ andFξ = X but for a finite number of
indicesξ. If F is admissible then the upper boundsupF exists: this is the set of sets of the form∩ξ∈FFξ

whereFξ ∈ ξ for all ξ andFξ = X but for a finite number of indicesξ.

Let β(X) be the set of ultrafilters onX. If ξ is a filter letξ† be the set of ultrafilters finer than it. Then
ξ = inf ξ†. We equipβ(X) with the topology defined by the condition: a nonempty subsetof β(X) is
closed if and only if it is of the formξ† for some filterξ. Note that for the trivial filter consisting of only
one set we have{X}† = β(X). Thenβ(X) becomes a compact topological space, this is the Stone-Čech
compactification of thediscretespaceX, and is naturally identified with the spectrum of theC∗-algebra
of all bounded complex functions onX. There is an obvious dense embeddingX ⊂ β(X), any bounded
functionϕ : X → C has a unique continuous extensionβ(ϕ) to β(X), and any mapφ : X → X has a
unique extension to a continuous mapβ(φ) : β(X) → β(X).

More generally, ifY is a compact topological space, each mapφ : X → Y has a unique extension to a
continuous mapβ(φ) : β(X) → Y . The following simple fact should be noticed: ifξ is a filter ando is a
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point inY thenlimξ φ = o is equivalent toβ(φ)|ξ† = o. Indeed,limξ φ = o is equivalent tolimκ φ = o
for anyκ ∈ ξ† (for the proof, observe that if this last relation holds thenfor each neighborhoodV of o
the setφ−1(V ) belongs toκ for all κ ∈ ξ†, henceφ−1(V ) ⊂ ∩

κ∈ξ†κ = ξ).

Now assume thatX is a locally compact non-compact topological space. Then theFréchet filteris the set
of complements of relatively compact sets; we denote it∞, so thatlimx→∞ φ(x) = y has the standard
meaning. Letδ(X) = ∞† be the set of ultrafilters finer than it. Thusδ(X) is a compact subset ofβ(X)
and we haveδ(X) ⊂ β(X) \ X (strictly in general):

δ(X) = {κ ∈ β(X) | if K ⊂ X is relatively compact thenK /∈ κ}.

Indeed, ifκ is an ultrafilter then for any setK eitherK ∈ κ or Kc ∈ κ. If we interpretκ as a character
of ℓ∞(X) thenκ ∈ δ(X) meansκ(ϕ) = 0 for all ϕ ∈ Co(X).

4.2. Coarse filters. Now assume thatX is a metric space. IfF ⊂ X thenF̄ is its closure andF c = X\F
its complement. We setdF (x) := infy∈F d(x, y). Note thatdF = dF̄ and|dF (x) − dF (y)| ≤ d(x, y).
If r > 0 let F (r) be the set of pointsx such thatd(x, F c) > r, this is an open subset ofF at distancer
from the boundary. LetF(r) := {x | d(x, F ) ≤ r} be the neighborhood “of orderr” of F .

We say that a filterξ is coarseif for any F ∈ ξ andr > 0 we haveF (r) ∈ ξ. We emphasize that this
should hold forall r > 0. If for eachF ∈ ξ there isr > 0 such thatF (r) ∈ ξ then the filter is called
round. Equivalently,ξ is coarse if for eachF ∈ ξ andr > 0 there isG ∈ ξ such thatG(r) ⊂ F andξ is
round if for eachF ∈ ξ there areG ∈ ξ andr > 0 such thatG(r) ⊂ F .

Our terminology is related to the notion of coarse ideal introduced in [HPR] (our spaceX being equipped
with the bounded metric coarse structure). More precisely,a coarse idealis a setI of subsets ofX such
thatB ⊂ A ∈ I ⇒ B ∈ I andA ∈ I ⇒ A(r) ∈ I for all r > 0. ClearlyI 7→ Ic := {Ac | A ∈ I} is a
one-one correspondence between coarse ideals and filters.

Coarse filters on groups are very natural objects:if X is a group, then a round filter is coarse if and only
if it is translation invariant(Proposition 6.6).

The Fŕechet filter is coarse because ifK is relatively compact thenK(r) is compact for anyr (the function
dK is proper under our assumptions onX). The trivial filter{X} is coarse.

More general examples of coarse filters are constructed as follows [Dav, GI1]. LetL ⊂ X be a set such
thatL(r) 6= X for all r > 0. Then the filter generated by the setsLc

(r) = {x | d(x,L) > r} whenr runs
over the set of positive real numbers is coarse (indeed, it isclear that theL(r) generate a coarse ideal). If
L is compact the associated filter is∞. If X = R andL =]−∞, 0] then the corresponding filter consists
of neighborhoods of+∞ and this example has obviousn-dimensional versions. IfL is a sparse set (i.e.
the distance betweena ∈ L andL \ {a} tends to infinity asa → ∞) then the ideal inC(X) associated to
it (cf. below) and its crossed product by the action ofX (if X is a group) are quite remarkable objects,
cf. [GI1]. It should be clear however that most coarse filtersare not associated to any setL.

Let X be an Euclidean space and letG(X) be the set of finite unions of strict vector subspaces ofX. The
setsLc

(r) whenL runs overG(X) andr overR+ form a filter basis and the filter generated by it is the
Grassmann filterγ of X. This is a translation invariant hence coarse filter which plays a role in a general
version of theN -body problem, see [GI3, Section 6.5]. The relationlimγ ϕ = 0 means that the function
ϕ vanishes when we are far from any strict affine subspace.

Lemma 4.1. If F is a nonempty set of coarse filters theninf F is a coarse filter. IfF is admissible then
supF is a coarse filter.

Proof: If F ∈ inf F = ∩ξ∈Fξ then for anyr > 0 andξ we haveF (r) ∈ ξ and soF ∈ ∩ξ∈Fξ. Now
assume for example thatF ∈ ξ andG ∈ χ with ξ, χ ∈ F and letr > 0. Then there areF ′ ∈ ξ and
G′ ∈ χ such thatF ′

(r) ⊂ F andG′
(r) ⊂ G hence(F ′ ∩G′)(r) ⊂ F ′

(r) ∩G′
(r) ⊂ F ∩G. The argument for

sets of the form∩ξFξ with Fξ = X but for a finite number of indicesξ is similar.
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Lemma 4.2. A coarse filter is either trivial, and thenξ† = β(X), or finer than the Fŕechet filter, and
thenξ† ⊂ δ(X).

Proof: Assume thatξ 6= ∅ is not finer than the Fréchet filter. Then there is a compact setK such that
Kc /∈ ξ. Hence for anyF ∈ ξ we haveF 6⊂ Kc soF ∩ K 6= ∅. Note that the closed sets inξ form a
basis ofξ (if F ∈ ξ then the closure ofF (2) belongs toξ and is included inF (1) hence inF ). The set
{F ∩K | F ∈ ξ and is closed} is a filter basis consisting of closed sets in the compact setK hence there
is a ∈ K such thata ∈ F for all F ∈ ξ. Then ifF ∈ ξ andr > 0 there isG ∈ ξ such thatG(r) ⊂ F and
sincea ∈ G we haveBa(r) ⊂ G(r) ⊂ F . But X = ∪rBa(r) soX ⊂ F .

4.3. Coarse ideals ofC(X). We now recall some facts concerning the relation between filters onX and
ideals ofC(X). To each filterξ onX we associate an idealIξ(X) of C(X):

Iξ(X) := {ϕ ∈ C(X) | lim
ξ

ϕ = 0} (4.16)

If ξ is the Fŕechet filter thenlimξ ϕ = 0 meanslimx→∞ ϕ(x) = 0 in the usual sense and so the corre-
sponding ideal isCo(X). The ideal associated to the trivial filter clearly is{0}. We also have:

ξ ⊂ η ⇒ Iξ(X) ⊂ Iη(X) (4.17)

Iξ∩η(X) = Iξ(X) ∩ Iη(X) = Iξ(X)Iη(X) (4.18)

The round envelopeξ◦ of ξ is the finer round filter included inξ. Clearly this is the filter generated by
the setsF(r) whenF runs overξ andr overR+. Note thatIξ(X) = Iξ◦(X), i.e. forϕ ∈ C(X) we have
limξ ϕ = 0 if and only if limξ◦ ϕ = 0. Indeed, ifε > 0 let F be the set of points were|ϕ(x)| < ε/2 and
let r > 0 be such that|ϕ(x) − ϕ(y)| < ε/2 if d(x, y) ≤ r. Then|ϕ(x)| < ε if x ∈ F(r).

We recall a well-known description of the spectrum of the algebraC(X) in terms of round filters.

Proposition 4.3. The mapξ 7→ Iξ(X) is a bijection between the set of all round filters onX and the set
of all ideals ofC(X).

An idealI of C(X) will be calledcoarseif for each positiveϕ ∈ I andr > 0 there is a positiveψ ∈ I
such that

d(x, y) ≤ r andψ(y) < 1 ⇒ ϕ(x) < 1. (4.19)

Lemma 4.4. Let F,G be subsets ofX such thatG(r) ⊂ F . Then the functionθ = dF c (dF c + dG)
−1

belongs toC(X) and satisfies the estimates1G ≤ θ ≤ 1F and|θ(x)−θ(y)| ≤ 3r−1d(x, y). In particular,
a filter ξ is coarse if and only if for anyF ∈ ξ and anyε > 0 there isG ∈ ξ and a functionθ such that
1G ≤ θ ≤ 1F and|θ(x) − θ(y)| ≤ εd(x, y).

Proof: If a ∈ G andb /∈ F thenr < d(a, b) ≤ d(x, a) + d(x, b) for anyx. By taking the lower bound of
the right hand side overa, b we getr ≤ dG(x) + dF c(x) ≡ D(x). Hence ifd(x) ≡ dF c(x) then

|θ(x) − θ(y)| ≤
|d(x) − d(y)|

D(x)
+ d(y)

|D(x) − D(y)|

D(x)D(y)
≤

d(x, y)

r
+ |D(x) − D(y)| ≤

d(x, y)

3r
.

To prove the last assertion, notice that if such aθ exists for someε < 1/r and ifx ∈ G andd(x, y) ≤ r
thenθ(x) = 1 and|θ(x) − θ(y)| < 1 henceθ(y) > 0 soy ∈ F . ThusG(r) ⊂ F .

Proposition 4.5. The filterξ is coarse if and only if the idealIξ(X) is coarse.

Proof: Assumeξ is not trivial and coarse and letϕ ∈ Iξ positive andr > 0. ThenOϕ := {ϕ < 1} ∈ ξ
hence there isG ∈ ξ such thatG(2r) ⊂ Oϕ. By using Lemma 4.4 we constructψ ∈ C such that
0 ≤ ψ ≤ 1, ψ|G = 0, andψ|Gc

(r)
= 1. Clearlyψ ∈ Iξ. If ψ(y) < 1 theny ∈ G(r) hence ifd(x, y) ≤ r

thenx ∈ G(2r) soϕ(x) < 1. ThusIξ is coarse. Reciprocally, assume thatIξ is a coarse ideal and let
F ∈ ξ andr > 0. There isϕ ∈ Iξ positive such thatOϕ ⊂ F and there is a positive functionψ ∈ Iξ

such that (4.19) holds. But thenOψ ∈ ξ and(Oψ)(r) ⊂ Oϕ soξ is coarse.
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4.4. Coarse envelope.If ξ is a filter then the family of coarse filters included inξ is admissible, hence
there is a largest coarse filter included inξ. We denote itco(ξ) and call itcoarse envelope ofξ. Clearly, a
setF belongs toco(ξ) if and only if for anyr > 0 there isG ∈ ξ such thatF ⊃ G(r).

By Lemma 4.2 we have only two possibilities: eitherco(ξ) = {X} or co(ξ) ⊃ ∞. Sinceco(ξ) ⊂ ξ, we
see that eitherξ is finer than Fŕechet, and thenco(ξ) ⊃ ∞, or not, and thenco(ξ) = {X}.

To each ultrafilterκ ∈ β(X) we associate a compact subset ofκ̂ ⊂ β(X) by the rule

κ̂ := co(κ)† = set of ultrafilters finer than the coarse cover ofκ. (4.20)

Thus we have eitherκ ∈ δ(X) and thenκ̂ ⊂ δ(X), or κ /∈ δ(X) and thenκ̂ = β(X). On the other
hand, we have

⋃
κ∈δ(X) κ̂ = δ(X) becauseκ ∈ κ̂.

We introduce now the ideals which play the main role in our analysis of E (X): to each ultrafilterκ on
X we associate the coarse idealC(κ)(X) of C(X) defined by

C(κ)(X) := Ico(κ) = {ϕ ∈ C(X) | limco(κ)ϕ = 0}. (4.21)

The quotientC∗-algebraCκ(X) := C(X)/C(κ)(X) will be calledlocalization ofC(X) atκ. If ϕ ∈ C(X)
then its image in the quotient is denotedκ.ϕ and is calledlocalization ofϕ at κ. The next comments
give another description of these objects and will make clear that localization means extension followed
by restriction.

Observe thatϕ ∈ C(X) belongs toC(κ)(X) if and only if the restriction ofβ(ϕ) to κ̂ is zero. Hence two
bounded uniformly continuous functions are equal moduloC(κ)(X) if and only if their restrictions tôκ
are equal. Thusϕ 7→ β(ϕ)|κ̂ induces an embeddingCκ(X) →֒ C(κ̂) which allows us to identifyCκ(X)
with an algebra of continuous functions on̂κ. From this we deduce

⋂
κ∈δ(X)C(κ)(X) = Co(X). (4.22)

Indeed,ϕ belongs to the left hand side if and only ifβ(ϕ)|κ̂ = 0 for all κ ∈ δ(X). But the union of the
setsκ̂ is equal toδ(X) hence this meansβ(ϕ)|δ(X) = 0 which is equivalent toϕ ∈ Co(X).

A maximal coarse filteris a coarse filter which is maximal in the set of coarse filters equipped with
inclusion as order relation. This set is inductive (the union of an increasing set of coarse filters is a coarse
filter) hence each coarse filter is majorated by a maximal one.Dually, we say that a subsetT ⊂ δ(X) is
coarseif it is of the form T = κ

† for some coarse filterκ. Note that ifT is a minimal coarse set then
T = κ̂ for any ultrafilterκ ∈ T . In general the coarse sets of the formκ̂ with κ ∈ δ(X) are not minimal.

5. IDEALS OF E (X)

For any filterξ onX we define

Jξ(X) = {T ∈ E (X) | inf
F∈ξ

‖1F T‖ = 0}. (5.23)

HereinfF∈ξ ‖1F T‖ is the lower bound of the numbers‖1F T‖ whenF runs over the set of measurable
F ∈ ξ and we defineinfF∈ξ ‖T1F ‖ similarly. Note that‖1F T‖ ≤ ‖1GT‖ and‖T1F ‖ ≤ ‖T1G‖ if
F ⊂ G are measurable.

Lemma 5.1. If T ∈ E andξ is a coarse filter theninfF∈ξ ‖1F T‖ = infF∈ξ ‖T1F ‖.

Proof: If infF∈ξ ‖1F T‖ = a and ε > 0 then there isF ∈ ξ such that‖1F T‖ < a + ε. We may
choosek ∈ Ctrl such that‖T − Op(k)‖ < ε and then‖1F Op(k)‖ < a + 2ε. Assume thatk(x, y) =
0 if d(x, y) ≥ r and letG ∈ ξ such thatG(r) ⊂ F . Thenk(x, y)1G(y) = 1G(r)

(x)k(x, y)1G(y)

henceOp(k)1G = 1G(r)
Op(k)1G = 1G(r)

1F Op(k)1G so‖Op(k)1G‖ ≤ ‖1F Op(k)‖ < a + 2ε and so
‖T1G‖ < a + 3ε.
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Proposition 5.2. If ξ is a coarse filter onX thenJξ(X) is an ideal ofE (X) and we have

Jξ(X) = Iξ(X)E (X) = E (X)Iξ(X). (5.24)

For the Fŕechet filter we haveJ∞(X) = K (X).

Proof: SinceJξ a closed right ideal, the fact that it is an ideal follows fromLemma 5.1. ThatJ∞ = K
follows from the fact that1KT is compact ifK is compact (or use (5.24) and Proposition 3.4).

We now prove the first equality in (5.24) (the second one follows by taking adjoints). Clearlyϕ ∈ Iξ if
and only if for eachε > 0 there isF ∈ ξ such that‖1F ϕ‖ < ε hence if and only ifinfF∈ξ ‖1F ϕ‖ = 0.
This impliesIξE ⊂ Jξ and so it remains to be shown that for eachT ∈ Jξ there areϕ ∈ Iξ andS ∈ E
such thatT = ϕS. If ξ is trivial this is clear, so we may suppose thatξ is finer than∞.

Choose a pointo ∈ X and letKn = Bo(n) for n ≥ 1 integer. We get an increasing sequence of compact
sets such that∪nKn = X andKc

n ∈ ξ. We construct by induction a sequenceF1 ⊃ G1 ⊃ F2 ⊃ G2 . . .
of sets inξ such that:

Fn ⊂ Kc
n, ‖1Fn

T‖ ≤ n−2, d(Gn, F c
n) > 1, d(Fn+1, G

c
n) > 1.

We start withF ′
1 ∈ ξ such that‖1F ′

1
T‖ ≤ 1, we setF1 = F ′

1 ∩ Kc
1 and then we chooseG1 ∈ ξ such

that d(G1, F
c
1 ) > 1. Next, we chooseF ′

2 ∈ ξ with ‖1F ′
2
T‖ ≤ 1/4 andG′

1 ∈ ξ with G′
1 ⊂ G1 and

d(G′
1, G

c
1) > 1. We takeF2 = F ′

2 ∩ G′
1 ∩ Kc

2, sod(F2, G
c
1) > 1, and then we chooseG2 ∈ ξ with

G2 ⊂ F2 such thatd(G2, F
c
2 ) > 1, and so on.

Now we use Lemma 4.4 and for eachn we construct a functionθn ∈ C such that1Gn
≤ θn ≤ 1Fn

and
|θn(x)−θn(y)| ≤ 3d(x, y). LetBa = Ba(1). Then it is clear that eitherBa∩F1 = ∅ or there is a unique
m such thatBa ∩ Fm 6= ∅ andBa ∩ Fm+1 = ∅ and in this caseθn = 1 onBa if n < m andθn = 0 on
Ba if n > m. Let θ(x) =

∑
n θn(x). Thenθ(x) = 0 onF c

1 and ifa ∈ X is such thatBa ∩ Fm 6= ∅ and
Ba ∩ Fm+1 = ∅ we get

θ(x) =
∑

n≤m

θn(x) = m − 1 + θm(x). (5.25)

Thusθ : X → R̄+ is well defined and ford(x, y) < 1 and a conveniently chosenm we have

|θ(x) − θ(y)| = |θm(x) − θm(y)| ≤ 3d(x, y).

On the other hand

‖θnT‖ ≤ ‖1Fn
T‖ ≤

1

n2
.

Thus ifθ0 = 1 then the limit of
∑

n≤m θnT asm → ∞ exists in norm and so defines an elementS of E .
Then

T =
(∑

n≤mθn

)−1(∑
n≤mθn

)
T → (1 + θ)−1S

because
(∑

n≤mθn

)−1
→ (1 + θ)−1 strongly onL2(X). If ϕ := (1 + θ)−1 then0 ≤ ϕ ≤ 1 and

|ϕ(x) − ϕ(y)| ≤ |θ(x) − θ(y)| ≤ 3d(x, y) if d(x, y) < 1.

Thusϕ ∈ C. If x ∈ Ba with Ba ∩ Fm 6= ∅ andBa ∩ Fm+1 = ∅ then (5.25) gives

ϕ(x) = (1 + m − 1 + θm(x))−1 ≤ 1/m

henceϕ(x) ≤ 1/m onFm. Thuslimξ ϕ = 0 andT = ϕS with ϕ ∈ Iκ andS ∈ E .

Lemma 5.3. If ξ is a coarse filter andT ∈ Jξ(X) then

lim
x→ξ

‖1Bx(r)T‖ = lim
x→ξ

‖T1Bx(r)‖ = 0 ∀r > 0. (5.26)

If infx µ(Bx(1/2)) > 0, T ∈ E (X) is controlled, andlimx→ξ ‖T1Bx
‖ = 0 thenT ∈ Jξ(X).
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Proof: Recall thatlimx→ξ ‖T1Bx(r)‖ = 0 means: for eachε > 0 there isG ∈ ξ such that‖T1Bx(r)‖ < ε
for all x ∈ G. If T ∈ Jξ(X) andε > 0 then there isF ∈ ξ such that‖T1F ‖ < ε and for anyr there
is G ∈ ξ such thatG(r) ⊂ F . Hence forx ∈ G we have‖T1Bx(r)‖ ≤ ‖T1G(r)

‖ ≤ ‖T1F ‖ < ε hence
limx→ξ ‖T1Bx(r)‖ = 0. ReplacingT by T ∗ we also getlimx→ξ ‖1Bx(r)T‖ = 0.

Now assumeinfx µ(Bx(1/2)) > 0 and letT ∈ B(X) be a controlled operator. Then there is a setZ as
in Lemma 3.7 and there isr > 0 such thatT1Bx

= 1Bx(r)T1Bx
for all x. If F is a measurable set and if

we denoteZ(F ) the set ofz ∈ Z such thatBz ∩ F 6= ∅ then for anyf ∈ L2(X) we have

‖1F T ∗f‖2 ≤
∑

z∈Z(F )

‖1Bz
T ∗f‖2 =

∑

z∈Z(F )

‖1Bz
T ∗1Bz(r)f‖

2

≤ sup
z∈Z(F )

‖1Bz
T ∗‖2

∑

z∈Z(F )

‖1Bz(r)f‖
2 ≤ sup

x∈F(1)

‖1Bx
T ∗‖2C(r)2‖f‖2

hence‖T1F ‖ ≤ C(r) supx∈F(1)
‖T1Bx

‖ whereC(r) is a number which depends only onN(r), cf.
Lemma 3.7. Thus for any controlled operator we haveinfF∈ξ ‖T1F ‖ = 0 if limx→ξ ‖T1Bx

‖ = 0. And
if T ∈ E (X) this meansT ∈ Jξ(X).

Proposition 5.4. Under the conditions of Theorem 2.1, ifξ is a coarse filter andT ∈ E (X) then

T ∈ Jξ(X) ⇔ lim
x→ξ

‖T1Bx
‖ = 0 ⇔ lim

x→ξ
‖1Bx

T‖ = 0. (5.27)

Proof: We use the same techniques as in the proof of Proposition 3.13. Let T ∈ E (X) such that
limx→ξ ‖T1Bx

‖ = 0. Then as we saw in Section 3 we have(T1Bx
)φ = Tφ1Bx

hence for conveniently
chosenφ the operatorTφ ∈ E (X) is controlled andlimx→ξ ‖Tφ1Bx

‖ = 0. From Lemma 5.3 we get
Tφ ∈ Jξ(X) which is closed, so sinceTφ → T in norm asφ → 1, we getT ∈ Jξ(X).

Remark 5.5. The relation (5.27) is not true in general if Property A is notsatisfied. Indeed, if we take
ξ = ∞ then this would meanK (X) = G (X), which does not hold generally.

The ideals ofE (X) which are of real interest in our context are defined as follows

κ ∈ δ(X) ⇒ E(κ)(X) := Jco(κ)(X) = {T ∈ E (X) | inf
F∈co(κ)

‖1F T‖ = 0}. (5.28)

By Proposition 5.2 this can be expressed in terms of the ideals ofC(X) introduced in (4.21) as follows:

E(κ)(X) = C(κ)(X)E (X) = E (X)C(κ)(X). (5.29)

Prof of Theorem 2.1: Assume thatT ∈ E(κ) for all κ ∈ δ(X); we have to show thatT is a compact
operator (the converse being obvious). Ifκ ∈ δ(X) andr > 0 then for anyε > 0 there isF ∈ co(κ) such
that‖1F T‖ < ε and there isG ∈ κ such thatG(r) ⊂ F , hence for anyx ∈ G we have‖1Bx(r)T‖ < ε.
This proves thatlimx→κ ‖1Bx(r)T‖ = 0. Now defineθ(x) = ‖1Bx(r)T‖, we obtain a bounded function
on X such thatlimκ θ = 0 for any κ ∈ δ(X). The continuous extensionβ(θ) : β(X) → R has the
propertyβ(θ)(κ) = limκ θ thusβ(θ) is zero on the compact subsetδ(X) = ∞† of β(X) hence we
havelim∞ θ = 0 according to a remark from Section 4.1. Thus we havelimx→∞ ‖1Bx(r)T‖ = 0, which
means thatT belongs to the ghost idealG . Now the compactness ofT follows from Proposition 3.13.

6. LOCALLY COMPACT GROUPS

6.1. Crossed products. In this section we assume thatX is a locally compact topological group with
neutral elemente andµ is a left Haar measure. We write dµ(x) = dx and denote∆ the modular function
defined by d(xy) = ∆(y)dx or dx−1 = ∆(x)−1dx (with slightly formal notations). There are left and
right actions ofX on functionsϕ defined onX given by(a.ϕ)(x) = ϕ(a−1x) and(ϕ.a)(x) = ϕ(xa).

The left and right regular representation ofX are defined byλaf = a.f andρaf =
√

∆(a)f.a for
f ∈ L2(X). Thenλa andρa are unitary operators onL2(X) which induce unitary representation ofX
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on L2(X). These representations commute:λaρb = ρbλa for all a, b ∈ X. Moreover, forϕ ∈ L∞(X)
we haveλaϕ(Q)λ∗

a = (a.ϕ)(Q) andρaϕ(Q)ρ∗a = (ϕ.a)(Q).

The convolution of two functionsf, g onX is defined by

(f ∗ g)(x) =

∫
f(y)g(y−1x)dy =

∫
f(xy−1)∆(y)−1g(y)dy.

Forψ ∈ L1(X) let λψ =
∫

ψ(y)λydy ∈ B(X). Then‖λψ‖ ≤ ‖ψ‖L1 andψ ∗ g = λψg for g ∈ L2.

We recall the definition of the∗-algebraL1(X): the product is the convolution productf ∗ g and the
involution is given byf∗(x) = ∆(x)−1f̄(x−1); the factor∆−1 ensures that‖f∗‖L1 = ‖f‖L1 . The
envelopingC∗-algebra ofL1(G) is thegroupC∗-algebraC∗(X). The norm closure inB(X) of the set
of operatorsλψ with ψ ∈ L1(X) is thereduced groupC∗-algebraC∗

r (X). There is a canonical surjective
morphismC∗(X) → C∗

r (X) which is injective if and only ifX is amenable.

Lemma 6.1. If T ∈ C∗
r (X) thenρaT = Tρa∀a ∈ X. If X is not compact thenC∗

r (X) ∩ K (X) = {0}.

Proof: The first assertion is clear becauseρaλb = λbρa. If X is not compact, thenρa → 0 weakly on
L2(X) hence ifT ∈ C∗

r (X) is compact‖Tf‖ = ‖Tρaf‖ → 0 hence‖Tf‖ = 0 for all f ∈ L2(X).

In what follows by uniform continuity we mean “right uniformcontinuity”, soϕ : X → C is uniformly
continuous if for anyε > 0 there is a neighborhoodV of e such thatxy−1 ∈ V ⇒ |ϕ(x) − ϕ(y)| < ε
(see page 60 in [RS]). LetC(X) be theC∗-algebra of bounded uniformly continuous complex functions.
If ϕ : X → C is bounded measurable thenϕ ∈ C(X) if and only if ‖λaϕ(Q)λ∗

a −ϕ(Q)‖ → 0 asa → e.

We consider now crossed products of the formA⋊ X whereA ⊂ C(X) is aC∗-subalgebra stable under
(left) translations (soa.φ ∈ A if φ ∈ A; only the caseA = C(X) is of interest later). We refer to [Wil]
for generalities on crossed products. TheC∗-algebraA ⋊ X is the envelopingC∗-algebra of the Banach
∗-algebraL1(X;A), where the algebraic operations are defined as follows:

(f ∗ g)(x) =

∫
f(y) y.g(y−1x)dy, f∗(x) = ∆(x)−1 x.f̄(x−1).

ThusC∗(X) = C ⋊ X. If we defineΛ : L1(X;A) → B(X) by Λ(φ) =
∫

φ(a)λada it is easy to check
that this is a continuous∗-morphism hence it extends uniquely to a morphismA⋊X → B(X) for which
we keep the same notationΛ. A short computation gives forφ ∈ Cc(X;A) andf ∈ L2(X)

(Λ(φ)f)(x) =

∫
φ(x, xy−1)∆(y)−1f(y)dy

where for an elementφ ∈ Cc(X;A) we setφ(x, a) = φ(a)(x). ThusΛ(φ) is an integral operator with
kernelk(x, y) = φ(x, xy−1)∆(y)−1 or Λ(φ) = Op(k) with our previous notation.

The next simple characterization ofΛ follows from the density inCc(X;A) of the algebraic tensor product
A ⊗alg Cc(X): there is a unique morphismΛ : A ⋊ X → B(X) such thatΛ(ϕ ⊗ ψ) = ϕ(Q)λψ for
ϕ ∈ A andψ ∈ Cc(X). Here we takeφ = ϕ ⊗ ψ with ϕ ∈ A andψ ∈ Cc(X), soφ(a) = ϕψ(a). Note
that the kernel of the operatorϕ(Q)λψ is k(x, y) = ϕ(x)ψ(xy−1)∆(y)−1.

The reduced crossed productA⋊rX is a quotient of the full crossed productA⋊X, the precise definition
is of no interest here. Below we give a description of it whichis more convenient in our setting. As usual,
we embedA ⊂ B(X) by identifyingϕ = ϕ(Q) and if M ,N are subspaces ofB(X) thenM · N is
the closed linear subspace generated by the operatorsMN with M ∈ M andN ∈ N .

Theorem 6.2. The kernel ofΛ is equal to that ofA ⋊ X → A ⋊r X, henceΛ induces a canonical
embeddingA⋊r X ⊂ B(X) whose range isA·C∗

r (X). This allows us to identifyA⋊r X = A·C∗
r (X).

We thank Georges Skandalis for showing us that this is an easyconsequence of results from the thesis
of Athina Mageira. Indeed, it suffices to takeA = A andB = Co(X) in [Mag, Proposition 1.3.12] by
taking into account that the multiplier algebra ofCo(X) is Cb(X), and then to useCo(X) ⋊ X = K (X)
(Takai’s theorem, cf. [Mag, Example 1.3.4]) and the fact that the multiplier algebra ofK (X) is B(X).
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The crossed product of interest here isC(X) ⋊r X = C(X) · C∗
r (X). Obviously we haveK (X) =

Co(X) ⋊r X ⊂ C(X) ⋊r X, the first equality being a consequence of Takai’s theorem but also of the fol-
lowing trivial argument: ifϕ,ψ ∈ Cc(X) then the kernelϕ(x)ψ(xy−1)∆(y)−1 of the operatorϕ(Q)λψ

belongs toCc(X
2) henceϕ(Q)λψ is a Hilbert-Schmidt operator.

We recall that thelocal topologyonC(X) ⋊r X (see Definition 3.5 here and [GI3, page 447]) is defined
by the family of seminorms of the form‖T‖Λ = ‖1ΛT‖ + ‖T1Λ‖ with Λ ⊂ X compact.

The following is an extension of [GI3, Proposition 5.9] in the present context (see also pages 30–31 in
the preprint version of [GI1] and [Ro2]). Recall that any bounded functionϕ : X → C extends to a
continuous functionβ(ϕ) onβ(X). If κ ∈ β(X) we defineϕκ : X → C by

ϕκ(x) = β(x−1ϕ)(κ) = lim
a→κ

ϕ(xa). (6.30)

Lemma 6.3. If ϕ ∈ C(X) then for anyθ ∈ Co(X) the set{θϕ.a | a ∈ X} is relatively compact inCo(X)
and the mapa 7→ θϕa ∈ Co(X) is norm continuous. In particular, for anyκ ∈ β(X) the limit in (6.30)
exists locally uniformly inx and we haveϕκ ∈ C(X).

Proof: By the Ascoli-Arzela theorem, to show the relative compactness of the set of functions of the form
θϕ.a it suffices to show that the set is equicontinuous. For eachε > 0 there is a neighborhoodV of e such
that|ϕ(x)−ϕ(y)| < ε if xy−1 ∈ V . Then|ϕ(xa)−ϕ(ya)| < ε for all a ∈ X, which proves the assertion.
In particular,lima→κ θϕ.a exists in norm inCo(X), hence the limit in (6.30) exists locally uniformly in
x. Moreover, we shall have|ϕκ(x) − ϕκ(y)| < ε soϕκ belongs toC(X). Finally, we show that for any
compact setK and anyε > 0 there is a neighborhoodV of e such thatsupK |ϕ(xa) − ϕ(x)| < ε for all
a ∈ V . For this, letU be an open cover ofK such that the oscillation ofϕ over anyU ∈ U is < ε and
note that there is an neighborhoodV of e such that for anyx ∈ K there isU ∈ U such thatxV ⊂ U (use
the Lebesgue property for the left uniform structure).

Proposition 6.4. For eachT ∈ C(X) ⋊r X and eacha ∈ X we haveτa(T ) := ρaTρ∗a ∈ C(X) ⋊r X
and the mapa 7→ τa(T ) is locally continuous onX and has locally relatively compact range. For each
ultrafilter κ ∈ β(X) and eachT ∈ C(X) ⋊r X the limit τκ(T ) := lima→κ τa(T ) exists in the local
topology ofC(X) ⋊r X. The so defined mapτκ : C(X) ⋊r X → C(X) ⋊r X is a morphism uniquely
determined by the propertyτκ(ϕ(Q)λψ) = ϕκ(Q)λψ.

Proof: If T = ϕ(Q)λψ then ρaTρ∗a = (ϕ.a)(Q)λψ is an element ofC(X) ⋊r X and soτa is an
automorphism ofC(X) ⋊r X. If we takeψ with compact support andΛ is a compact set thenλψ1Λ =
1Kλψ1Λ whereK = (suppψ)Λ is also compact. Thenτa(T )1Λ = (ϕ.a)(Q)1Kλψ1Λ and the map
a 7→ (ϕ.a)(Q)1K is norm continuous, cf. Lemma 6.3. This implies thata 7→ τa(T ) is locally continuous
on X for any T . To show that the range is relatively compact, it suffices again to consider the case
T = ϕ(Q)λψ with ψ with compact support and to useτa(T )1Λ = (ϕ.a)(Q)1Kλψ1Λ and the relative
compactness of the{(ϕ.a)(Q)1K | a ∈ X} established in Lemma 6.3. The other assertions of the
proposition follow easily from these facts.

6.2. Elliptic C∗-algebra. From now onX is a locally compact non-compact topological group. Since
we do not require thatX be metrizable, we have to adapt some of the notions used in themetric case
to this context. Of course, we could use the more general framework of coarse spaces [Ro1] to cover
both situations, but we think that the case of metric groups is already sufficiently general. So the reader
may assume thatX is equipped with an invariant proper distanced. Our leftist bias in Section 6.1 forces
us to taked right invariant, i.e.d(x, y) = d(xz, yz) for all x, y, z. If we set|x| = d(x, e) then we get
a function| · | on X such that|x−1| = |x|, |xy| ≤ |x| + |y|, andd(x, y) = |xy−1|. The ballsB(r)
defined by relations of the form|x| ≤ r are a basis of compact neighborhoods ofe, a function onX is
d-uniformly continuous if and only if it is right uniformly continuous, etc.

Note thatBx(r) = B(r)x so in the non-metrizable case the role of the ballsBx(r) is played by the sets
V x with V compact neighborhoods ofe. Recall that the range of the modular function∆ is a subgroup
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of the multiplicative group]0,∞[ hence it is either{1} or unbounded. Sinceµ(V x) = µ(V )∆(x) our
assumption (2.3) is satisfied only ifX is unimodular and in this case we haveµ(V x) = µ(V ) for all x.

We emphasize the importance of the condition that the metricbe proper. Fortunately, it has been proved
in [HP] that a locally compact group is second countable if and only if its topology is generated by a
proper right invariant metric.

For coherence, in the non metrizable case we are forced to saythat a kernelk : X2 → C is controlled
if there is a compact setK ⊂ X such thatk(x, y) = 0 if xy−1 /∈ K. The symbold(k) should be
defined now as the smallest compact setK with the preceding property. On the other hand,k is uniformly
continuous if it is right uniformly continuous, i.e. if for any ε > 0 there is a neighborhoodV of e such that
|k(ax, by)−k(x, y)| < ε for all a, b ∈ V andx, y ∈ X. Then the Schur estimate (3.12) gives‖Op(k)‖ ≤
sup |k| supa µ(Ka) so only ifX is unimodular we have a simple estimate‖Op(k)‖ ≤ µ(K) sup |k|.

To summarize, ifX is unimodular thenCtrl(X
2) is well defined and Lemma 3.1 remains valid if we set

V (d(k)) = µ(d(k)) so we maydefine the elliptic algebraE (X) as in (2.4). But in fact, what we get is
just a description of the crossed productC(X) ⋊r X independent of the group structure ofX:

Proposition 6.5. If X is unimodular thenE (X) = C(X) ⋊r X = C(X) · C∗
r (X).

Proof: From the results presented in Section 6.1 and the fact that∆ = 1 we get thatC(X) ⋊ X is
the closed linear space generated by the operatorsOp(k) with kernelsk(x, y) = ϕ(x)ψ(xy−1), where
ϕ ∈ C(X) andψ ∈ Cc(X). ThusC(X) ⋊ X ⊂ E (X). To show the converse, letk ∈ Ctrl(X

2) and
let k̃(x, y) = k(x, y−1x) hencek(x, y) = k̃(x, xy−1). If K = K−1 ⊂ X is a compact set such that
k(x, y) 6= 0 ⇒ xy−1 ∈ K then supp̃k ⊂ X × K. Fix ε > 0 and letV be a neighborhood of the origin
such that|k̃(x, y) − k̃(x, z)| < ε if yz−1 ∈ V . Then letZ ⊂ K be a finite set such thatK ⊂ ∪z∈ZV z

and let{θz} be a partition of unity subordinated to this covering. Ifl̃(x, y) =
∑

z∈Z k̃(x, z)θz(y) or

l̃ =
∑

z∈Z k̃(·, z) ⊗ θz then

|k̃(x, y) − l̃(x, y)| = |
∑

z∈Z

(k̃(x, y) − k̃(x, z))θz(y)| ≤
∑

z∈Z

|k̃(x, y) − k̃(x, z)|θz(y) ≤ ε

because suppθz ⊂ V z. Now let us setl(x, y) = l̃(x, xy−1) =
∑

z∈Z k̃(x, z)θz(xy−1). If l(x, y) 6= 0

thenθz(xy−1) 6= 0 for somez hencexy−1 ∈ V z ⊂ V K. In this construction we may chooseV ⊂ U
whereU is a fixed compact neighborhood of the origin. Then we will have l(x, y) 6= 0 ⇒ xy−1 ⊂ UK
which is a compact set independent ofl and from (3.13) we get‖Op(k)−Op(l)‖ ≤ C sup |k − l| ≤ Cε
for some constantC independent ofε. But clearlyOp(l) ∈ C(X) ⋊r X.

Thus ifX is a unimodular group then we may apply Proposition 6.4 and get endomorphismsτκ of E (X)
indexed byκ ∈ δ(X). These will play an important role in the next subsection.

We make now some comments on the relation between amenability and Property A in the case of groups.
First, the Property A is much more general than amenability,cf. the discussion in [NY] for the case
of discrete groups. To show that amenability implies Property A we choose from the numerous known
equivalent descriptions that which is most convenient in our context [Pat, page 128]:X is amenable if and
only if for anyε > 0 and any compact subsetK ofX there is a positive functionϕ ∈ Cc(X) with ‖ϕ‖ = 1
such that‖ρaϕ − ϕ‖ < ε for all a ∈ K. Now let us setφ(x) = ρ∗xϕ, soφ(x)(z) = ∆(x)−1/2ϕ(zx−1).
We get a strongly continuous functionφ : X → L2(X) such that‖φ(x)‖ = 1, suppφ(x) = (suppϕ)x,
and‖φ(x) − φ(y)‖ = ‖ρxy−1ϕ − ϕ‖ ≤ ε if xy−1 ∈ K. In the metric case we get a function as in
condition (ii) of Theorem 2.1, so the metric version of the Property A is satisfied.

6.3. Coarse filters in groups. A filter ξ on a locally compact non-compact groupX is calledround if
the sets of the formV G = {xy | x ∈ V, y ∈ G}, whereV runs over the set of neighborhoods ofe andG
overξ, are a basis ofξ. And ξ is (left) invariant if x ∈ X,F ∈ ξ ⇒ xF ∈ ξ. Naturally,ξ is coarseif for
anyF ∈ ξ and any compact setK ⊂ X there isG ∈ ξ such thatKG ⊂ F .
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The simplicity of the next proof owes much to a discussion with H. Rugh. In our initial argument Propo-
sition 6.6 was a corollary of Proposition 4.5.

Proposition 6.6. A filter is coarse if and only if it is round and invariant.

Proof: Note first thatξ is invariant if and only if for eachH ∈ ξ and each finiteN ⊂ X there isG ∈ ξ
such thatH ⊃ NG. This is clear becauseNG ⊂ H is equivalent toG ⊂ ∩x∈Nx−1H. Now assume that
ξ is also round. Then for anyF ∈ ξ there is a neighborhoodV of e and a setH ∈ ξ such thatF ⊃ V H.
If K is any compact set then there is a finite setN such thatV N ⊃ K. Then there isG ∈ ξ such that
H ⊃ NG. SoF ⊃ V NG ⊃ KH.

Proposition 6.7. Let X be unimodular and letξ be a coarse filter. Then for anyT ∈ Jξ(X) we have
lima→ξ τa(T ) = 0 locally. If X is amenable then the converse assertion holds, so

Jξ(X) = {T ∈ E (X) | lim
a→ξ

τa(T ) = 0 locally} = {T ∈ E (X) | τκ(T ) = 0 ∀κ ∈ ξ†}. (6.31)

Moreover, ifX is amenable then for any compact neighborhoodV of e and anyT ∈ E (X) we have:

T ∈ Jξ(X) ⇔ lim
a→ξ

‖T1V a‖ = 0 ⇔ lim
a→ξ

‖τa(T )1V ‖ = 0 (6.32)

Proof: We have1V a(Q) = ρ∗a1V (Q)ρa hence‖T1V a‖ = ‖Tρ∗a1V (Q)ρa‖ = ‖τa(T )1V (Q)‖ hence for
T ∈ Jξ(X) we havelima→ξ τa(T ) = 0 locally. If X is amenable then Proposition 5.4 in the metric
case and a suitable modification in the non-metrizable groupcase gives (6.31). Then (6.32) is easy.

Theorem 6.8. Let X be a unimodular amenable locally compact group. Then for each κ ∈ δ(X)
and for eachT ∈ E (X) the limit τκ(T ) := lima→κ ρaTρ∗a exists in the local topology ofE (X), in
particular in the strong operator topology ofB(X). The mapsτκ are endomorphisms ofE (X) and⋂

χ∈δ(X) ker τχ = K (X). In particular, the mapT 7→ (τκ(T )) is a morphismE (X) →
∏

κ∈δ(X) E (X)

withK (X) as kernel, hence the essential spectrum of any normal operator H ∈ E (X) or any observable
H affiliated toE (X) is given bySpess(H) =

⋃
κ
Sp(τκ(H)).

Proof: We have seen in Section 4.4 that
⋃

κ∈δ(X) κ̂ = δ(X) and from (6.31) we get

E(κ)(X) =
⋂

χ∈bκ
ker τχ for eachκ ∈ δ(X). (6.33)

On the other hand, we have shown before that∩
κ∈δ(X)E(κ)(X) = K (X) is a consequence of Property

A, hence of amenability.

Remark 6.9. Recall that after (2.7) we defined the localizationκ.T at κ ∈ δ(X) of someT ∈ E as the
quotient ofT in Eκ = E /E(κ). If T is normal then from (6.33) we getSp(κ.T ) =

⋃
χ∈bκ

Sp(τχ(T ))

but many of the operatorsτχ(T ) which appear here are unitary equivalent, in particular have the same
spectrum. Indeed, note that there is a natural (left) actionof X onβ(X) which leavesδ(X) invariant and
κ̂ is the minimal closed invariant subset ofδ(X) which containsκ. And if χ ∈ δ(X) anda ∈ X then
by usingaχ = limb→χ ab we getτaχ(T ) = ρaτχ(T )ρ∗a.

6.4. Pseudo-local and quasi-local operators.We describe briefly otherC∗-algebras of operators which
are analogs ofE (X). We need an analogue of Lemma 3.7 in the group context.

Lemma 6.10. Let ω be a compact neighborhood ofe and Z a maximalω-separated subset ofX (i.e.
if a, b are distinct elements ofZ then (aω) ∩ (bω) = ∅). Then for any compact setK ⊃ ωω−1 we
haveZK = X and for anya ∈ Z the number ofz ∈ Z such that(zK) ∩ (aK) 6= ∅ is at most
µ(KK−1ω)/µ(ω).

Proof: That such maximalZ exist follows from Zorn lemma. By maximality,(xω)∩(Zω) 6= ∅ for anyx,
hencex ∈ Zωω−1, soX = ZK if K ⊃ ωω−1. Now fix a ∈ Z and letN be the number of pointsz ∈ Z
such that(zK) ∩ (aK) 6= ∅. For each suchz we havez ∈ aKK−1 hencezω ⊂ aKK−1ω. But the sets
zω are pairwise disjoint and have the same measureµ(ω) soNµ(ω) ≤ µ(aKK−1ω) = µ(KK−1ω).
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Remark 6.11. By using the homeomorphismx 7→ x−1, or just by takingµ a right Haar measure in the
proof, we get a “left” version of this result: if we defineω-separation by(ωa) ∩ (ωb) = ∅, then for any
compactK ⊃ ω−1ω we haveX = KZ and#{z ∈ Z | (Kz) ∩ (Ka) 6= ∅} ≤ µ(ωK−1K)/µ(ω)

By analogy with the notion of controlled operator introduced in Remark 3.3, we say thatS ∈ B(X) is
controlledif there is a compact setΛ ⊂ X such that ifF,G are closed subsets ofX with F ∩ (ΛG) = ∅
then1F S1G = 0. If X is a metric group this is equivalent to: there is a numberr > 0 such that ifF,G
are closed subsets ofX with d(F,G) > r then1F S1G = 0, which is the definition of Remark 3.3. This
version of the definition is clearly independent of the groupstructure ofX. As before, we denoteC (X)
the norm closure of the set of controlled operators, this is theC∗-algebra of pseudo-local operators.

Now assume thatX is an abelian group. LetX∗ be the dual group and to eachp ∈ X∗ let us associate
the unitary operatorνp onL2(X) defined by(νpf)(x) = p(x)f(x). Then (see [GI3]):

Proposition 6.12. If X is an abelian group thenE (X) = C(X)⋊X = C(X)⋊rX is the set of operators
T ∈ B(X) such that‖νpTν∗

p − T‖ → 0 and‖(λa − 1)T (∗)‖ → 0 if p → e in X∗ anda → e in X.

Remark 6.13. The relationE (X) ⊂ C(X) ⋊ X follows easily from Proposition 6.12 ifX is abelian.
The operatorsνpOp(k)ν∗

p andλaOp(k) have kernelsp(x)k(x, y)p̄(y) = p(xy−1)k(x, y) andk(xa−1, y).
Hence from (3.13) we get‖νpOp(k)ν∗

p −Op(k)‖ ≤ supxy−1∈K |p(xy−1)−1||k(x, y)|µ(K) which tends
to zero asp → e in X∗ by the definition of the topology onX∗. Similarly ‖(λa − 1)Op(k)‖ → 0 as
a → e in X. HenceOp(k) ∈ C(X) ⋊ X for eachk ∈ Ctrl(X

2).

If X is an abelian group then the set ofQ-regular operators, more precisely the operatorsT ∈ B(X)
which satisfy only the first condition from Proposition 6.12, i.e. such that the mapp 7→ νpTν∗

p is norm
continuous, is aC∗-algebra which containsE (X), strictly if X is not discrete, which seems to depend on
the group structure ofX. But in fact this is not the case, it depends only on the coarsestructure ofX.

Proposition 6.14. If X is an abelian group thenC (X) = {T ∈ B(X) | limp→e ‖νpTν∗
p − T‖ = 0}.

For the proof, it suffices to use [GG2, Propositions 4.11 and 4.12] (arXiv version) and Lemma 6.10.

Finally, we mention anotherC∗-algebra which is of a similar nature toC (X) and makes sense and is
useful in the context of arbitrary locally compact spacesX and arbitrary geometric HilbertX-modules,
see [GG2, Ro1]. Let us say thatS ∈ B(H) is quasilocal(or ”decay preserving”) if for eachϕ ∈ Co(X)
there are operatorsS1, S2 ∈ B(H) and functionsϕ1, ϕ2 ∈ Co(X) such thatSϕ(Q) = ϕ1(Q)S1 and
ϕ(Q)S = S2ϕ2(Q). The set of quasilocal operators is aC∗-algebra which contains strictlyC (X) if X
is a locally compact non-compact abelian group. Indeed, ifu ∈ L∞(X∗) has compact support thenu(P )
is quasilocal (becauseu(P )ϕ(Q) andϕ(Q)u(P ) are compact) but it belongs toC (X) if and only if u is
continuous. Hereu(P ) = F−1MuF whereMu is the operator of multiplication byu onL2(X∗) andF
is the Fourier transformation.

Acknowledgment. I am grateful to Hans-Henrik Rugh and Georges Skandalis, several discussions with
them were very helpful.
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