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Abstract

For the damped-driven KdV equation

u̇− νuxx + uxxx − 6uux =
√

ν η(t, x), x ∈ S1,

∫
u dx ≡

∫
η dx ≡ 0 ,

with 0 < ν ≤ 1 and smooth in x white in t random force η, we study the
limiting long-time behaviour of the KdV integrals of motions (I1, I2, . . . ),
evaluated along a solution uν(t, x), as ν → 0. We prove that for 0 ≤
τ := νt . 1 the vector Iν(τ) = (I1(uν(τ, ·)), I2(uν(τ, ·)), . . . ), converges in
distribution to a limiting process I0(τ) = (I0

1 , I0
2 , . . . ). The j-th component

I0
j equals 1

2(vj(τ)2+v−j(τ)2), where v(τ) = (v1(τ), v−1(τ), v2(τ), . . . ) is the
vector of Fourier coefficients of a solution of an effective equation for the
damped-driven KdV. This new equation is a quasilinear stochastic heat
equation with a non-local nonlinearity, written in the Fourier coefficients.
It is well posed.
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0 Introduction

In this work we continue the study of randomly perturbed and damped KdV
equation, commenced in [KP08]. Namely, we consider the equation

ut − νuxx + uxxx − 6uux =
√

ν η(t, x), (0.1)

where x ∈ S1 def
= R/2πZ,

∫
S1 u dx = 0, and ν > 0 is a small positive param-

eter. The random stationary force η = η(t, x) is η = d
dt

(∑
s∈Z0

bsβs(t)es(x)
)
.

Here Z0 = Z \ {0}, βs are standard independent Wiener processes defined on a
probability space (Ω,F ,P), and {es, s ∈ Z0} is the usual trigonometric basis

es(x) =


1√
π

cos(sx), s > 0,

1√
π

sin(sx), s < 0.

The coefficients ν and
√

ν in (0.1) are balanced in such a way that solutions of
the equation stays of order one as t →∞ and ν → 0, see [KP08]. The coefficients
bs are non-zero and are even in s, i.e. bs = b−s 6= 0 ∀ s ≥ 1. When |s| → ∞ they
decay faster than any negative power of |s|: for any m ∈ Z+ there is Cm > 0 such
that

|bs| ≤ Cm|s|−m for all s ∈ Z0.

This implies that the force η(t, x) is smooth in x for any t. We study behaviour
of solutions for (0.1) with given smooth initial data

u(0, x) = u0(x) ∈ C∞(S1) (0.2)
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for
0 ≤ t ≤ ν−1T, 0 < ν � 1. (0.3)

Here T is any fixed positive constant.
The KdV equation (0.1)ν=0 is integrable. That is to say, the function space

{u(x) :
∫

u dx = 0} admits analytic symplectic coordinates v = (v1,v2, . . . ) =
Ψ(u(·)), where vj = (vj, v−j)

t ∈ R2, such that the quantities Ij = 1
2
|vj|2, j ≥ 1,

are actions (integrals of motion), while ϕj = Argvj, j ≥ 1, are angles. In the
(I, ϕ)-variables KdV takes the integrable form

İ = 0, ϕ̇ = W (I), (0.4)

where W (I) ∈ R∞ is the frequency vector, see Section 1.2. 1 The integrating map
Ψ is called the nonlinear Fourier transform. 2

We are mostly concerned with behaviour of actions I(u(t)) ∈ R∞ of solutions
for the perturbed KdV equation (0.1) for t, satisfying (0.3). For this end let us
write equations for I(v) and ϕ(v), using the slow time τ = νt ∈ [0, T ]:

dI(τ) = F (I, ϕ) dτ + σ(I, ϕ) dβ(τ), dϕ = ν−1W (I) dτ + . . . , (0.5)

where the dots stand for terms of order one, β = (β1, β2, . . . )
t and σ(I, ϕ) is an

infinite matrix. For finite-dimensional stochastic systems of the form (0.5) under
certain non-degeneracy assumptions, for the I-component of solutions for (0.5)
the averaging principle holds. That is, when ν → 0 the I-component of a solution
converges in distribution to a solution of the averaged equation

dI = 〈F 〉(I) dτ + 〈σ〉(I) dβ(τ). (0.6)

Here 〈F 〉 is the averaged drift, 〈F 〉 =
∫

F (I, ϕ) dϕ, and the dispersion matrix 〈σ〉
is a square root of the averaged diffusion

∫
σ(I, ϕ)σt(I, ϕ) dϕ. This result was

claimed in [Kha68] and was first proved in [FW03]; see [Kif04] for recent devel-
opment. In [KP08] we established “half” of this result for solutions of eq. (0.6)
which corresponds to (0.1). Namely, we have shown that for solutions uν(τ, x) of
(0.1), (0.2), where t = ν−1τ and 0 < τ ≤ T ,

1The actions I and the angles q were constructed first (before the Cartesian coordinates v),
starting with the pioneer works by Novikov and Lax in 1970’s. See in [MT76, ZMNP84, Kuk00,
KP03].

2The reason is that an analogy of Ψ, a map which integrates the linearised KdV equation
u̇ + uxxx = 0, is the usual Fourier transform.

3



i) the set of laws of actions {DI(uν(τ))} is tight in the space of continuous
trajectories I(τ) ∈ hp

I , 0 ≤ τ ≤ T , where the space hp
I is given the norm |I|hp

I
=

2
∑∞

j=1 j1+2p|Ij| and p is any number ≥ 3;

ii) any limiting measure limνj→0DI(uνj
(·)) is a law of a weak solution I0(τ) of

eq. (0.6) with the initial condition

I(0) = I0 := I(u0). (0.7)

The solutions I0(τ) are regular in the sense that all moments of the random
variables sup0≤τ≤T |I0(τ)|hr

I
, r ≥ 0, are finite.

Similar results are obtained in [KP08] for limits (as νj → 0) of stationary in
time solutions for eq. (0.1).

If we knew that (0.6), (0.7) has a unique solution I0(τ), then ii) would imply
that

DI(uν(·)) ⇀ DI0(·) as ν → 0, (0.8)

as in the finite-dimensional case. But the uniqueness is far from obvious since
(0.6) is a bad equation in the bad phase-space R∞

+ : the dispersion 〈σ〉 is not
Lipschitz in I, and the drift 〈F 〉(I) is an unbounded operator. In this paper we
show that still the convergence (0.8) holds true:

Theorem A. The problem (0.6), (0.7) has a solution I0(τ) such that the
convergence (0.8) holds.

The proof of this result, given in Section 4, Theorem 4.5, relies on a new
construction, crucial for this work. Namely, it turns out that the ‘bad’ equation
(0.6) may be lifted to a ‘good’ effective equation on the variable v = (v1,v2, . . . ),
vj ∈ R2, which transforms to (0.6) under the mapping

πI : v 7→ I, Ij = 1
2
|vj|2.

To derive the effective equation we evoke the mapping Ψ to transform eq. (0.1),
written in the slow time τ , to a system of stochastic equations on the vector v(τ)

dvk(τ) = ν−1dΨk(v)V (u) dτ + Pk(v) dτ +
∑
j≥1

Bkj(v) dβj(τ), k ≥ 1. (0.9)

Here V (u) = −uxxx + 6uux is the vector-field of KdV, Pk dτ +
∑

Bkj dβj is
the perturbation uxx + η(τ, x), written in the v-variables, and βj’s are standard
Wiener processes in R2 (so Bkj’s are 2 × 2-blocks). We will refer to the system
(0.9) as to the v-equations.
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The system (0.9) is singular when ν → 0. The effective equations for (0.9) is
a system of regular stochastic equations

dvk(τ) = 〈P 〉k dτ + 〈〈B〉〉kj(v) dβj(τ), k ≥ 1. (0.10)

To define the effective drift 〈P 〉 and the effective dispersion 〈〈B〉〉, for any θ ∈ T∞
let us denote by Φθ the linear operator in the space of sequences v = (v1,v2, . . . )
which rotates each two-vector vj by the angle θj. The rotations Φθ act on vector-
fields on the v-space, and 〈P 〉 is the result of the action of Φθ on P , averaged in
θ:

〈P 〉(v) =

∫
T∞

Φ−θP (Φθv) dθ (0.11)

(dθ is the Haar measure on T∞). Consider the diffusion operator BBt(v) for
the v-equations (0.9). It defines a (1,1)-tensor on the linear space of vectors v.
The averaging of this tensor with respect to the transformations Φθ is a tensor,
corresponding to the operator

〈BBt〉(v) =

∫
T∞

Φ−θ ·
(
(BBt)(Φθv)

)
· Φθ dθ. (0.12)

This is the averaged diffusion operator. The effective dispersion operator 〈〈B〉〉(v)
is its non-symmetric square root:

〈〈B〉〉(v) · 〈〈B〉〉t(v) = 〈BBt〉(v). (0.13)

Such a square root is non-unique. The one, chosen in this work, is given by an
explicit construction and is analytic in v (while the symmetric square root of
〈BBt〉(v) is only a Hölder-1

2
continuous function of v). The effective equations

are weakly invariant under the action of the group T∞: if v(τ) is a weak solution,
then for each θ ∈ T∞ the curve Φθv(τ) is a weak solution as well. See Sections 1.5
and 2.

Let us provide the space of vectors v with the norms | · |r, r ≥ 0, where
|v|2r =

∑
j |vj|2j1+2r. A solution of eq. (0.10) is called regular if all moments of

all random variables sup0≤τ≤T |v(τ)|r, r ≥ 0, are finite.

Theorem B. System (0.10) has at most one regular strong solution v(τ) such
that v(0) = Ψ(u0).

This result is proved in Section 4, where we show that system (0.10) is a
quasilinear stochastic heat equation, written in Fourier coefficients.
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The effective system (0.10) is useful to study eq. (0.1) since this is a lifting of
the averaged equations (0.6). The corresponding result, stated below, is proved
in Section 3:

Theorem C. For every weak solution I0(τ) of (0.6) as in assertion ii) there exists
a regular weak solution v(τ) of (0.10) such that v(0) = Ψ(u0) and D

(
πI(v(·))

)
=

D(I0(·)). Other way round, if v(τ) is a regular weak solution of (0.11), then
I(τ) = πI(v(τ)) is a weak solution of (0.6).

We do not know if a regular weak solution of problem (0.6), (0.7) is unique.
But from Theorem B we know that a regular weak solution of the Cauchy problem
for the effective equation (0.10) is unique, and through Theorem C it implies
uniqueness of a solution for (0.6), (0.7) as in item ii). This proves Theorem A.

In Section 5 we evoke some intermediate results from [KP08] to show that
after averaging in τ distribution of the actions of a solution uν for (0.1) become
asymptotically (as ν → 0) independent from distribution of the angles, and the
angles become uniformly distributed on the torus T∞. In particular, for any
continuous function f ≥ 0 such that

∫
f = 1, we have∫ T

0

f(τ)Dϕ(uν(τ)) dτ ⇀ dθ as ν → 0.

The recipe (0.11) allows to construct effective equations for other perturba-
tions of KdV, with or without randomness. These are non-local nonlinear equa-
tions with interesting properties. In particular, if the perturbation is given by a
Hamiltonian nonlinearity ν(∂/∂x)f(u, x), then the effective system is Hamilto-
nian and integrable (its hamiltonian depends only on the actions I).

The effective equations (0.10) are instrumental to study other problems, re-
lated to eq. (0.1). In particular, they may be used to prove the convergence (0.8)
when uν(τ) are stationary solutions of (0.1) and I0(τ) is a stationary solution
for (0.6). See [Kuk10] for discussion of these and some related results; the proof
will be published elsewhere. We are certain that corresponding effective equa-
tions may be used to study other perturbations of KdV, including the damped
equation (0.1)η=0.

Our results are related to the Whitham averaging for perturbed KdV, see
Appendix.

Agreements. Analyticity of maps B1 → B2 between Banach spaces B1 and B2,
which are the real parts of complex spaces Bc

1 and Bc
2, is understood in the

sense of Fréchet. All analytic maps which we consider possess the following
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additional property: for any R a map analytically extends to a complex (δR > 0)–
neighbourhood of the ball {|u|B1 < R} in Bc

1. Such maps are Lipschitz on bounded
subsets of B1. When a property of a random variable holds almost sure, we often
drop the specification “a.s.”. All metric spaces are provided with the Borel sigma-
algebras. All sigma-algebras which we consider in this work are assumed to be
completed with respect to the corresponding probabilities.
Notations. χA stands for the indicator function of a set A (equal 1 in A and
vanishing outside it). By Dξ we denote the distribution (i.e. the law) of a
random variable ξ. For a measurable set Q ⊂ Rn we denote by |Q| its Lebesgue
measure.

Acknowledgments. I wish to thank for discussions and advises B. Dubrovin,
F. Flandoli, N. V. Krylov, Y. Le Jan, R. Liptser, S. P. Novikov and B. Tsirelson.
I am especially obliged to A. Piatnitski for explaining me some results, related to
the constructions in Section 1.4, and for critical remarks on a preliminary version
of this work.

1 Preliminaries

Solutions of problem (0.1), (0.2) satisfy uniform in t and ν a priori estimates (see
[KP08]):

E
{

exp
(
σ‖u(t)‖2

0

)}
≤ c0, E

(
‖u(t)‖k

m

)
≤ cm,k, (1.1)

for any m, k ≥ 0 and any σ ≤ (2 max b2
s)
−1. Here ‖ ·‖m stands for the norm in the

Sobolev space Hm = {u ∈ Hm(S1) :
∫

u dx = 0}, ‖u‖2
m =

∫
(∂mu/∂xm)2 dx. To

study further properties of solutions for (0.1) with small ν we need the nonlinear
Fourier transform Ψ which integrates the KdV equation.

1.1 Nonlinear Fourier transform for KdV

For s ≥ 0 denote by hs the Hilbert space, formed by the vectors
v = (v1, v−1, v2, v−2, . . . ) and provided with the weighted l2-norm | · |s,

|v|2s =
∞∑

j=1

j1+2s(v2
j + v2

−j).

We set vj =

(
vj

v−j

)
, j ∈ Z+ = {j ≥ 1}, and will also write vectors v as

v = (v1,v2, . . . ). For any v ∈ hs we define the vector of actions I(v) =
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(I1, I2, . . . ), Ij = 1
2
|vj|2. Clearly I ∈ hs

I+ ⊂ hs
I . Here hs

I is the weighted l1-
space,

hs
I =

{
I : |I|hs

I
= 2

∞∑
j=1

j1+2s|Ij| < ∞
}
,

and hs
I+ is the positive octant hs

I+ = {h ∈ hs
I : Ij ≥ 0 ∀ j}.

Theorem 1.1. There exists an analytic diffeomorphism Ψ : H0 7→ h0 and an
analytic functional K on h0 of the form K(v) = K̃(I(v)), where the function

K̃(I) is analytic on the space h0
I+, with the following properties

1. The mapping Ψ defines, for any m ∈ Z+, an analytic diffeomorphism Ψ :
Hm → hm;

2. The map dΨ(0) takes the form
∑

uses 7→ v, vs = |s|−1/2us;

3. A curve u ∈ C1(0, T ; H0) is a solution of the KdV equation (0.1)ν=0 if and
only if v(t) = Ψ(u(t)) satisfies the equation

v̇j =

(
0 −1
1 0

)
∂K̃

∂Ij

(I)vj, j ∈ Z+. (1.2)

4. For m = 0, 1, 2, . . . there are polynomials Pm and Qm such that

|djΨ(u)|m ≤ Pm(‖u‖m), ‖dj(Ψ−1(v))‖m ≤ Qm(|v|m), j = 0, 1, 2,

for all u and v and all m ≥ 0.

See [KP03] for items 1-3 and [KP08] for item 4. The coordinates v = Ψ(u) are
called the Birkhoff coordinates and the form (1.2) of KdV – its Birkhoff normal
form.

The analysis in Section 4 requires the following amplification of Theorem 1.1,
stating that the nonlinear Fourier transform Ψ “is quasilinear”:

Proposition 1.2. For any m ≥ 0 the map Ψ−dΨ(0) defines an analytic mapping
from Hm to hm+1.

i) A local version of the last statement which deals with the germ of Ψ at the
origin, is established in [KP10].
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ii) Consider the restriction of Ψ to the subspace Hm
even ⊂ Hm formed by even

functions. The map Ψ, how it is defined in [KP03], maps Hm
even to the subspace

hm
e ⊂ hm, where

hm
e = {v = (v1,v2, . . . ) : v−j = 0 for all j ∈ Z+}.

For u ∈ Hm
even we have u−s = 0 for any s ∈ Z+. Thus Hm

even may be identified
with the space

l2m =
{
(u1, u2, . . . ) :

∞∑
r=1

r2mu2
r < ∞

}
.

Considering the asymptotic expansion for the actions Ij for u ∈ Hm we have
vj = ±

√
2Ij = j−1/2(uj +j−1wj(u)), where the map u 7→ w(u) from l2m into itself,

m ≥ 0, is analytic. See for instance Theorem 1.2, formula (1.13), in [Kor08] where
one should use the Marchenko-Ostrovskii asymptotic formula to relate Fourier
coefficients of a potential with the sizes γn of open gaps of the corresponding
Hill operator. Thus, for the restriction of Ψ to the space Hm

even the assertion also
holds.

iii) The n-gap manifold T 2n is the set of all u(x) such that v = Ψ(u) satisfies
vj = 0 if j ≥ n + 1. This is a 2n-dimensional analytic submanifold of any space
Hm. It passes through 0 ∈ Hm and goes to infinity; it can be defined indepen-
dently from the map Ψ, see [Kuk00, KP03]. In a suitable neighbourhood of T 2n

there is an analytical transformation which put the KdV equation to a partial
Birkhoff normal form (sufficient for purposes of the KAM-theory). The non-linear
part of this map also is one-smoother than its linear part, see in [Kuk00].

Proof of the Proposition in the general case, based on the spectral theory of
Hill operators, will be given in a separate publication.

1.2 Equation (0.1) in Birkhoff coordinates

Applying the Itô formula to the nonlinear Fourier transform Ψ, we see that for
u(t), satisfying (0.1), the function v(τ) = Ψ(u(τ)), where τ = νt, is a solution of
the system

dvk = ν−1dΨk(u)V (u)dτ+P 1
k (v)dτ+P 2

k (v)dτ+
∑
j≥1

Bkj(v)dβj(τ), k ≥ 1. (1.3)
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Here βj =

(
βj

β−j

)
∈ R2, V (u) = −uxxx + 6uux is the vector field of KdV,

P 1(v) = dΨ(u)uxx and P 2(v)dτ is the Itô term,

P 2
k (v) =

1

2

∑
j≥1

b2
j

[
d2Ψkj(u)

((1

0

)
,
(1

0

))
+ d2Ψkj(u)

((0

1

)
,
(0

1

))]
∈ R2.

Finally, the dispersion matrix B is formed by 2× 2-blocks Bkj, k, j ≥ 1, where

Bkj(u) = bj (dΨ(u))kj .

Equation (1.3) implies the following relation for the actions vector I = (I1, I2, . . . ):

dIk = vt
kP

1
k (v)dτ + vt

kP
2
k (v)dτ +

1

2

∑
j≥1

‖Bkj‖2
HSdτ +

∑
j≥1

vt
kBkj(v)dβj(τ) , (1.4)

k ≥ 1. Here ‖Bkj‖2
HS is the squared Hilbert-Schmidt norm of the 2 × 2 matrix

Bkj, i.e. the sum of squares of all its four elements.
Estimates (1.1) and eq. (1.4) imply that

E sup
0≤τ≤T

|I(τ)|khm
I
≤ Cm,k ∀m, k ≥ 0. (1.5)

See in [KP08].

1.3 Averaged equations

For a vector v = (v1,v2, . . . ) denote by ϕ(v) = (ϕ1, ϕ2, . . . ) the vector of angles.
That is ϕj is the argument of the vector vj ∈ R2, ϕj = arctan(v−j/vj) (if vj = 0,
we set ϕj = 0). The vector ϕ(v) belongs to the infinite-dimensional torus T∞. We
provide the latter with the Tikhonov topology (so it becomes a compact metric
space) and the Haar measure dθ =

∏
(dθj/2π). We will identify a vector v with

the pair (I, ϕ) and write v = (I, ϕ).
The torus T∞ acts on each space hm by the linear rotations Φθ, θ ∈ T∞, where

Φθ : (I, ϕ) 7→ (I, ϕ + θ). For any continuous function f on hm we denote by 〈f〉
its angular average,

〈f〉(v) =

∫
T∞

f(Φθv)dθ.

The function 〈f〉(v) is as smooth as f(v) and depends only on I. Furthermore,
if f(v) is analytic on hm, then 〈f〉(I) is analytic on hm

I ; for the proof see [KP08].
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Averaging equations (1.4) using the rules of stochastic averaging (see [Kha68,
FW03]), we get the averaged system

dIk(τ) = 〈vt
kP

1
k 〉(I)dτ + 〈vt

kP
2
k 〉(I)dτ

+
1

2

〈∑
j≥1

‖Bkj‖2
HS

〉
(I) dτ +

∑
j≥1

Kkj(I)dβj(τ), k ≥ 1 ,
(1.6)

with the initial condition

I(0) = I0 = I(Ψ(u0)). (1.7)

Here the dispersion matrix K is a square root of the averaged diffusion matrix S,

Skm(I)
def
=

〈∑
l≥1

vt
kBklv

t
mBml

〉
(I), (1.8)

not necessary symmetric. That is,∑
l≥1

Kkl(I)Kml(I) = Skm(I) (1.9)

(we abuse the language since the l.h.s. is not K2 but KKt). If in (1.6) we replace
K by another square root of S, we will get a new equation which has the same
set of weak solutions, see [Yor74].

Note that system (1.6) is very irregular: its drift operator 〈G1
k〉 is unbounded

and the dispersion matrix K(I) is not Lipschitz continuous in I.

1.4 Averaging principle

Let us fix any p ≥ 3 and denote

HI = C([0, T ], hp
I+), Hv = C([0, T ], hp). (1.10)

In [KP08] we have proved the following results: given any T > 0, for the process
Iν(τ) = {I(vν(τ)) : 0 ≤ τ ≤ T} it holds

Theorem 1.3. Let uν(t), 0 < ν ≤ 1, be a solution of (0.1), (0.2) and vν(τ) =
Ψ(uν(τ)), τ = νt, τ ∈ [0, T ]. Then the family of measures D(Iν(·)) is tight in
the space of (Borel) measures in HI . Any limit point of this family, as ν → 0, is
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the distribution of a weak solution I0(τ) of the averaged equation (1.6), (1.7). It
satisfies the estimates

E sup
0≤τ≤T

|I0(τ)|Nhm
I

< ∞ ∀m, N ∈ N, (1.11)

and

E

∫ T

0

χ{I0
k(τ)≤δ}(τ) dτ → 0 as δ → 0, (1.12)

for each k.

Remarks. 1) The convergence (1.12) is proved in Lemma 4.3 of [KP08]. There
is a flaw in the statement of Lemma 4.3: the convergence (1.12) is there claimed
for any fixed τ (without integrating in dτ). This is true only for the case of
stationary solutions, cf. the next remark. The proof of the main results in
[KP08] uses exactly (1.12), cf. there estimate (5.7). See below Appendix, where
the proof of Lemma 4.3 is re-written for purposes of this work.

2) A similar result holds when uν(t) = uν
st(t), t ≥ 0, is a stationary solution

of (0.1), see [KP08].

1.5 Dispersion matrix K

The matrix S(I) is symmetric and positive but its spectrum contains 0. Conse-
quently, its symmetric square root

√
S(I) has low regularity in I 3 at points of

the set
∂ hp

I+ = {I ∈ hp
I+ : Ij = 0 for some j}.

Now we construct a ‘regular’ square root K (i.e. a dispersion matrix) which is an
analytic function of v, where I(v) = I. This regularity will be sufficient for our
purposes.

We will obtain a dispersion matrix K = {Klm}(v), I(v) = I, as the matrix of
a dispersion operator K : Z −→ l2, where Z is an auxiliary separable Hilbert
space and the operator depends on the parameter v, K = K(v). The matrix
K is written with respect to some orthonormal basis in Z and the standard
basis {fj, j ≥ 1} of l2. Below for a space Z we take a suitable L2-space Z =
L2(X, µ(dx)). For any Schwartz kernel M(v) = M(j, x)(v), depending on the

3Matrix elements of
√

S(I) are Lipschitz functions of the arguments
√

I1,
√

I2, . . . . Cf.
[IW89], Proposition IV.6.2.
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parameter v, we denote by Op(M(v)) the corresponding integral operator from
L2(X) to l2:

Op(M(v)) g(·) =
∑

j

fj

∫
M(j, x)(v)g(x) µ(dx).

We will define the dispersion operator K(v) by its Schwartz kernel K(j, x)(v),
K(v) = Op(K(v)). For any choice of the orthonormal basis in Z the Percival
identity holds:∑

l≥1

Kkl(v)Kml(v) =

∫
X

K(k, x)(v)K(m, x)(v) µ(dx) ∀ k,m. (1.13)

Since a law of a zero-meanvalue Gaussian process is defined by its correlations,
then due to (1.13) the law of the process

∑
l≥1 fl

∑
m≥1 Klmβm(τ) ∈ l2 does

not depend on the choice of the orthonormal basis in Z: it depends only on the
correlation operator K (i.e. on its kernel K) and not on a matrix K. Accordingly,
we will formally denote the differential of this process as∑

l≥1

fl

∑
m≥1

Klm dβm(τ) =
∑
l≥1

fl

∫
X

K(l, x)dβx(τ) µ(dx), (1.14)

where βx(τ), x ∈ X, are standard independent Wiener processes on some prob-
ability space. 4 Naturally, if in a stochastic equation the diffusion is written in
the form (1.14), then only weak solutions of the equation are well defined. This
notation well agrees with the Itô formula. Indeed, denote the differential in (1.14)
by dη and let f(η) be a C2-smooth function. Then due to (1.13)

df(η) =
(1

2

∑
k,r

∂2f

∂ηk∂ηr

∑
m

KkmKrm

)
dτ +

∑
k,m

∂f

∂ηk

Kkm dβm(τ)

=
(1
2

∑
k,r

∂2f

∂ηk∂ηr

∫
X

K(k, x)K(r, x) µ(dx)
)
dτ

+
∑

k

∂f

∂ηk

∫
X

K(k, x) dβx(τ) µ(dx).

(1.15)

4We cannot find continuum independent copies of a random variable on a standard proba-
bility space. So indeed this is just a notation.
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Due to (1.13) the matrix K(v) satisfies equation (1.9) if∫
X

K(k, x)(v)K(m, x)(v)µ(dx) =
∑
l≥1

Kkl(v)Kml(v)

= Skm(I) =
∑
l≥1

〈
(vt

kBkl(v))(vt
mBml(v))

〉
.

(1.16)

The matrix in the right-hand side of (1.16) equals∑
l≥1

∫
T∞

(
(vt

kBkl)(Φθv)
) (

(vt
mBml)(Φθv)

)
dθ

= vt
kv

t
m

∑
l≥1

∫
T∞

(Φk
−θk

Bkl(Φθv))(Φm
−θm

Bml(Φθv))dθ ,

where Φm
θ is the linear operator in R2, rotating the vm-component of a vector v

by the angle θ. Let us choose for X the space X = Z+×T∞ = {(l, θ)} and equip
it with the measure µ(dx) = dl× dθ, where dl is the counting measure in Z+ and
dθ is the Haar measure in T∞. Consider the following Schwartz kernel K:

K(k; l, θ)(v) = vt
kR(k; l, θ)(v), R(k; l, θ)(v) = (Φk

−θk
Bkl)(Φθ(v)). (1.17)

Then (1.16) is fulfilled. So

for any choice of the basis in L2(Z+ × T∞)

the matrix K(v) of Op(K(v)) satisfies (1.9) with I = I(v).
(1.18)

The differential (1.14) for K = K(k; l, θ)(v), (l, θ) = x, depends on v, but its law
depends only on I(v).

We formally write the averaged equation (1.6) with the constructed above
dispersion operator Op(K(v)), I(v) = I, as

dIk(τ) = 〈vt
kP

1
k 〉(I) dτ + 〈vt

kP
2
k 〉(I) dτ +

1

2

〈∑
j≥1

‖Bkj‖2
HS

〉
(I) dτ

+
∑
l≥1

∫
T∞

vt
kR(k, l, θ)(v) dβl,θ(τ) dθ.

(1.19)

Let us fix a basis in the space L2(Z+ × T∞) and fix the Wiener processes
{βm(·), m ≥ 1}, corresponding to the presentation (1.14) for the stochastic term
in (1.19). Let ξ ∈ hp be a random variable, independent from the processes
{βm(τ)}.
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Definition 1.4. I) A pair of processes I(τ) ∈ hp
I , v(τ) ∈ hp, 0 ≤ τ ≤ T , such

that I(v(τ)) ≡ I(τ), v(0) = ξ and

E sup
0≤τ≤T

|v(τ)|Nm < ∞ ∀m, N, (1.20)

is called a regular strong solution of (1.19) in the space hp
I × hp, corresponding

to the basis above and the Wiener processes {βm(·)}, if
(i) I and v are adapted to the filtration, generated by ξ and the processes

{βm(τ)},
(ii) the integrated in τ version of (1.19) holds a.s.

II) A pair of processes (I, v) is called a regular weak solution if it is a regular
solution for some choice of the basis and the Wiener processes {βm}, defined on
a suitable extension of the original probability space (see in [KS91]).

Lemma 1.5. If (I(τ), v(τ)), 0 ≤ τ ≤ T , is a regular weak solution of eq. (1.19),
then I(τ) is a weak solution of (1.6), where Kkm(I) is the symmetric square root√

Skm(I).

Proof. Clearly the process I(τ) is a solution to the (local) martingale problem,
associated with eq. (1.6) (see [KS91], Proposition 4.2 and Problem 4.3). So I(τ)
is a weak solution of (1.6), see [Yor74] and Corollary 6.5 in [KP08].

The representation of the averaged equation (1.6) in the form (1.19) is crucial
for this work. It is related to the construction of non-selfadjoint dispersion opera-
tors in the work [DIPP06] and is inspired by it. We are thankful to A. Piatnitski
for corresponding discussion.

2 Effective equations

The goal of this section is to lift the averaged equation (1.6) to an equation for
the vector v(τ) which transforms to (1.6) under the mapping v 7→ I(v). Using
Lemma 1.5 we instead lift equation (1.19). We start the lifting with the last two
terms in the right hand side of (1.19). They define the Itô differential

1

2

〈∑
j≥1

‖Bkj‖2
HS

〉
(I) dτ +

∑
l≥1

∫
T∞

vt
kR(k; l, θ)(v)dβl,θ(τ)dθ. (2.1)

15



Consider the differential dvk =
∑
l≥1

∫
T∞
R(k; l, θ)(v)dβl,θ(τ)dθ. Due to (1.15), for

Jk = 1
2
|vk|2 we have

dJk =
1

2

(∑
l≥1

∫
T∞

‖R(k; l, θ)‖2
HSdθ

)
dτ +

∑
l≥1

∫
T∞

vt
kR(k; l, θ)(v)dβl,θ(τ)dθ.

Notice that the diffusion term in the last formula coincides with that in (2.1).
The drift terms also are the same since ‖Φk

θ′Bkl‖2
HS = ‖Bkl‖2

HS for any rotation
Φk

θ′ .
Now consider the first part of the differential in the right-hand side of (1.6),〈

vt
kP

1
k

〉
(I)dτ +

〈
vt

kP
2
k

〉
(I)dτ. (2.2)

Recall that P 1 = dΨ(u)uxx with u = Ψ−1(v) and that P 2(v) is the Itô term. We
have〈

vt
kP

1
k

〉
(I) =

∫
T∞

(vt
kP

1
k )(Φθv)dθ =

∫
T∞

vt
k

(
Φk
−θk

dΨk(Πθu)
∂2

∂x2

(
Πθu

))
dθ

= vt
kR

1
k(v), u = Ψ−1(v),

where R1
k(v) =

∫
T∞

Φk
−θk

dΨk(Πθu) ∂2

∂x2

(
Πθu

)
dθ, and the operators Πθ are defined

by the relation Πθu = Ψ−1(Φθv). Similarly,〈
vt

kP
2
k

〉
(I) =

∫
T∞

(vt
kP

2
k )(Φθv)dθ = vt

k

∫
T∞

Φk
−θk

P 2
k (Φθv) dθ =: vt

kR
2
k(v).

Consider the differential dvk = R1
k(v) dτ + R2

k(v) dτ . Then d
(

1
2
|vk|2

)
= (2.2).

Now consider the system of equations:

dvk(τ) = R1
k(v)dτ + R2

k(v)dτ +
∑
l≥1

∫
T∞

R(k; l, θ)(v)dβl,θ(τ)dθ, k ≥ 1. (2.3)

The arguments above prove that if v(τ) satisfies (1.19), then I(v(τ)) satisfies
(1.6). Using Lemma 1.5 we get

Proposition 2.1. If v(τ) is a regular weak solution of equation (2.3), then
I(v(τ)) is a regular weak solution of (1.6).
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Here a regular weak solution is a weak solution, satisfying (1.20).

The effective equations are obtained by averaging the v-equations, where the
KdV vector field is removed, and are weakly invariant under the rotations Φθ:

• The drift R1(v) + R2(v) in the effective equations (2.3) is an averaging of
the vector-field P (v) = P 1(v) + P 2(v), see (0.11).

• The kernel R(k; l, θ)(v) defines a linear operator R(v) := Op(R(v)) from
the space L2 := L2(Z+×T∞) to the space h := h−1/2, 5 see Section 1.5. The
operator R(v)R(v)t : h → h has the matrix X(v), formed by 2× 2-blocks

Xkj(v) =
∑

l

∫
T∞
R(k; l, θ)(v)R(j; l, θ)(v) dθ.

Due to (1.17) this is the matrix of the averaged diffusion operator (0.12). If
we write the diffusion term in the effective equations in the standard form,
i.e. as

∑
j〈〈B〉〉kj(v) dβj(τ), where 〈〈B〉〉 is a matrix of the operator R(v)

with respect to some basis in L2 (see (1.14)), then also 〈〈B〉〉(v)〈〈B〉〉t(v) =
X(v), see (1.13). So the dispersion operator in (2.3) is a non-symmetric
square root of the averaged diffusion operator in the v-equations. Cf. rela-
tion (0.13) and its discussion.

• If v(τ) is a regular weak solution of (2.3), then Φθv(τ) is a regular weak
solution for each θ.

System (1.19) has locally Lipschitz coefficients and does not have a singularity
at ∂ hI

p+, but its dispersion operator depends on v. Now we construct an equiva-
lent system of equations on I which is v-independent, but has weak singularities
at ∂ hI

p+.
The dispersion kernel in equation (1.19) is vt

kR(k; l, θ)(v). Let us re-denote it
as Kk(l, θ)(v). Then Kk(l, θ)(v) = vt

kBkl(v) |v:=Φθv. Clearly

Kk(l, θ)(Φφv) = Kk(l, θ + φ)(v). (2.4)

Denoting, as before, by Op(K(v)) the linear operator L2(N× T∞) → l2 with the
kernel K(v) = Kk(l, θ)(v), v = (I, ϕ), we have

Op
(
K(I, ϕ1 + ϕ2)

)
= Op

(
K(I, ϕ1)

)
◦ U(ϕ2). (2.5)

5Recall that the space h is given the l2-scalar product
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Here U(ϕ) is the unitary operator in L2(N× T∞), corresponding to the rotation
of T∞ by an angle ϕ.

Let us provide L2(T1, dx/2π) with the basis ξj(θ), j ∈ Z, where ξ0 = 1,
ξj =

√
2 cos jx if j ≥ 1 and ξj =

√
2 sin jx if j ≤ −1. For i ∈ Z and s =

(s1, s2, . . . ) ∈ ZN, |s| < ∞, define

Ei,s(l, θ) = δl−i

∏
j∈Z

ξsj
(θj)

(the infinite product is well defined since a.a. factors is 1). These functions define
a basis in L2(N× T∞). Let (Er, r ∈ N), be the same functions, re-parameterised
by the natural parameter. For any v = (I, ϕ) the matrix K(v) with the elements

Kkr(v) =
(
Kk(l, θ)(v), Er(l, θ)

)
L2

=

∫
Z+×T∞

Kk(l, θ)(v) Er(l, θ)(dl × dθ)

is the matrix of the operator Op(K(v)) with respect to the basis {Er}.
Due to (2.5) for v = (I, ϕ) the operator Op(K(I, ϕ)) equals Op(K(I, 0))◦U(ϕ).

So its matrix is
Kkr(I, ϕ) =

∑
m

Mkm(I)Umr(ϕ),

where the matrix Mkm(I) corresponds to the kernel Kk(l, θ)(I, 0) and Umr(ϕ) is
the matrix of the operator U(ϕ) (the matrices are formed by 2×2-blocks). Clearly
‖K(I, ϕ)‖HS = ‖M(I)‖HS for each (I, ϕ). Taking into account the form of the
functions Ei,s(l, θ) we see that any Umr(ϕ) is a smooth function of each argument
ϕj and is independent from ϕk with k large enough. In particular,

any matrix element Umr(ϕ) is a Lipschitz function of ϕ ∈ T∞. (2.6)

Note that the Lipschitz constant of Umr depends on m and r.
Let us denote the drift in the system (1.19) by Fk(I) dτ and write the disper-

sion matrix with respect to the basis {Er}. It becomes

dIk(τ) = Fk(I) dτ +
∑
m,r

Mkm(I) Umr(ϕ) dβr. (2.7)

Let ϕ(τ) ∈ T∞ be any progressively measurable process with continuous trajec-
tories. Consider the processes β̃m(τ), m ≥ 1,

dβ̃m(τ) =
∑

r

Umr(ϕ(τ)) dβr(τ), β̃m(0) = 0. (2.8)
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Since U is an unitary operator, then β̃m(τ), m ≥ 1, are standard independent
Wiener processes. So we may write (2.7) as

dIk(τ) = Fk(I) dτ +
∑
m

Mkm(I) dβ̃m(τ). (2.9)

Note that each weak solution of (2.9) is a weak solution of (2.7) and vice versa.
Due to (1.18) the matrix M satisfies (1.9). So equation (2.9) has the same weak
solutions as equation (1.6).

Now consider system (2.3) for v(τ). Denote by Rkm(v) the matrix, corre-
sponding to the kernel R(k; l, θ)(v) in the basis {Ek}. Denoting R1

k + R2
k = Rk

we write (2.3) as follows:

dvk = Rk(v) dτ +
∑

r

Rkr(v) dβr(τ) (2.10)

= Rk(v) dτ +
∑
m,l,r

Rkl(v)Uml(ϕ)Umr(ϕ) dβr(τ).

So
dvk = Rk(v) dτ +

∑
m

R̃km(v) dβ̃m(τ), k ≥ 1, (2.11)

where R̃km(v) =
∑

lRkl(v)Uml(ϕ). As before, equations (2.3) and (2.11) have
the same sets of weak solutions. Since matrix elements Umr(ϕ) smoothly depend
on ϕ, we have

‖R̃(v)‖HS = ‖R(v)‖HS < ∞ ∀ v

and every R̃kl(v) smoothly depends on each vr ∈ R2 \ {0}.
(2.12)

We have established

Lemma 2.2. Equations (2.11) have the same set of regular weak solutions as
equations (2.10), and equations (2.9) – as equations (1.6). The Wiener processes
{βr(τ), r ≥ 1} and {β̃m(τ), m ≥ 1} are related by formula (2.8), where v(τ) =
(I(τ), ϕ(τ)) and the unitary matrix U(ϕ) satisfies (2.6).

We also note that if a process v(τ) satisfies only one equation (2.11), then it
also satisfies the corresponding equation (2.10).
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3 Lifting of solutions

3.1 The theorem

In this section we prove an assertion which in some sense is inverse to that of
Proposition 2.1. For any ϑ ∈ T∞ and any vector I ∈ hp

I we set

Vϑ(I) = (Vϑ 1,Vϑ 2, . . . ) ∈ hp, Vϑ r = Vϑr(Ir), where

Vα(J) = (
√

2J cos α,
√

2J sin α)t ∈ R2 .

Then ϕj(Vϑ(I)) = ϑj ∀ j and for every ϑ the map I 7→ Vϑ(I) is right-inverse to
the map v 7→ I(v). For N ≥ 1 and any vector I we denote

I>N = (IN+1, IN+2, . . . ), V >N
ϑ (I) = (Vϑ N+1(I),Vϑ N+2(I), . . . ).

Theorem 3.1 (Lifting). Let I0(τ) = (I0
k(τ), k ≥ 1, 0 ≤ τ ≤ T ), be a weak

solution of system (1.6), constructed in Theorem 1.3. Then, for any vector ϑ ∈
T∞, there is a regular weak solution v(τ) of system (2.3) such that

i) the law of I(v(·)) in the space HI (see (1.10)) coincides with that of I0(·),
ii) v(0) = Vϑ(I0) a.s.

Proof. Step 1. Re-defining the equations for large amplitudes.
For any P ∈ N consider the stopping time

τP = inf{τ ∈ [0, T ] | |v(τ)|2p ≡ |I(v(τ))|hp
I

= P}

(here and in similar situations below τP = T if the set is empty). For τ ≥ τP and
each ν > 0 we re-define equations (1.3) to the trivial system

dvk = bkdβk(τ), k ≥ 1, (3.1)

and re-define accordingly equations (1.4) and (1.6). We will denote the new
equations as (1.3)P , (1.4)P and (1.6)P . If vν

P (τ) is a solution of (1.3)P , then
Iν
P (τ) = I(vν

P (τ)) satisfies (1.4)P . That is, for τ ≤ τP it satisfies (1.4), while for
τ ≥ τP it is a solution of the Itô equations

dIk = 1
2
b2
k dτ +bk(vk dβk +v−k dβ−k) = 1

2
b2
k dτ +bk

√
2Ik dwk(τ), k ≥ 1, (3.2)

where wk(τ) is the Wiener process
∫ τ

(cos ϕk dβk + sin ϕk dβ−k). So (1.4)P is the
system of equation

dIk = χτ≤τP
· 〈r.h.s. of (1.4)〉+ χτ≥τP

(
1
2
b2
k dτ + bk

√
2Ik dwk(τ)

)
, k ≥ 1. (3.3)
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Accordingly, the averaged system (1.6)P may be written as

dIk = χτ≤τP

(
Fk(I) dτ +

∑
j

Kkj(I) dβj(τ)
)

+ χτ≥τP

(
1
2
b2
k dτ + bk

√
2Ik dβk(τ)

)
,

(3.4)
k ≥ 1. Here (as in (2.7)) Fk dτ abbreviates the drift in eq. (1.6), and for τ ≥ τP

we replaced the Wiener process wk by the process βk – this does not change weak
solutions the system.

Similar to vν and Iν (see Lemma 4.1 in [KP08]), the processes vν
P and Iν

P meet
the estimates

E sup
0≤τ≤T

|I(τ)|Mhm
I

= E sup
0≤τ≤T

|v(τ)|2M
hm

I
≤ C(M, m, T ), (3.5)

uniformly in ν ∈ (0, 1].
Due to Theorem 1.3 for a sequence νj → 0 we have D(Iνj(·)) ⇀ D(I0(·)).

Choosing a suitable subsequence we achieve that also D(I
νj

P (·)) ⇀ D(IP (·)) for
some process IP (τ), for each P ∈ N. Clearly IP (τ) satisfies estimates (3.5).

Lemma 3.2. For any P ∈ N, IP (τ) is a weak solution of (1.6)P such that
D(IP ) = D(I0) for τ ≤ τP

6 and D(IP (·)) ⇀ D(I0(·)) as P →∞.

Proof. The process Iν
P (τ) satisfies the system of Itô equations (1.4)P =(3.3)

which we now abbreviate as

dIν
Pk = Fk(τ, v

ν
P (τ)) dτ +

∑
j

Skj(τ, v
ν
P (τ)) dβj(τ) , k ≥ 1. (3.6)

Denote by 〈F〉k(τ, I) and 〈SSt〉km(τ, I) the averaged drift and diffusion. Then

〈F〉k = χτ≤τP
Fk(I) + χτ≥τP

1
2
bk, 〈SSt〉km = χτ≤τP

Skm(I) + χτ≥τP
δkmb2

k2Ik

(cf. (2.7) and (1.8)). We claim that

Υq
ν := E sup

0≤τ≤T

∣∣∣∣∫ τ

0

(Fk(s, v
ν
P (s))− 〈F〉k(s, Iν

P (s)) ds

∣∣∣∣q → 0 as ν → 0, (3.7)

for q = 1 and 4. Indeed, since Fk = 〈F〉k for τ ≥ τP and vν
P = vν , Iν

P = Iν for
τ ≤ τP , then

Υq
ν ≤ E sup

0≤τ≤T

∣∣∣∣∫ τ

0

(Fk(s, v
ν(s))− Fk(I

ν(s)) ds

∣∣∣∣q .

6That is, images of the two measures under the mapping I(τ) 7→ I(τ ∧ τP ) are equal.
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But the r.h.s. goes to zero with ν, see in [KP08] Proposition 5.2 and relation
(6.17). So (3.7) holds true.

Relations (3.6) and (3.7) with q = 1 imply that for each k the process Zk(τ) =
Ik(τ) −

∫ τ

0
〈Fk〉 ds, regarded as the natural process on the space HI , given the

natural filtration and the measure D(IP ), is a square integrable martingale, cf.
Proposition 6.3 in [KP08]. Using the same arguments and (3.7) with q = 4 we
see that for any k and m the process Zk(τ)Zm(τ)−

∫ τ

0
〈SSt〉km ds also is a D(IP )-

martingale. It means that the measure D(IP ) is a solution of the martingale
problem for eq. (1.6)P =(3.4). That is, IP (τ) is a weak solution of (1.6)P .

Since D(Iν
P ) = D(Iν) =: Pν for τ ≤ τP , then passing to the limit as νj → 0

we get the second assertion of the lemma. As Pν{τP < T} ≤ CP−1 uniformly in
ν (cf. (3.5)), then the last assertion also follows.

Step 2. Equation for vN .
By Lemma 2.2 the process I0(τ) satisfies (2.9). For any N ∈ N we consider a

Galerkin–like approximation for equations (2.11), coupled with eq. (2.9). Namely,
denote

vN(τ) = (v1, . . . ,vN)(τ) ∈ R2N , V >N(τ) = V >N
ϑ (I(τ)) ,

and consider the following system of equations:

dIk(τ) =Fk(I) dτ +
∑
m≥1

Mkm(I) dβ̃m(τ), k ≥ 1,

dvk(τ) =Rk(v) dτ +
∑
m≥1

R̃km(v) dβ̃m(τ), k ≤ N,
(3.8)

where v = (vN , V >N(I)). We take I(τ) = I0(τ) for a solution of the I-equations.
Then (3.8) becomes equivalent to a system of 2N equations on vN(τ) with pro-
gressively measurable coefficients.

As at Step 1 we re-define the I-equations in (3.8) after τP to equations (3.2)
and the v-equations – to (3.1). We denote thus obtained system (3.8)P . By
Lemma 3.2 the process IP (τ) satisfies the new I-equations, and we will take IP (τ)
for the I-component of a solution for (3.8)P . To solve (3.8)P for 0 ≤ τ ≤ T we first
solve (3.8) till time τP and next solve the trivial system (3.1) for τ ∈ [τP , T ]. The
second step is obvious. So we will mostly analyse the first step. The coefficients
Rk are Lipschitz in vN on bounded subsets of R2n. Due to (2.12) the coefficients
R̃km(v) are Lipschitz in vN if |v|p ≤

√
P and |vj| > δ ∀ j ≤ N for some δ > 0,

but the Lipschitz constants are not uniform in m. Denote

Ω̂ = ΩI × ΩN = C(0, T ; hp
I)× C(0, T ; R2N),
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and denote by πI , πN the natural projections πI : Ω̂ → ΩI , πN : Ω̂ → ΩN . Provide
the Banach spaces Ω̂, ΩI and ΩN with the Borel sigma-algebras and the natural
filtrations of sigma-algebras.

Our goal is to construct a weak solution for (3.8)P such that its distribution
P = PN

P = D(I, vN) satisfies πI ◦ P = D(IP (·)) and I(vN(·)) = IN(·) P-a.s.
After that we will go to a limit as P → ∞ and N → ∞ to get a required weak
solution v of (2.3).

Step 3. Construction of a measure Pδ.
Let us denote [I] = min1≤j≤N{Ij}. Fix any positive δ. For a process I(τ) we

define stopping times θ±j ≤ T such that · · · < θ−j < θ+
j < θ−j+1 < . . . as follows:

• if [I(0)] ≤ δ, then θ−1 = 0. Otherwise θ+
0 = 0.

• If θ−j is defined, then θ+
j is the first moment after θ−j when [I(τ)] ≥ 2δ (if

this never happens, then we set θ+
j = T ; similar in the item below).

• If θ+
j is defined, then θ−j+1 is the first moment after θ+

j when [I(τ)] ≤ δ.

We denote ∆j = [θ−j , θ+
j ], Λj = [θ+

j , θ−j+1] and set ∆ = ∪∆j, Λ = ∪Λj.
For segments [0, θ−j ] and [0, θ+

j ], which we denote below [0, θ±j ], we will itera-
tively construct processes (I, vN)(τ) = (I, vN)j,±(τ) such thatD(I(·)) = D(IP (·)),
vN(τ) = vN(τ ∧ θ±j ) and D(IN(τ)) = D(I(vN(τ)) for τ ≤ θ±j . Moreover, on each
segment Λr ⊂ [0, θ±j ] the process (I, vN) will be a weak solution of (3.8)P . Next
we will obtain a desirable measure PN

P as a limit of the laws of these processes as
j →∞ and δ → 0.

For the sake of definiteness assume that 0 = θ+
0 .

a) τ ∈ Λ0. We will call the ‘δ-stopped system (3.8)P ’ a system, obtained from
(3.8)P by multiplying the v-equations by the factor χτ≤θ−1

. We wish to construct

a weak solution (I, vN) of this system such that, as before, D(I) = D(IP ). We
will only show how to do this on the segment [0, θ−1 ∧ τP ] since construction of a
solution for τ ≥ τP is trivial.

Lemma 3.3. For any positive δ and for ϑ as in Theorem 3.1 the δ-stopped system
(3.8)P has a weak solution (I, vN) such that D(I(·)) = D(IP (·)) and 1

2
|vk|2(τ) ≡

Ik(τ), vk(0) = Vϑ k(I0) for k ≤ N .

Proof. Let (I, vN) be a solution of (3.8)P . Application of the Itô formula to
ϕk(v) = arctan(vk/v−k), k ≤ N , yields

dϕk(τ) = χτ≤θ−1

(
Ratn

k (v) dτ +
∑
m≥1

Ratn
km(v) dβ̃m(τ)

)
, k ≤ N, (3.9)
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where v = (vN , V >N) and

Ratn
km(v) =

(
∇vk

arctan
( vk

v−k

))
· R̃km(v),

Ratn
k (v) =

(
∇vk

arctan
( vk

v−k

))
·Rk(v)

+
1

2

∑
m≥1

(
∇2

vk
arctan

( vk

v−k

))
R̃km · R̃km.

Here · stands for the inner product in R2. In the r.h.s. of (3.9), for k = 1, . . . , N
we express vk(τ) via ϕk(τ) and Ik(τ) as vk = Vϕk

(Ik). Then χτ≤θ−1
Ratn

k and

χτ≤θ−1
Ratn

km become smooth functions of I and ϕM . Accordingly, (2.9)P + (3.9)P

is a system of equations for (I, ϕN) and the pair (I, ϕN) as above is its solution.
Other way round, if a pair (I, ϕN) satisfies system (2.9)P + (3.9)P , then (I, vN)

is a solution of the δ-stopped equations (3.8)P such that 1
2
|vk|2 = Ik for k ≤ N . In-

deed, we recover the vN -component of a solution (I, vN) as vj(τ) = Vϕj(τ)(Ij(τ)),
j ≤ N .

For any M ≥ 1 we call the ‘M -truncation of system (3.9)’ a system, obtained
from (3.9) by removing the terms Ratn

km dβ̃m with m > M . The M -truncated and
δ-stopped system (3.9) with I = IP is an equation with progressively measurable
coefficients, Lipschitz continuous in ϕN (see (2.12)). So it has a unique strong
solution ϕN,M . Since

‖Ratn(v)‖HS ≤ C ‖R̃(v)‖HS = C ‖R(v)‖HS,

then all moments of the random variable supτ ‖Ratn(v(τ))‖HS are finite. Ac-
cordingly, the family of processes (IP , ϕN,M) ∈ hI

P × TN , M ≥ 1, is tight.
Any limiting as M → ∞ measure solves the martingale problem, correspond-
ing to the δ-stopped system (2.9)P +(3.9)P . So this is a law of a weak solution
(IP , ϕN) of that system (i.e., (IP , ϕN)(τ) satisfies the system with suitably cho-
sen Wiener processes β̃m). Accordingly, we have constructed a desirable weak
solution (I, vN)(τ).

We denote by P−
1 the law of the constructed solution (I, vN). This is a measure

in Ω̂, supported by trajectories (I, vN) such that vN(τ) is stopped at τ = θ−1 .

b) Now we will extend P−
1 to a measure P+

1 on Ω̂, supported by trajectories
(I, vN), where vN is stopped at time θ+

1 .
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Let us denote by Θ = Θθ−1 the operator which stops any continuous trajectory
η(τ) at time τ = θ−1 . That is, replaces it by η(τ ∧ θ−1 ).

Since D(Iν
P (·)) ⇀ D(IP (·)) as ν = νj → 0, then we can represent the laws P−

1

and D(vν
P )) by distributions of processes (I ′P (τ), v′P

N(τ)) and v′P
ν(τ) such that

I(v′P
ν
(·)) → I ′P (·) as ν = νj → 0 in HI a.s. ,

and
I(v′P

N
) ≡ I ′P

N
for τ ≤ θ−1 .

Since v′P
ν(τ, ω), 0 ≤ τ ≤ T , is a diffusion process, we may replace it by a contin-

uous process wν
P (τ ; ω, ω1) on an extended probability space Ω× Ω1 such that

1. Dwν
P = D v′P

ν ;

2. for τ ≤ θ−1 = θ−1 (ω) we have wν
P = v′P

ν (in particular, then wν
P is indepen-

dent from ω1);

3. for τ ≥ θ−1 the process wν
P depends on ω only through the initial data

wν
P (θ−1 , ω, ω1) = v′P

ν(θ−1 , ω). For a fixed ω it satisfies (1.3)P with suitable
Wiener processes βj’s, defined on the space Ω1.

Using a construction from [KP08], presented in Appendix, for each ω we
construct a continuous process (w̄ν , w̃νN)(τ ; ω, ω1) ∈ hp × R2N , τ ≥ θ−1 , ω1 ∈ Ω1,
such that for each ω we have

(i) law of the process w̄ν(τ ; ω, ω1), τ ≥ θ−1 , ω1 ∈ Ω1, is the same as of the
process wν

P (τ ; ω, ω1);

(ii) I(w̃νN) = IN(w̄ν) for τ ≥ θ−1 and ϕ
(
w̃νN(θ−1 )

)
= ϕ(v′P

N(θ−1 )) a.s. in Ω1;

(iii) the law of the process w̃νN(τ), τ ≥ θ−1 , is that of an Itô process

dvN = BN(τ) dτ + aN(τ) dw(τ), (3.10)

where for every τ the vector BN(τ) and the matrix aN(τ) satisfy

|BN(τ)| ≤ C, C−1I ≤ aN(aN)t(τ) ≤ CI a.s, (3.11)

with some C = C(P, M).

Next for ν = νj consider the process

ξν
P (τ) =

(
Iν
P (τ) = I(w̄ν(τ)), χτ≤θ−1

v′P
N

+ χτ>θ−1
w̃νN

)
, 0 ≤ τ ≤ T.
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Due to (3.5) and (iii) the family of laws {D(ξ
νj

P ), j ≥ 1}, is tight in the space
C(0, T ; hI

p×R2N). Consider any limiting measure Π (corresponding to a suitable

subsequence ν ′j → 0) and represent it by a process ξ̃P (τ) = (ĨP (τ), ṽN
P (τ)), i.e.

Dξ̃P = Π. Clearly,
(iv) D(ξ̃P ) |τ≤θ−1

= P−
1 ,

(v) D(ĨP ) = D(IP ).
Since any measure D(ξν

P ) is supported by the closed set, formed by all trajec-
tories (I(τ), vN(τ)) satisfying IN ≡ I(vN), then the limiting measure Π also is
supported by it. So the process ξ̃P satisfies

(vi) I(ṽN
P (τ)) ≡ ĨN

P (τ) a.s.
Moreover, for the same reasons as in Appendix the law of the limiting process

ṽN
P (τ), τ ≥ θ−1 , is that of an Itô process (3.10), (3.11). (Note that for τ ≥ θ−1 the

process ṽN
P is not a solution of (3.8)).

Now we set
P+

1 = Θθ+
1 ◦ D(ξ̃P ).

c) The constructed measure P+
1 gives us distribution of a process (I(τ), vN(τ))

for τ ≤ θ+
1 . Next we solve eq. (3.8)P on the interval Λ1 = [θ+

1 , θ−2 ] with the initial
data (I(θ−2 ), vN(θ−2 ) and iterate the construction.

It is easy to see that a.s. the sequence θ±j stabilises at τ = T after a finite
(random) number of steps. Accordingly the sequence of measures P±

j converges

to a limiting measure Pδ on Ω̂.

d) On the space Ω̃, given the measure Pδ, consider the natural process which
we denote ξδ(τ) = (Iδ(τ), vN

δ (τ)). We have

1. D(Iδ(·)) = D(IP ),

2. I(vN
δ (·)) ≡ IN

δ a.s.,

3. for τ ∈ Λ the process ξδ is a weak solution of (3.8)P , while for τ ∈ ∆ the
process vN

δ (τ) is distributed as an Itô process (3.10).

Step 4. Limit δ → 0.
Due to 1-3 the set of measures {Pδ, 0 < δ ≤ 1} is tight. Let PP be any

limiting measure as δ → 0. Clearly it meets 1 and 2 above.

Lemma 3.4. The measure PP is a solution of the martingale problem for equation
(3.8)P .
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The lemma is proved in the next subsection.

Step 5. Limit P →∞.
Due to 1, 2 above, relations (3.5) and Lemma 3.4 the set of measures PP ,

P → ∞, is tight. Consider any liming measure PN for this family. Repeating
in a simpler way the proof of Lemma 3.4 we find that PN solves the martingale
problem (3.8). It still satisfies 1 and 2 (see Step 3d) ). Let (I(τ), vN(τ)) be a
weak solution for (3.8) such that its law equals PN . Denote by Nv(τ) the process
(vN(τ), V >N(τ)) and denote by µN its law in the space Hv (see (1.10)).

Step 6. Limit N →∞.
Due to (1.11) the family of measures {µN} is tight in Hv. Let Nj →∞ be a

sequence such that µNj ⇀ µ.
The process Nv(τ) satisfies equations (2.11)1≤k≤N with suitable standard in-

dependent Wiener processes β̃m(τ). Due to Lemma 2.2 and a remark, made after
it, the process also satisfies equations (2.10)1≤k≤N . Repeating again the proof
of Lemma 3.4 we see that µ is a martingale solution of the system (2.10)1≤k≤N

for any N ≥ 1. Hence, µ is a martingale solution of (2.10) and of (2.3). Let
v(τ) be a corresponding weak solution of (2.10), D(v(·)) = µ. As µNj ⇀ µ, then
the process v satisfies assertions i) and ii) in Theorem 3.1 and the theorem is
proved.

3.2 Proof of Lemma 3.4.

Consider the space Ω̂ with the natural filtration Fτ , provide it with a measure Pδ

and, as usual, complete the sigma-algebras Fτ with respect to this measure. As
before we denote by ξδ(τ) = (Iδ(τ), vN

δ (τ), 0 ≤ τ ≤ T ), the natural process on Ω̂.
i) For k ≥ 1 consider the process Iδk(τ). It satisfies the Ik-equation in (3.8)P :

dIk = F P
k (τ, I) dτ +

∑
MP

km(τ, I) dβ̃m(τ). (3.12)

Here F P
k equals Fk for τ ≤ τP and equals 1

2
b2
k τ > τP , while MP

km equals Mkm for
τ ≤ τP and equals bk

√
2Ik for τ > τP , cf. (3.4). For each δ > 0 and any k the

process χI
k(τ) = Ik(τ)−

∫ τ

0
F P

k (s, I(s)) ds is an Pδ-martingale. Due to (1.11) the
L2-norm of these martingales are bounded uniformly in τ and δ. Since Pδ ⇀ PP

and the laws of the processes χI
k, corresponding to δ ∈ (0, 1] are tight in C[0, T ],

then χI
k(τ) also is an PP -martingale.

ii) Consider a process vδk, 1 ≤ k ≤ N . It satisfies (3.8)P for τ ∈ Λ and satisfies
the k-th equation in (3.10) for τ ∈ ∆, where the vector BN(τ) and the operator
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aN(τ), τ ∈ ∆, meet the estimates (3.11). So vδk satisfies the Itô equation

dvk(τ) =
(
χτ∈ΛRP

k (τ, v) + χτ∈∆BN
k (τ)

)
dτ

+χτ∈Λ

∑
m

R̃P
km(τ, v) dβ̃m(τ) + χτ∈∆

∑
r

aN
kr(τ) dwr(τ)

=: Aδ
k(τ) dτ +

∑
m≥1

Gδ
km(τ, v) dβ̃m(τ) +

2N∑
r=1

Cδ
kr(τ) dwr(τ).

(3.13)

Note that the random dispersion matrices Gδ(τ) and Cδ(τ) are supported by
non-intersecting random time-sets.

For any δ > 0 the process χδ
k(τ) = vk(τ) −

∫ τ

0
Aδ

k(s) ds ∈ R2 is an Pδ-
martingale. Let us compare

∫
Aδ

k ds with the corresponding term in (3.8)P . For
this end we consider the quantity

E sup
0≤τ≤T

∣∣∣∣∫ τ

0

Aδ
k(s) ds−

∫ τ

0

RP
k (s, v(s)) ds

∣∣∣∣
≤ E

∫
∆

∣∣RP
k (s, v(s))

∣∣ ds + E

∫
∆

|BN
k (s)| ds =: Υ1 + Υ2.

(3.14)

By (3.5) and(1.12),

Υ2
1 ≤ E

∫ T

0

|RP
k |2 ds · E

∫ T

0

χ∆(s) ds ≤ C(P ) oδ(1).

Similar Υ2 ≤ C(P ) oδ(1). So (3.14) goes to zero with δ. Since the L2-norms of
the martingales χδ

k are uniformly bounded and their laws are tight in C(0, T ; R2),
then χ0

k(τ) = vk(τ) −
∫ τ

0
RP

k (s) ds is an PP -martingale. Indeed, let us take any

0 ≤ τ1 ≤ τ2 ≤ T and let Φ ∈ Cb(Ω̂) be any function such that Φ(ξ(·)) depends
only on ξ(τ) 0≤τ≤τ1 . We have to show that

EPP
(
(χ0

k(τ2)− χ0
k(τ1))Φ(ξ)

)
= 0. (3.15)

The l.h.s. equals

lim
δ→0

EPδ
(
(χ0

k(τ2)− χ0
k(τ1))Φ(ξ)

)
= lim

δ→0
EPδ

(
Φ(ξ)

(
vk(τ2)− vk(τ1)−

∫ τ2

τ1

RP
k (s) ds

))
= lim

δ→0
EPδ

(
Φ(ξ)

∫ τ2

τ1

(
Aδ

k(s)−RP
k (s)

)
ds

)
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(we use that χδ
k is a Pδ-martingale). The r.h.s. is

≤ C lim
δ→0

EPδ sup
τ

∣∣∣∣∫ τ

0

(Aδ
k(s)−RP

k (s)) ds

∣∣∣∣ ≤ C lim
δ→0

(Υ1 −Υ2) = 0.

So (3.15) is established.

iii) For the same reasons as in i), for each k and l the process

χI
k(τ)χI

l (τ)− 1

2

∫ τ

0

∑
m

MP
km(s, I(s))MP

lm(s, I(s)) ds

is an PP -martingale.

iv) Due to (3.13), for any δ and any k, l ≤ N the process

χδ
k(τ)χδ

l (τ)− 1

2

∫ τ

0

(∑
m

Gδ
kmGδ

lm + Cδ
kmCδ

lm

)
ds

=: χδ
k(τ)χδ

l (τ)− 1

2

∫ τ

0

(Xkl(s) + Ykl(s)) ds

is a Pδ-martingale. We compare it with the corresponding expression for eq.
(3.8)P . To do this we first consider the expression

E sup
0≤τ≤T

∣∣∣∣∣12
∫ τ

0

(∑
m

R̃P
kmR̃P

lm −Xkl − Ykl

)
ds

∣∣∣∣∣
≤ E

1

2

∫ T

0

∣∣∣∣∣∑
m

R̃P
kmR̃P

lm

∣∣∣∣∣χs∈∆ ds + E
1

2

∫ T

0

∣∣∣∣∣∑
m

aN
kmaN

lm

∣∣∣∣∣χs∈∆ ds.

(3.16)

As in ii), the r.h.s. goes to zero with δ. Hence, χ0
k(τ)χ0

l (τ)− 1
2

∫ τ

0
R̃P

kmR̃P
lm ds is

an PP -martingale by the same arguments that prove (3.15).

v) Finally consider the I, v-correlation. For k ≥ 1 and 1 ≤ l ≤ N the process

R2 3 χI
k(τ)χδ

l (τ)− 1

2

∫ τ

0

∑
m

MP
kmGδ

lm ds−1

2

∫ τ

0

∑
m≥1

2N∑
r=1

MP
kmCδ

lr d[β̃m, wr](s)

=:χI
k(τ)χδ

l (τ)− 1

2

∫ τ

0

Ξδ
kl(s) ds

is an Pδ martingale. We know that
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1. the matrix d
ds

[β̃m, wr](s) is constant in s and is such that l2-norms of all its
columns and rows are bounded by one;

2. ‖MP‖HS, ‖Cδ‖HS ≤ C(P ) for all δ.

Therefore ∣∣∣∣∣∑
m≥1

2N∑
r=1

MP
kmCδ

lr

d

ds
[β̃m, wr](s)

∣∣∣∣∣ ≤ C1(P ) .

Now repeating once again the arguments in ii) we find that

E sup
0≤τ≤T

1

2

∣∣∣∣∣
∫ τ

0

(∑
m

MP
kmR̃P

lm − Ξδ
kl

)
ds

∣∣∣∣∣→ 0

as δ → 0. Therefore the process χI
k(τ)χδ

l (τ) − 1
2

∫ τ

0

∑
m MP

kmR̃P
lm ds is an PP -

martingale.

Due to i)-v) the measure PP is a martingale solution for eq. (3.8)P .

4 Uniqueness of solution

In this section we will show that a regular solution of the effective equation (2.3)
(i.e. a solution that satisfies estimates (1.11)) is unique. Namely, we will prove
the following result:

Theorem 4.1. If v1(τ) and v2(τ) are strong regular solutions of (2.3 ) with
v1(0) = v2(0) a.s., then v1(·) = v2(·) a.s.

Using the Yamada-Watanabe arguments (see, for instance, [KS91]), we con-
clude that uniqueness of a strong regular solution for (2.3) implies uniqueness of
a regular weak solution. So we get

Corollary 4.2. If v1 and v2 are regular weak solutions of equation (2.3) such
that D(v1(0)) = D(v2(0)), then D(v1(·)) = D(v2(·)).

Corollary 4.3. Under the assumptions of Theorem 3.1 the law of a lifting v(τ)
is defined in a unique way.

Evoking Theorem 3.1 we obtain
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Corollary 4.4. Let I1(τ) and I2(τ) be weak regular solutions of (1.6), (1.7)
as in Theorem 1.3 (i.e. these are two limiting points of the family of measures
D(Iν(·))). Then their laws coincide.

These results and Theorem 1.3 jointly imply

Theorem 4.5. The action vector Iν(·) converges in law in the space HI to a
regular weak solution I0(·) of (1.6), (1.7). Moreover, the law of I0 equals I ◦
D(v(·)), where v(τ) is a unique regular weak solution of (2.3) such that v(0) =
Vϑ(I0). Here ϑ is any fixed vector from the torus T∞.

Proof of Theorem 4.1. Denote by (·, ·)0 the inner product in h0. For a fixed κ > 0
we introduce the stopping time Θ:

Θ = min{τ ≤ T : |v1(τ)|h2 ∨ v2(τ)|h2 = κ}

(if the set is empty we set Θ = T ). Due to (1.20)

P{Θ < T} ≤ cκ−1.

Denote
vj

κ(τ) = vj(τ ∧Θ), w(τ) = v1
k(τ)− v2

k(τ).

To prove the theorem it suffices to show that w(τ) = 0 a.s., for each κ > 0.
We have

dwk(τ) = χτ<Θ

{
[R1

k(v
1
κ)−R1

k(v
2
κ)]dτ − [R2

k(v
1
κ)−R2

k(v
2
κ)]dτ

+
∑
l≥1

∫
T∞

[R(k; l, θ)(v1
κ)−R(k; l, θ)(v2

κ)] dβl,θdθ
}

Application of the Itô formula yields

E |w(τ)|20 =E

τ∧Θ∫
0

(
w(s), [R1(v1

κ)−R1(v2
κ)]
)
0
ds

+E

τ∧Θ∫
0

(
w(s), [R2(v1

κ)−R2(v2
κ)]
)
0
ds

+
1

2
E

τ∧Θ∫
0

∑
l≥1

∫
T∞

|R(·, l, θ)(v1
κ)−R(·, l, θ)(v2

κ)|20 dθds ≡ Ξ1 + Ξ2 + Ξ3.
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We will estimate the three terms in the r.h.s. and start with the term Ξ3. By the
definition of R(k; l, θ)(v) and due to item 4 of Theorem 1.1 we have

|R(·, l, θ)(v1
κ(s))−R(·, l, θ)(v2

κ(s))|20 ≤ CNκn0l−N |w(s)|20

for any N ∈ Z+, with a suitable n0 ∈ Z+. Therefore,

Ξ3 ≤ Cκn0E

τ∧Θ∫
0

|w(s)|20 ds.

For similar reasons Ξ2 ≤ Cκn0E
τ∧Θ∫
0

|w(s)|20 ds.

Estimating the term Ξ1 is more complicated since the map v 7→ R1(v) is
unbounded in every space hp. We remind that L−1 := dΨ(0) is the diagonal
operator

L−1
(∑

s

usfs

)
= v, vs = |s|−1/2us ∀ s ∈ Z0,

and introduce Ψ0(u) = Ψ(u)− L−1u. According to Proposition (1.2), Ψ0 defines
analytic maps Hm 7→ hm+1, m ≥ 0. We denote by G the inverse map G =
Ψ−1. Then G(v) = L(v) + G0(v), where G0 : hm −→ Hm+1 is analytic for any

m ≥ 0. Finally, denote R1(v)− ∆̂v = R0(v), where ∆̂ is the Fourier-image of the

Laplacian: ∆̂v = v′, where v′j = −j2vj, ∀ j.

Lemma 4.6. For any m ≥ 1 the map R0 : hm → hm−1 is analytic.

So the effective equation (2.3) is a quasilinear stochastic heat equation.

Proof. We have

R1(v) =

∫
T∞

Φ−θL−1∆(GΦθv) d θ +

∫
T∞

Φ−θdΨ0(GΦθv)∆(GΦθv) d θ .

The first integrand equals

Φ−θL−1∆LΦθv + Φ−θL−1∆(G0Φθv) = ∆̂v + Φ−θL−1∆(G0Φθv)

since L−1∆LΦθ = ∆̂ and ∆̂ commutes with the operators Φθ.
We have dΨ0(uθ) : hm → hm+1. Since the map Ψ is symplectic, then also

dΨ0(uθ) : hr → hr+1 for −m − 2 ≤ r ≤ m (cf. Proposition 1.4 in [Kuk00]). So
for any θ the second integrand defines an analytic map hm → hm−1. Now the
assertion follows.
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By this lemma with m = 1

Ξ1 = E

∫ τ∧Θ

0

(
−|w(s)|21 +

(
w(s), R0(v1

κ)−R0(v2
κ)
)
0

)
ds

≤ E

∫ τ∧Θ

0

(
−|w(s)|21 + Cκ|w(s)|0|w(s)|1

)
ds ≤ EC ′

κ

∫ τ∧Θ

0

|w(s)|20 ds.

Combining the obtained estimates for Ξ1, Ξ2 and Ξ3, we arrive at the inequal-
ity

E|w(τ)|20 ≤ C1
κ

τ∫
0

E|w(s)|20ds.

Since E|w(0)|20 = 0, then E|w(τ)|20 = 0 for all τ . This completes the proof of
Theorem 4.1.

5 Limiting joint distribution of action-angles

For a solution uν(t) of (0.1), (0.2) we denote by Iν(τ) = I(vν(τ)) and ϕν(τ) =
ϕ(vν(τ)) its actions and angles, written in the slow time τ . Theorem 4.5 de-
scribes limiting behaviour of DIν as ν → 0. In this section we study joint
distribution of Iν(τ) and ϕν(τ), mollified in τ . That is, we study the measures

µν
f =

∫ T

0
f(s)D

(
Iν(s), ϕν(s)

)
ds on the space hp

I × T∞, where f ≥ 0 is a contin-

uous function such that
∫ T

0
f = 1.

Theorem 5.1. As ν → 0,

µν
f ⇀

(∫ T

0

f(s)D(I0(s)) ds
)
× dϕ. (5.1)

In particular,
∫ T

0
f(s)D(ϕν(s)) ds ⇀ dϕ.

Proof. Let us first replace f(τ) with a characteristic function

f̄(τ) =
1

T2 − T1

χ{T1≤τ≤T2} , 0 ≤ T1 < T2 ≤ T.

Due to (1.5) the family of measures {µν
f̄
, ν > 0} is tight in hp

I × T∞. Consider

any limiting measure µ
νj

f̄
⇀ µf̄ .
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Let F (I, ϕ) = F 0(Im, ϕm), where F 0 is a bounded Lipschitz function on Rm
+ ×

Tm. We claim that

1

T2 − T1

∫ T2

T1

EF (Iν(s), ϕν(s)) ds → 1

T2 − T1

∫ T2

T1

E〈F 〉(I0(s)) ds as ν → 0.

(5.2)
Indeed, due to Theorem 4.5 we have

1

T2 − T1

∫ T2

T1

E〈F 〉(Iν(s)) ds → 1

T2 − T1

∫ T2

T1

E〈F 〉(I0(s)) ds as ν → 0.

So (5.2) would follow if we prove the convergence

E

∣∣∣∣∫ τ

0

F (Iν(s), ϕν(s))− 〈F 〉(Iν(s))

∣∣∣∣ ds → 0 as ν → 0, (5.3)

for any τ . But (5.3) is established in [KP08] (see there (6.9) and below) for
F 0(Im, ϕm) = Fk(I

m, 0; ϕm, 0)), where Fk(I, ϕ) is the drift in eq. (1.4). The
arguments in [KP08] are general and apply to any bounded Lipschitz function
F 0.

Relation (5.2) implies that µf̄ =
(
(T2−T1)

−1
∫ T2

T1
D(I0(s)) ds

)
×dϕ. So (5.1) is

established for characteristic functions. Accordingly, (5.1) holds, firstly, for piece-
wise constant functions f(τ) with finitely many discontinuities and, secondly, for
continuous functions.

6 Appendices

6.1 Whitham averaging

The n-gap solutions of the KdV equation under the zero-meanvalue periodic
boundary condition have the form (0.4), where 0 = In+1 = In+2 = . . . . They
depend on the initial phase ϕ ∈ Tn and the n-dimensional action In ∈ Rn.
These solutions form a subset of the bigger family of space-quasiperiodic n-gap
solution which may be written as Θn(Kx + Wt + ϕ; w). Here the parameter w
has dimension 2n + 1, Θn is an analytic function on Tn × R2n+1 and the vectors
K, W ∈ Rn depend on w. See in [ZMNP84, DN89, LLV93, Kuk00].

Denote by X = νx and T = νt slow space - and time-variables. We want to
solve either the KdV itself, or some its ν-perturbation (say, eq. (0.1)η=0) in the
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space of functions, bounded as |x| → ∞ (not necessarily periodic in x). We are
looking for solutions with the initial data

u0(x) = Θn(Kx + ϕ0; w0(X)),

where w0(X) ∈ R2n+1 is a given vector-function. Assuming that a solution u(t, x)
exists, decomposes in asymptotical series in ν and that the leading term may be
written as

u0(t, x) = Θn(Kx + Wt + ϕ0; w(T, X)), (6.1)

Whitham shown that w(T,X) has to satisfy a nonlinear hyperbolic system, known
now as the Whitham equations. In the last 40 years much attention was given to
the Whitham equations and Whitham averaging (i.e. to the claim that an exact
solution u(t, x) may be written as u = u0(t, x) + o(1), where u0 has the form
(6.1)). Many results were obtained for the Whitham equations for KdV and for
other integrable systems, e.g. see [ZMNP84, Kri88, DN89] (we note that in the
last section of [DN89] the authors discuss the damped equation (0.1)η=0). In these
works the Whitham equations are postulated as a first principle, without precise
statements on their connection with the original problem. Rigorous results on
this connection, i.e. results on the Whitham averaging, are very few, and these
are examples rather than general theorems since they apply to some initial data
and hold in some domains in the space-time R2, see in [LLV93].

In the spirit of the Whitham theory our results may be casted in the following
way. Consider a perturbed KdV equation

u̇ + uxxx − 6uux = νf(u, ux, uxx), (6.2)

and take initial condition u0(x) of the form above with arbitrary n, where w0 is
an x-independent constant such that u0(x) is 2π-periodic with zero mean-value.
Let us write u0 as a periodic ∞-gap potential u0(x) = Θ∞(Kx + ϕ0; I0), where
Θ∞ : T∞×R∞

+ → R and now K ∈ Z∞, ϕ0 ∈ T∞ (see [MT76] for a theory of∞-gap
potentials). We may write a solution of (6.2) as uν(t, x) = Θ∞(Kx+ϕν(τ); Iν(τ)),
τ = νt, with unknown phases ϕν ∈ T∞ and actions Iν ∈ R∞

+ . The main task
is to recover the actions. To do this we write the effective equations for I(τ),
corresponding to (6.2). Namely, we rewrite (6.2) using the non-linear Fourier
transform Ψ, pass to the slow time τ , delete from the obtained v-equation the
KdV vector-field dΨ ◦ V and apply to the rest the averaging (0.11). We claim
that for some classes of perturbed KdV equations the vector I0(τ) = πI(v(τ)),
where v solves the effective equations, well approximates Iν(τ) with small ν. Our
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work justifies this claim for the damped-driven perturbations (0.1) in the sense
that the convergence (0.8) holds.

This special case of the Whitham averaging deals with perturbations of solu-
tions for KdV which fast oscillate in time (since we write them using the slow time
τ), while the general case treats solutions which fast oscillate both in the slow
time T and slow space X. The effective equations serve to find approximately
the action vector Iν(τ) ∈ R∞

+ which represents a space-periodic solution for (6.2)
as an infinite-gap potential Θ∞(Kx + ϕν(τ); Iν(τ)). They play a role, similar to
that of the Whitham equations, serving to find the parameter w(T, X) ∈ R2n+1,
describing n-gap potentials (6.1) which approximate (non-periodic) solutions.

6.2 Lemma 4.3 from [KP08]

Below we present a construction from [KP08], used essentially in Section 3.
For τ ≥ θ′ ≥ 0 consider a solution v(τ) = vν

P (τ) of equation (1.3)P . For any
N ∈ N we will construct a process (v̄, ṽN)(τ) ∈ hp × R2N , τ ≥ θ′, such that

1. D(v̄(·)) = D(v(·));

2. I(ṽN(τ)) ≡ IN(v(τ)), a.s.;

3. ϕ(ṽN(θ′)) = ϕ0, where ϕ0 is a given vector in TN ;

4. the process ṽN(τ) satisfies certain estimates uniformly in ν.

For η1, η2 ∈ R2 \ {0} we denote by U(η1, η2) the operator in SO(2) such that
U(η1, η2)

η1

|η1| = η2

|η2| . If η1 = 0 or η2 = 0, we set U(η1, η2) = id.

Let us abbreviate in eq. (1.3)P (P 1
k (v)+P 2

k (v))P = AP
k (v). Then the equation

takes the form

dṽk =
(
ν−1dΨk(u)V (u)

)P
dτ +AP

k (v) dτ +
∑
j≥1

BP
kj(v) dβj(τ), 1 ≤ k ≤ N. (6.3)

For 1 ≤ k ≤ N we introduce the functions

Ãk(ṽk, v) = U(ṽk,vk)A
P
k (v), B̃kj(ṽk, v) = U(ṽk,vk)B

P
kj(v),

and define additional stochastic system for a vector ṽN = (ṽ1, . . . , ṽN) ∈ R2N :

dṽk = Ãk(ṽk, v) dτ +
∑
j≥1

B̃kj(ṽk, v) dβj(τ), 1 ≤ k ≤ N. (6.4)
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Consider the system of equations (6.3), (6.4), where τ ≥ θ′, with the initial
condition

ṽN(θ′) = V N
ϕ0

(
I(vN(θ′))

)
(6.5)

and with the given v(θ′). It has a unique strong solution, defined while

|vk|, |ṽk| ≥ c > 0 ∀ k ≤ N,

for any fixed c > 0.
Denote [(v, ṽ)] =

(
min1≤j≤N

1
2
|vj|2

)
∧
(
min1≤j≤N

1
2
|ṽj|2

)
. Fix any γ ∈ (0, 1

4
]

and define stopping times τ±j ∈ [θ′, T ], . . . , τ−j < τ+
j < τ−j+1 < . . . , as at Step 3 in

Section 3.1. Namely,

• If [(v0,v0)] ≤ γ, then τ−1 = 0. Otherwise τ+
0 = 0.

• If τ−j is defined, then τ+
j is the first moment after τ−j when [(v(τ), ṽ(τ))] ≥ 2γ

(if this never happens, then τ+
j = T ).

• If τ+
j is defined, then τ−j+1 is the first moment after τ+

j when [(v, ṽ)] ≤ γ.

Next for 0 < γ ≤ 1
4

we construct a continuous process (v(τ), ṽγN(τ)), τ ≥ θ′,
where v(τ) ≡ vν

P (τ), ṽN(θ′) is given (see (6.5)), and for τ > θ′ the process ṽγN is
defined as follows:

i) If ṽγN(τ+
j ) is known, then we extend ṽγN to the segment ∆j := [τ+

j , τ−j+1] in
such a way that (v(τ), ṽγN(τ)) satisfies (6.3), (6.4).

ii) If ṽγN(τ−j ) is known, then on the segment Λj = [τ−j , τ+
j ] we define ṽγN as

ṽγN(τ) = U(ṽk(τ
−
j ),vk(τ

−
j ))vk(τ), k ≤ N.

By applying Itô’s formula to the functional J(τ) =
(
Ik(v(τ))− Ik(ṽ

γN(τ)
)2

we derive that if J(τ+
j ) = 0, then J(τ) = 0 for all τ ∈ ∆j (see Lemma 7.1 in

[KP08]). Hence, the process ṽγN(τ) is well defined for τ ∈ [θ′, T ] and

Ik(v(τ)) ≡ Ik(ṽ
γN(τ)), k ≤ N. (6.6)

Let us abbreviate U j
k = (U(ṽk(τ

−
j ),vk(τ

−
j )). Then on an interval Λj the process

ṽγN satisfies the equation

dṽγ
k = U j

k

((
ν−1dΨk(u)V (u)

)P
+ AP

k (v)
)

dτ +
∑

l

U j
k ◦BP

kl(v) dβl(τ). (6.7)
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Letting formally |ṽk|/|vk| = 1 if vk = 0, we make the function |ṽγ
k |/|vk| ≡ 1 along

all trajectories.
Due to (6.4) and (6.7), ṽγN is an Itô process

dṽγ
k = Âk(τ) dτ +

∑
B̂kj(τ) dβj(τ), 1 ≤ k ≤ N. (6.8)

The coefficients Âk = Âγ
k and B̂kj = B̂γ

kj a.s. satisfy the estimates

|Âγ(τ)| ≤ ν−1C, C−1E ≤ B̂γ(B̂γ)t ≤ CE (6.9)

for all τ , where C depends only on N and P and we regard B̂γ as an 2N × 2N -
matrix.

Let us set

Aγ
k(τ) = ṽk(θ

′) +

∫ τ

θ′
Âγ

k(s) ds, Mγ
k(τ) =

∑
j

∫ τ

θ′
B̂γ

kj dβj(τ)

(cf. (6.5)) and consider the process

ξγ(τ) = (vγ(τ),Aγ(τ),Mγ(τ)) ∈ hp × R2N × R2N , τ ≥ θ′.

Then ṽγN = Aγ(τ) +Mγ(τ) and due to (6.9) the family of laws of the processes
ξγ is tight in the space C(θ′, T ; hp) × C(θ′, T ; R2N) × C(θ′, T ; R2N). Consider
any limiting (as γj → 0) law D0 and find any process (v̄(τ),A0(τ),M0(τ)),
distributed as D0. Denote ṽN(τ) = A0(τ) + M0(τ) and consider the process
(v̄(τ), ṽN(τ)) ∈ hp×R2N . It is easy to see that it satisfies 1-3. In [KP08] we show
that estimates (6.9) imply that

A0(τ) =

∫ τ

θ′
BN(s) ds, M0(τ) =

∫ τ

θ′
aN(s) dw(s),

where w(s) ∈ R2N is a standard Wiener process, while BN and aN meet (3.11).
That is, ṽN(τ) is an Itô process

dṽN(τ) = BN(τ) dτ + aN(τ) dw(τ), (6.10)

where
|B̂(τ)| ≤ C, C−1E ≤ aN(aN)t(τ) ≤ CE ∀ τ, a.s. (6.11)

These are the estimates, mentioned in item 4 above.
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Now by (6.9) and Theorem 4 from Section 2.2 in [Kry80], applied to the Itô
process ṽk, we have

E

∫ T

θ′
χ{Ik(vν

P (τ))≤δ}dτ ≤ Cδ, ∀ k ≤ N, (6.12)

where C = C(N, P ).
Taking θ′ = 0 and passing to a limit as ν → 0 we see that the process IPk(τ)

also meets (6.12). Since D(IP (·)) ⇀ D(I(·)) as P → ∞, then we get estimate
(1.12).

For any ν > 0 the processes Iν
P and Iν coincide on the event {supτ |Iν(τ)|hI

p
≤

P}. Due to (1.5) probability of this event goes to 1 as P → ∞, uniformly in ν.
So (6.12) also implies that

E

∫ T

0

χ{Iν
k (τ)≤δ} → 0 as δ → 0, (6.13)

uniformly in ν.
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