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Abstract. We consider random selfadjoint Jacobi matrices of the

form

(Jωu)(n) = an(ω)u(n + 1) + bn(ω)u(n) + an−1(ω)u(n − 1)

on ℓ2(N), where {an(ω) > 0} and {bn(ω) ∈ R} are sequences of

random variables on a probability space (Ω, dP (ω)) such that there

exists q ∈ N, such that for any l ∈ N,

β2l(ω) = al(ω) − al+q(ω) and β2l+1(ω) = bl(ω) − bl+q(ω)

are independent random variables of zero mean satisfying
∞
∑

n=1

∫

Ω

β2
n(ω) dP (ω)<∞.

Let Jp be the deterministic periodic (of period q) Jacobi matrix

whose coefficients are the mean values of the corresponding entries

in Jω .

We prove that for a.e. ω, the a.c. spectrum of the operator Jω

equals to and fills the spectrum of Jp. If, moreover,

∞
∑

n=1

∫

Ω

β4
n(ω) dP (ω)<∞,

then for a.e. ω, the spectrum of Jω is purely absolutely continuous

on the interior of the bands that make up the spectrum of Jp.
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1. Introduction.

In this paper we study sufficient conditions for preservation of a.c.

spectrum of periodic Jacobi matrices under a natural class of random

slowly decaying perturbations.

For any two bounded sequences of real numbers a = {an}
∞
n=1 and

b = {bn}
∞
n=1, where an > 0, we define a Jacobi matrix J = J(a,b) by

(Ju)(n) = anu(n + 1) + bnu(n) + an−1u(n − 1). (1)

We consider only such matrices whose elements are bounded, so they

define bounded self-adjoint operators on ℓ2(N). The special case of

a = 1 (namely, an = 1 for all n) is also called a discrete Schrödinger

operator and its diagonal is then referred to as a potential. The discrete

Schrödinger operator with zero potential ∆ = J(1, 0) is called the free

discrete Laplacian.

We say that the absolutely continuous spectrum of an operator of the

form (1) fills a set S if µac(Q) > 0 for any Q ⊂ S of positive Lebesgue

measure. We say that its spectrum is purely absolutely continuous on

S if, in addition, µsing(S) = 0. Here µ = µac + µsing is the decomposi-

tion of the spectral measure of the operator into absolutely continuous

and singular parts. The essential support of the absolutely continuous

spectrum of such an operator, denoted Σac( · ), is the equivalence class

(up to sets of zero Lebesgue measure) of the largest set filled by its

absolutely continuous spectrum.

Preservation of the absolutely continuous spectrum of an operator

under decaying perturbations has been the subject of extensive research

over the last two decades. One can start, e.g, from the free Laplacian

that has purely a.c. spectrum filling the interval [−2, 2] and add to it a

decaying potential. Two basic facts have been known for a long time:

Theorem 1. If
∑∞

n=1 |an − 1| + |bn| < ∞, then the a.c. spectrum of

J(a,b) is the same as that of ∆ in the sense that it is equal to and

fills [−2, 2] and that J(a,b) has purely a.c. spectrum on the interior of

[−2, 2].
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Theorem 2. If an → 1, bn → 0 as n → ∞, and

∞
∑

n=1

|an+1 − an| + |bn+1 − bn| < ∞,

then the a.c. spectrum of J(a,b) is the same as that of ∆ in the same

sense as in Theorem 1.

The first fact has been known at least from the 1950’s and follows, in

particular, from Kato-Birman theory of trace class perturbations (see

[25, vol III]). The second has been essentially proven by Weidemann

[34] in 1967. (Weidemann actually proved a variant of this for con-

tinuous Schrödinger operators. For a proof of the discrete case, see

Dombrowski-Nevai [10] or Simon [28].)

On the other hand, the works of Delyon, Simon and Souillard [7,

8, 27] and Kotani-Ushiroya [20, 21] on decaying random potentials

showed in the 1980’s that perturbations that are not square-summable

can result in purely singular spectrum. In the 1990’s much work (see,

e.g., [3, 5, 6, 17, 18, 26]) has been done towards showing that square-

summable perturbations of the free Laplacian do not change its a.c.

spectrum. Eventually, Killip and Simon [15] proved, in particular, the

following.

Theorem 3. If a perturbation is square-summable, that is

∞
∑

n=1

|an − 1|2 + |bn|
2 < ∞,

then Σac(J(a,b)), the essential support of the a.c. spectrum of J(a,b),

is equal to [−2, 2].

In [19], Kiselev, Last and Simon conjectured the following.

Conjecture 1. If a potential b̂ is square-summable, then, for any

Jacobi matrix J(a,b), Σac(J(a,b + b̂)) is equal to Σac(J(a,b)).

Results towards the full Conjecture 1 seem to be scarce so far. Killip

[14] has proven it for the case of discrete Schrödinger operators with

periodic potentials. Breuer and Last [1] have recently shown that, for

any Jacobi matrix, the a.c. spectrum which is associated with bounded
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generalized eigenfunctions (like the spectrum of a periodic Jacobi ma-

trix) is stable under square-summable random perturbations. In [12]

we have shown that if both a square-summable random perturbation

and a decaying perturbation of bounded variation are added to the free

Laplacian, the a.c. spectrum is still preserved. But, to the best of our

knowledge, there has been no significant progress made so far with the

general deterministic case.

Another natural direction of research in this area is to extend and

generalize Theorem 2 in the direction in which Theorem 1 has been ex-

tended. A notable result in this direction has been obtained by Kupin

[22] who showed that the essential support of the a.c. spectrum of ∆ is

still preserved if a decaying potential of a square-summable variation is

added to it under an additional restriction that this perturbation lies

in ℓm for some m ∈ N. But for a perturbation of a bounded varia-

tion of a general Jacobi matrix, a guess even weaker than an analog

of Conjecture 1 would be wrong. Indeed, one of us have recently con-

structed [24] an example of a Jacobi matrix J(a, b̃ + b̂) with a = 1,

limn→∞ b̃n = limn→∞ b̂n = 0, so that {b̃n}
∞
n=1 is of bounded variation,

both J(a, b̂) and J(a, b̃) have purely a.c. spectrum on (−2, 2) with

essential support (−2, 2), but J(a, b̃ + b̂) has empty absolutely con-

tinuous spectrum. In particular, adding a decaying perturbation of

bounded variation to a Jacobi matrix can fully “destroy” its absolutely

continuous spectrum.

Thus, it would be natural to confine the consideration first to the

simple case of perturbations of a summable variation added to a pe-

riodic Jacobi matrix. In particular, we note the following result of

Golinskii-Nevai [11] concerning variations of order q (before [11], some

related results were obtained by Stolz [30, 31]):

Theorem 4. Let J(a,b) be a periodic Jacobi matrix of period q and

let {ân}
∞
n=1 and {b̂n}

∞
n=1 be decaying sequences obeying,

∞
∑

n=1

|ân+q − ân| + |b̂n+q − b̂n| < ∞. (2)

Then the essential support of the a.c. spectrum of J(a+â,b+b̂) is equal

to the spectrum of J(a,b) and, moreover, the spectrum of J(a+â,b+b̂)
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is purely absolutely continuous on the interior of the bands that make

up the spectrum of J(a,b).

Remark. Note that, in particular, this theorem extends Theorem 2

to the case where the free Laplacian is replaced by a periodic Jacobi

matrix.

We believe that the following statement (which generalizes [24, Con-

jecture 1.6]) should be true:

Conjecture 2. Let J(a,b) be a periodic Jacobi matrix of period q and

let {ân}
∞
n=1 and {b̂n}

∞
n=1 be decaying sequences obeying,

∞
∑

n=1

|ân+q − ân|
2 + |b̂n+q − b̂n|

2 < ∞. (3)

Then the essential support of the a.c. spectrum of J(a + â,b + b̂) is

equal to the spectrum of J(a,b).

We note that a variant of this conjecture for the special case q =

1 has also been made by Simon [29, Chapter 12]. Kim and Kise-

lev [16] made some progress towards Conjecture 2 by extending to

the discrete case some of the results and techniques previously used

by Christ and Kiselev [4] to treat continuous (namely, differential)

Schrödinger operators. They studied the discrete Schrödinger case

where a = 1, b = 0 (so J(a,b) is just the discrete Laplacian), â = 0

and where b̂ is a bounded (but not necessarily decaying) sequence

obeying
∑∞

n=1 |b̂n+1 − b̂n|
p < ∞ for some p < 2. They show that

in this case the essential support of the a.c. spectrum coincides with

[−2 + lim sup b̂n, 2 + lim sup b̂n] ∩ [−2 + lim inf b̂n, 2 + lim inf b̂n]. We

note, however, that the case p = 2 appears to be outside the scope of

their techniques. Some very significant progress towards Conjecture 2

has been recently made by Denisov [9], who proved the full [24, Conjec-

ture 1.6], namely, Conjecture 2 for the discrete Schrödinger case where

a = 1, b = 0 and â = 0. We believe that his ideas are likely to be

extensible to the more general setting of Conjecture 2 and we hope that

it will thus be soon possible to prove it in full [13].

Our present work explores perturbations whose variations of order q

are square-summable random variables. As mentioned above, the study
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of random perturbations have indicated the exact rate of the decay that

still preserves the a.c. spectrum in the extension of Theorem 1. From

this point of view, part of the interest in our present result is that it

can be considered as “evidence” in support of Conjecture 2. We note,

however, that for appropriate cases (namely, when the variations are

also fourth-order-summable), our result also yields stable purity of the

a.c. spectrum which is not expected to hold in the general deterministic

setting of Conjecture 2. Indeed, we obtain for such cases the same kind

of a.c. spectrum preservation as in Theorem 4. Thus, our result here

goes beyond being a random version of Conjecture 2 and we believe that

it cannot be deduced from any deterministic statement of its type.

Our main result in this paper is the following:

Theorem 5. Let Jω be a selfadjoint random Jacobi matrix

(Jωu)(n) = an(ω)u(n + 1) + bn(ω)u(n) + an−1(ω)u(n − 1)

on ℓ2(N), where {an(ω) > 0} and {bn(ω) ∈ R} are sequences of random

variables on a probability space (Ω, dP (ω)) such that there exists q ∈ N,

so that for any l ∈ N,

β2l(ω) = al(ω) − al+q(ω) and β2l+1(ω) = bl(ω) − bl+q(ω) (4)

are independent random variables of zero mean satisfying
∞
∑

n=1

∫

Ω

β2
n(ω) dP (ω)<∞. (5)

Let Jp = J(ã, b̃) be the deterministic periodic (of the period q) Jacobi

matrix whose coefficients are

ãl =

∫

Ω

al(ω) dP (ω) = ãl+q,

b̃l =

∫

Ω

bl(ω) dP (ω) = b̃l+q.

Then, for a.e. ω, the a.c. spectrum of the operator Jω equals to and

fills the spectrum of Jp.

If, moreover,
∞
∑

n=1

∫

Ω

β4
n(ω) dP (ω)<∞,
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then for a.e. ω, the spectrum of Jω is purely absolutely continuous on

the interior of the bands that make up the spectrum of Jp.

Remark. For cases where Theorem 5 yields purity of the a.c. spec-

trum, our proof actually shows something a bit stronger, namely, that

for a.e. fixed ω, the purity of the absolutely continuous spectrum will

be stable under changing any finite number of entries in the Jacobi

matrix.

Theorem 5 is proven in Section 2.

We would like to thank J. Breuer, M. Shamis, and B. Simon for

useful discussions. This research was supported in part by The Is-

rael Science Foundation (Grant No. 1169/06) and by Grant 2006483

from the United States-Israel Binational Science Foundation (BSF),

Jerusalem, Israel.

2. Proof of Theorem 5

Let us start from building explicitly a random Jacobi operator Jω on

ℓ2(N), satisfying the condition (4) and introducing some notations.

Let Jp be a periodic (of period q) Jacobi matrix

(Jpu)(n) = ãnu(n + 1) + b̃nu(n) + ãn−1u(n − 1),

such that ãn+q = ãn, b̃n+q = b̃n and min ãn = ε0 > 0.

Consider a sequence {βn}
∞
n=1 of independent random variables on a

probability space (Ω, dP (ω)) that satisfies

∀n E(βn)
Def
=

∫

Ω

βn(ω) dP (ω) = 0 (6)

and
∞
∑

n=1

E
(

β2
n

)

< ∞.

In such a case, for n, m ∈ N and 0 ≤ m < q,

αn(ω) =

∞
∑

i=0

β2qi+n(ω), (7)

anq+m(ω) = ãm + α2(nq+m)(ω), bnq+m(ω) = b̃m + α2(nq+m)+1(ω)
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are well defined for a.e. ω (see, e.g., [33]). To get an(ω) > 0 for all n ∈

N, we can take, e.g., βi such that |βi(ω)| < C/i, for a.e. ω, for an ap-

propriate constant C. The operator Jω = J({an(ω)}∞n=1, {bn(ω)}∞n=m)

will be then a well-defined self-adjoint random Jacobi matrix.

So, suppose an operator Jω satisfying the conditions of Theorem 5

is given. Denote ãn =
∫

Ω
an(ω) dP (ω), b̃n =

∫

Ω
bn(ω) dP (ω) and αn(ω)

as in (7).

Our analysis of the a.c. spectrum of the operator Jω will be built

upon establishing the near-boundedness of its generalized eigenfunc-

tions, which are the solutions of the difference equation (here and in

what follows we denote by the same letter an operator on ℓ2(N) and the

corresponding difference operator on the vector space of all real valued

sequences)

Jωu = Eu.

Definition. The sequence {Tn(E, ω)} of transfer matrices for the

operator Jω at the energy E is defined by

Tn(E, ω) =

(

E−bn(ω)
an(ω)

−an−1(ω)
an(ω)

1 0

)

:

(

u(n)

u(n − 1)

)

7−→

(

u(n + 1)

u(n)

)

,

where u is a solution of the difference equation Jωu = Eu. For n ≥ m,

we define

Tn,m(E, ω)
Def
= Tn−1(E, ω)Tn−2(E, ω) . . .Tm(E, ω); Tn,n

Def
= I.

The transfer matrices T̃n(E) and T̃n,m(E) for the operator Jp are defined

similarly. Of course, T̃n(E) = T̃n+q(E), so we will be writing, e.g., T̃0(E)

understanding it as T̃q(E).

The growth of generalized eigenfunctions for Jω will be controlled by

the growth of ‖Tn,m(E, ω)‖ as n → ∞. In particular, we shall use the

following theorems from [23]:

Theorem 6. Let J be a Jacobi matrix and Tn,m(E) its transfer matri-

ces. Suppose S is a set such that for a.e. E ∈ S,

lim
n→∞

‖Tn,m(E)‖ < ∞

(a fact that does not depend on m). Then the absolutely continuous

spectrum of the operator J fills S.
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Theorem 7. Suppose there is some m ∈ N so that

lim
n→∞

∫ d

c

‖Tn,m(E, ω)‖p dE < ∞

for some p > 2. Then (c, d) is in the essential support of the absolutely

continuous spectrum of Jω and the spectrum of Jω is purely absolutely

continuous on (c, d).

Remarks. 1. Theorem 7 is essentially Theorem 1.3 of [23]. While [23]

only discusses Jacobi matrices with an = 1, the result easily extends to

our more general context.

2. As noted in [23], Theorem 7 is an extension of an idea of Carmona

[2].

3. While the fact that (c, d) is in the essential support of the abso-

lutely continuous spectrum isn’t explicitly stated in [23, Theorem 1.3],

this easily follows from spectral averaging and the fact that the

lim
n→∞

∫ d

c

‖Tn,m(E, ω)‖p dE < ∞

condition is invariant to changing any finite number of entries in the

Jacobi matrix.

To single out the independent random variables we will rather con-

sider for n ≥ m the matrices

Pn,m(E, ω) = Am(ω)T −1
n,m(E, ω)A−1

n (ω), An(ω) =

(

1 0

0 an−1(ω)

)

.

In particular, Pn,m(E, ω) = Pm(E, ω) . . .Pn−1(E, ω), where

Pn(E, ω) = Pn+1,n(E, ω) =

(

0 1/an(ω)

−an(ω) E−bn(ω)
an(ω)

)

.

Note that, as a random variable, Pn,m(E, ω) depends only on {βj}
∞
j=2m.

Let ε1 = ε0/2 = min1≤n≤q ãn/2. Under the assumption that

sup
n≥m

|αn(ω)| ≤ ε1, (8)

the norms of the matrices Tl(E, ω) are uniformly bounded and to get a

uniform bound on the norms of the matrices Tl,mq(E, ω) as l → ∞ it is

sufficient to prove that limn→∞

∥

∥T(m+n)q,mq(E, ω)
∥

∥ < ∞, since between
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(m + n)q and (m + n + 1)q the norm of a transfer matrix cannot be

more than supl ‖Tl(E, ω)‖q−1 times larger.

But (8) also implies that

det Tn,m(E, ω) =
−am−1(ω)

an−1(ω)
∼ 1,

‖Am(ω)‖ ∼ 1 and ‖A−1
n (ω)‖ ∼ 1, so

∥

∥T(m+n)q,mq(E, ω)
∥

∥ ∼
∥

∥

∥
T −1

(m+n)q,mq(E, ω)
∥

∥

∥
∼
∥

∥P(m+n)q,mq(E, ω)
∥

∥ .

Define

M̃(E) =

(

1 0

0 ã0

)

T̃ −1
q,0 (E)

(

1 0

0 ãq

)−1

.

Note that because of periodicity of ãn and b̃n, we have, for every E

det M̃(E) = det T̃q,0(E) = 1. (9)

The trM̃(E) is a polynomial function of E and, because of (9),

trM̃(E) = tr T̃ −1
q,0 (E) = tr T̃q,0(E). (10)

So, from the general Floquet theory (see, e.g., [32, chap. 7]) we know

that the spectrum of the operator Jp is the union of the intervals of R

that are defined by |trM̃(E)| ≤ 2. In other words, the matrix M̃(E)

is quasi-unitary1 inside the spectrum of Jp.

Let a compact set I ⊂
{

E
∣

∣

∣

∣

∣

∣
trM̃(E)

∣

∣

∣
< 2

}

and some m ∈ N be

given.

Following Golinskii and Nevai [11], we will use a theorem due to

Kooman to prove our result. For a proof of Theorem 8, see [29, chap.

12].

Theorem 8. Let A(E) be a quasi-unitary matrix which depends con-

tinuously on some parameter E varying in a compact Hausdorff space.

Then there exists γ > 0 and functions CE(Q) and BE(Q), jointly con-

tinuous in E and Q, such that

1A (2 × 2 in our case) matrix A is called quasi-unitary if it has two different

eigenvalues both of absolute value 1. Obviously, a real matrix is quasi-unitary iff

it is similar to a unitary matrix and iff detA = 1 and |trA| < 2. A quasi-unitary

matrix is indeed unitary in a norm associated with its eigenvectors as will be defined

in what follows.
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(i) for each fixed E, CE(Q) and BE(Q) are analytic on

Nγ(A(E)) = {Q | ‖A(E) −Q‖ < γ } ,

(ii) CE(A(E)) = I, BE(A(E)) = A(E),

(iii) ∀Q ∈ Nγ(A(E)), CE(Q) is invertible,

(iv) ∀Q ∈ Nγ(A(E)), Q = CE(Q)−1BE(Q)CE(Q),

(v) ∀Q ∈ Nγ(A(E)), BE(Q) commutes with A(E).

We shall apply Kooman’s theorem to the quasi-unitary matrix M̃(E)

for E ∈ I.

Let γ be the provided for M̃(E) by Theorem 8. Since, because of

(ii),

trBE(M̃(E)) = trM̃(E) ∈ (−2, 2),

we can choose γ small enough to assure |tr B̃E(Q)| < 2 for all Q ∈

N̄γ/2(M̃(E)), where N̄γ/2(M) = {Q | ‖M−Q‖ ≤ γ/2}.

Note that for n ∈ N, the matrix

Mn+m(E, ω) = P(m+n+1)q,(m+n)q(E, ω),

corresponding to the (m+n)-th period for Jω is like the matrix M̃(E)

corresponding to a period of Jp, with ã’s and b̃’s perturbed by

α2(m+n)q(ω), . . . , α2(m+n+1)q−1(ω).

We think of ã1, . . . , ãq and b̃1, . . . , b̃q as of fixed values and the de-

pendence of Mn(E, ω) on α’s and E is continuous and even analytic.

Hence, there exists ε2 > 0 (we take ε2 ≤ ε1 to satisfy also the assump-

tion (8)), such that

sup
l>2qm

|αl(ω)| ≤ ε2 ≤ ε1 (11)

implies that for all E ∈ I and for all n ∈ N,

Mn(E, ω) ∈ N̄γ/2(M̃(E)).

Then, as mentioned above, |trBE(Mn(E, ω))| < 2 and, because of (iv),

detBE(Mn(E, ω)) = detMn(E, ω) = 1.

This means that the matrix BE(Mn(E, ω)) is then quasi-unitary.

Let, under the assumption (11), for an E ∈ I, {v1,v2} be the basis,

depending on E, in which the matrix M̃(E) and also, because of (v),
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each BE(Mn(E, ω)), for n ∈ N, are diagonal. Let ‖·‖E be the norm

in this basis, that is, for a vector v = xv1 + yv2 its norm will be

‖v‖2
E = |x|2 + |y|2, and for a matrix M, ‖M‖E = sup‖v‖E=1 ‖M(v)‖E.

In this norm BE(Mn(E, ω)) is unitary for every n ∈ N and for every

E ∈ I.

Let us denote, for 0 ≤ l ≤ n, Mn+m,l+m(E, ω) as

Ml+m(E, ω) . . .Mn+m−1(E, ω) = P(n+m)q,(l+m)q(E, ω).

In what follows, we will show that the assumption (11) is eventually

fulfilled for a.e. ω and then we can bound the norm of Mn,0(E, ω)

uniformly as n → ∞.

Let, for E ∈ I, v ∈ R
2 be an arbitrary vector, such that ‖v‖E = 1.

Define

wl(E, ω) = BE(Ml(E, ω)) · CE(Ml(E, ω)) · Mn,l(E, ω)v.

Now, denoting Cl = CE(Ml(E, ω)) and Bl = BE(Ml(E, ω)), we have

wl = BlClMn,lv = BlClMl+1Mn,l+1v =

BlClC
−1
l+1Bl+1Cl+1Mn,l+1v = BlClC

−1
l+1wl+1.

Hence,

‖wl‖
2
E =

∥

∥ClC
−1
l+1wl+1

∥

∥

2

E
=
∥

∥(I + (Cl − Cl+1)C
−1
l+1)wl+1

∥

∥

2

E
=

‖wl+1‖
2
E + 2

〈

wl+1, (Cl − Cl+1)C
−1
l+1wl+1

〉

E
+
∥

∥(Cl − Cl+1)C
−1
l+1wl+1

∥

∥

2

E
.

Notice that Cl = CE(Ml(E, ω)) is analytic as a function of

α2(m+l)q(ω), . . . , α2(m+l+1)q−1(ω) and E,

and, hence, since βi = αi − αi+2q, we can represent, for some matrix

functions Di(E, ω), Fi(E, ω) and Gi(E, ω) that depend only on {βj}
∞
j=i,

(Cl − Cl+1)C
−1
l+1 =

2(m+l+1)q−1
∑

i=2(m+l)q

βi(ω)Gi(E, ω), (12)

and, also,

(Cl − Cl+1)C
−1
l+1 =

2(m+l+1)q−1
∑

i=2(m+l)q

(

βi(ω)Di+1(E, ω) + β2
i (ω)Fi(E, ω)

)

. (13)
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The norms of Di(E, ω), Fi(E, ω) and Gi(E, ω) are (uniformly in n)

bounded, provided Mn(E, ω) ∈ N̄γ/2(M̃(E)), E ∈ I.

When we plug (13) into
〈

wl+1, (Cl − Cl+1)C
−1
l+1wl+1

〉

E
and (12) into

∥

∥(Cl − Cl+1)C
−1
l+1wl+1

∥

∥

2

E
, we see that

‖wl‖
2
E < Bl(E, ω) ‖wl+1‖

2
E , (14)

where

Bl(E, ω) = 1 +

2(m+l+1)q−1
∑

i=2(m+l)q

(

βi(ω)Di+1(E, ω) + β2
i (ω)Fi(E, ω)

)

and Di(E, ω), Fi(E, ω) are some scalar (uniformly in n) bounded func-

tions, provided Mn(E, ω) ∈ N̄γ/2(M̃(E)), E ∈ I.

Going from w0 to wn−1, we get from (14) that ‖Mn,0(E, ω)v‖2
E is

bounded by

∥

∥C−1
0

∥

∥

E
‖Cn‖E

n−1
∏

l=0



1+

2(m+l+1)q−1
∑

i=2(m+l)q

βi(ω)Di+1(E, ω)+βi(ω)2Fi(E, ω)



 .

Let B = max
{

‖CE(M)‖E

∣

∣

∣
E ∈ I,M ∈ N̄γ/2(M̃(E))

}

. Since, for ω’s

satisfying the assumption (11), Ml(E, ω) lays in N̄γ/2(M̃(E)), we have

‖CE(Ml(E, ω))‖E ≤ B

for any E ∈ I and l ∈ N. In the same way we can assure2 that
∥

∥CE(Mn(E, ω))−1
∥

∥

E
< B,

∀i, |Di(E, ω)| < B,

∀i, |Fi(E, ω)| < B.

For {v1,v2} an orthonormal basis in R
2, for any 2×2 matrix A,

‖A‖ ≤ 2 max{‖Av1‖ , ‖Av2‖}.

This, in particular, implies that if for any unit vector v, ‖Av‖ < B,

then ‖A‖ < 2B. So, using the fact that 1 + x ≤ ex for x ≥ 0,

‖Mn,0(E, ω)‖2
E < B exp





∣

∣

∣

∣

∣

∣

2(m+n)q
∑

i=2mq+1

βi(ω)Di+1(E, ω)

∣

∣

∣

∣

∣

∣

+ B

∞
∑

i=1

βi(ω)2



 .

2We adopt the convention of denoting different constants by the same letter.
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We note that
∑∞

i=1 βi(ω)2 is finite for a.e. ω, from (5), since

∫

Ω

∞
∑

i=1

βi(ω)2 dP (ω) =
∞
∑

i=1

∫

Ω

βi(ω)2 dP (ω) < ∞.

To control the rest of the factors in the above estimate and to get

along with the assumptions (8) and (11), we will prove the following

lemma.

Let Dl(ω) be an integrable measurable function depending only on

{βi(ω)}∞i=l. Remember that αn(ω) =
∑∞

i=0 β2qi+n(ω) and define

Sl
m =

∣

∣

∣

∣

∣

l−1
∑

i=m

βiDi+1

∣

∣

∣

∣

∣

.

Lemma 1. For every ε > 0 and δ > 0, there exist Ω′ ⊆ Ω and m ∈ N,

such that P{Ω′} > 1 − δ and for every ω ∈ Ω′

sup
n>m

|αn(ω)| ≤ ε, (15)

sup
n>m

Sn
m(ω) ≤ 2. (16)

Proof. Fix n > m and define

Ω(m, n) =

{

ω ∈ Ω

∣

∣

∣

∣

max
l=m,...,(n−1)

|αl| > ε or max
l=(m+1),...,n

Sl
m > 2

}

,

Ωm =
⋃

n>m

Ω(m, n).

Note that for n < n′, Ω(m, n) ⊆ Ω(m, n′), so

P{Ωm} = lim
n→∞

P{Ω(m, n)} .

The lemma will be proved if we show that limm→∞ P{Ωm} = 0.

For m ≤ l ≤ n, Sl
m ≤ Sn

m + Sn
l , so

max
l=m,...,(n−1)

Sn
l ≤ 1 =⇒ max

l=(m+1),...,n
Sl

m ≤ 2.

Hence, for

Ω′(m, n) =

{

ω ∈ Ω

∣

∣

∣

∣

max
l=m,...,(n−1)

|αl| > ε or max
l=m,...,(n−1)

Sl
m > 1

}

,

Ω(m, n) ⊆ Ω′(m, n).
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Now we can proceed as in a standard martingale inequality. Define

Al =
1

ε

∞
∑

i=l

βi, Bl =

n−1
∑

i=l

βiDi+1,

Cj = {ω ∈ Ω |(∀i > j : |Ai| ≤ 1, |Bi| ≤ 1) and (|Aj| > 1 or |Bj| > 1)} .

Note that for i<j, since βi is independent from βj , we have, from (6),
∫

Ω

βiAjχCj
dP (ω) =

∫

Ω

βi dP (ω)

∫

Ω

AjχCj
dP (ω) = 0.

Also, since Dl depends only on {βi}
∞
i=l, for i < j,

∫

Ω

βiDi+1BjχCj
dP (ω) = 0.

Hence,
∫

Ω

A2
mχCj

dP (ω) ≥

∫

Ω

A2
jχCj

dP (ω),

since, as we expand the square A2
m =

[

1
ε

(

∑j−1
i=m βi

)

+ Aj

]2

, the expec-

tation of the cross terms vanishes. In the same way,
∫

Ω

B2
mχCj

dP (ω) ≥

∫

Ω

B2
j χCj

dP (ω).

Hence
∫

Ω

(A2
m + B2

m)χCj
dP (ω) ≥

∫

Ω

(A2
j + B2

j )χCj
dP (ω) ≥

∫

Ω

χCj
dP (ω).

Since Ω′(m, n) ⊆
⋃n−1

j=m Cj , we have

P{Ω(m, n)} ≤ P{Ω′(m, n)} ≤
n−1
∑

j=m

∫

Ω

χCj
dP (ω)

≤

n−1
∑

j=m

∫

Ω

(A2
m + B2

m)χCj
dP (ω) ≤

∫

Ω

(A2
m + B2

m) dP (ω).

If we expand the squares, using the mutual independence of the β’s,

(6) and (5), we see that
∫

Ω

(A2
m + B2

m) dP (ω) ≤ B

∞
∑

i=m

E
(

β2
i

) m→∞
−→ 0.

This proves the Lemma. �

The Lemma says that for any given E ∈ I, the set of ω’s such that
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• there exists m such that the assumptions (8) and (11) hold for

n ≥ m and then

• limn→∞ ‖Mm+n,m(E, ω)‖ < ∞,

is of full measure.

Since I is an arbitrary compact set in the spectrum of Jp, this, along

with Theorem 6, proves the first part of our Theorem.

To prove the second part of the Theorem, first note that, when E

varies in the compact set I, the matrix M̃(E) always has two sepa-

rate eigenvalues, and hence, we can pick the eigenvectors for it in a

continuous manner. This, in particular, will imply that there will be a

constant B, such that for any vector v and a matrix M,

1/B ‖v‖ < ‖v‖E < B ‖v‖ , 1/B ‖M‖ < ‖M‖E < B ‖M‖ , (17)

where ‖·‖ is the canonical norm of R
2.

Now the inequality (14) implies that, for l− = 2(m + l)q, l+ =

2(m + l + 1)q − 1,

‖wl‖
2
E <



1 + B
l+
∑

i=l
−

β2
i



 ‖wl+1‖
2
E +

l+
∑

i=l
−

βi 〈wl+1,Di+1(E, ω)wl+1 〉E .

Squaring this and grouping the similar powers of β’s, we get, after some

tedious but straightforward calculations, that (remember that B is just

a generic name for some constant)

‖wl‖
4
E <



1 + B
l+
∑

i=l
−

(β2
i + β4

i )



 ‖wl+1‖
4
E +

l+
∑

i=l
−

βi 〈wl+1,Di+1(E, ω)wl+1 〉E ‖wl+1‖
2
E .

Integrating the last inequality over I, we get

∫

I

‖wl‖
4
E dE <



1 +
l+
∑

i=l
−

(βiD̃i+1(ω) + Bβ2
i + Bβ4

i )





∫

I

‖wl+1‖
4
E dE,

where

D̃i(ω) =

∫

I
〈wl+1(E, ω),Di(E, ω)wl+1(E, ω) 〉E ‖wl+1(E, ω)‖2

E dE
∫

I
‖wl+1(E, ω)‖4

E dE
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is an integrable measurable function depending only on {βj(ω)}∞j=i.

Now we can proceed as in the first part, use the same lemma, this

time for D̃(ω), and the fact that we now have

∫

Ω

∞
∑

i=1

βi(ω)4 dP (ω) =
∞
∑

i=1

∫

Ω

βi(ω)4 dP (ω) < ∞,

so
∑∞

i=1 βi(ω)4 is finite for a.e. ω, to establish that the set of ω’s for

which

• there exists m such that the assumptions (8) and (11) hold for

n ≥ m and then

• limn→∞

∫

I
‖Mm+n,m(E, ω)‖4 dE < ∞,

is of full measure. By the fact that I is an arbitrary compact set in

the spectrum of Jp and Theorem 7, this proves the second part of

Theorem 5. �
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