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Abstract

We study the problem of existence of response solutions for a real-analytic one-
dimensional system, consisting of a rotator subjected to a small quasi-periodic forcing. We
prove that at least one response solution always exists, without any assumption on the forc-
ing besides smallness and analyticity. This strengthens the results available in the literature,
where generic non-degeneracy conditions are assumed. The proof is based on a diagrammatic
formalism and relies on renormalisation group techniques, which exploit the formal analogy
with problems of quantum field theory; a crucial role is played by remarkable identities
between classes of diagrams.

1 Introduction

Consider the one-dimensional system

β̈ = −εF (ωt, β), F (ωt, β) := ∂βf(ωt, β), (1.1)

where β ∈ T = R/2πZ, f : T
d+1 → R is a real-analytic function, ω ∈ R

d and ε is a real
number, called the perturbation parameter ; hence the forcing function (or perturbation) F is
quasi-periodic in t, with frequency vector ω.

It is well known that, for d = 1 (periodic forcing) and ε small enough, there exist periodic
solutions to (1.1) with the same period as the forcing. In fact the existence of periodic solutions
to (1.1), or to the more general equation

β̈ = −∂βV (β) − εF (ωt, β), (1.2)

with V : R → R real-analytic, can be discussed by relying on Melnikov method [5, 18]. A possible
approach consists in splitting the equations of motion into two separate equations, the so-called
range equation and bifurcation equation. Then, one can solve the first equation in terms of
a free parameter, and then fix the latter by solving the second equation (which represents an
implicit function problem). This is usually done by assuming some non-degeneracy condition
involving the perturbation, and this entails the analyticity of the solution. If no such condition
is assumed, a result of the same kind still holds [20, 1, 7], but the scenario appears slightly
more complicated: for instance the persisting periodic solutions are no longer analytic in the
perturbation parameter.

If the forcing is quasi-periodic, one can still study the problem of existence of quasi-periodic
solutions with the same frequency vector ω as the forcing, for ε small enough. The analysis
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becomes much more involved, because of the small divisor problem. However, under some
generic non-degeneracy condition, the analysis can be carried out in a similar way and the
bifurcation scenario can be described in a rather detailed way; see for instance [3]. On the
contrary, if no assumption at all is made on the perturbation, the small divisor problem and
the implicit function problem become inevitably tangled together and new difficulties arise. In
this paper we focus on this situation, so we study (1.1) without making any assumption on
the forcing function besides analyticity. Of course, we shall make some assumption of strong
irrationality on the frequency vector ω, say we shall assume some mild Diophantine condition,
such as the Bryuno condition (see below).

Note that (1.1) can be seen as the Hamilton equations for the system described by the
Hamiltonian function

H(α, β,A, B) = ω ·A+
1

2
B2 + εf(α, β), (1.3)

where ω ∈ R
d is fixed, (α, β) ∈ T

d × T and (A, B) ∈ R
d ×R are conjugate variables and f is

an analytic periodic function of (α, β). Indeed, the corresponding Hamilton equations for the
angle variables are closed, and are given by

α̇ = ω, β̈ = −ε∂βf(α, β), (1.4)

that we can rewrite as (1.1). Therefore the problem of existence of response solutions, i.e. quasi-
periodic solutions to (1.1) with frequency vector ω, can be seen as a problem of persistence of
lower-dimensional (or resonant) tori, more precisely of d-dimensional tori for a system with d+1
degrees of freedom. In the case (1.3) the unperturbed (i.e. with ε = 0) Hamiltonian is isochronous
in all but one angle variables. The existence of d-dimensional tori in systems with d+1 degrees of
freedom, without imposing any non-degeneracy condition on the perturbation except analyticity,
was first studied by Cheng [4]. He proved that, for convex unperturbed Hamiltonians, there
exists at least one d-dimensional torus continuing a d-dimensional submanifold of the d + 1
unperturbed resonant torus on which the flow is quasi-periodic with frequency vector ω ∈ R

d

satisfying the standard Diophantine condition |ω · ν| ≥ γ|ν|−τ for all ν ∈ Z
d \ {0}, and for

some γ > 0 and τ > d− 1 (here and henceforth · denotes the standard scalar product in R
d and

|ν| = |ν|1 = |ν1| + . . . + |νd|).

We prove a result of the same kind for the equation (1.1), that is the existence of at least
one response solution for ε small enough – see Theorem 2.2 in Section 2. Even if the system
(1.3) can be seen as a simplified model for the problem of lower-dimensional tori, we think that
our result can be of interest by its own. First of all, Cheng’s result does not directly apply, since
both the convexity property he requires is obviously not satisfied by the Hamiltonian (1.3) and
we allow a weaker Diophantine condition on the frequency vector. Moreover, just because of its
simplicity, the model is particularly suited to point out the main issues of the proof, avoiding all
aspects that would add only technical intricacies without shedding further light on the problem.
Finally, our method is completely different: it is based on the analysis and resummation of the
perturbation series through renormalisation group techniques, and not on an iteration scheme à
la KAM. In particular a crucial role in the proof will be played by remarkable identities between
classes of diagrams. By exploiting the analogy of the method with the techniques of quantum
field theory, one can see the solution as the one-point Schwinger function of a suitable Euclidean
field theory – this has been explicitly shown in the case of KAM tori [11] –; then the identities
between diagrams can be imagined as due to a suitable Ward identity that follows from the
symmetries of the field theory – again, this has been checked for the KAM theorem [2], and we
leave it as a conjecture in our case.
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2 Results

Consider equation (1.1) and take the solution for the unperturbed system given by β(t) = β0. We
want to study whether for some value of β0 such a solution can be continued under perturbation.

Hypothesis 1. ω satisfies the Bryuno condition B(ω) <∞, where

B(ω) :=
∞∑

m=0

1

2m
log

1

αm(ω)
, αm(ω) := inf

0<|ν|≤2m
|ω · ν|.

Write
f(α, β) =

∑

ν∈Zd

fν(β)eiν·α, F (α, β) =
∑

ν∈Zd

Fν(β)eiν·α. (2.1)

Hypothesis 2. β∗0 is a zero of order n for F0(β) with n odd. Assume also ε∂n
βF0(β∗0) < 0 for

fixed ε 6= 0.

Eventually we shall want to get rid of Hypothesis 2: however, we shall first assume it to
simplify the analysis, and at the end we shall show how to remove it.

We look for a solution to (1.1) of the form β(t) = β0 + b(t), with

b(t) =
∑

ν∈Zd
∗

eiν·ωtbν (2.2)

where Z
d
∗ = Z

d \ {0}. In Fourier space (1.1) becomes

(ω · ν)2bν = ε[F (ωt, β)]ν , ν 6= 0, (2.3a)

[F (ωt, β)]0 = 0, (2.3b)

where

[F (ψ, β)]ν =
∑

r≥0

∑

ν0+...+νr=ν

ν0∈Zd

νi∈Z
d
∗, i=1,...,r

1

r!
∂r

βFν0(β0)

r∏

i=1

bνi
.

Our first result will be the following.

Theorem 2.1. Consider the equation (1.1) and assume Hypotheses 1 and 2. If ε is small
enough, there exists at least one quasi-periodic solution β(t) to (1.1) with frequency vector ω,
such that β(t) → β∗0 as ε→ 0.

The proof will be carried out through Sections 3 to 5. First, after introducing the basic
notations in Section 3, we shall show in Section 4 that, under the assumption that further
conditions are satisfied, for ε small enough and arbitrary β0 there exists a solution

β(t) = β0 + b(t; ε, β0), (2.4)

to (2.3a), depending on ε, β0, with b(t) = b(t; ε, β0) a zero-average function. For such a solution
define

G(ε, β0) := [F (ωt, β(t))]0, (2.5)
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and consider the implicit function equation

G(ε, β0) = 0. (2.6)

Then we shall prove in Section 5 that one can fix β0 = β0(ε) in such a way that (2.6) holds and
the conditions mentioned above are also satisfied. Hence for that β0(ε) the function (2.4) is a
solution of the whole system (2.3).

Next, we shall see how to remove Hypothesis 2 in order to prove the existence of a response
solution without any assumption on the forcing function, so as to obtain the following result,
which is the main result of the paper.

Theorem 2.2. Consider the equation (1.1) and assume Hypothesis 1. There exists ε0 > 0 such
that for all ε with |ε| < ε0 there is at least one quasi-periodic solution to (1.1) with frequency
vector ω.

Note that if F0(β) does not identically vanish, then Theorem 2.2 follows immediately from
Theorem 2.1. Indeed, the function f0(β) is analytic and periodic, hence, if it is not identically
constant, it has at least one maximum point β′0 and one minimum point β′′0 , where ∂n′+1

β f0(β
′
0) <

0 and ∂n′′+1
β f0(β′′0 ) > 0, for some n′ and n′′ both odd. Let ε be fixed small enough, say |ε| < ε0

for a suitable ε0: choose β∗0 = β′0 if ε > 0 and β∗0 = β′′0 if ε < 0. Then Hypothesis 2 is
satisfied, and we can apply Theorem 2.1 to deduce the existence of a quasi-periodic solution
with frequency vector ω. However, the function f0(β) can be identically constant, and hence
F0(β) can vanish identically, so that some further work will be needed to prove Theorem 2.2:
this will be performed in Section 6.

3 Diagrammatic rules and multiscale analysis

We want to study whether it is possible to express the function b(t; ε, β0) appearing in (2.4) as
a convergent series. Let us start by writing formally

b(t; ε, β0) =
∑

k≥1

εkb(k)(t;β0) =
∑

k≥1

εk
∑

ν∈Zd
∗

eiν·ωtb
(k)
ν (β0). (3.1)

If we define recursively for k ≥ 1

b
(k)
ν (β0) =

1

(ω · ν)2
[F (ωt, β)]

(k−1)
ν , (3.2)

where [F (ωt, β)]
(0)
ν = Fν(β0) and, for k ≥ 1,

[F (ωt, β)]
(k)
ν =

∑

s≥1

∑

ν0+...+νs=ν

ν0∈Zd

νi∈Z
d
∗, i=1,...,s

1

s!
∂s

βFν0(β0)
∑

k1+...+ks=k,
ki≥1

s∏

i=1

b
(ki)
νi

(β0), (3.3)

the series (3.1) turns out to be a formal solution of (2.3a): the coefficients b
(k)
ν (β0) are well

defined for all k ≥ 1 and all ν ∈ Z
d
∗ – by Hypothesis 1 – and solve (2.3a) order by order – as it

is straightforward to check.
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Write also, again formally,

G(ε, β0) =
∑

k≥0

εkG(k)(β0), (3.4)

with G(0)(β0) = F0(β0) and, for k ≥ 1

G(k)(β0) =
∑

s≥1

∑

ν0+...+νs=0

ν0∈Zd

νi∈Z
d
∗, i=1,...,s

1

s!
∂s

βFν0(β0)
∑

k1+...+ks=k,
ki≥1

s∏

i=1

b
(ki)
νi

(β0). (3.5)

Of course, Hypothesis 1 yields that the formal series (3.4) is well-defined too.

Unfortunately the power series (3.1) and (3.4) may not be convergent (as far as we know).
However we shall see how to construct two series (convergent if β0 is suitably chosen) whose
formal expansion coincide with (3.1) and (3.4). As we shall see, this leads to express the response
solution as a series of contributions each of which can be graphically represented as a suitable
diagram.

A graph is a set of points and lines connecting them. A tree θ is a graph with no cycle, such
that all the lines are oriented toward a unique point (root) which has only one incident line ℓθ
(root line). All the points in a tree except the root are called nodes. The orientation of the
lines in a tree induces a partial ordering relation (�) between the nodes and the lines: we can
imagine that each line carries an arrow pointing toward the root. Given two nodes v and w, we
shall write w ≺ v every time v is along the path (of lines) which connects w to the root.

We denote by N(θ) and L(θ) the sets of nodes and lines in θ respectively. Since a line
ℓ ∈ L(θ) is uniquely identified with the node v which it leaves, we may write ℓ = ℓv. We write
ℓw ≺ ℓv if w ≺ v, and w ≺ ℓ = ℓv if w � v; if ℓ and ℓ′ are two comparable lines, i.e. ℓ′ ≺ ℓ, we
denote by P(ℓ, ℓ′) the (unique) path of lines connecting ℓ′ to ℓ, with ℓ and ℓ′ not included (in
particular P(ℓ, ℓ′) = ∅ if ℓ′ enters the node ℓ exits).

With each node v ∈ N(θ) we associate a mode label νv ∈ Z
d and we denote by sv the

number of lines entering v. With each line ℓ we associate a momentum νℓ ∈ Z
d
∗, except for the

root line which can have either zero momentum or not, i.e. νℓθ
∈ Z

d. Finally, we associate with
each line ℓ also a scale label such that nℓ = −1 if νℓ = 0, while nℓ ∈ Z+ if νℓ 6= 0. Note that
one can have nℓ = −1 only if ℓ is the root line of θ.

We force the following conservation law

νℓ =
∑

w∈N(θ)
w≺ℓ

νw. (3.6)

In the following we shall call trees tout court the trees with labels, and we shall use the term
unlabelled tree for the trees without labels.

We shall say that two trees are equivalent if they can be transformed into each other by
continuously deforming the lines in such a way that these do not cross each other and also labels
match. This provides an equivalence relation on the set of the trees – as it is easy to check.
From now on we shall call trees tout court such equivalence classes.

Given a tree θ we call order of θ the number k(θ) = |N(θ)| = |L(θ)| (for any finite set S
we denote by |S| its cardinality) and total momentum of θ the momentum associated with ℓθ.
We shall denote by Θk,ν the set of trees with order k and total momentum ν. More generally,
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if T is a subgraph of θ (i.e. a set of nodes N(T ) ⊆ N(θ) connected by lines L(T ) ⊆ L(θ)), we
call order of T the number k(T ) = |N(T )|. We say that a line enters T if it connects a node
v /∈ N(T ) to a node w ∈ N(T ), and we say that a line exits T if it connects a node v ∈ N(T )
to a node w /∈ N(T ). Of course, if a line ℓ enters or exits T , then ℓ /∈ L(T )

Remark 3.1. One has
∑

v∈N(θ)

sv = k(θ) − 1.

A cluster T on scale n is a maximal subgraph of a tree θ such that all the lines have scales
n′ ≤ n and there is at least a line with scale n. The lines entering the cluster T and the line
coming out from it (unique if existing at all) are called the external lines of T .

A self-energy cluster is a cluster T such that (i) T has only one entering line ℓ′T and one
exiting line ℓT , (ii) one has νℓT

= νℓ′
T

and hence

∑

v∈N(T )

νv = 0. (3.7)

For any self-energy cluster T , set PT = P(ℓT , ℓ
′
T ). More generally, if T is a subgraph of θ

with only one entering line ℓ′ and one exiting line ℓ, we can set PT = P(ℓ, ℓ′). We shall say that
a self-energy cluster is on scale −1, if N(T ) = {v} with of course νv = 0 (so that PT = ∅).

A left-fake cluster T on scale n is a connected subgraph of a tree θ with only one entering
line ℓ′T and one exiting line ℓT such that (i) all the lines in T have scale ≤ n and there is in T at
least a line on scale n, (ii) ℓ′T is on scale n+ 1 and ℓT is on scale n, and (iii) one has νℓT

= νℓ′
T
.

Analogously a right-fake cluster T on scale n is a connected subgraph of a tree θ with only one
entering line ℓ′T and one exiting line ℓT such that (i) all the lines in T have scale ≤ n and there
is in T at least a line on scale n, (ii) ℓ′T is on scale n and ℓT is on scale n + 1, and (iii) one
has νℓT

= νℓ′
T
. Roughly speaking, a left-fake (respectively right-fake) cluster T fails to be a

self-energy cluster only because the exiting (respectively the entering) line is on scale equal to
the scale of T .

Remark 3.2. Given a self-energy cluster T , the momenta of the lines in PT depend on νℓ′
T

because of the conservation law (3.6). More precisely, for all ℓ ∈ PT one has νℓ = ν0
ℓ +νℓ′

T
with

ν0
ℓ =

∑

w∈N(T )
w≺ℓ

νw, (3.8)

while all the other labels in T do not depend on νℓ′
T
. Clearly, this holds also for left-fake and

right-fake clusters.

We shall say that two self-energy clusters T1, T2 have the same structure if forcing νℓ′
T1

= νℓ′
T2

one has T1 = T2. Of course this provides an equivalence relation on the set of all self-energy
clusters. The same consideration apply for left-fake and right-fake clusters. From now on we
shall call self-energy, left-fake and right-fake clusters tout court such equivalence classes.

A renormalised tree is a tree in which no self-energy clusters appear; analogously a renor-
malised subgraph is a subgraph of a tree θ which does not contains any self-energy cluster.
Denote by ΘR

k,ν the set of renormalised trees with order k and total momentum ν, by Rn the set
of renormalised self-energy clusters on scale n, and by LFn and RFn the sets of (renormalised)
left-fake and right-fake clusters on scale n respectively.
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For any θ ∈ ΘR
k,ν we associate with each node v ∈ N(θ) a node factor

Fv(β0) :=
1

sv!
∂sv

β Fνv(β0). (3.9)

We associate with each line ℓ ∈ L(θ) with nℓ ≥ 0, a dressed propagator Gnℓ
(ω · νℓ; ε, β0) (prop-

agator tout court in the following) defined recursively as follows.

Let us introduce the sequences {mn, pn}n≥0, with m0 = 0 and, for all n ≥ 0, mn+1 =
mn + pn + 1, where pn := max{q ∈ Z+ : αmn(ω) < 2αmn+q(ω)}. Then the subsequence
{αmn(ω)}n≥0 of {αm(ω)}m≥0 is decreasing. Let χ be a C∞ non-increasing function such that

χ(x) =

{
1, |x| ≤ 1/2,

0, |x| ≥ 1.
(3.10)

Set χ−1(x) = 1 and χn(x) = χ(4x/αmn (ω)) for n ≥ 0. Set also ψ(x) = 1 − χ(x), ψn(x) =
ψ(4x/αmn (ω)), and Ψn(x) = χn−1(x)ψn(x), for n ≥ 0; see Figure 1.

xα0

4

α0

8

αm1

4

αm1

8

αm2

8

Ψ2(x) Ψ1(x) Ψ0(x)

Figure 1: Graphs of some of the C∞ functions Ψn(x) partitioning the unity in R\{0}; here αm = αm(ω).
The function χ0(x) = χ(4x/α0) is given by the sum of all functions Ψn(x) for n ≥ 1.

Lemma 3.3. For all x 6= 0 and for all p ≥ 0 one has

ψp(x) +
∑

n≥p+1

Ψn(x) = 1.

Proof. For fixed x 6= 0 let N = N(x) := min{n : χn(x) = 0} and note that max{n : ψn(x) =
0} ≤ N − 1. Then if p ≤ N − 1

ψp(x) +
∑

n≥p+1

Ψn(x) = ψN−1(x) + χN−1(x) = 1,

while if p ≥ N one has

ψp(x) +
∑

n≥p+1

Ψn(x) = ψp(x) = 1.

Remark 3.4. Lemma 3.3 implies
∑

n≥0 Ψn(x) = 1 for all x 6= 0. Hence {Ψn}n≥0 is a partition
of unity in R \ {0}.
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Define, for n ≥ 0,

Gn(x; ε, β0) := Ψn(x)
(
x2 −Mn−1(x; ε, β0)

)−1
, (3.11)

with formally,

Mn−1(x; ε, β0) :=

n−1∑

q=−1

χq(x)Mq(x; ε, β0), Mq(x; ε, β0) :=
∑

T∈Rq

εk(T )
V T (x; ε, β0), (3.12)

where V T (x; ε, β0) is the renormalised value of T ,

V T (x; ε, β0) :=




∏

v∈N(T )

Fv(β0)





∏

ℓ∈L(T )

Gnℓ
(ω · νℓ; ε, β0)


 . (3.13)

Here and henceforth, the sums and the products over empty sets have to be considered as zero
and 1 respectively. Note that V T depends on ε because the propagators do, and on x = ω · νℓ′

T

only through the propagators associated with the lines ℓ ∈ PT (see Remark 3.2).

Remark 3.5. One has |R−1| = 1 , so that M−1(x; ε, β0) = M−1(x; ε, β0) = ε∂β0F0(β0).

Set M = {Mn(x; ε, β0)}n≥−1. We call self-energies the quantities Mn(x; ε, β0).

Remark 3.6. One has

∂β0Gn(x; ε, β0) = Gn(x; ε, β0)
(
x2 −Mn−1(x; ε, β0)

)−1
∂β0Mn−1(x; ε, β0).

Set also G−1(0; ε, β0) = 1 (so that we can associate a propagator also with the root line of
θ ∈ ΘR

k,0). For any subgraph S of any θ ∈ ΘR
k,ν define the renormalised value of S as

V (S; ε, β0) :=




∏

v∈N(S)

Fv(β0)





∏

ℓ∈L(S)

Gnℓ
(ω · νℓ; ε, β0)


 . (3.14)

Finally set

b
[k]
ν (ε, β0) :=

∑

θ∈ΘR

k,ν

V (θ; ε, β0), (3.15)

and
G[k](ε, β0) :=

∑

θ∈ΘR

k+1,0

V (θ; ε, β0), (3.16)

and define formally

bR(t; ε, β0) :=
∑

k≥1

εk
∑

ν∈Zd
∗

eiν·ωtb
[k]
ν (ε, β0), (3.17)

and
GR(ε, β0) :=

∑

k≥0

εkG[k](ε, β0). (3.18)

The series (3.17) and (3.18) will be called the resummed series. The term “resummed” comes
from the fact that if we formally expand (3.17) and (3.18) in powers of ε, we obtain (3.1) and
(3.4) respectively, as it is easy to check.
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Remark 3.7. If T is a renormalised left-fake (respectively right-fake) cluster, we can (and
shall) write V (T ; ε, β0) = V T (ω · νℓ′

T
; ε, β0) since the propagators of the lines in PT depend on

ω · νℓ′
T
. In particular one has

∑

T∈LFn

εk(T )
V T (x; ε, β0) =

∑

T∈RFn

εk(T )
V T (x; ε, β0) = Mn(x; ε, β0).

Remark 3.8. Given a renormalised tree θ such that V (θ; ε, β0) 6= 0, for any line ℓ ∈ L(θ)
(except possibly the root line) one has Ψnℓ

(ω · νℓ) 6= 0, and hence

αmnℓ
(ω)

8
< |ω · νℓ| <

αmnℓ−1(ω)

4
, (3.19)

where αm−1(ω) has to be interpreted as +∞. The same considerations apply to any subgraph
of θ and to renormalised self-energy clusters. Moreover, by the definition of {αmn(ω)}n≥0, the
number of scales which can be associated with a line ℓ in such a way that the propagator does
not vanishes is at most 2; see Figure 1.

For θ ∈ ΘR
k,ν, let Nn(θ) be the number of lines on scale ≥ n in θ, and set

K(θ) :=
∑

v∈N(θ)

|νv|. (3.20)

More generally, for any renormalised subgraph T of any tree θ call Nn(T ) the number of lines
on scale ≥ n in T , and set

K(T ) :=
∑

v∈N(T )

|νv|. (3.21)

Lemma 3.9. For any θ ∈ ΘR
k,ν such that V (θ; ε, β0) 6= 0 one has Nn(θ) ≤ 2−(mn−2)K(θ), for

all n ≥ 0.

Proof. First of all we note that if Nn(θ) ≥ 1, then K(θ) ≥ 2mn−1. Indeed, if a line ℓ has scale
nℓ ≥ n, then

|ω · νℓ| ≤
1

4
αmn−1(ω) <

1

2
αmn−1+pn−1(ω) =

1

2
αmn−1(ω) < αmn−1(ω),

and hence, by definition of αm(ω), one has K(θ) ≥ |νℓ| ≥ 2mn−1. Now we prove the bound
Nn(θ) ≤ max{2−(mn−2)K(θ) − 1, 0} by induction on the order.

If the root line of θ has scale nℓθ
< n then the bound follows by the inductive hypothesis.

If nℓθ
≥ n, call ℓ1, . . . , ℓr the lines with scale ≥ n closest to ℓθ (that is such that nℓ′ < n for all

lines ℓ′ ∈ P(ℓθ, ℓi), i = 1, . . . , r); see Figure 2. If r = 0 then Nn(θ) = 1 and |ν| ≥ 2mn−1, so that
the bound follows. If r ≥ 2 the bound follows once more by the inductive hypothesis. If r = 1,
then ℓ1 is the only entering line of a cluster T which is not a self-energy cluster as θ ∈ ΘR

k,ν, and
hence νℓ1 6= ν. But then

|ω · (ν − νℓ1)| ≤ |ω · ν| + |ω · νℓ1 | ≤
1

2
αmn−1(ω) < αmn−1+pn−1(ω) = αmn−1(ω),

as both ℓθ and ℓ1 are on scale ≥ n, so that one has K(T ) ≥ |ν − νℓ1 | ≥ 2mn−1. Now, call θ1 the
subtree of θ with root line ℓ1. Then one has

Nn(θ) = 1 + Nn(θ1) ≤ 1 + max{2−(mn−2)K(θ1) − 1, 0},

9



ℓθ

≥ n
< n

≥ n
ℓ1

θ1

≥ n

ℓ2

θ2

≥ n
ℓr θr

Figure 2: Construction used in the proof of Lemma 3.9 when nℓθ
≥ n.

so that
Nn(θ) ≤ 2−(mn−2)(K(θ) −K(T )) ≤ 2−(mn−2)K(θ) − 1,

again by induction.

Lemma 3.10. For any T ∈ Rn such that V T (x; ε, β0) 6= 0, one has Np(T ) ≤ 2−(mp−2)K(T ),
for all 0 ≤ p ≤ n.

Proof. We first prove that for all n ≥ 0 and all T ∈ Rn, one has K(T ) ≥ 2mn−1. In fact if
T ∈ Rn then T contains at least a line on scale n. If there is ℓ ∈ L(T ) \ PT with nℓ = n, then

|ω · νℓ| <
1

4
αmn−1(ω) < αmn−1(ω),

and hence K(T ) ≥ |νℓ| > 2mn−1. Otherwise, let ℓ ∈ PT be the line on scale n which is
closest to ℓ′T . Call T̃ the subgraph (actually the cluster) consisting of all lines and nodes of T

preceding ℓ; see Figure 3. Then νℓ 6= νℓ′
T
, otherwise T̃ would be a self-energy cluster. Therefore

K(T ) > |νℓ − νℓ′
T
| > 2mn−1 as both ℓ, ℓ′T are on scale ≥ n.

ℓ ℓ′T
T̃T =

Figure 3: Construction used to prove K(T ) ≥ 2mn−1 when there is a line ℓ ∈ PT on scale n.

Given a tree θ, call C(n, p) the set of renormalised subgraphs T of θ with only one entering line
ℓ′T and one exiting line ℓT both on scale ≥ p, such that L(T ) 6= ∅ and nℓ ≤ n for any ℓ ∈ L(T ).
Note that Rn ⊂ C(n, p) for all n, p ≥ 0 and, reasoning as above, one finds K(T ) ≥ 2mq−1,
with q = min{n, p}, for all T ∈ C(n, p). We prove that Np(T ) ≤ max{K(T )2−(mp−2) − 1, 0}
for all 0 ≤ p ≤ n and all T ∈ C(n, p). The proof is by induction on the order. Call N(PT )
the set of nodes in T connected by lines in PT . If all lines in PT are on scale < p, then
Np(T ) = Np(θ1) + . . . + Np(θr) if θ1, . . . , θr are the subtrees with root line entering a node in
N(PT ), and hence the bound follows from (the proof of) Lemma 3.9. If there exists a line ℓ ∈ PT

on scale ≥ p, call T1 and T2 the subgraphs of T such that L(T ) = {ℓ} ∪L(T1)∪L(T2), and note
that if L(T1), L(T2) 6= ∅, then T1, T2 ∈ C(n, p); see Figure 4.
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T =
≥ p

T1

≥ p

ℓ
T2

≥ p

Figure 4: Construction used to prove Lemma 3.10.

Hence, by the inductive hypothesis one has

Np(T ) = 1 + Np(T1) + Np(T2)

≤ 1 + max{2−(mp−2)K(T1) − 1, 0} + max{2−(mp−2)K(T2) − 1, 0}.

If both Np(T1),Np(T2) are zero the bound trivially follows as K(T ) ≥ 2mp−1, while if both are
non-zero one has

Np(T ) ≤ 2−(mp−2)(K(T1) +K(T2)) − 1 = 2−(mp−2)K(T ) − 1.

Finally if only one is zero, say Np(T1) 6= 0 and Np(T2) = 0,

Np(T ) ≤ 2−(mp−2)K(T1) = 2−(mp−2)K(T ) − 2−(mp−2)K(T2).

On the other hand, either T2 ∈ C(n, p) or it is constituted by only one node v with νv 6= 0, so
that K(T2) > 2mp−1 in both cases. The same argument can be used in the case Np(T1) = 0 and
Np(T2) 6= 0.

4 Convergence of the resummed series: part 1

To prove that the resummed series (3.17) converges, we first make the assumption that the
propagators Gnℓ

(x; ε, β0) are bounded essentially as 1/x2: we shall see that in that case the
convergence of the series can be easily proved. Then, in Section 5, we shall check that the
assumption is justified.

Definition 4.1. We shall say that M satisfies property 1 if one has

Ψn+1(x)|x
2 −Mn(x; ε, β0)| ≥ Ψn+1(x)x

2/2,

for all n ≥ −1.

Lemma 4.2. Assume M to satisfy property 1. Then the series (3.17) and (3.18) with the
coefficients given by (3.15) and (3.16) respectively, converge for ε small enough.

Proof. Let θ ∈ ΘR
k,ν. The analyticity of f , hence of F , implies that there exist positive constants

F1, F2, ξ such that for all v ∈ N(θ) one has

|Fv(β0)| =
1

sv!
|∂sv

β Fνv(β0)| ≤ F1F
sv

2 e−ξ|νv|. (4.1)
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Moreover property 1 implies |Gn(x; ε, β0)| ≤ 27αmn(ω)−2 for all n ≥ 0, and hence by Lemma 3.9
one can bound

∏

ℓ∈L(θ)

|Gnℓ
(ω · νℓ; ε, β0)| ≤

∏

n≥0

(
27

α2
mn

(ω)

)Nn(θ)

≤

(
27

α2
mn0

(ω)

)k ∏

n≥n0+1

(
27

α2
mn

(ω)

)Nn(θ)

≤

(
27

α2
mn0

(ω)

)k ∏

n≥n0+1

(
27/2

αmn(ω)

)2−(mn−3)K(θ)

≤

(
27

α2
mn0

(ω)

)k

exp


8K(θ)

∑

n≥n0+1

1

2mn
log

27/2

αmn(ω)




≤ Dk(n0)exp(ξ(n0)K(θ)),

with

D(n0) =
27

α2
mn0

(ω)
, ξ(n0) = 8

∑

n≥n0+1

1

2mn
log

27/2

αmn(ω)
.

Then, by Hypothesis 1, one can choose n0 such that ξ(n0) ≤ ξ/2. The sum over the other labels
is bounded by a constant to the power k, and hence one can bound

∑

θ∈ΘR

k,ν

|V (θ; ε, β0)| ≤ C0C
k
1 e

−ξ|ν|/2,

for some constants C0, C1, and this is enough to prove the assertion.

Lemma 4.3. Assume M to satisfy property 1. Then for ε small enough the function (3.17),
with the coefficients given by (3.15), solves the equation (2.3a).

Proof. We shall prove that, the function bR defined in (3.17) satisfies the equation of motion
(2.3a), i.e. we shall check that bR = εgF (ωt, β0+bR), where g is the pseudo-differential operator
with kernel g(ω · ν) = 1/(ω · ν)2. We can write the Fourier coefficients of bR as

bR
ν

=
∑

n≥0

b
[n]
ν , b

[n]
ν =

∑

k≥1

εk
∑

θ∈ΘR

k,ν
(n)

V (θ; ε, β0), (4.2)

where ΘR
k,ν(n) is the subset of ΘR

k,ν such that nℓθ
= n.

Using Remark 3.4 and Lemma 4.2, in Fourier space one can write

g(ω · ν)[εF (ωt, β0 + bR)]ν = g(ω · ν)
∑

n≥0

Ψn(ω · ν)[εF (ωt, β0 + bR)]ν

= g(ω · ν)
∑

n≥0

Ψn(ω · ν)(Gn(ω · ν; ε, β0))
−1Gn(ω · ν; ε, β0)[εF (ωt, β0 + bR)]ν

= g(ω · ν)
∑

n≥0

(
(ω · ν)2 −Mn−1(ω · ν; ε, β0)

)
Gn(ω · ν; ε, β0)[εF (ωt, β0 + bR)]ν

= g(ω · ν)
∑

n≥0

(
(ω · ν)2 −Mn−1(ω · ν; ε, β0)

)∑

k≥1

εk
∑

θ∈Θ
R

k,ν (n)

V (θ; ε, β0),
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where Θ
R
k,ν(n) differs from ΘR

k,ν(n) as it contains also trees θ which have one self-energy cluster
with exiting line ℓθ. If we separate the trees containing such self-energy cluster from the others,
we obtain

g(ω · ν)[εF (ωt, β0 + bR)]ν = g(ω · ν)
∑

n≥0

(
(ω · ν)2 −Mn−1(ω · ν; ε, β0)

)
b
[n]
ν

+ g(ω · ν)
∑

n≥0

Ψn(ω · ν)
∑

p≥n

n−1∑

q=−1

Mq(ω · ν; ε, β0)b
[p]
ν

+ g(ω · ν)
∑

n≥1

Ψn(ω · ν)
n−1∑

p=0

p−1∑

q=−1

Mq(ω · ν; ε, β0)b
[p]
ν

= g(ω · ν)
∑

n≥0

(
(ω · ν)2 −Mn−1(ω · ν; ε, β0)

)
b
[n]
ν

+ g(ω · ν)
∑

p≥0




p−1∑

q=−1

Mq(ω · ν; ε, β0)
∑

n≥q+1

Ψn(ω · ν)


 b

[p]
ν

= g(ω · ν)
∑

n≥0

(
(ω · ν)2 −Mn−1(ω · ν; ε, β0)

)
b
[n]
ν

+ g(ω · ν)
∑

n≥0




n−1∑

q=−1

Mq(ω · ν; ε, β0)χq(ω · ν)


 b

[n]
ν

= g(ω · ν)
∑

n≥0

(
(ω · ν)2 −Mn−1(ω · ν; ε, β0)

)
b
[n]
ν

+ g(ω · ν)
∑

n≥0

Mn−1(ω · ν; ε, β0)b
[n]
ν

=
∑

n≥0

b
[n]
ν = bR

ν
,

so that the proof is complete.

Definition 4.4. We shall say that M satisfies property 2-p if one has

Ψn+1(x)|x
2 −Mn(x; ε, β0)| ≥ Ψn+1(x)x

2/2,

for all −1 ≤ n < p.

Lemma 4.5. Assume M to satisfy property 2-p. Then for any 0 ≤ n ≤ p the self-energies are
well defined and one has

|Mn(x; ε, β0)| ≤ ε2K1e
−K22mn

, (4.3a)

|∂j
xMn(x; ε, β0)| ≤ ε2Cje

−Cj2
mn
, j = 1, 2, (4.3b)

for suitable constants K1,K2, C1, C2, C1 and C2.

Proof. Property 2-p implies |Gn(x; ε, β0)| ≤ 27αmn(ω)−2 for all 0 ≤ n ≤ p. Then, using also
Lemma 3.10 and the fact that any self-energy cluster in Rn has at least two nodes for any n ≥ 0,
we obtain

|Mn(x; ε, β0)| ≤
∑

T∈Rn

|ε|k(T )|V T (x; ε, β0)| ≤
∑

k≥2

|ε|kCke−K22mn
,
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so that (4.3a) is proved for ε small enough. Now we prove (4.3b) by induction on n. For n = 0
the bound is obvious. Assume then (4.3b) to hold for all n′ < n. For any T ∈ Rn such that
V T (x; ε, β0) 6= 0 one has

∂x V T (x; ε, β0) =
∑

ℓ∈PT




∏

v∈N(T )

Fv(β0)




∂xGnℓ

(xℓ; ε, β0)
∏

ℓ′∈L(T )\{ℓ}

Gnℓ′
(ω · νℓ′ ; ε, β0)


 ,

where xℓ = ω · νℓ = x+ ω · ν0
ℓ and

∂xGnℓ
(xℓ; ε, β0) =

d

dx
Gnℓ

(ω · ν0
ℓ + x; ε, β0)

=
∂xΨnℓ

(xℓ)

x2
ℓ −Mnℓ−1(xℓ; ε, β0)

−
Ψnℓ

(xℓ) (2xℓ − ∂xMnℓ−1(xℓ; ε, β0))(
x2

ℓ −Mnℓ−1(xℓ; ε, β0)
)2 .

One has

|∂xΨnℓ
(xℓ)| ≤ |∂xχnℓ−1(xℓ)| + |∂xψnℓ

(xℓ)| ≤
B1

αmnℓ
(ω)

,

for some constant B1 and, by (4.3a), the inductive hypothesis and Hypothesis 1,

|∂xMnℓ−1(xℓ; ε, β0)| ≤

nℓ−1∑

q=0

|(∂xχq(xℓ))Mq(xℓ; ε, β0)| +

nℓ−1∑

q=0

|∂xMq(xℓ; ε, β0)|

≤ ε2B1K1

∑

q≥0

1

αmq(ω)
e−K22mq

+ ε2C1

∑

q≥0

e−C12mq

≤ ε2B2,

for some constant B2. Hence, at the cost of replacing the bound for the propagators with
C̃αmnℓ

(ω)−4 for some constant C̃, one can rely upon Lemma 3.10 to obtain (4.3b) for j = 1.
For j = 2 one can reason analogously.

Lemma 4.6. Assume M to satisfy property 2-p. Then one has Mn(x; ε, β0) = Mn(0; ε, β0) +
O(ε2x2) for all 0 ≤ n ≤ p.

Proof. We shall prove that Mn(x; ε, β0) = Mn(−x; ε, β0), by induction on n ≥ −1. For
n = −1 the identity is obvious since M−1 does not depend on x. Assume now Mq(x; ε, β0) =
Mq(−x; ε, β0) for all q < n. This implies Gq(x; ε, β0) = Gq(−x; ε, β0) for q ≤ n. Let T ∈ Rn and
consider the self-energy cluster T1 obtained from T by taking ℓT as the entering line and ℓ′T as
the exiting line (i.e. ℓ′T1

= ℓT and ℓT1 = ℓ′T ) and by taking νℓ′
T1

= −νℓ′
T
. Hence the momenta of

the lines belonging to PT change signs, while all the other momenta do not change: therefore all
propagators are left unchanged. Hence Mn(x; ε, β0) = Mn(−x; ε, β0), so that ∂xMn(0; ε, β0) = 0
for all n ≤ p, and, by Lemma 4.5, this is enough to prove the assertion.

Lemma 4.7. Assume M to satisfy property 1. Then the function GR(ε, β0) and the self-energies
Mn(x; ε, β0) are C∞ in both ε and β0.

Proof. It follows from the explicit expressions for GR(ε, β0) and Mn(x; ε, β0).

Define formally
M∞(x; ε, β0) = lim

n→∞
Mn(x; ε, β0), (4.4)
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and note that if M satisfies property 1, then M∞(x; ε, β0) is well defined and moreover it is C∞

in both ε and β0.

The following result plays a crucial role. The proof is deferred to Appendix A.

Lemma 4.8. Assume M to satisfy property 1. Then one has

ε∂β0G
R(ε, β0) = M∞(0; ε, β0).

Remark 4.9. If we take the formal power expansions of both GR(ε, β0) and M∞(0; ε, β0), we
obtain tree expansions where self-energy clusters are allowed; see Section 6 for further details.
Then the identity ε∂β0G

R(ε, β0) = M∞(0; ε, β0) is easily found to be satisfied to any perturba-
tion order. However, without any resummation procedure, we are no longer able to prove the
convergence of the series, so that the identity becomes a meaningless “∞ = ∞”.

Remark 4.10. The identity ε∂β0G
R(ε, β0) = M∞(0; ε, β0), in Lemma 4.8, can be seen as

an identity between classes of diagrams. In turn, in light of a possible quantum field formula-
tion of the problem, this can be thought as a consequence of some deep Ward identity of the
corresponding field theory. Ward identities play a crucial role in quantum field theory. The
analogy between KAM theory and quantum field theory has been widely stressed in the litera-
ture [11, 2, 6]; in particular the cancellations which assure the convergence of the perturbation
series for maximal KAM tori are deeply related to a Ward identity, as shown in [2], which can
be seen as a remarkable identity between classes of graphs. In the case studied in this paper,
we have a similar situation, made fiddlier by the fact that we have to deal with nonconvergent
series to be resummed, and it is well known that identities which are trivial on a formal level
can turn out to be difficult to prove rigorously [19]. However, we expect a Ward identity to hold
also in our case, so as to imply that ε∂β0G

R(ε, β0) = M∞(0; ε, β0). It would be interesting to
confirm the expectation and to determine the Ward identity explicitly.

Lemma 4.11. Assume M to satisfy property 1. Then the implicit function equation GR(ε, β0) =
0 admits a solution β0 = β0(ε), such that β0(0) = β∗0 . Moreover in a suitable half-neighbourhood
of ε = 0, one has ε∂β0G

R(ε, β0(ε)) ≤ 0.

Proof. Property 1 allows us to write GR(ε, β0) = F0(β0) + O(ε), so that by Hypothesis 2 one
has ∂n

β0
GR(0, β∗0 ) 6= 0. Then there exist two half-neighbourhood V−, V+ of β0 = β∗0 such that

GR(0, β0) > 0 for β0 ∈ V+ and GR(0, β0) < 0 for β0 ∈ V−. Hence, by continuity, for all β0 ∈ V+

there exists a neighbourhood U+(β0) of ε = 0 such that GR(ε, β0) > 0 for all ε ∈ U+(β0) and,
for the same reason, for all β0 ∈ V− there exists a neighbourhood U−(β0) of ε = 0 such that
GR(ε, β0) < 0 for all ε ∈ U−(β0). Therefore, again by continuity, there exists a continuous
curve β0 = β0(ε) defined in a suitable neighbourhood U = (−ε, ε) such that β0(0) = β∗0 and
GR(ε, β0(ε)) ≡ 0. Moreover, if ∂n

β0
GR(0, β∗0) > 0, then V+, V− are of the form (β∗0 , v+) and

(v−, β
∗
0 ) respectively, and therefore ∂β0G

R(c, β0(c)) ≥ 0 for all c ∈ U . If on the contrary
∂n

β0
GR(0, β∗0 ) < 0, one has V+ = (v+, β

∗
0) and V− = (β∗0 , v−), and then ∂β0G

R(c, β0(c)) ≤ 0 for
all c ∈ U . Hence the assertion follows in both cases, again by Hypothesis 2.

Remark 4.12. If M satisfies property 1, one has

GR(ε, β0) = [F (ωt, β0 + bR(t; ε, β0))]0,

and hence, if β0 = β0(ε) is the solution referred to in Lemma 4.11, by Lemma 4.3 the function

β(t; ε) = β0(ε) + bR(t; ε, β0(ε)),

solves the equation of motion (1.1).
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Remark 4.13. In Lemma 4.11 we widely used that the variable β0 is one-dimensional. All the
other results in this paper could be quite easily extended to higher dimension.

Remark 4.14. The results of this section are not sufficient to prove Theorem 2.1 because we
have assumed – without proving – that property 1 is satisfied. In Section 5 we shall show that,
thanks to the symmetry property of Lemma 4.6 and the identity of Lemma 4.8, property 1 is
satisfied along a suitable continuous curve β0 = β0(ε) such that GR(ε, β0(ε)) = 0.

5 Convergence of the resummed series: part 2

In this section we shall remove the assumption that the self-energies satisfy property 1 of Def-
inition 4.1 – see Remark 4.14. For all n ≥ 0, define the C∞ non-increasing functions ξn such
that

ξn(x) =

{
1, x ≤ α2

mn+1
(ω)/29,

0, x ≥ α2
mn+1

(ω)/28,
(5.1)

and set ξ−1(x) = 1. Define recursively, for all n ≥ 0, the propagators

Gn(x; ε, β0) = Ψn(x)
(
x2 −Mn−1(x; ε, β0)ξn−1(Mn−1(0; ε, β0))

)−1
, (5.2)

with M−1(x; ε, β0) = ε∂βF0(β0), and for n ≥ 0

Mn(x; ε, β0) = Mn−1(x; ε, β0) + χn(x)Mn(x; ε, β0), (5.3)

where we have set
Mn(x; ε, β0) =

∑

T∈Rn

εk(T )
V T (x; ε, β0), (5.4)

with

V T (x; ε, β0) =




∏

v∈N(T )

Fv(β0)





∏

ℓ∈L(T )

Gnℓ
(ω · νℓ; ε, β0)


 , (5.5)

and x = ω · νℓ′
T
.

Set also M = {Mn(x; ε, β0)}n≥−1, and M
ξ

= {Mn(x; ε, β0)ξn(Mn(0; ε, β0))}n≥−1.

Lemma 5.1. M
ξ

satisfies property 1.

Proof. We shall prove that M
ξ

satisfies property 2-p for all p ≥ 0, by induction on p. Property

2-0 is trivially satisfied for ε small enough. Assume M
ξ

to satisfy property 2-p. Then we can
repeat (almost word by word) the proofs of Lemmas 4.5 and 4.6 so as to obtain

Mp(x; ε, β0) = Mp(0; ε, β0) +O(ε2x2),

hence, by the definition of the function ξp, M
ξ

satisfies property 2-(p + 1), and thence the
assertion follows.

Set

V (θ; ε, β0) =



∏

v∈N(θ)

Fv(β0)





∏

ℓ∈L(θ)

Gnℓ
(ω · νℓ; ε, β0)


 , (5.6)
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and
b
[k]
ν

(ε, β0) =
∑

θ∈ΘR

k,ν

V (θ; ε, β0), (5.7)

and define
b(t, ε, β0) =

∑

k≥1

εkb
[k]

(ε, β0) =
∑

k≥1

εk
∑

ν∈Zd
∗

eiν·ωtb
[k]
ν

(ε, β0). (5.8)

Note that, by (the proof of) Lemma 4.2 the series (5.8) converges.

Define also
M∞(x; ε, β0) := lim

n→∞
Mn(x; ε, β0), (5.9)

and note that, by Lemma 5.1 the limit in (5.9) is well defined and it is C∞ in both ε and β0.
Introduce the C∞ functions G(ε, β0) such that M∞(0; ε, β0) = ε∂β0G(ε, β0) and G(0, β∗0 ) = 0,
and for any such function consider the implicit function equation

G(ε, β0) = 0. (5.10)

Lemma 5.2. The implicit function equation (5.10) admits a solution β0 = β0(ε) such that
β0(0) = β∗0 . Moreover in a suitable half-neighbourhood of ε = 0, one has ε∂β0G(ε, β0(ε)) ≤ 0.

Proof. By construction, all the functions G(ε, β0) are smooth and of the form G(ε, β0) =
F0(β0) +O(ε). Then the result follows straightforward from (the proof of) Lemma 4.11.

Lemma 5.3. Let β0 = β0(ε) be the solution referred to in Lemma 5.2. Then one has
ξn(Mn(0; ε, β0(ε))) ≡ 1 for all n ≥ 0, in a suitable half-neighbourhood of ε = 0.

Proof. If β0 = β0(ε), by Lemma 5.2 in a suitable half-neighbourhood of ε = 0 one has
M∞(0; ε, β0(ε)) = ε∂β0G(ε, β0(ε)) ≤ 0. Hence, as the bound (4.3a) holds also for Mn(x; ε, β0),
one has

Mn(0; ε, β0(ε)) ≤ Mn(0; ε, β0(ε)) −M∞(0; ε, β0(ε))

≤
∑

p≥n+1

|Mp(0; ε, β0(ε))|

≤ 2K1ε
2e−K22mn

≤
α2

mn+1

211
,

(5.11)

so that the assertion follows by the definition of ξn.

Lemma 5.4. For β0 = β0(ε), one has M = M = M
ξ
, and hence one can choose G(ε, β0) such

that GR(ε, β0(ε)) = G(ε, β0(ε)) = 0. In particular β(t; ε) = β0(ε) + bR(t; ε, β0(ε)) defined in
(3.17) solves the equation of motion (1.1).

Proof. It follows from the results above.

6 Proof of Theorem 2.2

If F0(β0) vanishes identically, let us come back to the formal expansion (3.4) of G(ε, β0), where
G(0)(β0) = F0(β0) ≡ 0 by hypothesis.
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Assume first that there exists k0 ∈ N such that all functions G(k)(β0) are identically zero for
0 ≤ k ≤ k0 − 1, while G(k0)(β0) is not identically vanishing. Then we can write

G(ε, β0) = εk0

(
G(k0)(β0) +G(>k0)(ε, β0)

)
, (6.1)

with G(>k0)(ε, β0) = O(ε), and we can solve the equation of motion up to order k0 without fixing
the parameter β0.

Any primitive function g(k0)(β0) of G(k0)(β0) is therefore analytic and periodic: since it is
not identically constant, it admits at least one maximum β̄′0 and one minimum β̄′′0 , so that one
can assume the following

Hypothesis 3. β∗0 is a zero of order n̄ for G(k0)(β0) with n̄ odd, and εk0+1∂n̄
β0
G(k0)(β∗0) < 0.

Indeed, if k0 is even one can choose β∗0 = β̄′0 for ε > 0, and β∗0 = β̄′′0 for ε < 0; if k0 is odd we
have to fix β∗0 = β̄′0: in both cases Hypothesis 3 is satisfied.

Then one can adapt the proof in the previous sections to cover this case. Namely, as the
formal expansion of GR coincide with that of G, one sets

GR(ε, β0) =: εk0G∗(ε, β0),

and hence, if M satisfies property 1,

M∞(0; ε, β0) = εk0+1∂β0G∗(ε, β0). (6.2)

On the other hand, Hypothesis 3 and Lemma 4.11 guarantee the existence of a continuous curve
β0(ε) such that β0(0) = β∗0 , G∗(ε, β0(ε)) ≡ 0 and if k0 is even then εk0+1∂β0G∗(ε, β0(ε)) ≤ 0 in
a suitable half-neighbourhood of ε = 0, while if k0 is odd and β∗0 is a maximum for g(k0), then
∂β0G∗(ε, β0(ε)) ≤ 0 in a whole neighbourhood of ε = 0. Then one can reason as in Section 5 to
obtain the result.

Finally, assume G(k)(β0) ≡ 0 for all k ≥ 0. We shall see that no resummation is necessary
in that case: this situation is reminiscent of the “null-renormalisation” case considered in [16]
when studying the stability problem for Hill’s equation with a quasi-periodic perturbation.

We define trees and clusters according to the definitions previously done. On the other hand,
we slight change the definition of self-energy clusters. Namely, a cluster T on scale n ≥ 0 with
only one entering line ℓ′T and one exiting line ℓT , and with νℓT

= νℓ′
T
, is called a self-energy

cluster if n + 2 ≤ nT := min{nℓT
, nℓ′

T
}. The definition of self-energy cluster does not change

for the self-energy cluster on scale −1. We denote by Θk,ν the set of trees with order k and
momentum ν as in Section 3, and by Sk

n the set of (non-renormalised) self-energy clusters with
order k and scale n; note that self-energy clusters are allowed both in Θk,ν and in Sk

n.

For any subgraph S of any tree θ ∈ Θk,ν, and for any T ∈ Sk
n, define the (non-renormalised)

value of S and T as in (3.14) and (3.13) respectively, but with the (undressed) propagators
defined as

Gnℓ
(ω · νℓ) :=





Ψnℓ
(ω · νℓ)

ω · ν2
ℓ

, nℓ ≥ 0,

1, nℓ = −1.

(6.3)

Note that now the values of trees and self-energy clusters do not depend on ε, and they depend
on β0 only through the node factors. From now on we do not write explicitly the dependence
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on β0 to lighten the notations. For all k ≥ 1, define

b
(k)
ν :=

∑

θ∈Θk,ν

V (θ), (6.4a)

G(k−1) :=
∑

θ∈Θk,0

V (θ), (6.4b)

M (k)
n (x) :=

∑

T∈Sk
n

V T (x), n ≥ −1 (6.4c)

M(k)
n (x) :=

n∑

p=0

M (k)
p (x), n ≥ −1 (6.4d)

M(k)
∞ (x) := lim

n→∞
M(k)

n (x). (6.4e)

The coefficients (6.4a) and (6.4b) coincide with (3.2) and (3.5) respectively as it is easy to check;
in particular, for all k ≥ 1 one has ∑

θ∈Θk,0

V (θ) ≡ 0,

by assumption.

Remark 6.1. One has Sk
−1 = S1

n = ∅ for k ≥ 2 and n ≥ 0. On the other hand |S1
−1| = 1 and

V T (x) = ∂β0F0 ≡ 0 if T is the self-energy cluster in S1
−1; see Remark 3.5. Hence

M (1)
n (x) = M(1)

n (x) = M(1)
∞ (x) = M

(k)
−1 = M

(k)
−1 ≡ 0

for all n ≥ −1, k ≥ 1.

Given a tree θ with V (θ) 6= 0, we shall say that a line ℓ ∈ L(θ) is resonant if it is the exiting
line of a self-energy cluster T , otherwise we shall say that ℓ is non-resonant. For any subgraph
T of any tree θ ∈ Θk,ν, denote by N∗

n(T ) the number of non-resonant lines on scale ≥ n in T ,
and set K(T ) as in (3.21). Then we can prove the analogous of Lemmas 3.9 and 3.10, namely
the following results.

Lemma 6.2. For any θ ∈ Θk,ν such that V (θ) 6= 0 one has N∗
n(θ) ≤ 2−(mn−2)K(θ), for all

n ≥ 0.

Lemma 6.3. For any T ∈ Sk
n such that V T (x) 6= 0 one has N∗

p(T ) ≤ 2−(mp−2)K(T ), for all
0 ≤ p ≤ n.

We omit the proofs of the two results above as it would be essentially a repetition of those
for Lemmas 3.9 and 3.10, respectively. Note that, since self-energy clusters are now allowed, for
the proof of Lemma 6.3 one needs that the momenta of the lines in PT are different from those
of the external lines: this explains the new definition of self-energy clusters.

In light of Lemmas 6.2 and 6.3, although one has the ‘good bound’ 1/x2 for the propagators,
one cannot prove the convergence of the power series (3.1) as done in Lemma 4.2, because we
do not have any bound for the number of resonant lines, which in principle can accumulate ‘too
much’. In fact, we need a gain factor proportional to (ω · νℓ)

2 for each resonant line ℓ.

Lemma 6.4. For all n ≥ 0 and for all k ≥ 2 one has ∂xM
(k)
n (0) = 0, and hence ∂xM

(k)
n (0) = 0

for all k ≥ 2.

19



Proof. As the propagators are trivially even in the momenta, one can repeat (almost word by
word) the proof of Lemma 4.6 so as to obtain the result.

Lemma 6.5. One has M
(k)
∞ (0) ≡ 0 for all k ≥ 2.

Proof. One has (see also Remark 4.9) ∂β0G
(k−1) ≡ M

(k)
∞ (0) so that the assertion follows.

Lemma 6.6. For all k ≥ 1 one has

|M(k)
n (x)|Ψn+2(x) ≤ Ckx2Ψn+2(x), (6.5)

for some positive constant C.

Proof. First of all note that (6.5) is trivially satisfied if Ψn+2(x) = 0. Assume then

αmn+2(ω)

8
< |x| <

αmn+1(ω)

4
. (6.6)

Note also that the bound (6.5) provides the gain factor which is needed for the resonant lines.
This can be seen as follows.

Let θ ∈ Θk,ν and let S be any subgraph of θ. For any ℓ ∈ L(S) set

Aℓ(S, xℓ) :=
( ∏

v∈N(S)
v 6≺ℓ

Fv

)( ∏

ℓ′∈L(S)
ℓ′ 6�ℓ

Gnℓ′
(xℓ′)

)
, (6.7)

and
Bℓ(S) :=

( ∏

v∈N(S)
v≺ℓ

Fv

)( ∏

ℓ′∈L(S)
ℓ′≺ℓ

Gnℓ′
(xℓ′)

)
, (6.8)

where xℓ = ω · νℓ. If ℓ ∈ L(S) is a resonant line exiting a self-energy cluster T ∈ Sk
n (with of

course n ≤ nT − 2 ≤ nℓ − 2) and also ℓ′T ∈ L(S) we can write

V (S) = Aℓ(S, xℓ)Gnℓ
(xℓ)V T (xℓ)Gnℓ′

T

(xℓ)Bℓ′
T
(S), (6.9)

where we have used xℓ = xℓ′
T
. But then, if we sum over all S′ which can be obtained from S by

replacing T with any self-energy cluster T ′ ∈ Sk
n′ for any n′ ≤ nT − 2 we obtain

Aℓ(S, xℓ)Gnℓ
(xℓ)M

(k)
nT −2(xℓ)Gnℓ′

T

(xℓ)Bℓ′
T
(S), (6.10)

and hence, by (6.5), we obtain the gain factor which is needed.

We shall prove the bound (6.11) by induction on k. For k = 1 (6.5) is trivially satisfied.
Assume (6.5) to hold for all k′ < k. By Lemma 6.4 we can write

M(k)
n (x) = M(k)

n (0) + x2

∫ 1

0
dt (1 − t)∂2M(k)

n (tx), (6.11)

where ∂2 denotes the second derivative of M
(k)
n with respect to its argument. Then we shall

prove

|M(k)
n (0)| ≤ Ak

1

α2
mn+2

(ω)

64
, (6.12a)

|∂2M(k)
n (x)| ≤ Ak

2 , (6.12b)
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for suitable constants A1, A2. Note that Lemma 6.3 and the inductive hypothesis yield

|M (k)
n (x)| ≤ Bk

1e
−B22mn

, (6.13a)

|∂2M (k)
n (x)| ≤ Dk

1e
−D22mn

, (6.13b)

for some positive constants B1, B2,D1 and D2. But then

|M(k)
n (0)| = |M(k)

n (0) −M(k)
∞ (0)| ≤

∑

p≥n+1

|M (k)
p (0)| ≤ 2Bk

1 e
−B22mn

, (6.14)

so that (6.12a) follows if A1 is suitably chosen. Moreover

|∂2M(k)
n (x)| ≤

n∑

p=0

|∂2M (k)
p (x)| ≤ DDk

1 (6.15)

for some constant D. Hence the assertion follows.

Remark 6.7. We have obtained the convergence of the power series (3.1) and (3.4) for any β0

and any ε small enough. Hence, in this case, the response solution turns out to be analytic in
both ε, β0.

Remark 6.8. Note that the problem under study has analogies with the problem considered
in [15]. In that case, the resummation adds to the small divisor iω · ν a quantity −ε(ω · ν)2 +
Mn(ω · ν; ε), and one can prove that Mn(x, ε) is smooth in x and it is real at x = 0, so that
the dressed propagator is proportional to 1/(iω · ν − ε(ω · ν)2 + Mn(ω · ν; ε)), and hence can
be bounded essentially as the undressed one. In the present case, both the small divisor (ω ·ν)2

and the correction are real, but they turn out to have the same sign (for a suitable choice of
β∗0), so that once more the dressed propagator can be bounded as the undressed one.

A Proof of Lemma 4.8

First of all, for any renormalised tree θ set

∂v V (θ; ε, β0) := ∂β0Fv(β0)




∏

w∈N(θ)\{v}

Fw(β0)





∏

ℓ∈L(θ)

Gnℓ
(ω · νℓ; ε, β0)


 (A.1)

and

∂ℓ V (θ; ε, β0) := ∂β0Gnℓ
(xℓ; ε, β0)



∏

v∈N(θ)

Fv(β0)






∏

λ∈L(θ)\{ℓ}

Gnλ
(xλ; ε, β0)




= Aℓ(θ, xℓ; ε, β0) ∂β0Gnℓ
(xℓ; ε, β0)Bℓ(θ; ε, β0),

(A.2)

where xℓ := ω · νℓ, ∂β0Gnℓ
(xℓ; ε, β0) is written according to Remark 3.6,

Aℓ(θ, xℓ; ε, β0) :=
( ∏

v∈N(θ)
v 6≺ℓ

Fv(β0)
)( ∏

ℓ′∈L(θ)
ℓ′ 6�ℓ

Gnℓ′
(xℓ′ ; ε, β0)

)
, (A.3)
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and
Bℓ(θ; ε, β0) :=

( ∏

v∈N(θ)
v≺ℓ

Fv(β0)
)( ∏

ℓ′∈L(θ)
ℓ′≺ℓ

Gnℓ′
(xℓ′ ; ε, β0)

)
, (A.4)

see also (6.7) and (6.8). Let us define in the analogous way ∂v V T (x; ε, β0) and ∂ℓ V T (x; ε, β0)
for any self-energy cluster T , and let us write

∂β0 V (θ; ε, β0) = ∂N V (θ; ε, β0) + ∂L V (θ; ε, β0), (A.5)

where
∂N V (θ; ε, β0) :=

∑

v∈N(θ)

∂v V (θ; ε, β0), (A.6)

and
∂L V (θ; ε, β0) :=

∑

ℓ∈L(θ)

∂ℓ V (θ; ε, β0). (A.7)

Let us also write
∂β0 V T (x; ε, β0) = ∂N V T (x; ε, β0) + ∂L V T (x; ε, β0), (A.8)

for any T ∈ Rn, n ≥ 0, where the derivatives ∂N and ∂L are defined analogously with the
previous cases (A.6) and (A.7), with N(T ) and L(T ) replacing N(θ) and L(θ), respectively, so
that we can split

∂β0Mn(x; ε, β0) = ∂NMn(x; ε, β0) + ∂LMn(x; ε, β0),

∂β0Mn(x; ε, β0) = ∂NMn(x; ε, β0) + ∂LMn(x; ε, β0),
(A.9)

again with obvious meaning of the symbols.

Remark A.1. We can interpret the derivative ∂v as all the possible ways to attach an extra
line (carrying a momentum 0) to the node v, so that

∑

k≥0

εk+1
∑

θ∈ΘR

k+1,0

∂N V (θ; ε, β0),

produces contributions to M∞(0; ε, β0).

Given any θ ∈ ΘR
k,0 we have to study the derivative (A.5). The terms (A.6) produce imme-

diately contributions to M∞(0; ε, β0) by Remark A.1. Thus, we have to study the derivatives
∂ℓ V (θ; ε, β0) appearing in the sum (A.7). Here and henceforth, we shall not write any longer
explicitly the dependence on ε and β0 of both propagators and self-energies, in order not to
overwhelm the notation.

For any θ ∈ ΘR
k,0 such that V (θ; ε, β0) 6= 0 and for any line ℓ ∈ L(θ), either there is only one

scale n such that Ψn(xℓ) 6= 0 (and in that case Ψn(xℓ) = 1 and Ψn′(xℓ) = 0 for all n′ 6= n) or
there exists only one n ≥ 0 such that Ψn(xℓ)Ψn+1(xℓ) 6= 0.

1. If Ψn(xℓ) = 1 one has

∂ℓ V (θ; ε, β0) = Aℓ(θ, xℓ)
Ψn(xℓ)

x2
ℓ −Mn−1(xℓ)

∂β0Mn−1(xℓ)
1

x2
ℓ −Mn−1(xℓ)

Bℓ(θ)

= Aℓ(θ, xℓ)
Ψn(xℓ)

x2
ℓ −Mn−1(xℓ)

∂β0Mn−1(xℓ)
Ψn(xℓ)

x2
ℓ −Mn−1(xℓ)

Bℓ(θ)

= Aℓ(θ, xℓ)Gn(xℓ)∂β0Mn−1(xℓ)Gn(xℓ)Bℓ(θ),

(A.10)

where (here and henceforth) we shorten Aℓ(θ, xℓ) = Aℓ(θ, xℓ; ε, β0) and Bℓ(θ) = Bℓ(θ; ε, β0).
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Remark A.2. Note that if we split ∂β0 = ∂N + ∂L in (A.10), the term with ∂NMn−1(xℓ) is a
contribution to M∞(0).

If there is only one n ≥ 0 such that Ψn(xℓ)Ψn+1(xℓ) 6= 0, then Ψn(xℓ) + Ψn+1(xℓ) = 1
and χq(xℓ) = 1 for all q = −1, . . . , n − 1, so that ψn+1(xℓ) = 1 and hence Ψn+1(xℓ) = χn(xℓ).
Moreover it can happen only (see Remark 3.7) nℓ = n or nℓ = n+ 1.

2. Consider first the case nℓ = n+ 1. One has

∂ℓ V (θ; ε, β0) = Aℓ(θ, xℓ)Gn+1(xℓ)∂β0Mn(xℓ)
1

x2
ℓ −Mn(xℓ)

Bℓ(θ)

= Aℓ(θ, xℓ)Gn+1(xℓ)∂β0Mn−1(xℓ)
Ψn(xℓ) + Ψn+1(xℓ)

x2
ℓ −Mn(xℓ)

Bℓ(θ)

+ Aℓ(θ, xℓ)Gn+1(xℓ)∂β0Mn(xℓ)
χn(xℓ)

x2
ℓ −Mn(xℓ)

Bℓ(θ)

= Aℓ(θ, xℓ)Gn+1(xℓ)




n∑

q=−1

∂β0Mq(xℓ)


Gn+1(xℓ)Bℓ(θ)

+ Aℓ(θ, xℓ)Gn+1(xℓ)




n−1∑

q=−1

∂β0Mq(xℓ)


Gn(xℓ)Bℓ(θ)

+ Aℓ(θ, xℓ)Gn+1(xℓ)




n−1∑

q=−1

∂β0Mq(xℓ)


Gn(xℓ)Mn(xℓ)Gn+1(xℓ)Bℓ(θ).

(A.11)

We can represent graphically the three contributions in (A.11) as in Figure 5: we represent the
derivative ∂β0 as an arrow pointing toward the graphical representation of the differentiated
quantity; see also Figures 7, 10 and 12.

n+1
≤ n

n+1
+

n+1
≤ n−1

n

+
n+1

≤ n−1
n

n
n+1

Figure 5: Graphical representation of the derivative ∂ℓ V (θ; ε, β0) according to (A.11).

Remark A.3. Note that the Mn(xℓ) appearing in the latter line of (A.11) has to be interpreted
(see Remark 3.7) as ∑

T∈LFn

εk(T )
V T (xℓ; ε, β0).

Note also that, again, if we split ∂β0 = ∂N + ∂L in (A.11), all the terms with ∂NMq(xℓ) are
contributions to M∞(0).
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Now consider the case nℓ = n.

3. If ℓ is not the exiting line of a left-fake cluster, set θ̄ = θ; otherwise, if ℓ is the exiting
line of a left-fake cluster T , define – if possible – θ̄ as the renormalised tree obtained from θ
by removing T and ℓ′T . In both cases, define – if possible – τ1(θ̄, ℓ) as the set constituted by
all the renormalised trees θ′ obtained from θ̄ by inserting a left-fake cluster, together with its
entering line, between ℓ and the node v which ℓ exits; see Figure 6. Here and henceforth, if S
is a subgraph with only one entering line ℓ′S = ℓv and one exiting line ℓS and we “remove” S
together with ℓ′S , we mean that we also reattach the line ℓS to the node v.

θ̄ =
n

ℓ
θ′ =

n

ℓ
n

n+1

Figure 6: The renormalised tree θ̄ and the renormalised trees θ′ of the set τ1(θ̄, ℓ) associated with θ̄.

Remark A.4. The construction of the set τ1(θ̄, ℓ) could be impossible if the removal or the
insertion of a left-fake cluster T , together with its entering line ℓ′T , produce a self-energy cluster.
We shall see later how to deal with these cases.

Then one has

∂ℓ V (θ̄; ε, β0) + ∂ℓ

∑

θ′∈τ1(θ̄,ℓ)

V (θ′; ε, β0) = Aℓ(θ̄, xℓ) ∂β0Gn(xℓ) (1 +Mn(xℓ)Gn+1(xℓ)) Bℓ(θ̄), (A.12)

where
∂β0Gn(xℓ) (1 +Mn(xℓ)Gn+1(xℓ))

= Gn(xℓ)∂β0Mn−1(xℓ)Gn(xℓ)

+ Gn(xℓ)∂β0Mn−1(xℓ)
Ψn+1(xℓ)

x2
ℓ −Mn−1(xℓ)

+ Gn(xℓ)∂β0Mn−1(xℓ)Gn(xℓ)Mn(xℓ)Gn+1(xℓ)

+ Gn(xℓ)∂β0Mn−1(xℓ)
Ψn+1(xℓ)

x2
ℓ −Mn−1(xℓ)

Mn(xℓ)Gn+1(xℓ)

= Gn(xℓ)∂β0Mn−1(xℓ)Gn(xℓ) + Gn(xℓ)∂β0Mn−1(xℓ)Gn+1(xℓ)

− Gn(xℓ)∂β0Mn−1(xℓ)
χn(xℓ)

x2
ℓ −Mn−1(xℓ)

Mn(xℓ)Gn+1(xℓ)

+ Gn(xℓ)∂β0Mn−1(xℓ)Gn(xℓ)Mn(xℓ)Gn+1(xℓ)

+ Gn(xℓ)∂β0Mn−1(xℓ)
Ψn+1(xℓ)

x2
ℓ −Mn−1(xℓ)

Mn(xℓ)Gn+1(xℓ)

= Gn(xℓ)∂β0Mn−1(xℓ)Gn(xℓ) + Gn(xℓ)∂β0Mn−1(xℓ)Gn+1(xℓ)

+ Gn(xℓ)∂β0Mn−1(xℓ)Gn(xℓ)Mn(xℓ)Gn+1(xℓ),

(A.13)

so that also in this case, if we split ∂β0 = ∂N +∂L, all the terms with ∂NMn−1 are contributions
to M∞(0) – see Remark A.2. Again, we can represent graphically the three contributions
obtained inserting (A.13) in (A.12): see Figure 7.

4. Assume now that ℓ is not the exiting line of a left-fake cluster, and the insertion of a left-fake
cluster, together with its entering line, produces a self-energy cluster. Note that this can happen
only if ℓ is the entering line of a renormalised right-fake cluster T . Let ℓ be the exiting line (on
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n
≤ n− 1

n
+

n
≤ n−1

n+1

+
n

≤ n−1
n

n
n+1

Figure 7: Graphical representation of the three contributions in the last two lines of (A.13).

scale n+ 1) of the renormalised right-fake cluster T , call θ the renormalised tree obtained from
θ by removing T and ℓ and call τ2(θ, ℓ) the set of renormalised trees θ′ obtained from θ by
inserting a right-fake cluster, together with its entering line, before ℓ; see Figure 8.

θ′ =
n+1

ℓ
n

n

ℓ
θ =

ℓ

n+1

Figure 8: The trees θ′ of the set τ2(θ, ℓ) obtained from θ when ℓ ∈ L(θ) enters a right-fake cluster.

By construction one has

V (θ; ε, β0) = Aℓ(θ, xℓ)Gn+1(xℓ)Bℓ(θ)∑

θ′∈τ2(θ,ℓ)

V (θ′; ε, β0) = Aℓ(θ, xℓ)Gn+1(xℓ)Mn(xℓ)Gn(xℓ)Bℓ(θ),

where we have used that xℓ = xℓ̄.

Consider the contribution to ∂ℓ V (θ; ε, β0) – see (A.11) – given by

Aℓ(θ, xℓ)Gn+1(xℓ)∂LMn(xℓ)Gn+1(xℓ)Bℓ(θ). (A.14)

Call Rn(T ) the subset of Rn such that if T ′ ∈ Rn(T ) the exiting line ℓT ′ exits also the renor-
malised right-fake cluster T ; note that the entering line ℓ of T must be also the exiting line of
some renormalised left-fake cluster T ′′ contained in T ′; see Figure 9.

T T ′′

T ′

n+1 n
n

n n+1

ℓℓT ′ ℓ′T ′

Figure 9: A self-energy cluster T ′ ∈ Rn(T ).

Define
Mn(T, xℓ; ε, βo) =

∑

T ′∈Rn(T )

V T ′(xℓ; ε, β0). (A.15)
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Hence one has

∂ℓ

∑

θ′∈τ2(θ,ℓ)

V (θ′; ε, β0) + Aℓ(θ, xℓ)Gn+1(xℓ) ∂ℓ

∑

T∈RFn

Mn(T, xℓ)Gn+1(xℓ)Bℓ(θ)

= Aℓ(θ, xℓ)Gn+1(xℓ)Mn(xℓ)∂β0Gn(xℓ) (1 +Mn(xℓ)Gn+1(xℓ))Bℓ(θ),

(A.16)

where we have used again that xℓ = xℓ. Thus, one can reason as in (A.13), so as to obtain the
sum of three contributions, as represented in Figure 10.

n+1
n

n
≤n−1

n
+

n+1
n

n
≤ n−1

n+1

+
n+1

n
n

≤ n−1
n

n
n+1

Figure 10: Graphical representation of the three contributions arising from (A.16).

5. Finally, consider the case in which ℓ is the exiting line of a renormalised left-fake cluster, T0

and the removal of T0 and ℓ′T0
creates a self-energy cluster.

Set (for a reason that will become clear later) θ0 = θ and ℓ0 = ℓ. Then there is a maximal
m ≥ 1 such that there are 2m lines ℓ1, . . . , ℓm and ℓ′1, . . . ℓ

′
m, with the following properties:

(i) ℓi ∈ P(ℓθ0 , ℓi−1), for i = 1, . . . ,m,
(ii) nℓi

= n + i < max{p : Ψp(xℓi
) 6= 0} = n + i + 1, for i = 0, . . . ,m − 1, while nm := nℓm

=
n+m+ σ, with σ ∈ {0, 1},
(iii) νℓi

6= νℓi−1
and the lines preceding ℓi but not ℓi−1 are on scale ≤ n+ i− 1, for i = 1, . . . ,m,

(iv) νℓ′i
= νℓi

, for i = 1, . . . ,m,
(v) if m ≥ 2, ℓ′i is the exiting line of a left-fake cluster Ti, for i = 1, . . . ,m− 1,
(vi) ℓ′i ≺ ℓ′Ti−1

and all the lines preceding ℓ′Ti−1
but not ℓ′i are on scale ≤ n+i−1, for i = 1, . . . ,m,

(vii) n′m := nℓ′m = n+m+ σ′ with σ′ ∈ {0, 1}.

Note that one cannot have σ = σ′ = 1, otherwise the subgraph between ℓm and ℓ′m would
be a self-energy cluster. Note also that (ii), (iv) and (v) imply nℓ′i

= n+ i for i = 1, . . . ,m− 1 if
m ≥ 2. Call Si the subgraph between ℓi+1 and ℓi, and S′

i the cluster between ℓ′Ti
and ℓ′i+1 for all

i = 0, . . . ,m − 1. For i = 1, . . . ,m, call θi the renormalised tree obtained from θ0 by removing
everything between ℓi and the part of θ0 preceding ℓ′i, and note that if m ≥ 2, properties (i)–(vii)
hold for θi but with m− i instead of m, for all i = 1, . . . ,m− 1.

For i = 1, . . . ,m, call Ri the self-energy cluster obtained from the subgraph of θi−1 between
ℓi and ℓ′i, by removing the left-fake cluster Ti−1 together with ℓ′Ti

. Note that L(Ri) = L(Si−1)∪
{ℓi−1} ∪ L(S′

i−1) and N(Ri) = N(Si−1) ∪N(S′
i−1); see Figure 11.

For i = 0, . . . ,m − 1, given ℓ′, ℓ ∈ L(θi), with ℓ′ ≺ ℓ, call P(i)(ℓ, ℓ′) the path of lines in
θi connecting ℓ′ to ℓ (hence P(i)(ℓ, ℓ′) = P(ℓ, ℓ′) ∩ L(θi)). For any i = 0, . . . ,m − 1 and any
ℓ ∈ P(i)(ℓi, ℓ

′
m), let τ3(θi, ℓ) be the set of all renormalised trees which can be obtained from θi

by replacing each left-fake cluster preceding ℓ but not ℓ′m with all possible left-fake clusters. Set
also τ3(θm−1, ℓ

′
m) = θm−1.
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θ0 =
n+1

ℓ1
≤ n

S0

n

ℓ0
n

T0

n+1

ℓ′T0

≤ n

S′
0

ℓ′1

n+1

θ1 =
n+1

ℓ1
R1

n

ℓ0
≤ n ≤ n

S′
0S0

Figure 11: The renormalised trees θ0 and θ1 and the self-energy cluster R1 in case 5 with m = 1 and
σ = σ′ = 0. Note that the set S′

0
is a cluster, but not a self-energy cluster.

Note that
Aℓm

(θm, xℓm
)Gnm(xℓm

)V (Sm−1) = Aℓm−1(θm−1, xℓm−1),

V (S′
m−1)Gn′

m
(xℓm

)Bℓm
(θm) = Bℓ′

Tm−1
(θm−1),

(A.17)

and one among cases 1–4 holds for ℓm ∈ L(θm) so that we can consider the contribution to
∂ℓm

V (θm; ε, β0) (together with other contributions as in 3 and 4 if necessary) given by – see
(A.10), (A.11) and (A.13) –

Aℓm
(θm, xℓm

)Gnm(xℓm
)∂ℓm−1 V Rm(xℓm

)Gn′
m

(xℓm
)Bℓm

(θm).

Then one has

Aℓm
(θm, xℓm

)Gnm(xℓm
)∂ℓm−1 V Rm(xℓm

)Gn′
m

(xℓm
)Bℓm

(θm) + ∂ℓm−1

∑

θ′∈τ3(θm−1,ℓm−1)

V (θ′; ε, β0)

= Aℓm−1(θm−1, xℓm−1)∂β0Gn+m−1(xℓm−1)
(
1 +Mn+m−1(xℓm−1)Gn+m(xℓm−1)

)

× Bℓ′
Tm−1

(θm−1),

(A.18)

and hence we obtain, reasoning as in (A.13),

Aℓm−1(θm−1, xℓm−1)Gn+m−1(xℓm−1)∂β0Mn+m−2(xℓm−1)Gn+m−1(xℓm−1)Bℓ′
Tm−1

(θm−1)

+ Aℓm−1(θm−1, xℓm−1)Gn+m−1(xℓm−1)∂β0Mn+m−2(xℓm−1)Gn+m(xℓm−1)

× Bℓ′
Tm−1

(θm−1)

+ Aℓm−1(θm−1, xℓm−1)Gn+m−1(xℓm−1)∂β0Mn+m−2(xℓm−1)Gn+m−1(xℓm−1)

×Mn+m−1(xℓm−1)Gn+m(xℓm−1)Bℓ′
Tm−1

(θm−1).

(A.19)

Then, for i = m− 1, . . . , 1 we recursively reason as follows. Set

Bℓ′
Ti

(τ3(θi, ℓ
′
i+1)) :=

∑

θ′∈τ3(θi,ℓ′i+1)

Bℓ′
Ti

(θ′)
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and note that

Aℓi
(θi, xℓi

)Gn+i(xℓi
)V (Si−1) = Aℓi−1

(θi−1, xℓi−1
),

V (S′
i−1)Gn+i(xℓi

)Mn+i(xℓi
)Gn+i+1(xℓi

)Bℓ′
Ti

(τ3(θi, ℓ
′
i+1)) = Bℓ′

Ti−1
(τ3(θi−1, ℓ

′
i)).

(A.20)

Consider the contribution

Aℓi
(θi, xℓi

)Gn+i(xℓi
)∂ℓi−1

V Ri
(xℓi

)Gn+i(xℓi
)Mn+i(xℓi

)Gn+i+1(xℓi
)Bℓ′

Ti

(τ3(θi, ℓ
′
i+1)) (A.21)

obtained at the (i+ 1)-th step of the recursion. By (A.20) one has (see Figure 12)

Aℓi
(θi, xℓi

)Gn+i(xℓi
)∂ℓi−1

V Ri
(xℓi

)Gn+i(xℓi
)Mn+i(xℓi

)Gn+i+1(xℓi
)Bℓ′

Ti

(τ3(θi, ℓ
′
i+1))

+ ∂ℓi−1

∑

θ′∈τ3(θi−1,ℓi−1)

V (θ′; ε, β0) = Aℓi−1
(θi−1, xℓi−1

) ∂β0Gn+i−1(xℓi−1
)

×
(
1 +Mn+i−1(xℓi−1

)Gn+i(xℓi−1
)
)
Bℓ′

Ti−1
(τ3(θi−1, ℓ

′
i)),

(A.22)

which produces, as in (A.19), the contribution

Aℓi−1
(θi−1, xℓi−1

)Gn+i−1(xℓi−1
)∂ℓi−2

V Ri−1(xℓi−1
)Gn+i−1(xℓi−1

)

×Mn+i−1(xℓi−1
)Gn+i(xℓi−1

)Bℓ′
Ti−1

(τ3(θi−1, ℓ
′
i)).

(A.23)

n+i

ℓi
≤n+i−1

Si−1

Ri

ℓi−1
≤n+i−1

S′
i−1

ℓ′i

n+i n+i n+i+1

ℓ′
Ti

+

n+i

ℓi
≤n+i−1

Si−1

ℓi−1
n+i−1

n+i

ℓ′Ti−1

≤n+i−1

S′
i−1

n+i

ℓ′i
n+ i n+i+1

ℓ′
Ti

Figure 12: Graphical representation of the left hand side of (A.22).

Hence we can proceed recursively from θm up to θ0, until we obtain

Aℓ0(θ0, xℓ0)Gn(xℓ0)∂β0Mn−1(xℓ0)Gn(xℓ0)Bℓ′
T0

(τ3(θ0, ℓ
′
1))

+ Aℓ0(θ0, xℓ0)Gn(xℓ0)∂β0Mn−1(xℓ−0)Gn+1(xℓ0)Bℓ′
T0

(τ3(θ0, ℓ
′
1))

+ Aℓ0(θ0, xℓ0)Gn(xℓ0)∂β0Mn−1(xℓ0)Gn(xℓ0)Mn(xℓ0)Gn+1(xℓ0)Bℓ′
T0

(τ3(θ0, ℓ
′
1)).

(A.24)

Once again, if we split ∂β0 = ∂N + ∂L, all the terms with ∂NMn−1 are contributions to M∞(0).

6. We are left with the derivatives ∂LMq(x; ε, β0), q ≤ n, when the differentiated propagator
is not one of those used along the cases 4 or 5; see for instance (A.16), (A.18) and (A.22).
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One can reason as in the case ∂L V (θ; ε, β0), by studying the derivatives ∂ℓ V T (xℓ; ε, β0) and
proceed iteratively along the lines of cases 1 to 5 above, until only lines on scales 0 are left. In
that case the derivatives ∂β0G0(xℓ; ε, β0) produce derivatives ∂β0M−1(x; ε, β0) = ε∂2

β0
F0(β0) (see

Remarks 3.5 and 3.6). Therefore, for n = −1, in the splitting (A.9), there are no terms with the
derivatives ∂ℓ, and the derivatives ∂v can be interpreted as said in Remark A.1. It is also easy
to realize that, by construction, each contribution to M∞(0; ε, β0) appears as one term among
those considered in the discussion above. Hence the assertion follows.

Remark A.5. If we used a sharp scale decomposition instead of the C∞ one, the proof above
would be much more easier. More precisely, if we defined the (discontinuous) function

χ(x) :=

{
1, |x| ≤ 1,

0, |x| > 1,

and consequently changed the definitions of ψ, and χn, ψn and Ψn for n ≥ 0, we could reduce
the proof of Lemma 4.8 to (iterations of) case 1. Moreover in such a case, setting

GR
n (ε, β0) =

∑

k≥0

εkG[k]
n (ε, β0), G[k]

n (ε, β0) =
∑

θ∈ΘR

k+1,0,n

V (θ, ε, β0),

with ΘR
k,ν,n = {θ ∈ ΘR

k,ν,n : nℓ ≤ n for all ℓ ∈ L(θ)}, we would obtain the stronger identity

Mn(0; ε, β0) = ε∂β0G
R
n (ε, β0),

for all n ≥ −1. On the other hand, the bound (4.3b) in Lemma 4.5 would be no longer true
because of the derivative ∂xΨn, so that further work would be however needed; see for instance
[8] where a sharp scale decomposition is used for the standard KAM theorem and ω satisfying
the standard Diophantine condition.
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[2] J. Bricmont, K. Gawȩdzki, A. Kupiainen, KAM theorem and quantum field theory, Comm. Math.
Phys. 201 (1999), no. 3, 699–727.

[3] H.W. Broer, H. Hanssmann, J. You, Bifurcations of normally parabolic tori in Hamiltonian systems.,
Nonlinearity 18 (2005), no. 4, 1735–1769.

[4] Ch.-Q. Cheng, Birkhoff-Kolmogorov-Arnold-Moser tori in convex Hamiltonian systems, Comm.
Math. Phys. 177 (1996), no. 3, 529–559.

[5] S.-N. Chow, J.K. Hale, Methods of bifurcation theory, Grundlehren der Mathematischen Wis-
senschaften 251, Springer-Verlag, New York-Berlin, 1982.

[6] E. De Simone, A. Kupiainen, The KAM theorem and renormalization group, Ergodic Theory Dynam.
Systems 29 (2009), no. 2, 419–431.

[7] L. Corsi, G. Gentile, Melnikov theory to all orders and Puiseux series for subharmonic solutions, J.
Math. Phys. 49 (2008), no. 11, 112701, 29 pp.

29



[8] G. Gallavotti, F. Bonetto, G. Gentile, Aspects of ergodic, qualitative and statistical theory of motion,
Texts and Monographs in Physics, Springer-Verlag, Berlin, 2004.

[9] G. Gallavotti, G. Gentile, Hyperbolic low-dimensional invariant tori and summation of divergent
series, Comm. Math. Phys. 227 (2002), no. 3, 421–460.

[10] G. Gallavotti, G. Gentile, A. Giuliani Fractional Lindstedt series, J. Math. Phys. 47 (2006), no. 1,
012702, 33 pp.

[11] G. Gallavotti, G. Gentile, V. Mastropietro, Field theory and KAM tori., Math. Phys. Electron. J. 1

(1995), Paper 5, 13 pp. (electronic).

[12] G. Gentile, Quasi-periodic solutions for two level systems, Comm. Math. Phys. 242 (2003), no. 1-2,
221–250.

[13] G. Gentile, Resummation of perturbation series and reducibility for Bryuno skew-product flows, J.
Stat. Phys. 125 (2006), no. 2, 321–361.

[14] G. Gentile, Degenerate lower-dimensional tori under the Bryuno condition, Ergodic Theory Dynam.
Systems 27 (2007), no. 2, 427–457.

[15] G. Gentile, Quasi-periodic motions in strongly dissipative forced systems, Ergodic Theory Dynam.
Systems, 30 (2010), no. 5, 1457-1469.

[16] G. Gentile, D.A. Cortes, J.C.A. Barata Stability for quasi-periodically perturbed Hill’s equations,
Comm. Math. Phys. 260 (2005), no. 2, 403–443.

[17] G. Gentile, G. Gallavotti Degenerate elliptic resonances, Comm. Math. Phys. 257 (2005), no. 2,
319–362.

[18] J. Guckenheimer, Ph. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector
fields, Applied Mathematical Sciences 42, Springer-Verlag, New York, 1990.

[19] V. Mastropietro, Non-perturbative renormalization, World Scientific Publishing, Hackensack, NJ,
2008.

[20] Zh.F. Zhang, B.Y. Li, High order Melnikov functions and the problem of uniformity in global bifur-
cation, Ann. Mat. Pura Appl. (4) 161 (1992), 181–212.

30


