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Abstract

Bootstrap percolation models have been extensively studied during the two past
decades. In this article, we study an anisotropic bootstrap percolation model. We
prove that it exhibits a sharp metastability threshold. This is the first mathematical
proof of a sharp threshold for an anisotropic bootstrap percolation model.

1 Introduction

1.1 Statement of the theorem

Bootstrap percolation models are interesting models for crack formation, clustering phe-
nomena, metastability and dynamics of glasses. They also have been used to describe
the phenomenon of jamming, see e.g. [Ton06], and they are a major ingredient in
the study of so-called Kinetically Constrained Models, see e.g. [GST09]. Other ap-
plications are in the theory of sandpiles [FLP10], and in the theory of neural nets
[ET09, Am10]. Bootstrap percolation was introduced in [CLR79], and has been an object
of study for both physicists and mathematicians. For some of the earlier results see e.g.
[ADE90, AL88, CC99, CM02, dGLD09, Ent87, Sch90, Sch92].

The simplest model is the so-called simple bootstrap percolation on Z2. At time 0,
sites of Z2 are occupied with probability p ∈ (0, 1) independently of each other. At each
time increment, sites become occupied if at least two of their nearest neighbors are oc-
cupied. The behavior of this model is now well-understood: the model exhibits a sharp
metastability threshold. Nevertheless, slight modifications of the update rule provide
challenging problems and the sharp metastability threshold remains open in general. A
few models have been solved, including simple bootstrap percolation and the modified
bootstrap percolation in every dimension, and so-called balanced dynamics in two di-
mensions [Hol03, Hol06, BBM09, BBD-CM10]. The case of anisotropic dynamics (even
in two dimensions) has so far eluded mathematicians, and even the scale at which the
metastability threshold occurs is not clear.

In this article, we provide the first sharp metastability threshold for an anisotropic
model. We consider the following model, first introduced in [GG96]. The neighborhood
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of a point (m,n) is the set

{(m+ 2, n), (m+ 1, n), (m,n+ 1), (m− 1, n), (m− 2, n), (m,n− 1)}.

At time 0, sites are occupied with probability p. At each time step, sites that are occupied
remain occupied, while sites that are not occupied become occupied if and only if three of
more sites in their neighborhood are occupied. We are interested in the behavior (when
the probability p goes to 0) of the (random) time T at which 0 becomes occupied. For
earlier studies of two-dimensional anisotropic models, whose results, however, fall short of
providing sharp results, we refer to [ADE90, Du89, EH07, GG96, GG99, Mou93, Mou95,
Sch90a]

Theorem 1.1 Consider the dynamics described above, then

1

p

(
log

1

p

)2

log T
(P )−→ 1

12
when p→ 0.

This model and the simple bootstrap percolation have very different behavior, as
illustrated in the following pictures.

Figure 1: Left: An example of a simple bootstrap percolation’s growth (red sites are the
oldest, blue the youngest). Right: An example of the model’s growth.

Combined with techniques of [D-CHol11] we believe that our proof paves the way to-
wards a better understanding of general bootstrap percolation models. More directly, the
following models fall immediately into the scope of the proof. Consider the neighborhood
Nk defined by

{(m+ k, n), .., (m+ 1, n), (m,n+ 1), (m− 1, n), .., (m− k, n), (m,n− 1)}

and assume that the site (m,n) becomes occupied as soon as Nk contains k + 1 occupied
sites. Then

1

p
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log

1

p

)2

log T
(P )−→ 1

4(k + 1)
when p→ 0.
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1.2 Outline of the proof

The time at which the origin becomes occupied is determined by the typical distance at
which a ’critical droplet’ occurs. Furthermore, the typical distance of this critical droplet
is connected to the probability for a critical droplet to be created. Such a droplet then
keeps growing until it covers the whole lattice with high probability. In our case, the
droplet will be created at a distance of order exp 1

6p
(log 1

p
)2. Determining this distance

boils down to estimating how a rectangle, consisting of a occupied double vertical column
of length ε1

p
log 1

p
, grows to a rectangle of size 1/p2 by 1

3p
log 1

p
.

Obtaining an upper bound is usually the easiest part: one must identify ’an almost
optimal’ way to create the critical droplet. This way follows a two-stage procedure. First,
a vertical double line of height ε

p
log 1

p
is created. Then, the rectangle grows to size 1/p2

by 1
3p

log 1
p
. We mention that this step is quite different from the isotropic case. Indeed,

after starting as a vertical double line, the droplet grows in a logarithmic manner, that is,
it grows logarithmically faster in the horizontal than in the vertical direction. On the one
hand, the computation of the integral determining the constant of the threshold is easier
than in [Hol03]. On the other hand, the growth mechanism is more intricate.

The upper bound is much harder: one must prove that our ’optimal’ way of spanning
a rectangle of size 1/p2 by 1

3p
log 1

p
is indeed the best one. We combine existing technology

with new arguments. The proof is based on Holroyd’s notion of hierarchy applied to
k-crossable rectangles containing internally filled sets (i.e. sets such that all their sites
become eventually occupied when running the dynamics restricted to the sets). A large
rectangle will be typically created by generations of smaller rectangles. These generations
of smaller rectangles are organized in a tree structure which forms the hierarchy. In our
context, the original notion must be altered in many different ways (see the proof).

For instance, one key argument in Holroyd’s paper is the fact that hierarchies with
many so-called ’seeds’ are unlikely to happen, implying that hierarchies corresponding to
one small seed were the most likely to happen. In our model, this is no longer true. There
can be many seeds, and a new comparison scheme is needed. A second difficulty comes
from the fact that there are stable sets that are not rectangles. We must use the notion
of being k-crossed (see Section 3). Even though it is is much easier to be k-crossed than
to be internally filled, we can choose the free parameter k to be large enough in order
to get sharp enough estimates. We would like to mention a third difficulty. Proposition
21 of [Hol03] estimates the probability that a rectangle R′ becomes full knowing that a
slightly smaller rectangle R is full. In our case, we need an analogous of this proposition.
However, the proof of Holroyd’s Proposition uses the fact that the so-called ’corner region’
between the two rectangles is unimportant. In our case, this region matters and we need
to be more careful about the statement and the proof of the corresponding proposition.

The upper bound together with the lower bound result in the sharp threshold. In a
similar way as for ordinary bootstrap percolation, Holroyd’s approach refined the analysis
of Aizenman and Lebowitz, here we refine the results of [GG96] and [EH07]. We find
that the typical growth follows different ’strategies’ depending on which stage of growth
we are in. The logarithmic growth into a critical rectangle is the main new qualitative
insight of the paper. In [EH07], long vertical double lines were considered as critical
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droplets (before, Schonmann had identified a single vertical line for the Duarte model as
a possible critical droplet). The fact that these are not the optimal ones is the main new
step towards the identification of the threshold, apart from the technical ways of proving
it. Although the growth pattern is thus somewhat more complex, the computation of the
threshold can still be performed.

1.3 Notations

Let Pp be the percolation measure with p > 0. The initial (random) set of occupied sites
will always be denoted by K. We will denote by 〈K〉 the final configuration spanned by a
set K. A set S (for instance a line) is said to be occupied if it contains one occupied site
(i.e. S ∩K 6= ∅). It is full if all its sites are occupied (i.e. S ⊂ K). A set S is internally
filled if S ⊂ 〈K ∩ S〉. Note that this notation is non-standard and corresponds to being
internally spanned in the literature.

The neighborhood of 0 will be denoted by N . Observe that the neighborhood of (m,n)
is (m,n) +N .

A rectangle [a, b] × [c, d] is the set of sites in Z2 included in the euclidean rectangle
[a, b] × [c, d]. Note that a, b, c and d do not have to be integers. For a rectangle R =
[a, b] × [c, d], we will usually denote by (x(R), y(R)) = (b − a, d − c) the dimensions of
the rectangle. When there is no possible confusion, we simply note (x, y). A line of
the rectangle R is a set {(m,n) ∈ R : n = n0} for some n0 fixed. A column is a set
{(m,n) ∈ R : m = m0} for some m0 fixed.

1.4 Probabilistic tools

There is a natural notion of increasing events in {0, 1}Z2 : an event A is increasing if for
any pair of configurations ω ≤ ω′ – every occupied site in ω is occupied in ω′ – such that
ω is in A, then ω′ is in A. Two important inequalities related to increasing events will be
used in the proof: the first one is the so-called FKG inequality. Let two increasing events
A and B, then:

Pp(A ∩B) ≥ Pp(A)Pp(B).

The second is the BK inequality. We say that two events occur disjointly if for any
ω ∈ A ∩ B, it is possible to find a set F so that ω|F ∈ A and ω|F c ∈ B (the restriction
means that the occupied sites of ω|F are exactly the occupied sites of ω which are in F ).
We denote the disjoint occurrence by A ◦B (we denote A1 ◦ .. ◦An for n events occurring
disjointly). Then:

Pp(A ◦B) ≤ Pp(A)Pp(B).

We refer the reader to the book [Gri99] for proofs and a complete study of percolation
models.

We will also use the following easy instance of Chebyshev’s inequality. For ε > 0,
there exists p0 > 0 such that for p < p0 and n ≥ 1, the probability of a binomial variable
with parameters n and p being larger than εn is smaller than e−n.
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2 Upper bound of Theorem 1.1
A rectangle R is horizontally traversable if in each triplet of neighboring columns, there
exists an occupied site. A rectangle is north traversable if for any line, there exists a site
(m,n) such that {(m + 1, n), (m + 2, n), (m,n + 1), (m − 1, n), (m − 2, n)} contains two
occupied sites. It is south traversable if for any line, there exists a site (m,n) such that
{(m− 1, n), (m− 2, n), (m,n− 1), (m+ 1, n), (m+ 2, n)} contains two occupied sites.

Lemma 2.1 Let ε > 0, there exist p0, y0 > 0 satisfying the following: for any rectangle
R with dimensions (x, y),

exp−
[
(1 + ε)xe−3py

]
≤ Pp(R is horizontally traversable) ≤ exp−

[
(1− ε)(x− 2)e−3py

]
providing y0/p < y < 1/(y0p

2) and p < p0.

Proof: Let u = 1 − (1 − p)y be the probability that there exists an occupied site in a
column. Let Ai be the event that the i-th column from the left is occupied. Then R is
horizontally traversable if and only if the sequence A1,..,Ax has no triple gap (meaning
that there exists i such that Ai, Ai+1 and Ai+2 do not occur). This kind of event has been
studied extensively (see [Hol03]). It is elementary to prove that

α(u)−x ≤ Pp(R is horizontally traversable) ≤ α(u)−(x−2)

where α(u) is the positive root of the polynomial

X3 − uX2 − u(1− u)X − u(1− u)2.

When py goes to infinity and p2y goes to 0 (and therefore p goes to 0), u goes to 1 and

logα(u) ∼ −(1− u)3 ∼ −e−3py.

The result follows readily. �

Lemma 2.2 For every ε > 0, there exists p0, x0 > 0 satisfying the following property: for
any rectangle R with dimensions (x, y),

exp
[
(1 + ε)y log(p2x)

]
≤ Pp(R is north traversable)

providing p < p0 and x ≤ 1/(x0p
2).

The same estimate holds for south traversibility by symmetry under reflection.
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Proof: Let n0 ∈ N. Let v be the probability that one line is occupied. In other words,
the probability that there exists a site (m,n0) such that two elements of (m − 2, n0),
(m − 1, n0), (m,n0 + 1), (m + 1, n0) and (m + 2, n0) are occupied. If p2x goes to 0, the
probability that there is such a pair of sites is equivalent to the expected number of such
pairs, giving

log v ∼ log[(8x− 16)p2] ∼ log[p2x].

(Here 8x − 16 is a bound for the number of such pairs.) Using the FKG inequality, we
obtain

vy ≤ Pp(R is north traversable).

Together with the asymptotics for v, the claim follows readily. �

For two rectangles R1 ⊂ R2, let I(R1, R2) be the event that R2 is internally filled
whenever R1 is full. This event depends only on R2 \R1.

Proposition 2.3 Let ε > 0, there exists p0, k0 > 0 such that the following holds: for any
rectangles R1 ⊂ R2 with dimensions (x1, y1) and (x2, y2),

exp
(
−(1 + ε)

[
(x2 − x1)e

−3py2 − (y2 − y1) log(p2x1)
])
≤ Pp

(
I(R1, R2)

)
.

providing p < p0, p2x1 < 1/k0 and k0/p < y1 < 1/(k0p
2).

Take two rectangles R1 ⊂ R2 such that R1 = [a1, a2]×[b1, b2] and R2 = [c1, c2]×[d1, d2].
Define sets

R` := [c1, a1]× [d1, d2] and Rr := [a2, c2]× [d1, d2]

Rt := [a1, a2]× [b2, d2] and Rb := [a1, a2]× [d1, b1]

H := R2 \ {(x, y) : x ∈ [a1, a2] or y ∈ [b1, b2]}

The set H is the corner region, see Fig.2.

R1

R2

Rl Rr

Rt

Rb

Figure 2: The rectangles R` and Rr are in light gray while Rt and Rb are in white. The
corner region H is hatched.
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Proof: Let ε > 0. Set p0 and k0 := max(x0, y0) in such a way that Lemmata 2.1 and 2.2
hold true. Let R1 ⊂ R2 two rectangles. If R` and Rr are horizontally traversable while Rt

and Rb are respectively north and south traversable, then R2 is internally filled whenever
R1 is internally filled. Using the FKG inequality,

Pp
(
I(R1, R2)

)
≥ Pp(R` hor. trav.)Pp(Rt north trav.)Pp(Rr hor. trav.)Pp(Rb south trav.)
≥ exp

(
−(1 + ε)

[
(x2 − x1)e

−3py2 − (y2 − y1) log(p2x1)
])

using lemmata 2.1 and 2.2 (the conditions of these lemmata are satisfied). �

Proposition 2.4 (lower bound for the creation of a critical rectangle) For any ε >
0, there exists p0 > 0 such that for p < p0,

Pp
(
[0, p−5]2 is internally filled

)
≥ exp

[
−
(

1

6
+ ε

)
1

p

(
log

1

p

)2
]
.

Proof: Let ε > 0. For any p small enough, consider the sequence of rectangles
(Rp

n)k0≤n≤N :

Rp
n := [0, p−1−3n/(log 1

p
)]× [0, n/p]

where k0 is defined in such a way that Proposition 2.3 holds true with ε and N :=
1
3

log 1
p
− log k0. The following computation is straightforward, using Proposition 2.3,

N∏
n=k0

Pp
[
I(Rp

n, R
p
n+1)

]
≥ exp−

[
(1 + ε)

N∑
n=k0

(
(p−1−3(n+1)/(log 1

p
) − p−1−3n/ log 1

p )e−3(n+1) − 1

p
log
(
p2p−1−3n/(log 1

p
)
))]

= exp−(1 + ε)
1

p

(
log

1

p

)2

 N∑
n=k0

1− e−3(
log 1

p

)2 +
N∑

n=k0

1

log 1
p

(
1− 3

n

log 1
p

)
The first sum goes to 0 as O(1/ ln 1

p
) while the second one is a Riemann sum converging

to
∫ 1

3

0
(1− 3y)dy = 1

6
. The rectangle [0, p−5]2 is internally filled if all the following events

occur (we include asymptotics when p goes to 0):

• E the event that {0, 1} × [0, ε1
p

log 1
p
] is full, of probability exp−

[
2ε1

p

(
log 1

p

)2
]
,

• F the event that R = [0, ε1
p

log 1
p
]× [0, p−(1+ε)] is horizontally traversable, of proba-

bility larger than

[
1− (1− p)ε

1
p

log 1
p

]p−(1+ε)

≥ exp−pε−1−ε ≥ exp−

[
ε

1

p

(
log

1

p

)2
]
,
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• G the intersection of I(Rp
n, R

p
n+1) for 0 ≤ n ≤ N − 1, of probability larger than

exp−
[
(1 + ε)(1

6
+ ε)1

p
(log 1

p
)2
]
using the computation above,

• H the event that [0, p−2+ε]× [0, 61
p

log 1
p
] is north traversable, with probability larger

than

(1− (1− p2)p
−2+ε

)2 1
p

log 1
p ≈ (pε)6 1

p
log 1

p = exp−

[
6ε

1

p

(
log

1

p

)2
]
,

• I the event that [0, 61
p

log 1
p
] × [0, p−5] is horizontally traversable, with probability

larger than (1− (1− p)6 1
p

log 1
p )p
−5 and thus converging to 1,

• J the event that [0, p−5]2 is north traversable with probability larger than [1− (1−
p2)p

−5
]p
−5 thus also converging to 1.

The FKG inequality gives

Pp([0, p−5]2 is int. filled) ≥ Pp(E∩F∩G∩H∩I∩J) ≥ exp−

[
(1 + ε)

(
1

6
+ 10ε

)
1

p

(
log

1

p

)2
]

when p is small enough. �

Proof of the upper bound in Theorem 1.1: Let ε > 0 and consider A to be
the event that any line or column of length p−5 intersecting the box [−L,L]2 where

L = exp

[
( 1

12
+ ε)1

p

(
log 1

p

)2
]
contains two adjacent occupied sites. The probability of

this event can be bounded from below:

Pp(A) ≥ [1− (1− p2)p
−5/2]8L

2 ≈ exp
[
8L2e−p

−3/2
]
−→ 1.

(The factor 8 is due to the number of possible segments of length p−5.) Denote by B the
event that there exists a translate of [0, p−5]2 which is included in [−L,L]2 and internally
filled. Applying Proposition 2.4 and dividing [−L,L]2 into (Lp5)2 disjoint squares of size
p−5, one easily acquires

Pp(B) ≥ 1− [1− e−( 1
6
+ε) 1

p
(log 1

p
)2 ](Lp

5)2 ≈ 1− exp(−(Lp5)2e−( 1
6
+ε) 1

p
(log 1

p
)2) −→ 1.

Moreover, the occurrence of A and B implies that log T ≤ ( 1
12

+ 2ε)1
p
(log 1

p
)2 for p small

enough. Indeed, a square of size p−5 is filled in less than p−10 steps. After the creation of

this square, it only takes a number of steps of order exp

[
( 1

12
+ ε)1

p

(
log 1

p

)2
]
to progress

and reach 0, thanks to the event A. The FKG inequality yields

Pp

[
log T ≤

(
1

12
+ 2ε

)
1

p

(
log

1

p

)2
]
≥ Pp(E ∩ F ) ≥ Pp(E)Pp(F )→ 1

which concludes the proof of the upper bound. �
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3 Lower bound of Theorem 1.1

3.1 Crossed rectangles

Two occupied points x, y ∈ Z2 are connected if x ∈ y + N . A set is connected if there
exists a path of occupied connected sites with end-points being x and y.

Two occupied points x, y ∈ Z2 are weakly connected if there exists z ∈ Z2 such that
x, y ∈ z +N . A set S is weakly connected if for any points x, y ∈ S, there exists a path
of occupied weakly connected points with end-points x and y.

Let k > 0. A rectangle [a, b] × [c, d] is k-vertically crossed if for every j ∈ [c, d − k],
the final configuration in [a, b] × [j, j + k] knowing that [a, b × [c, d] \ [a, b] × [j, j + k]
is full contains a connected path from top to bottom. A rectangle R is crossed if it is
k-vertically crossed and horizontally traversable. Let Ak(R1, R2) be the event that R2 is
k-vertically crossed whenever R1 is full. Note that this event is contained in the event
that R` and Rr are traversable, and Rt and Rb are k-vertically crossed.

Lemma 3.1 For every ε > 0, there exist p0, x0, k > 0 satisfying the following property:
for any rectangle R with dimensions (x, y),

Pp [R is k-vertically crossed] ≤ p−k exp
[
(1− ε)y log(p2x)

]
when

1

p
< x <

1

x0p2
,

Pp [R is k-vertically crossed] ≤ p−k exp [(1− ε)y log p] when x <
1

p

providing p < p0.

Proof: Let ε > 0 and set k = b1/εc. Consider first the rectangle [0, x] × [1, k] and
the event that there exists a connected path in the final configuration knowing that
Z× (Z \ [1, k]) is full.

Claim: In the initial configuration, there exist A1,...,Ar (r ≤ k − 1) disjoint weakly
connected sets such that n1 + ..+ nr ≥ k + r − 1 where ni is the cardinality of Ai.

Proof of the claim: We prove this claim by induction. For k = 2, the only way to
cross the rectangle is to have a weakly connected set of cardinality 2. We define A1 to be
this set. For k ≥ 3, there are three cases:

Case 1: no sites become occupied after time 0: It implies that the crossing from bottom
to top is present in the original configuration. Therefore, there exists a connected set
in the original configuration. Moreover, this set is of cardinality at least k since it must
contain one site in each line at least. Taking the connected subset of cardinality k to be
A1, we obtain the claim in this case.

Case 2: the first line or the last line intersects a full weakly connected set of cardinality 2:
Assume that the first line intersects a weakly connected set S of cardinality 2. The
rectangle [2, k] × [0, x] is (k − 1)-vertically crossed. There exist disjoint sets B1,...,Br
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satisfying the conditions of the claim. If these sets are disjoint from S, set A1 = S,
A2 = B1,...,Ar+1 = Br. If one set (say B1) intersects S, we set A1 = B1 ∪ S,
A2 = B2,...,Ar = Br. In any case the condition on the cardinality holds true.

Case 3: remaining cases: There must exist three sites in the same neighborhood (we call
this set S), spanning (m,n) ∈ [0, x]× [2, k− 1] at time 1. The rectangles [0, x]× [1, n− 1]
and [0, x] × [n + 1, k] are respectively (n − 1)-vertically crossed and (k − n)-vertically
crossed. If n /∈ {2, k − 2}, then one can use the induction hypothesis in both rectangles,
and perform the same procedure as before. If n = 2, then apply the induction hypothesis
for the rectangle above. The same reasoning still applies. Finally, if n = k − 2, one can
do the same with the rectangle below. �

Let C = C(k) be a universal constant bounding the number of possible weakly con-
nected sets of cardinality less than k (up to translation). For any weakly connected set
of cardinality n > 1, we have that the probability to find such a set in the rectangle
[0, x]× [1, k] is bounded by Cpn(kx). We deduce using the BK inequality that

Pp [Ak] ≤
k∑
r=1

( ∑
n1+..+nr≤k+r−1

r∏
j=1

(kC)pnjx

)
≤

k∑
1

(k + r)r(kC)rpk−1(px)r (3.1)

First assume px > 1. We find

Pp [Ak] ≤
k∑
1

(k + r)r(kC)rp2k−2xk−1 ≤ (2k3C)k(p2x)k−1

since px > 1. Recalling that p2x goes to 0, we find

Pp [[0, x]× [0, k] k − vertically crossed] ≤ exp−(1− ε)k log(p2x).

Now, we divide the rectangle R into by/kc rectangles of height k. If R is vertically
crossed, then all the rectangles are vertically crossed. Using the previous estimate, we
obtain

Pp [R is k-vertically crossed] ≤
by/kc∏
i=1

Pp(Ri is k-vertically crossed)

≤ exp
[
(1− ε)k

⌊y
k

⌋
log(p2x)

]
.

Using that the rectangle of height k is k-vertically crossed with probability larger than
pk, we obtain the result in this case.

If xp < 1, then we can bound the right hand term of (3.1) by Cpk−1 and conclude the
proof similarly. �

Observe that when x > 1/p, the rectangle will grow in the vertical direction using `
disjoint weakly connected pairs of occupied sites (If it grows by ` lines). When x < 1/p,
a rectangle will grow in the vertical direction using one big weakly connected set of `
occupied sites. From this point of view, the dynamics is very different from the simple
bootstrap percolation.
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Remark 3.2 We have seen in the previous proof that being k-vertically crossed involves
only sites included in weakly connected sets of cardinality two. This remark will be fun-
damental in the following proof.

For two rectangles R1 ⊂ R2, define

W p(R1, R2) =
p(

log 1
p

)2

[
(x2 − x1)e

−3py2
]

if
1

p2
≤ x2,

W p(R1, R2) =
p(

log 1
p

)2

[
(x2 − x1)e

−3py2 − (y2 − y1) log(p2x2)
]

if
1

p
< x2 <

1

p2
,

W p(R1, R2) =
p(

log 1
p

)2

[
(x2 − x1)e

−3py2 − (y2 − y1) log p
]

if x2 <
1

p
.

Proposition 3.3 Let ε > 0, there exist p0, x0, y0, k > 0 such that for any p < p0 and any
rectangles R1 ⊂ R2 with dimensions (x1, y1) and (x2, y2) satisfying

y0 ≤ y2 ≤ y1 +
1

p
log

1

p
≤ 1

p2y0

,

then

Pp
[
Ak(R1, R2)

]
≤ p−2k exp

[
−(1− ε)1

p

(
log

1

p

)2

W p(R1, R2)

]
.

Proof: Let ε > 0 and set p0, x0, y0, k so that lemmata 3.1 and 2.1 hold true with ε.
Consider two rectangles R1 ⊂ R2 satisfying the conditions of the proposition. Further we
will use that p2y2 goes to 0 and y2 goes to infinity. We treat the case x2 > 1/p, the other
cases are similar.

First assume
ε(y2 − y1) log(p2x2) ≥ (1− ε)(x2 − x1)e

−3py2 .

The event Ak(R1, R2) is included in the events that Rt and Rb are k-vertically crossed
(these two events are independent). Using Lemma 3.1, we deduce

Pp
[
Ak(R1, R2)

]
≤ exp

[
−(1− ε)(y2 − y1) log(p2x2)

]
≤ exp

[
−(1− ε)2

(
(x2 − x1)e

−3py2 + (y2 − y1) log(p2x2)
)]
.

We now assume

ε(y2 − y1) log(p2x2) ≤ (1− ε)(x2 − x1)e
−3py2 .

Let Y be the number of vertical lines containing one occupied site of H weakly connected
to another occupied site. We have

Pp
[
Ak(R1, R2)

]
≤ Pp

[
Ak(R1, R2) and Y ≤ ε(x2 − x1)

]
+ Pp

[
Y ≥ ε(x2 − x1)

]
. (3.2)
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Bound on the second term. Note that the probability α that a line contains one site
in H with two occupied sites in its neighborhood behaves like Cp2(y2 − y1) (where C is
universal) and therefore goes to 0 when p goes to 0. The probability of Y ≥ ε(x2 − x1) is
bounded by the probability that a binomial variable with parameters n = x2 − x1 and α
is larger than ε

3
(x2 − x1). Invoking Chebyshev’s inequality, we find

Pp
[
Y ≥ ε(x2 − x1)

]
≤ exp [−(x2 − x1)]

for p small enough. Since e−3py2 converges to 0, we obtain for p small enough,

Pp
[
Y ≥ ε(x2 − x1)

]
≤ exp

[
−1− ε

ε
(x2 − x1)e

−3py2

]
(3.3)

≤ exp
[
−(1− ε)

(
(x2 − x1)e

−3py2 + (y2 − y1) log(p2x2)
)]
. (3.4)

Bound on the first term. Let E be the event that Rt and Rb are k-vertically crossed
and Y ≤ ε(x2 − x1). We know that

Pp [Ak(R1, R2) and Y ≤ ε(x2 − x1)] (3.5)
= Pp [R` and Rr hor. trav.|E] Pp [E] (3.6)
≤ Pp [R` and Rr hor. trav.|E] Pp [Rt and Rb are k − vertically crossed] (3.7)

We want to estimate the first term of the last line. Let Ω be the (random) set of
all pairs of weakly connected occupied sites in H. Conditioning on E corresponds to
determining the set Ω thanks to the remark preceding the proof. Let ω be a possible
realization of Ω. Slice R` ∪Rr into m rectangles R1,..,Rm (with widths x(i)) such that

• no element of ω intersects these rectangles,

• all the lines that do not intersect ω belong to a rectangle,

• m is minimal for this property (note that m ≤ 2ε[x2 − x1]).

For each of these rectangles, conditioning on {Ω = ω} boils down to assuming that there
are no full pairs in the corner region, which is a decreasing event, so that via the FKG
inequality,

Pp(Ri hor. trav.|Ω = ω) ≤ Pp(Ri hor. trav.) ≤ exp−
[
(1− ε)(x(i) − 2)e−3py2

]
.

Since Y ≤ ε(x2 − x1), we know that

x(1) + ..+ x(m) ≥ (1− 2ε)(x2 − x1).

We obtain

Pp
[
R` and Rr are hor. trav.|Ω = ω

]
≤ Pp [rectangles Ri are all hor. trav.|Ω = ω]

≤
m∏
i=1

exp−
[
(1− ε)(x(i) − 2)e−3py2

]
≤ exp−

[
(1− ε)(1− 6ε)(x2 − x1)e

−3py2
]
.

12



By summing over all possible ω, we find

Pp [R` and Rr hor. trav.|E] ≤ exp−
[
(1− ε)(1− 6ε)(x2 − x1)e

−3py2
]
. (3.8)

Using Lemma 3.1 and Inequality (3.7), Inequality (3.8) becomes

Pp
[
Ak(R1, R2) ∩ {Y ≤ ε(x2 − x1)}

]
≤ exp−

[
(1− ε)2(x2 − x1)e

−3py2
]
p−2k exp−

[
(1− ε)(y2 − y1) log(p2y2)

]
.

The claim follows by plugging the previous inequality and Inequality (3.4) into In-
equality (3.2). �

3.2 Hierarchy of a growth

We define the notion of hierarchies, and the specific vocabulary associated to it. This
notion is now well-established. We slightly modify the definition, weakening the conditions
imposed in [Hol03].

• Hierarchy, seed, normal vertex and splitter: A hierarchy H is a N -tree with
vertices v labeled by non-empty rectangles Rv such that the rectangle labeled by v
contains the rectangles labeled by its descendants. If the number of descendants of
a vertex is 0, it is a seed, if it is one, it is a normal vertex (we denote by u 7→ v if u
is a normal vertex of (unique) descendant v) and if it is two or more, it is a splitter.
Let N(H) be the number of vertices in the tree.

• Precision of a hierarchy: A hierarchy of precision t (with t ≥ 1) is a hierarchy
satisfying these additional conditions:

(1) If w is a seed, then y(Rw) < 2t, if u is a normal vertex or a splitter, y(Ru) ≥ 2t

(2) if u is a normal vertex with descendant v, then y(Ru)− y(Rv) ≤ 2t

(3) if u is a normal vertex with descendant v and v is a seed or a normal vertex,
then

y(Ru)− y(Rv) > t.

(4) if u is a splitter with descendants v1, .., vi, there exists j such that y(Ru) −
y(Rvj

) > t.

• Occurrence of a hierarchy: Let k > 0, a hierarchy k-occurs if all of the following
events occur disjointly :

(1) Rw is k-crossed for each seed w

(2) Ak(Rv, Ru) occurs for each pair u and v such that u is normal

(3) Ru is the smallest rectangle containing
〈
Rv1 ∪ .. ∪Rvj

〉
for every splitter u

(v1, .., vi are the descendants of u).

13



Remark 3.4 In the literature, the precision of a hierarchy is an element of R2. In our
case, we do not need to make this distinction.

Remark 3.5 We can use the BK inequality to deduce that for any hierarchy H and k ≥ 1,

Pp
[
H k-occurs

]
≤
∏
v seed

Pp
[
Rv k − crossed

] ∏
u7→w

Pp
[
Ak(Rw, Ru)

]
.

The following lemmata are classical.

Lemma 3.6 (number of hierarchies) Let t ≥ 1, the number Nt(R) of hierarchies of
precision t for a rectangle R is bounded by

Nt(R) ≤ [x(R) + y(R)]c[y(R)/t]

where c is a prescribed function.

Proof: The proof is straightforward once we remark that the depth of the hierarchy is
bounded by y(R)/t (every two steps going down in the tree, the perimeter reduces by at
least t). For a very similar proof, see [Hol03]. �

Lemma 3.7 (disjoint spanning) Let S be an internally filled and connected set of car-
dinality greater than 3, then there exist i disjoint non-empty connected sets S1,...,Si with
i ∈ {2, 3} such that

(i) the strict inclusions S1 ⊂ S,..., Si ⊂ S hold
(ii) 〈S1 ∪ ... ∪ Si〉 = S
(iii) {S1 is internally filled} ◦ ... ◦ {Si is internally filled} occurs.

Proof: Let K be finite, 〈K〉 may be constructed via the following algorithm: for each
time step t = 0, ..., τ , we find a collection of mt connected sets St1, ...,Stmt

, and correspond-
ing sets of sites Kt

1, ...K
t
mt

with the following properties:

(i) Kt
1, ...K

t
mt

are pairwise disjoint
(ii) Kt

i ⊂ K
(iii) Sti = 〈Kt

i 〉 is connected
(iv) if i 6= j then we cannot have Sti ⊂ Stj
(v) K ⊂ St ⊂ 〈K〉 where

St :=
mt⋃
i=1

Sti

(vi) Sτ = 〈K〉

14



Initially, the sets are just the individual sites of K: let K be enumerated as K =
{x1, ...xr} and set m0 = r and S0

i = K0
i = {xi}, so that in particular S0 = K. Suppose

that we have already constructed the sets St1, ...,Stmt
, then

(a) if there exist j sets Sti1 ,.., S
t
ij

(with 2 ≤ j ≤ 3) such that the spanned set is
connected, set K ′ to be the union of the previous sets and S ′ the spanned set. We
construct the state (St+1

1 , Kt+1
1 )...(St+1

mt+1
, Kt+1

mt+1
) at time t + 1 as follows. From the list

(St1, Kt
1)...(Stmt

, Kt
mt

) at time t, delete every pair (Stl , Kt
l ) for which Stl ⊂ S ′. Then add

(S ′, K ′) to the list. Next increase t by 1 and return to step (a).
(b) else stop the algorithm and set t = τ .
Properties (i)-(v) are obviously preserved by this procedure and mt is strictly decreas-

ing with t, so the algorithm must eventually stop.
To affirm that property (vi) holds, observe that if 〈K〉 \ Sτ is non-empty, then there

exists a site y ∈ 〈K〉\Sτ such that y+N contains 3 occupied sites in Sτ , otherwise y would
not belong to 〈K〉 (since y does not belong to K). These neighbors must lie in at least
two distinct sets S1,..., Si since y is not in Sτ . Observe that the set spanned by S1,...,Si
is connected (any spanned site remains connected to the set that spanned it). Therefore,
these sets are in an i-tuplet which corresponds to the case (a) of the algorithm (since y
links the connected components). Therefore the algorithm should not have stopped at
time τ .

Finally, to prove the lemma, note that we must have at least one time step (ie τ ≥ 1)
since the cardinality of S is greater thanN . Considering the last time step of the algorithm
(from time τ − 1 to time τ) and sets involved in the creation of S ′ = Sτ = 〈K〉. These
sets fulfill all of the required properties. �

To any connected set S, one can associate the smallest rectangle, denoted [S], con-
taining it. Moreover, for any k ≥ 1, if S is internally filled, then [S] is k-crossed.

Proposition 3.8 Let t, k ≥ 1 and take any connected set S which is internally spanned,
then some hierarchy of precision t with root-label Rr = [S] k-occurs.

Proof: The proof is an induction on the y-dimension of the rectangle. Let S be an
internally filled connected set and let R = [S]. If y(R) < 2t, then the hierarchy with
only one vertex r and Rr = R k-occurs. Consider that y(R) ≥ t and assume that the
proposition holds for any rectangle with perimeter less than y(R).

First observe that, using Lemma 3.7, there exist m1 disjoint connected sets S1
1 , ..., S1

m1

spanning S (with associated rectangles called R1
1 = [S1

1 ], .., R1
m1

= [S1
m1

]). Assume that
Rt

1, .., R
t
mt

are defined, while one of the sets is of cardinality greater than 1, it is possible to
define iteratively Rt+1

1 = [St+1
1 ],..,Rt+1

mt+1
= [St+1

mt+1
]. This is obtained by harnessing Lemma

3.7 iteratively. Stop at the first time step, called T , for which the rectangle R′ with small-
est perimeter satisfies y(R)− y(R′) ≥ t (R′ obviously exists since the the perimeter of R
is greater than 2t). Three possibilities can occur:

Case 1: y(R)− y(R′) ≤ 2t.
Since R′ is crossed, the induction hypothesis claims that there exists a hierarchy of preci-
sion t, called H′, with root r′ and root-label Rr′ = R′. Furthermore, the event Ak(R′, R)
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occurs (since R is k-crossed) and it does not depend on the configuration inside R′. We
construct H by adding the root r with label R to the hierarchy H′. This hierarchy is
indeed a hierarchy of precision t and it occurs since the event Ak(R′, R) is disjoint from
the other events appearing in H′.

Case 2: y(R)− y(R′) > 2t and T = 1 (the algorithm stopped at time 1).
There exist m1 rectangles R1,..,Rm1 corresponding to connected sets created by the algo-
rithm at time T = 1. Moreover, R is the smallest rectangle containing 〈R1 ∪ .. ∪Rm1〉. It
is easy to see that events {Ri is k-crossed} occur disjointly due to the fact that sets Si are
disjoint. By the induction hypothesis, there existm1 hierarchiesHi (i = 1, .,m1) such that
events in these hierarchies depend only on Si. The hierarchy created by adding the root r
with label Rr = R is a hierarchy of precision t because y(R)− y(Ri) ≥ t for some i ≤ m1

(the algorithm stopped at time 1). Moreover, the hierarchy k-occurs since R is the small-
est rectangle containing 〈R1 ∪ .. ∪Rm1〉 and hierarchiesHi (i = 1,..,m1) k-occur disjointly.

Case 3: y(R)− y(R′) > 2t and T ≥ 2.
Consider the rectangle R′′ from which R′ has been created and denote by R1, .., Rm its
other ’descendants’ (set R1 = R′). There exist hierarchiesH1,..,Hm associated to R1,..,Rm

which occur disjointly. Consider a root r with label R and a second vertex y with label
R′′, one can construct a hierarchy through the process of adding m + 1 additional edges
(r, y) and (y, rj) for j = 1, ..,m where rj is the root of Hj. This hierarchy k-occurs. It
is therefore sufficient to check that it is a hierarchy of precision t. To do so, notice that
y(R′′)−y(R) ≤ t and y(R′′)−y(R1) ≥ 2t (since y(R)−y(R′′) < t and y(R)−y(R′) > 2t).
�

3.3 Proof of the upper bound

We want to bound the probability of a hierarchy H with precision T
p

log 1
p
to occur.

Let

Λp
T = inf

{
N∑
n=0

W p(Rn, Rn+1) : (Rn)0≤n≤N ∈ Dp
T

}
where Dp

T denotes the set of finite increasing sequences of rectangles R0 ⊂ ... ⊂ RN such
that:

• x0 ≤ p−1−2T ,

• y0 ≤ T
p

log 1
p
and yN ≥ 1

3p
log 1

p
,

• yn+1 − yn ≤ T
p

log 1
p
for n = 0..N − 1.

Before estimating the probability of a hierarchy, we bound Λp
T when p and T go to 0.

Proposition 3.9 We have

inf
T→0

lim inf
p→0

Λp
T =

1

6
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Proof: Let ε, p > 0. Choose 0 < T < ε so that∫ ∞
T

max{1− 3y, 0}dy =
1

6
− ε.

For any rectangle with dimensions (x, y), write x = p−X and y = Y
p

(
log 1

p

)
where X, Y ∈

R+. With these notations, for two rectangles R and R′, we obtain

W p(R,R′) =
p(

log 1
p

)2 (p−X
′ − p−X)e−3Y ′ log 1

p − (Y ′ − Y )
inf
{

log(p2p−X
′
), log p

}
log 1

p

(3.9)

=

(
p1−X′+3Y ′ − p1−X+3Y ′

)(
log 1

p

)2 + (Y ′ − Y ) inf{2−X ′, 1} (3.10)

Consider a sequence of rectangles (Rp
n) in Dp

T , then

N∑
n=0

W p(Rn, Rn+1) =
N∑
n=0

(
p1−Xp

n+1+3Y p
n+1 − p1−Xp

n+3Y p
n+1

)
(

log 1
p

)2 +
N∑
n=0

(Y p
n+1−Y p

n ) inf{2−Xp
n+1, 1}.

First assume that there exists n such that 1−Xp
n+1 + 3Y p

n+1 < −2ε for some values of p
going to 0. Since

−p1−Xp
m+3Y p

m+1 + p1−Xp
m+3Y p

m and p1−Xp
m+1+3Y p

m+1 − p1−Xp
m+3Y p

m+1

are positive for every m, the first sum is larger than

p1−Xp
n+1+3Y p

n+1 − p1−Xp
0+3Y p

1(
log 1

p

)2 ≥ p−2ε − p3Y p
1 −ε(

log 1
p

)2 →∞.

We can thus assume that for any sequence lim inf
∑N−1

n=0 (1 −Xp
n+1 + 3Y p

n+1) ≥ −2ε. We
deduce

lim inf
N∑
n=0

(Y p
n+1 − Y p

n ) inf{2−Xp
n+1, 1} ≥ lim inf

N∑
n=0

(Y p
n+1 − Y p

n ) max{1− 3Y p
n+1 − 2ε, 0}

≥
∫ ∞
T

max{1− 3(y + T )− 2ε, 0}dy =
1

6
− 6ε.

The claim follows readily. �

The two following lemmata are easy (yet technical for the second) but fundamental
in the proof of Proposition 3.12 below. They authorize us to control the probability of a
hierarchy even though there could be many seeds (and even large seeds).

Lemma 3.10 Let k ≥ 1 and let R be a rectangle with dimensions (x, y), then we have
for any a, b > 0,

Pp [R k-crossed] ≤ Pp [Ak([0, a]× [0, b], [0, a+ x]× [0, b+ y])] .
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Proof: Simply note that if the rectangle [a, a+x]× [b, b+ y] is crossed, then Ak([0, a]×
[0, b], [0, a+ x, b+ y]) occurs. �

Lemma 3.11 Let ε, p, T > 0 and set k, p0 > 0 such that Proposition 3.3 holds true. Let
H be a hierarchy of precision T

p
log 1

p
with root label R satisfying 1

3p
log 1

p
≤ y(R) ≤ 1

p
log 1

p
,

then there exists R0 ⊂ .. ⊂ RN rectangles satisfying the following properties:

• RN has dimensions larger than R,

• R0 has dimensions (∑
u seed

x(Ru),
∑
u seed

y(Ru)

)
,

• y(Rn+1)− y(Rn) ≤ T
p

log 1
p
for every 0 ≤ n ≤ N − 1,

• we have∏
v 7→w

Pp [Ak(Rw, Rv)] ≤ p−kN(H)

N∏
n=0

exp−

[
(1− ε)W p(Rn, Rn+1)

1

p

(
log

1

p

)2
]
.

Proof: Invoking Proposition 3.3, it is sufficient to find an increasing sequence of rect-
angles satisfying the three first conditions such that∑

v 7→w

W p(Rw, Rv) ≥
N∑
n=0

W p(Rn, Rn+1)− kN(H) log p.

This can be done by induction. If the root of the hierarchy is a seed, the result is obvious
since the sums are empty.

If the root r of the hierarchy is a normal vertex, then we consider the hierarchy with
root v being the only descendant of r. By induction there exists a sequence satisfying all
the assumptions. By setting RN+1 with dimensions x(RN) + x(Rr)− x(Rv) and y(RN) +
y(Rr)−y(Rv), we obtain from the decreasing properties ofW p(·, ·) thatW p(RN , RN+1) ≤
W p(Rv, Rr). The claim follows readily.

If the root r of the hierarchy is a splitter, then we consider the hierarchies with roots
v1,..., vi (i ∈ {2, 3}) being the descendant of r. There exist sequences (R

(i)
n )n≤Ni

for each
of these hierarchies. Consider the following sequence:

R
(1)
1 , .., R

(1)
N1
, R

(1)
N1

+R
(2)
1 , .., R

(1)
N1

+ ..+R
(i)
Ni
,max(R,R

(1)
N1

+ ..+R
(i)
Ni

)

where R+R′ is any rectangle with dimensions being the sum of the dimensions of R and
R′, and max(R,R′) is a rectangle with dimensions being the maximum of the dimensions
of R and R′.

Since the dimensions of R(1)
N1

+ .. + R
(i)
Ni

can exceed those of R by only 3 (some space
is allowed when combining two or more sets: they are only weakly connected), we obtain
via a simple computation that

W p[R
(1)
N1

+ ..+R
(i)
Ni
,max(R,R

(1)
N1

+ ..+R
(i)
Ni

)] ≤ −k log p.
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We deduce that removing the last rectangle in the sequence costs at most k log p. The
sequence then satisfies all the required conditions. �

Proposition 3.12 Let ε > 0, there exist k, p0 > 0 such that

Pp(S is internally filled) ≤ exp−

[(
1

6
− ε
)

1

p

(
log

1

p

)2
]

for p < p0 and S connected set satisfying 1
3p

log 1
p
≤ y([S]) ≤ 1

p
log 1

p
.

Proof: Choose T, p0 > 0 such that Λp
T ≥ 1

6
− ε for any p < p0. Consider a set connected

set S satisfying the conditions of the proposition and set R = [S]. First assume that
x(R) ≥ p−5. Then a simple computation implies that

Pp[S internally filled] ≤ Pp[R hor. traversable] ≤ exp−
[
(1− ε)p−5e−3 log 1

p

]
≤ exp−p−2

and the claim follows in this case. Therefore, we can assume that x(R) ≤ p−5.
Since S is internally filled, there exists a hierarchy H of precision T

p
log 1

p
with root

label R that occurs (Proposition 3.8). Moreover, the number of possible hierarchies is
bounded by

Nt(R) ≤
[
p−5 +

1

p
log

1

p

]c[ 1
p

log 1
p
/(T

p
log 1

p
)]

≤ p−6c(1/T )

when p is small enough (Lemma 3.6). We deduce

Pp(R is crossed) ≤ p−6c(1/T ) max

{
Pp [H occurs] : H of precision

T

p
log

1

p
and root R

}
Bounding the probability of S being internally filled boils down to estimating the

probability for a hierarchy to occur.

Claim: the probability that a hierarchy H of precision T
p

log 1
p
with root label R is

k-occurring is smaller than exp−[(1
6
− 3ε)1

p
(log 1

p
)2].

Proof of the claim: Let H be a hierarchy. First assume that there exists one seed with
root label R′ satisfying x(R′) ≥ p−1−2T . Then the probability that this seed is horizontally
traversable is smaller than exp−p−1−T when p is small enough (same computation as
usual). The claim follows easily in this case.

We now assume that x(R′) ≤ p−1−2T for every seed of the hierarchy. Using Lemma
3.11, there exist rectangles R0 ⊂ · · · ⊂ RN satisfying the conditions of the lemma such
that

∏
v 7→w

Pp [Ak(Ru, Rv)] ≤ p−kN(H)

N∏
n=0

exp−

[
(1− ε)W p(Rn, Rn+1)

1

p

(
log

1

p

)2
]
.
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Using Lemma 3.10, we can transform this expression into

∏
u seed

Pp [Ru crossed] ≤
Ñ∏
n=1

Pp
[
Ak(R̃i, R̃i+1)

]
where Ñ is the number of seeds and

R̃i = [0, x(Ru1) + ..+ x(Rui
)]× [0, y(Ru1) + ..+ y(Rui

)]

(in the previous formula, we have indexed the seeds by u1, .., uÑ). We conclude that

Pp [H occurs] ≤
∏
u seed

Pp [Ru crossed]
∏

u norm. vert.

Pp [Ak(Ru, Rv)]

≤ p−kN(H) exp−

(1 + ε)

 Ñ∑
n=0

W p(R̃i, R̃i+1) +
N∑
n=0

W p(Ri, Ri+1)

 1

p

(
log

1

p

)2


≤ e−ε

1
p
(log 1

p
)2 exp−

[
(1− ε)

(
1

6
− ε
)

1

p

(
log

1

p

)2
]

since the sequence R̃0, .., R̃Ñ , R0, .., RN is in Dp
T for p small enough (we have excluded the

case where the seeds are too large). �

We can now conclude by the following computation:

Pp(S internally filled) ≤ p−kc(1/T ) exp

(
−
(

1

6
− 3ε

)
1

p

(
log

1

p

)2
)

≤ exp

[
−
(

1

6
− 4ε

)
1

p

(
log

1

p

)2
]

for p small enough. �

Proof of lower bound in Theorem 1.1: Let p0, k > 0 be such that Pp(S internally filled) ≤
e−( 1

6
−ε) 1

p(log 1
p)

2

for any p < p0 and any connected set S such that

1

3p
log

1

p
≤ y([S]) ≤ 1

p
log

1

p
].

Let E be the event that the origin is spanned by the configuration in [−1
p

log 1
p
, 1
p

log 1
p
]2,

the probability of this event goes to 0. Indeed, two cases are possible. Either the origin is
occupied, which occurs with probability p going to 0, or the origin is not occupied at time
0. In this case, there must exist a neighborhood containing 3 occupied sites at distance
less than 1

p
log 1

p
to the origin. This probability goes to 0 when p goes to 0.
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Let F be the event that no rectangle in [−L,L]2 of perimeter between 1
3p

log 1
p
and

1
p

log 1
p
is crossed, where

L = exp

[(
1

12
− ε
)

1

p

(
log

1

p

)2
]
.

In this case, Lemma 3.7 implies that no connected set S ⊂ [−L,L]2 such that y([S]) ≥
1
p

log 1
p
is crossed. Indeed, if it was the case, we could construct a connected set S with

1
3p

log 1
p
≤ y([S]) ≤ 1

p
log 1

p
which is internally filled using Lemma 3.7.

It is easy to see that if E and F hold, we must have log T ≥ ( 1
12
−ε)1

p

(
log 1

p

)2

. Indeed,
the information must necessarily come from outside the box [−L,L]2. Then,

Pp

[
log T ≤ (

1

12
− ε)1

p

(
log

1

p

)2
]
≤ Pp(E) + Pp(F )

≤ Pp(E) + p−8e2( 1
12
−ε) 1

p
(log 1

p
)2e−( 1

6
−ε) 1

p
(log 1

p
)2

where p−8 bounds the number of possible dimensions of [S] and exp
[
2( 1

12
− ε)1

p
(log 1

p
)2
]

the number of possible locations for its bottom-left corner. When p goes to 0, the right-
hand side converges to 0 and the lower bound follows. �

Remark 3.13 Recently, improvements of estimates for the threshold of simple bootstrap
percolation have been proved [Mor10, GHM10]. It is an interesting question to try to
improve the estimates in our case. We mention that a major difficulty will come from the
fact that ’small’ seeds are not excluded in the hierarchy growth.

Remark 3.14 Our approach gives a much improved upper bound, compared to [Mou93,
Mou95], for the semi-oriented bootstrap percolation. But at this point we do not have a
sharp threshold result, due to the lack of a corresponding argument for the lower bound.
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