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Abstract. An ODE with non-Lipschitz right hand side is considered.
The set of solutions with Lp-dependence of the initial data is obtained.

1. main Theorem

Equip the space Rm = {x = (x1, . . . , xm)} with a norm

∥x∥ = max
k=1,...,m

|xk|.

Let BR stands for the open ball of Rm with radius R and the center at the
origin. By IT denote an interval IT = (−T, T ).

Introduce a vector-function f(t, x) = (f1, . . . , fm)(t, x) ∈ C(Rt×Rm
x ,Rm).

Suppose that

sup
(t,x)∈R×Rm

∥f(t, x)∥ =M <∞.

Moreover we assume that for each t ∈ IT and for all x = (x1, . . . , xm) ∈ Rm

and y = (y1, . . . , ym) ∈ Rm such that

xj ≤ yj , j = 1, . . . ,m

one has

f j(t, x) ≤ f j(t, y), j = 1, . . . ,m. (1.1)

Our aim is to study the set of the solutions to the following initial value
problem:

ẏ = f(t, y), y(0) = x.

From Peano’s existence theorem [3] we know that for all x this IVP has
a solution, y(t) ∈ C1(R). It is also well known that for the same initial
condition there may be several solutions.
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The condition (1.1) does not prevent the effect of non-uniqueness. To see
this it is sufficient to consider the IVP with f(t, y) =

√
y provided y ≥ 0

and f(t, y) = 0 otherwise and y(0) = 0.
We study a possibility whether any initial condition x can be put in cor-

respondence with a solution u(t, x) such that the function u(t, x) possesses
reasonable properties.

So we look for solutions to the following IVP.

ut(t, x) = f(t, u(t, x)), u(0, x) = x. (1.2)

Theorem 1. For any positive constants T,R and p ∈ [1,∞) problem (1.2)
has a solution w(t, x) ∈ C(IT , L

p(BR))
∩
C1(IT , L

p(BR)).

Let µ stands for the standard Lebesgue measure in BR.

Theorem 2. For any ε > 0 there is a closed set Mε ⊂ BR such that
µ(BR\Mε) < ε and w(t, x) ∈ C(Mε, C(IT )).

Proof of Theorem 2. Arrange a countable set Z = IT
∩

Q as follows:
Z = {ti}i∈N.

Then by Luzin’s theorem [4] we choose closed sets

Mi ⊆ BR, µ(BR\Mi) <
ε

2i

such that w(ti, x) ∈ C(Mi).
Let us put Mε =

∩
iMi then

µ(BR\Mε) = µ
(∪

i

BR\Mi

)
≤

∑
i

µ(BR\Mi) < ε.

Take a sequence xk → x, {xk} ⊆Mε. For all ti ∈ Z we have

∥w(ti, xk)− w(ti, x)∥ → 0.

Observe that the sequence {w(t, xk)} is uniformly continuous in IT :

∥w(t′, xk)− w(t′′, xk)∥ =
∥∥∥∫ t′

t′′
f(s, w(s, xk)) ds

∥∥∥ ≤M |t′ − t′′|, t′, t′′ ∈ IT .

Thus the sequence {w(t, xk)} converges uniformly in Z [4]. And so as the
set Z is dense in IT this sequence converges uniformly in IT .

The Theorem is proved.

2. Proof of Theorem 1

For convenience of the reader we recall several propositions which are
used in the sequel.

The following proposition is a corollary from the Vitali convergence the-
orem [2].
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Proposition 1. Let (X,S, µ) be a measure space, µ(X) < ∞. And a
sequence of measurable functions {fn} is such that for all n ∈ N and for
almost all x ∈ X we have |fn(x)| ≤ const. Assume that {fn} is a Cauchy
sequence in measure. Then it converges in measure to a measurable function
f and

∫
X(fn − f)dµ→ 0.

Formulate another fact.

Proposition 2 ([2]). Let D ⊂ Rm be a measurable set with respect to the
standard Lebesgue measure. Consider a function ψ ∈ C(BR,Rk). If fn →
f in measure in D and ∥fn(x)∥ ≤ R almost everywhere in D then then
ψ ◦ fn → ψ ◦ f in measure.

As usual we formulate our IVP in terms of the integral equation

u(t, x) = F (u)(t, x), F (u)(t, x) = x+

∫ t

0
f(s, u(s, x)) ds. (2.1)

Definition 1. We shall say that the function u(t, x) belongs to a set X if

(1) u(t, x) ∈ C(IT , L
p(BR)),

(2) for every t ∈ IT the inequality ∥u(t, x)∥ ≤ R + TM holds almost
everywhere in BR;

(3) for every t′, t′′ ∈ IT the estimate

∥u(t′, x)− u(t′′, x)∥ ≤M |t′ − t′′|
holds almost everywhere in BR.

Lemma 1. The mapping F takes the set X to itself.

Proof. The proof of this Lemma is straightforward. It is only not trivial
to show that t 7→ f(t, u(t, x)) is a strongly measurable mapping of IT to
Lp(BR).

To prove this we construct a sequence of step functions that converges in
Lp(BR) to f(t, u(t, x)) for almost all t.

Since the function f is continuous we can approximate it with a following
sequence:

fn(t, x) =
n∑

j=1−n

ajn(x)χ[
j−1
n

T, j
n
T

](t), sup
t∈IT

∥fn(t, ·)−f(t, ·)∥C(BR+TM ) → 0.

In this formula χ stands for the set indicator function, ajn ∈ C(BR+TM ).

Since the function u(t, x) ∈ C(IT , L
p(BR)) there exists a sequence

uk(t, x) =

k∑
i=1−k

uik(x)χ[
i−1
k

T, i
k
T

](t)
such that

uik(x) ∈ Lp(BR), sup
t∈IT

∥uk(t, ·)− u(t, ·)∥Lp(BR) → 0.
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This implies the convergence in measure. For every t ∈ IT and for every
ε, σ > 0 there is a number N such that

µ{x ∈ BR | ∥uk(t, x)− u(t, x)∥ > σ} < ε, k > N.

By Proposition 2, for every t ∈ IT we have ajn(uk(t, x)) → ajn(u(t, x))
in measure as k → ∞ and ajn(u(t, x)) is measurable in x [2]. Thus by

Proposition 1 it follows that for every t ∈ IT we obtain

∥ajn(uk(t, x))− ajn(u(t, x))∥Lp(BR) → 0

as k → ∞.
By the same argument for every t ∈ IT we get

∥fn(t, uk(t, x))− f(t, u(t, x))∥Lp(BR) → 0, n, k → ∞.

Lemma is proved.
Now let us endow the space X with a partial order ≼. We shall say that

u(t, x) = (u1, . . . , um)(t, x) ∈ X and v(t, x) = (v1, . . . , vm)(t, x) ∈ X satisfy
the relation u ≼ v iff for every t ∈ IT the inequality uk(t, x) ≤ vk(t, x), k =
1, . . . ,m holds almost everywhere in BR.

Lemma 2. A set E = {u ∈ X | u ≼ F (u)} possesses a maximal element:

w = maxE.

Observe that by Lemma 1 the space E is non void: −(R+ TM, . . . , R+
TM) ∈ E.

Proof of Lemma 2. The assertion of the Lemma is surely based on the
Zorn Lemma. So it is sufficient to prove that any chain C ⊆ E has an upper
bound.

The space Lp(BR) is separable and the interval IT is compact. So the
space C(IT , L

p(BR)) is separable [1].
Since the set C belongs to C(IT , L

p(BR)), it is also separable. This implies
that there is a countable set Q ⊆ C such that for any element p ∈ C there
exists a sequence {pn}n∈N ⊆ Q and maxt∈IT ∥pn(t, ·)− p(t, ·)∥Lp(BR) → 0 as
n→ ∞.

Arrange the set Q as a sequence: Q = {gj}j∈N and consider a sequence
hl = max{g1, . . . , gl}, {hl} ⊆ Q. Here max stands in regard to the relation
≼ .

We claim that for each t ∈ IT this sequence converges almost everywhere
to a function h and this function is the desired upper bound of C.

Since for all t ∈ IT and for almost all x ∈ BR the inequalities

∥hl(t, x)∥ ≤ R+ TM, hnl (t, x) ≤ hnl+1(t, x), n = 1, . . . ,m

fulfill for all l ∈ N, then for every t ∈ IT the sequence hl converges to a
function h almost everywhere in x ∈ BR. And for every t, t′, t′′ ∈ IT and
almost everywhere in BR we also get

∥h(t, x)∥ ≤ R+ TM, ∥h(t′, x)− h(t′′, x)∥ ≤M |t′ − t′′|. (2.2)
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By the Dominated convergence theorem for every t ∈ IT the function
h(t, x) ∈ L∞(BR) and hl(t, ·) → h(t, ·) in Lp(BR).

Since the functions hl(t, x) satisfy item (3) of Definition 1 we write

∥hl(t′, ·)− hl(t
′′, ·)∥Lp(BR) ≤M(µ(BR))

1/p|t′ − t′′|.

Thus the sequence {hl} ⊂ C(IT , L
p(BR)) is uniformly continuous in t and it

converges to h in C(IT , L
p(BR)) [4]. Particularly we have h ∈ C(IT , L

p(BR))
and from formulas (2.2) it follows that h ∈ X.

Owing to the continuity of the function f for every t ∈ IT we obtain

f(t, hl(t, x)) → f(t, h(t, x))

almost everywhere in BR.
By the Dominated convergence theorem we have

∥f(t, hl(t, x)) → f(t, h(t, x))∥Lp(BR) → 0, t ∈ IT .

Now we apply the Dominated convergence theorem again, but this time we
use its Bochner integral version :∥∥∥∫ t

0
f(s, hl(s, x)) ds−

∫ t

0
f(s, h(s, x)) ds

∥∥∥
Lp(BR)

→ 0.

From this formula it follows that there exists a subsequence {hli} such that∫ t

0
f(s, hli(s, x)) ds→

∫ t

0
f(s, h(s, x)) ds

for almost all x ∈ BR. This states that h ∈ E.
Obviously the function h is an upper bound for Q. Check that h is an

upper bound for C.
Assume the converse: there exists an element b ∈ C such that the relation

b ≼ h does not hold. This implies that for some t′ ∈ IT and for some index
k a set

D′ = {x ∈ BR | bk(t′, x)− hk(t′, x) > 0}
has non zero measure: µ(D′) > 0.

Actually there exists a set D ⊆ D′, µ(D) > 0 such that for some con-
stant c > 0 one has bk(t′, x)−hk(t′, x) ≥ c, x ∈ D. Indeed, if it is not true
then we can take a sequence

{cl}l∈N, cl > 0, cl → 0

and consider sets Dl = {x ∈ D′ | bk(t′, x)− hk(t′, x) ≥ cl}. By the assump-
tion for all l we have µ(Dl) = 0 but on the other hand D′ =

∪
lDl and

µ(D′) ≤
∑

l µ(Dl) = 0.

Take a sequence {bj}j∈N ⊆ Q such that bj → b in C(IT , L
p(BR)). We

obtain

c+ hk(t′, x)− bkj (t
′, x) ≤ bk(t′, x)− bkj (t

′, x) (2.3)
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almost everywhere in D. It is obvious hk(t′, x)− bkj (t
′, x) ≥ 0 almost every-

where in BR and from formula (2.3) we get

bk(t′, x)− bkj (t
′, x) ≥ c (2.4)

almost everywhere in D.
The Lp−convergence implies the convergence in measure [2] thus for every

q, σ > 0 there is an index J such that if j > J then

µ
(
{x ∈ BR | |bk(t′, x)− bkj (t

′, x)| ≥ q}
)
< σ.

Putting in this formula q = c and σ = µ(D)/2 we obtain a contradiction
with inequality (2.4).

The Lemma is proved.
Now we are ready to prove the Theorem. By Lemma 1 and inequality

(1.1) it follows that F (E) ⊆ E. Particularly F (w) ∈ E, where w = maxE is
a maximal element given by Lemma 2. Consequently the relation w ≼ F (w)
implies that w = F (w).

Now the assertion of Theorem 2 directly follows from the formula

w(t, x) = x+

∫ t

0
f(s, w(s, x)) ds

if only we check that

f(t, w(t, x)) ∈ C(IT , L
p(BR)).

Take a sequence tk → t. Then w(tk, x) → w(t, x) in Lp(BR) and in measure.
By Propositions 2, 1

f(tk, w(tk, x)) → f(t, w(t, x))

in Lp(BR).
Theorem 2 is proved.
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