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ABSTRACT. An ODE with non-Lipschitz right hand side is considered.
The set of solutions with LP-dependence of the initial data is obtained.

1. MAIN THEOREM

Equip the space R™ = {z = (z!,...,2™)} with a norm

||| = max |zF|.

k=1,...,
Let Bp stands for the open ball of R™ with radius R and the center at the
origin. By Ir denote an interval Ip = (=T, T).
Introduce a vector-function f(t,x) = (f1,..., f™)(t,z) € C(R;xR™ R™).

Suppose that

sp  f(t o)) = M < .

(t,z) ERXR™

Moreover we assume that for each ¢ € I and for all z = (z,...,2™) € R™
and y = (y',...,y™) € R™ such that

o<y, j=1,...,m
one has
fAlte) < fty), j=1,....,m (1.1)

Our aim is to study the set of the solutions to the following initial value
problem:

From Peano’s existence theorem [3] we know that for all x this IVP has

a solution, y(t) € C'(R). It is also well known that for the same initial
condition there may be several solutions.
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The condition (1.1) does not prevent the effect of non-uniqueness. To see
this it is sufficient to consider the IVP with f(¢,y) = /y provided y > 0
and f(t,y) = 0 otherwise and y(0) = 0.

We study a possibility whether any initial condition x can be put in cor-
respondence with a solution u(t,z) such that the function u(¢, x) possesses
reasonable properties.

So we look for solutions to the following IVP.

u(t,x) = f(t,u(t,z)), u(0,z)==x. (1.2)

Theorem 1. For any positive constants T, R and p € [1,00) problem (1.2)
has a solution w(t,z) € C(I7, LP(Br)) (N C'(Ir, LP(BR)).

Let p stands for the standard Lebesgue measure in Bpg.

Theorem 2. For any € > 0 there is a closed set M. C Bpr such that
w(Br\M.) < ¢ and w(t,x) € C(M,C(Ir)).

Proof of Theorem 2. Arrange a countable set Z = I7[\Q as follows:
Z = {ti}ien.
Then by Luzin’s theorem [4] we choose closed sets

g
Mi € Br,  u(Br\M;) < 5;

such that w(t;,x) € C(M;).
Let us put M. = (), M; then

u(Br\M:) = u({J Br\M:) < 3- u(Br\My) < e

Take a sequence z — x, {xx} C M.. For all t; € Z we have
lw(ts, zx) — w(ti, z)|| = 0.

Observe that the sequence {w(t,zy)} is uniformly continuous in I7:

t/
Jult2) = w(t" 2l = || [ fowisads| <2 - o) e e T
tl/

Thus the sequence {w(t,z)} converges uniformly in Z [4]. And so as the
set Z is dense in I this sequence converges uniformly in I7.
The Theorem is proved.

2. PROOF OF THEOREM 1

For convenience of the reader we recall several propositions which are
used in the sequel.

The following proposition is a corollary from the Vitali convergence the-
orem [2].
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Proposition 1. Let (X,S,u) be a measure space, u(X) < oo. And a
sequence of measurable functions {f,} is such that for all n € N and for
almost all © € X we have |f,(x)| < const. Assume that {f,} is a Cauchy
sequence in measure. Then it converges in measure to a measurable function

fand [(fn— f)dp — 0.
Formulate another fact.

Proposition 2 ([2]). Let D C R™ be a measurable set with respect to the
standard Lebesque measure. Consider a function v € C(Bg,RF). If f, —
f in measure in D and ||fn(2)|| < R almost everywhere in D then then
o fr, = Yo f in measure.

As usual we formulate our IVP in terms of the integral equation
¢
u(t.) = F)(to), F@(ta)=o+ [ flsulsa)ds.  (21)
0

Definition 1. We shall say that the function u(t,x) belongs to a set X if
(1) u(t.z) € C(Tr, L"(Br)),
(2) for every t € Ir the inequality ||u(t,x)|| < R+ TM holds almost
everywhere in Bg;
(3) for every t',t" € I the estimate

lu(t, ) —u(t’, z)| < M|t —¢"|
holds almost everywhere in Bg.
Lemma 1. The mapping F takes the set X to itself.

Proof. The proof of this Lemma is straightforward. It is only not trivial
to show that t — f(t,u(t,x)) is a strongly measurable mapping of Ir to
LP(BgR).

To prove this we construct a sequence of step functions that converges in
LP(BR) to f(t,u(t,x)) for almost all ¢.

Since the function f is continuous we can approximate it with a following
sequence:

falt,z) = )
=

l:ljulj
] n n

ajn($)x[ 1]
telr

} (t), sup || fu(t,)—f(t, ‘)||C(§R+TM) — 0.

n

In this formula  stands for the set indicator function, aj, € C (BryTM)-
Since the function u(t,z) € C(Ir, LP(Bg)) there exists a sequence

such that
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This implies the convergence in measure. For every ¢ € I and for every
g,0 > 0 there is a number N such that

p{z € Br | |luk(t,z) —u(t,x)|| > o} <e, k> N.

By Proposition 2, for every t € It we have aj,(ug(t,z)) — ajn(u(t,x))
in measure as k — oo and aj,(u(t,z)) is measurable in = [2]. Thus by
Proposition 1 it follows that for every t € I we obtain

|ajn(uk(t, 2)) — ajn(u(t, ) |Lr(Bg) — 0

as k — oo. B
By the same argument for every ¢t € I we get

an(t, ug(t, ) — f(t’ u(t7x))HLP(BR) =0, n,k— o0

Lemma is proved.

Now let us endow the space X with a partial order <. We shall say that
u(t,r) = (ub,...,u™)(t,r) € X and v(t,z) = (v},...,v™)(t,z) € X satisfy
the relation u < v iff for every ¢t € T the inequality u* (¢, z) < vk(t,x), k=
1,...,m holds almost everywhere in Bpg.

Lemma 2. A set E={uec X | u = F(u)} possesses a maximal element:

w = max F.

Observe that by Lemma 1 the space F is non void: —(R+TM,...,R+
TM) € E.

Proof of Lemma 2. The assertion of the Lemma is surely based on the
Zorn Lemma. So it is sufficient to prove that any chain C' C F has an upper
bound.

The space LP(Bg) is separable and the interval I7 is compact. So the
space C(Ir, LP(BR)) is separable [1].

Since the set C belongs to C(I1, LP(Bg)), it is also separable. This implies
that there is a countable set Q C C' such that for any element p € C there
exists a sequence {py}nen C Q and max, 7 [pn(t, ) — p(t, )| ze(Bg) — 0 as
n — 00.

Arrange the set @) as a sequence: @@ = {g;};en and consider a sequence
h; = max{g1,...,q1}, {Mh} C Q. Here max stands in regard to the relation

PN

We claim that for each t € I this sequence converges almost everywhere
to a function h and this function is the desired upper bound of C'
Since for all ¢t € It and for almost all x € Bg the inequalities

It 2)| < R+TM, hp(ta) <hi(ta), n=1,...,m
fulfill for all [ € N, then for every t € Iz the sequence h; converges to a

function h almost everywhere in © € Br. And for every t,t',t" € I7 and
almost everywhere in Br we also get

Ih(t,z)|| < R+TM, ||h(t,z)—h(t",2)| < M| —t"|.  (2.2)
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By the Dominated convergence theorem for every ¢t € It the function
h(t,x) € L>=(Bgr) and hy(t,-) — h(t,-) in LP(Bg).
Since the functions h(t, x) satisfy item (3) of Definition 1 we write

1ha(t', ) = bt )l eosry < M(u(Br))VPIE —¢"|.

Thus the sequence {h;} C C(Ir, LP(Bg)) is uniformly continuous in ¢ and it
converges to hin C(I, LP(Bg)) [4]. Particularly we have h € C(I7, LP(BRr))
and from formulas (2.2) it follows that h € X.

Owing to the continuity of the function f for every ¢ € I we obtain

fQ ha(t,w)) — f(th(t,x))

almost everywhere in Bg.
By the Dominated convergence theorem we have

£t bt ) — f(t Rt 2) | Do(pe) — 0, t € I

Now we apply the Dominated convergence theorem again, but this time we
use its Bochner integral version :

H /Otf(s,hl(s,a:)) ds — /Otf(s,h(s,m)) dSHLP(BR) — 0.

From this formula it follows that there exists a subsequence {h;, } such that

/0f(s,hli(s,m))ds%/of(s,h(s,:c))ds

for almost all x € Bgr. This states that h € E.

Obviously the function h is an upper bound for ). Check that h is an
upper bound for C.

Assume the converse: there exists an element b € C such that the relation
b < h does not hold. This implies that for some ¢’ € I7 and for some index
k a set

D' ={x e By |b*{t,x)— W, x) > 0}
has non zero measure: p(D’) > 0.
Actually there exists a set D C D', (D) > 0 such that for some con-

stant ¢ > 0 one has b*(t',x) —h*(t',x) > ¢, x € D. Indeed, if it is not true
then we can take a sequence

{cihien, a>0, ¢g—0
and consider sets D; = {x € D' | b*(t',z) — h*(¥',x) > ¢;}. By the assump-
tion for all I we have p(D;) = 0 but on the other hand D’ = J, D; and

p(D") <32 u(Dy) = 0. ~
Take a sequence {b;}jen € @ such that b; — b in C(I7, LP(Bg)). We
obtain

et BF(H @) = OF (@) < VF(H,2) — bt 2) (2.3)
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almost everywhere in D. It is obvious h*(t, ) — b;‘?(t’ ,x) > 0 almost every-
where in Br and from formula (2.3) we get

VRt ) — b?(t/, x)>c (2.4)

almost everywhere in D.
The LP—convergence implies the convergence in measure [2] thus for every
q,0 > 0 there is an index J such that if j > J then

u({x € B | [pF(t 2) — Vi(¢,2)| > q}) <o.

Putting in this formula ¢ = ¢ and ¢ = p(D)/2 we obtain a contradiction
with inequality (2.4).

The Lemma is proved.

Now we are ready to prove the Theorem. By Lemma 1 and inequality
(1.1) it follows that F(F) C E. Particularly F(w) € E, where w = max F is
a maximal element given by Lemma 2. Consequently the relation w < F(w)
implies that w = F(w).

Now the assertion of Theorem 2 directly follows from the formula

w(t,r) =z + /t f(s,w(s,x))ds
if only we check that ’
ft,w(t,x)) € C(Ir, LP(Bg)).
Take a sequence t;, — t. Then w(ty,x) — w(t, x) in LP(Bg) and in measure.
By Propositions 2, 1
f (e, wit, x)) — f(t,w(t, z))

in LP(Bg).
Theorem 2 is proved.
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