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Abstract

In this paper we consider a representative a priori unstable Hamiltonian system
with 2 + 1/2 degrees of freedom, to which we apply the geometric mechanism for
diffusion introduced in the paper Delshams et al., Mem. Amer. Math. Soc. 2006,
and generalized in Delshams and Huguet, Nonlinearity 2009, and provide explicit,
concrete and easily verifiable conditions for the existence of diffusing orbits.

The simplification of the hypotheses allows us to perform explicitly the computa-
tions along the proof, which contribute to present in an easily understandable way the
geometric mechanism of diffusion. In particular, we fully describe the construction
of the scattering map and the combination of two types of dynamics on a normally
hyperbolic invariant manifold.

1 Introduction

The goal of this paper is to apply the geometric mechanism for diffusion introduced in
[DLS06] and generalized in [DH09], to a representative a priori unstable Hamiltonian
system with 2+ 1/2 degrees of freedom, establishing explicit conditions for diffusion.

∗Supported in part by MICINN-FEDER MTM2009-06973 and CUR-DIUE 2009SGR859 grants.
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The phenomenon of global instability in nearly integrable Hamiltonian systems,
called Arnold diffusion, deals essentially with the question of what is the effect on the
dynamics when an autonomous integrable mechanical system is subject to a small
periodic perturbation. That is, whether these effects accumulate over time leading
to a large term effect or whether they average out.

For an integrable Hamiltonian system written in action-angle variables all the
trajectories lie on invariant tori, with an associated dynamics consisting of a rigid
rotation with constant frequency. For a general perturbation of size ε of a non-
degenerate integrable Hamiltonian, the KAM Theorem (see [Lla01] for a survey)
ensures the stability for most of the trajectories of the system. More precisely, those
invariant tori in the unperturbed system ε = 0 having Diophantine frequencies are
preserved (they are tori with non-resonant frequencies), giving rise to a Cantorian
foliation of invariant tori for the perturbed system ε > 0. Thus, the set of surviving
tori has a large measure but also many gaps among them, which can be of size up
to order

√
ε. However, nothing is said by the KAM theorem about the stability

of the trajectories that do not lie on the non-resonant invariant tori. Besides, for
systems with more than two degrees of freedom the invariant tori are not anymore
an obstruction for the existence of trajectories that may possibly drift arbitrarily far,
called diffusing orbits.

The first description of this instability phenomenon was given by Arnold in
[Arn64] by means of his celebrated example and has been thoroughly studied since
then, using a wide range of techniques: geometric, variational and topological (see
[DGLS08] for a long list of references).

The geometric mechanism for diffusion in [DLS06, DH09] is based on the classi-
cal Arnold mechanism for diffusion, which consists of constructing a transition chain,
that is, a finite sequence of whiskered transition tori (lower dimensional invariant tori
having non-resonant frequencies with associated stable and unstable manifolds) with
transverse heteroclinic intersections, that is, the unstable manifold of each transition
torus intersects transversally the stable manifold of the next one. Arnold [Arn64]
considered an integrable system with a hyperbolic component (a rotor and a pendu-
lum) plus a particular periodic in time perturbation, that allowed him to construct
a transition chain of primary KAM tori, that is, lower dimensional tori that are
just a continuation of the lower dimensional invariant tori that existed in the unper-
turbed case. Using a topological argument, he proved that diffusing orbits exist in a
neighborhood of the tori in a transition chain.

Nevertheless, when one considers a generic perturbation, one faces the problem
that the gaps of size

√
ε in the foliation of primary KAM tori are bigger than the size ε

of the heteroclinic intersection of their whiskers. Therefore, this prevents the unstable
whisker of a primary KAM torus of this foliation intersecting the stable whisker of the
next surviving primary KAM torus and one can not construct a transition chain using
only primary KAM tori. This is known in the literature as the large gap problem and
has been solved very recently by different methods [DLS00, DLS06, DH09, CY04,
CY09, Tre04, PT07, GL06b, GL06a].

The strategy in [DLS06, DH09] to overcome the large gap problem was to incor-
porate in the transition chain other invariant objects, which are not present in the
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unperturbed system and are created by the resonances therein, in order to fill the
gaps between two primary KAM tori. Among them, there are the so-called secondary
KAM tori, which are lower invariant KAM tori topologically different from the pri-
mary ones. The scattering map [DLS08] is the essential tool to study the heteroclinic
connections between invariant objects like primary or secondary KAM tori.

In [DLS06] it was proved the existence of Arnold diffusion in a priori unstable
Hamiltonian systems of 2 + 1/2 degrees of freedom, under concrete geometric hy-
potheses. However, one of them was the assumption of a non-generic condition,
namely, that the Hamiltonian was a trigonometric polynomial in the angular vari-
ables. This latter assumption was removed in [DH09] and therefore, for these kind
of Hamiltonians, the conditions required for the geometric mechanism of diffusion
were proven to be generic in the C2 topology. Moreover, the removal of this hypoth-
esis allowed us to present the conditions for diffusion more explicitly in terms of the
original perturbation.

A strong feature of this mechanism, in contrast to other existing ones, is that the
conditions for diffusion are computable and therefore verifiable in specific examples.
Moreover, the way the mechanism is designed allows us to give an explicit description
of the diffusing orbits. From our point of view, this fact makes this mechanism really
attracting for applications, where the computation of the diffusing orbit in concrete
systems is the cornerstone of the problem (see [DMR08]).

Although the conditions for diffusion for any concrete system are totally explicit
and computable, the computations needed involve the application of several steps
of the averaging method, the expansion in ε of a NHIM, and the verification of the
existence of non-degenerate critical points of the Melnikov potential along the straight
lines. The computation and verification of these conditions may hide the elementary
features of the geometrical method. Because of this, in this paper we have chosen
a representative kind of a priori unstable Hamiltonian systems, where the required
hypotheses for the application of the geometric method are trivially fulfilled. On the
contrary, the geometry of the existence of non-degenerate homoclinic orbits to the
NHIM as well as the behavior of the scattering map on the NHIM and its interaction
with the inner dynamics in the NHIM can be fully described.

The main result of this paper is Theorem 2.1, which states the existence of diffu-
sion under very concise and easily verifiable hypotheses, for a representative class of
priori unstable Hamiltonian systems with 2 + 1/2 degrees of freedom.

Our aim is to explain the strategy of the mechanism in a clear and understandable
way, and for this reason we have chosen an illustrative type of Hamiltonian systems
which appear commonly in the literature, for which the computations along the proof
can be performed explicitly. In Section 2 we discuss the reasons for the particular
choices we have made. Overall, we wanted to avoid the problem that the technical
details hide the main ideas behind the mechanism.

Another important point of this paper is that we can give explicit expressions for
the equations defining the invariant tori as well as for the Melnikov function and the
reduced Poincaré function, which are essential for the computation of the scattering
map. For those readers interested in further their understanding of the scattering
map, will find here a good illustration of its construction for a particular example,
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based on geometrical considerations.
Moreover, in our description we try to present an approach that emphasizes those

points that were crucial to prove diffusion. Hence, we describe the two different
dynamics on a normally hyperbolic invariant manifold that need to be combined to
create diffusion and we compute them explicitly.

Although this paper strongly relies on the results obtained in the previous papers
[DLS06, DH09], we have made an effort to make it self-contained for the reader
mainly interested in the heuristic description of the mechanism and how it applies
to concrete examples. However, we accompany the exposition with precise references
to the results in [DLS06, DH09] for those readers concerned with the rigorous proofs
for more general systems.

The paper is organized as follows: in Section 2 we introduce a representative
kind of a priori unstable Hamiltonians with 2 + 1/2 degrees of freedom considered in
this paper, for which we can state our main result, Theorem 2.1, which establishes
the existence of a diffusing orbit for the model considered. In Section 3 we perform
the explicit verification of the mechanism for the Hamiltonian of Theorem 2.1. The
verification is structured in four parts, and includes a detailed description of the
scattering map.

2 Set up and main result

In [DH09] there were given explicit conditions for the existence of a diffusing orbit
for generic a priori unstable Hamiltonian systems. That paper was mainly focused
on proving the genericity of the result, so although conditions were explicit, some
computational effort was required to check them. As we already mentioned in the
introduction, in this paper we plan to give sufficient conditions, easily verifiable,
which guarantee the existence of diffusion for a general case of a priori unstable
Hamiltonian systems.

In this section, we first introduce a representative type of a priori unstable Hamil-
tonian systems of 2+1/2 degrees of freedom, which is usually found with several vari-
ations in the literature [Chi79, §7.5][CG94, §9, §12][BCV01, BB02, BBB03, Tre04],
when explicit computations are performed. We first discuss the features and partic-
ularities of this type of systems and we finally state Theorem 2.1, which establishes
the existence of diffusing orbits for these systems under explicit and easily verifiable
conditions.

We consider an a priori unstable Hamiltonian system as introduced by Chier-
chia and Gallavotti [CG94, sections 7.5 and 12], consisting of a 2π-periodic in time
perturbation of a pendulum and a rotor described by the following non-autonomous
Hamiltonian

Hε(p, q, I, ϕ, t) = H0(p, q, I) + εh(p, q, I, ϕ, t; ε)

= P±(p, q) +
1

2
I2 + εh(p, q, I, ϕ, t; ε).

(1)

We notice that a motivation for the model above comes from a normal form around a
resonance of a nearly integrable Hamiltonian, and we refer the reader to [DG01, KL08]
for more details.
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The second term 1
2I

2 in the integrable Hamiltonian H0(p, q, I) of Hamiltonian (1)
describes a rotor and the first one

P±(p, q) = ±
(

1

2
p2 + V (q)

)
(2)

a pendulum, where the potential V (q) is a 2π-periodic function, whose non-degenerate
maxima give rise to saddle points of the pendulum (2) and therefore, to hyperbolic
invariant tori of the Hamiltonian (1) when ε = 0. Typically it is assumed that the
maximum of V is attained at the origin q = 0, where V is assumed to vanish, as it is
case for the standard pendulum, where

V (q) = cos q − 1. (3)

This is the simple and standard choice of potential V (q) that we are going to consider
in this paper, so that

P±(p, q) = ±
(
p2/2 + cos q − 1

)
.

The origin (p = 0, q = 0) is a saddle point of the standard pendulum, and its
separatrix P−1

± (0) for positive p is given by

q0(t) = 4 arctan e±t, p0(t) = 2/cosh t. (4)

Notice that other choices of V give rise to different separatrices that are not usually
so simple.

The negative sign in the pendulum (2) is only to emphasize the fact that the
geometric mechanism we are using does not require the Hamiltonian H0 to be positive
definite, as it is the case in the variational approach, see [CY09].

The term εh in (1) is the perturbation term and depends periodically on time
and on the angular variable ϕ, so that h can be expressed via its Fourier series in the
variables (ϕ, t)

h(p, q, I, ϕ, t; ε) =
∑

(k,l)∈Z2

hk,l(p, q, I; ε)e
i(kϕ+lt). (5)

It is common in the literature to consider a perturbation (5) depending only on the
angular variables (q, ϕ, t), and formed by the product of a function of the pendulum
variable q times a function of the angular variables (ϕ, t)

h(p, q, I, ϕ, t) = f(q)g(ϕ, t). (6)

This is the kind of perturbation that we are going to consider along this paper,
particularly because with this choice of h the Melnikov potential (15), which will be
an essential tool for the computations along the paper, has the same harmonics as
the function g, and they can be computed explicitly. So we will focus on a concrete
type of Hamiltonians of the form

Hε(p, q, I, ϕ, t) = ±
(
p2

2
+ cos q − 1

)
+
I2

2
+ εf(q)g(ϕ, t), (7)
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defined for any real value of (p, q, I, ϕ, t, ε) and 2π-periodic in the angular variables
(q, ϕ, t).

The function f could be any 2π-periodic function. However, to easily compute the
harmonics of the Melnikov potential (15), we are going to assume along this paper
that f has the simple form:

f(q) = cos q. (8)

About the choice of f we would like to remark two important features. On the
one hand, thanks to the fact that f ′(0) = 0 the problem does not require the use
of the theory of normally hyperbolic invariant manifolds to ensure the persistence of
these type of objects. This simplifies the exposition and the computations, but since
we do not assume f(0) = 0 the problem maintains all the richness and complexity of
the large gaps problem. So, although the choice (8) for f may seem very restrictive,
we would like to insist on the fact that the complexity of the original problem is
preserved. At the beginning of Section 3.1 we discuss in detail the role of the function
f in the problem.

A general function g is of the form

g(ϕ, t) =
∑

(k,l)∈N2

ak,l cos(kϕ − lt− σk,l) + ãk,l cos(kϕ+ lt− σ̃k,l),

which in general has an infinite number of harmonics in the angles (ϕ, t) and where
σk,l, σ̃k,l ∈ T.

Since for simplicity we will study diffusion only for I positive along this paper,
we will consider ãk,l = 0, that is,

g(ϕ, t) =
∑

(k,l)∈N2

ak,l cos(kϕ− lt− σk,l). (9)

In a natural way, and also for simplicity, we have chosen g to be an analytic
function and therefore we will assume an exponential decay for its Fourier coefficients.
That is, |ak,l| ≤ e−δ|(k,l)|, where δ is the size of the domain of analyticity. In this
paper we simply are going to assume that they have some general lower bound with
exponential decay, that is

e−βδ|(k,l)| ≤ |ak,l| ≤ e−δ|(k,l)|,

where 1 ≤ β < 2. Or, equivalently, we are going to assume

α̂ρβkrβl ≤ |ak,l| ≤ αρkrl, (10)

where 1 ≤ β < 2 and 0 < α̂ < α. Moreover, 0 < ρ, r < 1 are real numbers that will
be chosen small enough.

Although the lower bound for the coefficients ak,l in the above equation seems
very restrictive, there are several reasons for this particular choice. For the more
expert reader, let us say that condition (10) implies that big gaps of maximal size
appear for all the resonances in first order with respect to the parameter ε, without
performing any step of averaging. This feature is explained thoroughly in Section
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3.3, after equation (42). A second reason is that requirements (10) are simple to state
and verify. A generic, and, of course, more technical, set of conditions for generic
perturbations are given explicitly in [DH09]. When the lower bound condition for akl

in (10) are not satisfied, several steps of averaging are needed.
We can now state our main result:

Theorem 2.1 Consider a Hamiltonian of the form (7), where f(q) is given by (8)
and g(ϕ, t) is any analytic function of the form (9) with non-vanishing Fourier coef-
ficients satisfying (10). Assume that

λ :=

∣∣∣∣
a1,0

a0,1

∣∣∣∣ < 1/1.6 or λ > 1.6, (11)

as well as 0 < ρ ≤ ρ∗ and 0 < r ≤ r∗, where ρ∗(λ, α, α̂, β) and r∗(λ, α, α̂, β) are small
enough.

Then, for any I∗+ > 0, there exists ε∗ = ε∗(I∗+) > 0 such that for any −1/2 <
I− < I+ ≤ I∗+ and 0 < ε < ε∗, there exists a trajectory (p(t), q(t), I(t), ϕ(t)) of the
Hamiltonian (1) such that for some T > 0

I(0) ≤ I−; I(T ) ≥ I+.

We want to remark now that not every perturbation (6) gives rise to diffusion
in the action I. In particular, if the function g(ϕ, t) in (9) does not depend on ϕ,
the action I is a first integral, so it does not change at all. Moreover, if g(ϕ, t) does
not depend on t, Hamiltonian (7) is autonomous and therefore Hε is a first integral,
so that only deviations of size

√
ε are possible for the action I. The same happens

when the function g(ϕ, t) does not depend fully on the two angular variables, but
only through a integer linear combination of them—that is, g(ϕ, t) = G(ψ), where
ψ = k0ϕ − l0t is an integer combination of the angular variables ϕ, t)—, as can be
easily checked by introducing ψ as a new angular variable. In these three cases, an
infinite number of Fourier coefficients ak,l of the function g(ϕ, t) in (9) vanish.

Remark 2.2 The condition (11) for a1,0 and a0,1 jointly with the assumption ρ∗, r∗

being small enough, will ensure the existence of a global connected homoclinic mani-
fold in Section 3.1. Indeed, for ρ∗, r∗ small enough, thanks to the upper bound (10),
the perturbation g in (9) can be approximated by its first order trigonometric polyno-
mial

g[≤1](ϕ, t) = a0,0 + a1,0 cos(ϕ− σ1,0) + a0,1 cos(s− σ0,1),

in such a way that all the computations required for the Melnikov potential (15) will
depend explicitly on g[≤1].

3 Proof of Theorem 2.1

In the following sections, we will consider any Hamiltonian satisfying the hypotheses
of Theorem 2.1, and we will show how the geometric mechanism in [DLS06, DH09]
can be applied to construct diffusing orbits.
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We already mentioned in the Introduction of this paper that the geometric mech-
anism in [DLS06, DH09] is based on the classical Arnold mechanism for diffusion.
It consists of constructing a transition chain, that is, a finite sequence of whiskered
transition tori such that the unstable manifold of each torus intersects transver-
sally the stable manifold of the next one. As a main novelty, in [DLS06, DH09] the
transition chain incorporates primary as well as secondary KAM tori created by the
resonances (as already mentioned in the introduction), in order to overcome the large
gap problem.

In this paper, we will try to present a description of the mechanism that empha-
sizes more the geometrical aspects. We think that this description may contribute to
a better understanding and applicability of the mechanism.

In order to prove the existence of a diffusing orbit we will identify first a NHIM
(normally hyperbolic invariant manifold) with associated stable and unstable mani-
folds). It will organize the different invariant objects involved in the transition chain
(the skeleton for the diffusing orbit).

The diffusing orbit we are looking for starts on a point close to the NHIM and
in finite time reaches another point close to the NHIM but arbitrarily far from the
original one. Of course, if the starting point lies just on the NHIM (3D), the invariant
tori (2D) inside the NHIM act as barriers for diffusion and the orbit is confined in
a bounded domain. Fortunately, there exists an external dynamics to the NHIM,
provided by its associated stable and unstable manifolds, which will be essential to
overcome the obstacles of the invariant tori and escape from them, as long as the
starting point does not lie on the NHIM but very close to it. Hence, it is crucial
for the mechanism that the external dynamics does not preserve the invariant tori
existing in the NHIM. Otherwise, the orbit will be confined in a finite domain by
both the inner and the external dynamics with no possibility to escape.

Therefore, given a Hamiltonian of the form (7), the proof of the existence of
diffusing orbits can be sketched with the following steps: Detect the NHIM (3D) and
the associated stable and unstable manifolds (4D), determine the inner and the outer
dynamics of the NHIM as well as the invariant objects for each one, and finally show
that the outer dynamics does not preserve the invariant objects for the inner one.

One of the novelties of this paper is the explicit description of the outer dynamics
provided by the scattering map [DLS08]. It is given by the time-ε flow of a Hamil-
tonian that in first order is given by an autonomous Hamiltonian of one degree of
freedom, therefore integrable. Moreover, using a geometric description, we are able to
obtain an explicit expression for this autonomous Hamiltonian, which is the reduced
Poincaré function (35) with the opposite sign.

On the other hand, using averaging theory, one can show that the Hamiltonian
defining the inner dynamics can be transformed into a normal form consisting of an
integrable Hamiltonian plus a small perturbation.

Thus, we have two dynamics defined on the NHIM that can be approximated in
suitable coordinates by one-degree of freedom autonomous Hamiltonians. Therefore,
the invariant objects are given approximately by the level sets of these integrable
Hamiltonians, for which we provide explicit expressions.

Finally, we impose that the scattering map moves the invariant tori for the inner
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dynamics, in such a way that the image under the scattering map of each of these
invariant tori intersects transversally another torus. We will show that this is a
generic property.

3.1 Part 1. Existence of a NHIM and associated stable
and unstable manifolds

The first part of the proof consists of looking for a NHIM with associated stable and
unstable manifolds that intersect transversally. In order to prove the existence of
these invariant objects, we will look for them in the unperturbed case, which is much
simpler, and then study the persistence of these objects under the perturbation.

For ε = 0, Hamiltonian H0 in (7) consists of two uncoupled systems: a pendulum
plus a rotor. Therefore, it is clear that the 3-dimensional manifold given by

Λ̃ = {(0, 0, I, ϕ, s) : (I, ϕ, s) ∈ R × T
2} (12)

is an invariant manifold with associated stable and unstable manifolds (inherited
from the separatrices of the pendulum). These manifolds coincide along a separatrix
given by

W sΛ̃ = W uΛ̃ = {(p0(τ), q0(τ), I, ϕ, s) : τ ∈ R, I ∈ [−1/2, I∗+], (ϕ, s) ∈ T
2}, (13)

where (p0(τ), q0(τ)) is the chosen orbit (4) of the pendulum, which is homoclinic to
the saddle point p = 0, q = 0.

The integrable Hamiltonian H0 has a one-parameter family of two-dimensional
whiskered tori given by

T 0
I = {(0, 0, I, ϕ, s) : (ϕ, s) ∈ T

2}, (14)

with associated frequency (I, 1).
When we consider the perturbation h, that is ε > 0, using the standard theory of

NHIM, see [HPS77, Fen79], we know that for ε > 0 small enough, maybe restricting
Λ̃ to a compact subset, the manifold Λ̃ persists as Λ̃ε, as well as its local stable and
unstable manifolds.

For any general perturbation h of the form (6), if f ′(0) = 0, the NHIM is preserved
without any deformation for any ε Λ̃ε = Λ̃: p = q = 0 ⇒ ṗ = q̇ = 0. Moreover,
if f(0) = 0, the perturbation vanishes on Λ̃, so the one-parameter family of two-
dimensional invariant tori existing in the unperturbed case remains fixed under the
perturbation, as in the Arnold’s example of diffusion in [Arn64]. However, a generic
perturbation, f(0) 6= 0 creates gaps of size

√
ε in the foliation of persisting invariant

tori and gives rise to the large gaps problem. See section 3.3 for a detailed description
of the invariant objects in this foliation.

Although it is not a generic assumption, for the clarity of exposition and for the
convenience of the reader not familiar with the theory of NHIM, we have chosen
a function f in (8) so that the NHIM is preserved without deformation, that is
f ′(0) = 0. Nevertheless, we want to emphasize that this is not a necessary hypothesis
for the existence of diffusion. Indeed this was not assumed in the proof of the result

9



in [DLS06, DH09] where NHIM theory was used. Of course, any other function f
satisfying the conditions f ′(0) = 0 and f(0) 6= 0 will be enough for exhibiting the
large gaps problem, but we have chosen the concrete one (8) so that the Fourier
coefficients for the Melnikov potential (15) can be computed explicitly.

Even if for the function f in (8) the NHIM remains fixed, when the local stable
and unstable manifolds are extended to global ones it is expected that in general they
will no longer coincide and indeed they will intersect transversally along a homoclinic
manifold. The main tool to study the splitting of the separatrix (13) as well as the
associated scattering map is the Melnikov potential associated to a perturbation h
and to the homoclinic orbit (p0, q0):

L(I, ϕ, s) = −
∫ +∞

−∞
(h(p0(σ), q0(σ), I, ϕ + Iσ, s + σ; 0)

−h(0, 0, I, ϕ + Iσ, s+ σ; 0))dσ,
(15)

which taking into account the expression (6) for h, takes the form

L(I, ϕ, s) =

∫ ∞

−∞
[f(q0(σ)) − f(0)]g(ϕ + Iσ, s + σ)dσ.

In our concrete case f(q) = cos q of (8), the Melnikov potential turns out to be

L(I, ϕ, s) =
1

2

∫ ∞

−∞
p2
0(σ)g(ϕ + Iσ, s + σ)dσ,

and the integral can be explicitly computed by the residue theorem:

L(I, ϕ, s) =
∑

(k,l)∈N2

Ak,l(I) cos(kϕ − ls− σk,l), (16)

with

Ak,l(I) = 2π
(kI − l)

sinh π
2 (kI − l)

ak,l, (17)

where ak,l are the general coefficients of the function g given in (9). Notice that the
Melnikov potential (16) has exactly the same harmonics as the perturbation g in (9).

We now recall the role played by the Melnikov potential in the splitting of the
separatrix (13). By Proposition 9.2 in [DLS06], for any (I, ϕ, s) ∈ [−1/2, I∗+] × T

2

and for any non-degenerate critical point τ∗ = τ∗(I, ϕ, s) of

τ ∈ R 7→ L(I, ϕ− Iτ, s− τ) (18)

there exists a locally unique point z,

z = z(I, ϕ, s; ε) = (p0(τ
∗), q0(τ

∗), I, ϕ, s) + O(ε), (19)

such that z ∈W s(Λ̃ε) ⋔ W u(Λ̃ε).
Next, we are going to find open sets of (I, ϕ, s) ∈ [−1/2, I∗+] × T

2, such that the
function (18) has non-degenerate critical points at τ = τ∗(I, ϕ, s).
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Taking into account the explicit expression for the Melnikov potential (16), the
function (18) takes the form

L(I, ϕ− Iτ, s− τ) =
∑

(k,l)∈N2

Ak,l(I) cos(kϕ− ls− τ(kI − l)), (20)

with Ak,l(I) as in (17). Notice that the Fourier coefficients Ak,l(I) are nothing else
but the Fourier coefficients ak,l multiplied by a non-zero factor depending on kI − l
(which decreases exponentially in |kI − l| as |kI − l| goes to infinity).

The main reason for the introduction of the upper bounds for |ak,l| in (10) is to
make all the computations for the series defining L(I, ϕ, s) in (16) and (20) in terms
of L[≤1](I, ϕ, s), its first order trigonometric polynomial in the angles (ϕ, s). Thus,
we have

L(I, ϕ, s) = A0,0 +A1,0(I) cosϕ+A0,1 cos s+ O2(ρ, r)

:= L[≤1](I, ϕ, s) + L[>1](I, ϕ, s), (21)

where A0,0 = 4a0,0,

A0,1 =
2π

sinh(π/2)
a0,1, and A1,0(I) =

2πI

sinh(π/2I)
a1,0. (22)

In the formula above, without lose of genericity and to avoid cumbersome notation
and shifts in the pictures, we have assumed that σ1,0 = σ0,1 = 0. Otherwise, we can
just make a translation in the variables (ϕ, s).

Next we will make our computations for the function L[≤1] and a posteriori we
will justify that they are also valid for the complete function L.

So fixing (I, ϕ, s) ∈ [−1/2, I∗+] × T
2 we only need to study the evolution of L[≤1]

along the straight lines

R : τ ∈ R 7→ (ϕ− Iτ, s− τ) ∈ T
2 (23)

on the torus.
By hypothesis (10), a1,0 6= 0 and a0,1 6= 0, and therefore |A0,1| 6= 0 and |A1,0(I)| 6=

0 for any I. Consequently, for every fixed I, the first order trigonometric polyno-
mial (ϕ, s) 7→ L[≤1](I, ϕ, s) possesses four non-degenerate critical points at (0, 0),
(0, π), (π, 0) and (π, π); a maximum, a minimum and two saddle points. Without
loss of generality and for illustration purposes let us assume a1,0, a0,1 > 0, so that
A1,0(I), A0,1 > 0 for any I. In this way the maximum of L[≤1](I, ·, ·) is attained at
(0, 0), the minimum at (π, π) and the two saddles at (0, π) and (π, 0) (see Figure
1). Of course, assuming that 0 < ρ ≤ ρ∗ and 0 < r ≤ r∗, for ρ∗ and r∗ small
enough, by the implicit function Theorem, the function L(I, ·, ·) possesses also four
non-degenerate critical points close to ones of L[≤1](I, ·, ·), with the same properties.

Around the two extremum points (the maximum and the minimum), its level
curves are closed curves which fill out a basin ending at the level curve of one of
the saddle points. Therefore, any straight line (23) that enters into one of the two
extremum basins is tangent to one of the closed level curves, giving rise to one or

11
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Figure 1: Graph and level curves of the Melnikov potential L[≤1](I, ϕ, s) with a1,0 = 1/4,
a0,1 = 1/2 and I = 1. In this case, A0,0 = 4, A1,0(1) = π/(2 sinh(π/2)) and A0,1 =
π/ sinh(π/2)

.

more extrema of (18). Since the two extrema of L(I, ·, ·) are non-degenerate for any
I, the closed level curves close to them are convex. Therefore, any straight line (23)
passing close enough to the extrema gives rise to unique non-degenerate extremum of
(18). In particular, for irrational values of I the line (23) is a dense straight line, so
there exist an infinite number of non-degenerate extrema for (18). Nevertheless, and
independently of the irrational character of I, thanks to the form of the perturbation,
we are going to see that indeed all the closed level curves in any extremum basin are
convex.

To do so, we proceed in the following way. Given a fixed value of I, let us look
for the geometric locus where the straight lines (23) are tangent to the level curves
of L(I, ·, ·). For this, we have to impose that ∇ϕ,sL, the gradient of L(I, ·, ·), is
orthogonal to the slope (I, 1) of the straight line (23):

I
∂L
∂ϕ

(I, ϕ, s) +
∂L
∂s

(I, ϕ, s) = 0. (24)

Intuitively, for fixed I, if we want to pass through a mountain of height L(I, ϕ, s)
along straight lines following a direction (I, 1), equation (24) gives the position of the
points (ϕ, s) of maximum height, the crest, that we denote by C = C(I).

Using the expression (21) for L, equation (24) has the form

IA1,0(I) sinϕ+A0,1 sin s+ O2(ρ, r) = 0.

12



Disregarding first the O2(ρ, r) term we are faced with the following implicit equa-
tion

α(I) sinϕ+ sin s = 0, (25)

where

α(I) :=
IA1,0(I)

A0,1
=

sinh(π/2)I2

sinh(π/2I)

a1,0

a0,1
. (26)

Assuming that
|α(I)| < 1,

which holds for all I as long as

1.03

∣∣∣∣
a1,0

a0,1

∣∣∣∣ < 1, (27)

and that ρ and r are small enough, equation (24) defines exactly two closed curves
CM and Cm, parameterized by ϕ, which will be called crests. The crest CM = CM (I),
passing through the maximum (0, 0) of L contains the saddle (0, π) and is given by
the expression

s = ξM (ϕ, I) = − arcsin(α(I) sinϕ) + O2(ρ, r). (28)

The crest Cm = Cm(I) passes through the minimum (π, π) and contains the saddle
(π, 0). It is given by the expression

s = ξm(ϕ, I) = − arcsin(α(I) sin(ϕ+ π)) + π + O2(ρ, r). (29)

In Figure 2 there appear these two curves (dashed black) as well as the level sets of
the function L[≤1].

Remark 3.1 The case when |α(I)| > 1 is analogous, but then the crests Cm and CM

are parameterized by the variable s. The case |α(I)| = 1 is special, because in this
case the union of the two curves degenerates in two straight lines along which the
function L is constant.

These two additional cases do not present additional difficulties for the construc-
tion of the function τ∗ and therefore for the subsequent mechanism of diffusion. How-
ever, for easiness of the reading we are going to concentrate simply in the case (27),
which is fulfilled thanks to the first inequality of hypothesis (11), which is the only
one that we are going to assume from now on.

For any point (I, ϕ, s) ∈ [−1/2, I∗+]× T
2 × R, the value τ∗ for which the function

(18) has a non-degenerate critical point satisfies (I, ϕ−Iτ∗, s−τ∗) ∈ Cm∪CM . Thus,
the non-degenerate critical points τ∗ of (18) are achieved at the intersection of the
straight line (23) with either the crest CM or Cm.

Of course, for any point (I, ϕ, s), there may exist several intersections of the line
(23) with the crests CM and Cm, giving rise to different homoclinic intersections and
(as we will see in the next section) different scattering maps. See Figure 3.

From now on, we choose only one of these intersections, the one with the crest CM

and we define the function τ∗ as the one that given (I, ϕ, s), associates the minimum
|τ | such that

(I, ϕ − Iτ, s− τ) ∈ CM(I).

13
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Figure 2: Closed curves satisfying (25) for I = 1 (the crests), dashed black, and level sets
of the function L[≤1](1, ·, ·) with the same values as in Figure 1.
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s

ϕ

Figure 3: Straight lines (23) with slope 1 (Left) and 0.8 (Right) and the curves (25): the
curve of the maxima (solid curve) and the curve of the minima (dashed curve). See the
text.
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In symbols,
τ∗(I, ϕ, s) := min

|τ |∈R

{(I, ϕ − Iτ, s− τ) ∈ CM(I)}. (30)

To determine a domain of definition as large as possible where this function is
continuous and to avoid a casuistic discussion, we need to check that for any fixed I,
the straight lines cross only once the crest CM inside the domain (ϕ, s) and they do
it transversally. This implies that for any fixed I, the slope 1/I of the straight lines
is bigger than the slope of the derivative of the function ξM(ϕ, I) for all ϕ ∈ T, that
is

1

I
>
∂ξM
∂ϕ

(ϕ, I), for allϕ ∈ T, (31)

which by equations (28) and (26) and assuming that ρ and r are small enough, is
equivalent to

α(I)I < 1.

By expression (26) for α(I), it is easy to see that

α(I)I < 1.6
a1,0

a0,1
,

so that condition (31) holds for all I as long as

1.6

∣∣∣∣
a1,0

a0,1

∣∣∣∣ < 1, (32)

which is exactly hypotheses (11) of Theorem 2.1 and implies (27).
Under condition (32), one possible domain of definition H where τ∗ is continuous

consists of excluding, for any I ∈ [−1/2, I∗+] the crest Cm(I) from the domain of
(ϕ, s), that is

H = {(I, ϕ, s) ∈ [−1/2, I∗+] × T × R : ξm(I, ϕ) − 2π < s < ξm(I, ϕ)}. (33)

See Figure 4.
This particular choice of τ∗ gives rise to a homoclinic manifold to which we will

associate in the next section an outer dynamics to the NHIM, that we will describe
by means of the scattering map.

Remark 3.2 Condition (32) is very convenient since it provides a large domain of
definition H for τ∗, and therefore it allows us to define a global homoclinic manifold
Γε. Although the condition is very restrictive, it is not necessary for the mechanism of
diffusion. Indeed, we introduced this assumption just to avoid a casuistic description.
However, if the condition is not satisfied we can obtain several homoclinic manifolds
giving rise to different scattering maps, offering more possibilities for diffusion. It
also opens the field for homoclinic bifurcations for a NHIM (see [DMR08]).

Remark 3.3 The crest CM is in the maximum basin of L, so the function L decreases
when one travels from (0, 0) to (0, π) increasing ϕ along the curve CM and increases
when one travels from (0, π) to (0, 2π). Analogously, the other crest Cm is in the
minimum basin of L with a complete analogous property. Since by (24) and (31), the
curve (ϕ, ξM (I, ϕ)) is never tangent to the level sets of the function L, the increase
and decrease are strict.
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3.2 Part 2. Outer dynamics (Scattering map)

We have seen in the previous section that if condition (11) is satisfied for any (I, ϕ, s)
in the domain H given in (33), the function (18) has a non-degenerate critical point
τ∗ given by τ∗ = τ∗(I, ϕ, s), where τ∗ is a smooth function defined in (30). If 0 <
ε < ε∗(I∗+), these critical points give rise to a homoclinic manifold Γε ⊂ W s

Λ̃
⋔ W u

Λ̃
,

along which these invariant manifolds intersect transversally. By equation (19), it
has the form

Γε = {z = z(I, ϕ, s; ε) = (p0(τ
∗), q0(τ

∗), I, ϕ, s) + O(ε) :
(I, ϕ, s) ∈ H, τ∗ = τ∗(I, ϕ, s) ∈ R}.

Remark 3.4 For the experts in the splitting of separatrices, we notice that the size
of ε∗ required for the justification of the transversal intersection of W s

Λ̃
and W u

Λ̃
along

Γε has to be such that the Melnikov potential (16) gives the dominant part of the
formula for the splitting. In our case, since L as well as its two first derivatives are
O

(
exp

(
−π/2I∗+

))
on the domain H, we need to impose that ε∗ = O

(
exp

(
−π/2I∗+

))
.

In this section we will see that associated to the homoclinic manifold Γε we can
define an outer dynamics Sε to the NHIM Λ̃ and we will obtain an approximate
explicit expression for it.

The scattering map associated to Γε is defined in the following way:

Sε : H ⊂ Λ̃ −→ Λ̃
x− 7→ x+

(34)

such that x+ = Sε(x−) if and only if there exists z ∈ Γε such that

dist(Φt,ε(z),Φt,ε(x±)) → 0 for t→ ±∞,

where Φt,ε is the flow of Hamiltonian (7).
In words, the scattering map maps a point x− on the NHIM to a point x+ on the

NHIM if there exists a homoclinic orbit to the NHIM that approaches the orbit of
x− in the past and the orbit of x+ in the future.

The scattering map Sε is exact and symplectic and indeed it is Hamiltonian, since
it is given by the time ε map of a Hamiltonian Sε [DLS08]. In the variables (I, ϕ, s)
this implies that the following formula holds for the scattering map

Sε(I, ϕ, s) = (I, ϕ, s) + ε

(
−∂S0

∂ϕ
(I, ϕ, s),

∂S0

∂I
(I, ϕ, s), 0

)
+ O(ε2).

As it is described in equation (21) in [DH09], the dominant term S0 of the Hamil-
tonian Sε is equal with opposite sign to the reduced Poincaré function L∗ defined
implicitly by

L∗(I, ϕ− Is) := L(I, ϕ− Iτ∗(I, ϕ, s), s − τ∗(I, ϕ, s)). (35)

It is important to notice that the Hamiltonian S0 is an autonomous 1-degree of
freedom Hamiltonian that can be expressed in terms of the variable θ̃ = ϕ− Is:

S0(I, ϕ, s) = −L∗(I, θ̃), θ̃ = ϕ− Is, (36)
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Figure 4: Straight lines (23) with slope 1 and the curves (25): the curve of the maxima
(solid curve) and the curve of the minima (dashed curve). See the text.

so that

Sε(I, ϕ, s) =

(
I + ε

∂L∗

∂θ̃
(I, θ̃) + O(ε2), θ̃ − ε

∂L∗

∂I
(I, θ̃) + O(ε2), s

)
, (37)

and the iterates under the scattering map simply follow closely the level curves of
the reduced Poincaré function (35).

In order to obtain an expression for the reduced Poincaré function and for its level
curves in our particular example, we will perform a discussion based on geometric
considerations.

By the definition of τ∗(I, ϕ, s) given in the previous section we have that the point

c(I, ϕ, s) := (I, ϕ − Iτ∗(I, ϕ, s), s − τ∗(I, ϕ, s)) ∈ CM(I), (38)

belongs to the crest CM , which is the closed curve defined in (28).
Therefore, the reduced Poincaré function L∗ evaluated on a point (I, ϕ, s) in the

domain H defined in (33) provides the value of the function L evaluated on c(I, ϕ, s),
the closest intersection of the straight line (23) starting on this point (I, ϕ, s) with
the curve CM . By construction, it is clear that there is a segment of points (I, ϕ, s)
in the domain H with the same c(I, ϕ, s) on the curve CM . See Figure 4.

Since the function L∗ is constant on these segments it can be written as a function
of only two variables: the action I and the variable θ̃ = ϕ− Is, which is 2π-periodic
in ϕ and constant along the straight lines (23) of slope 1/I contained in (33).

In order to obtain explicitly the expression of L∗ in the variable θ̃, we will proceed
in the following way. Fixed I, we consider a point (I, ϕ∗, 0) lying on the axis s = 0.
The points (I, ϕ, s) in the domain H defined in (33) satisfying θ̃ = ϕ − Is = ϕ∗
intersect the curve CM on the same point c(I, ϕ∗, 0) as (I, ϕ∗, 0) which by (38) is

(I, ϕ∗ − Iτ∗(I, ϕ∗, 0),−τ∗(I, ϕ∗, 0)).
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Since each segment {θ̃ = cte } in H intersects the s = 0 axis at the point (I, θ̃, 0),
the function L∗ has the following expression:

L∗(I, θ̃) = L(I, θ̃ − Iτ∗(I, θ̃, 0),−τ∗(I, θ̃, 0)).

The behavior of the function L∗ with respect to the variable θ̃ (which parame-
terizes the curve CM ) is exactly the behavior of the function L along the curve CM ,
that we discussed in Remark 3.3. Namely, when θ̃ increases from 0 to π, one travels
from (0, 0) to (0, π), increasing ϕ along the curve Cm and therefore the function L∗

decreases strictly. Equivalently, when θ̃ increases from π to 2π, one travels from (0, π)
to (0, 2π), increasing ϕ along the curve Cm and therefore the function L∗ increases
strictly.

We summarize some of the properties of the reduced Poincaré function in the
following Proposition:

Proposition 3.5 For any I ∈ [−1/2, I∗+], the function θ̃ 7→ L∗(I, θ̃) has a non-

degenerate maximum (minimum) close to θ̃ = 0 (mod2π) (θ̃ = π (mod2π), respec-
tively) and is strictly monotone in all the other points θ̃. Moreover, it has the follow-
ing expression

L∗(I, θ̃) = A0,0 +A1,0(I) cos(θ̃ − Iτ∗(I, θ̃, 0)) +A0,1 cos(ξM (I, θ̃ − Iτ∗(I, θ̃, 0)))

+O2(ρ, r), (39)

where A1,0 and A0,1(I) are given in (22), ξM in (28) and τ∗(I, θ̃, 0) is defined in
(30).

Remark 3.6 Notice that the behavior of the function L∗ with respect to the variable
θ̃ is “cosinus-like”. This observation is clear when one considers the case I = 0, where
ϕ = θ̃, ξM (0, ϕ) = 0 and

L∗(0, θ̃) = A0,0 +A1,0(0) cos(θ̃) +A0,1 + O2(ρ, r).

Proposition 3.5 provides us with an exhaustive description of the level sets of the
reduced Poincaré function, giving an approximate expression in first order for the
orbits of the scattering map Sε in (37). In Figure 5 we illustrate these level curves
for a particular case.

3.3 Part 3. Inner dynamics

The inner dynamics is the dynamics of the flow of Hamiltonian (7) restricted to the
NHIM (12). Indeed, by the form of the perturbation, the Hamiltonian restricted to
NHIM (12) takes the explicit form

K(I, ϕ, s; ε) =
I2

2
+ εg(ϕ, s), (40)

where (I, ϕ, s) ∈ [−1/2, I∗+] × T
2 and g is given in (9).
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Figure 5: Graph and level curves of the reduced Poincaré function L∗(I, θ̃) given in (39).
As in Figure 1 we have chosen a1,0 = 1/4 and a0,1 = 1/2 in (22).

In this section, we want to study the dynamics in the NHIM, that is, what are
the invariant objects, what is the distance among them in terms of the action I and
what are their approximate analytical expression. This section relies on the proof
and the results of Theorem 3.1 in [DH09].

We already mentioned in Section 3.1 that the dynamics for the unperturbed case
(that is, ε = 0) is very simple. Indeed, all the trajectories lie on two-dimensional
invariant tori I = const. The motion on the tori is conjugate to a rigid rotation of
frequency vector (I, 1). Notice that the Hamiltonian K is non degenerate, that is,

∂2K

∂I2
≡ 1 6= 0.

For ε > 0, KAM theorem ensures the preservation, with some deformation, of
most of the invariant tori present in the unperturbed system. Indeed, those having
frequencies “sufficiently”non-resonant, for which the influence of small divisors kI− l
can be overcome. This is guaranteed by a Diophantine condition on the frequency
vector:

|kI − l| ≥ γ

|(k, l)|τ ∀(k, l) ∈ Z
2\{0},

with τ ≥ 1 and some γ = O(
√
ε) > 0. The frequency vectors (I, 1) satisfying this

Diophantine condition fill a Cantorian set of relative measure 1 −O(
√
ε), called the

non-resonant region.
Hence, the invariant tori with Diophantine frequencies persist under the pertur-

bation, with some deformation. These KAM tori, which are just a continuation of

19



the ones that existed in the integrable case ε = 0, are commonly known as primary
tori and are given by the level sets of a function F of the form (see Proposition 3.24
in [DH09])

F (I, ϕ, s) = I + O(ε).

On the contrary, the invariant tori with resonant frequencies are typically de-
stroyed by the perturbation, creating gaps in the foliation of invariant tori of size up
to O(

√
ε) centered around resonances (indeed for the values of I such that kI− l = 0,

for some (k, l) ∈ N
2 which is the support of the Fourier transform of the perturba-

tion g given in (9)). However, in these resonant regions, other invariant objects are
created, like secondary tori, that is, two-dimensional invariant KAM tori contractible
to a periodic orbit, as well as periodic orbits with associated stable and unstable
manifolds. To prove the existence of these objects in the resonant regions and also to
give an approximate expression for them, in [DLS06, DH09] several steps of averaging
were performed before applying the KAM theorem to the Hamiltonian expressed in
the averaged variables.

More precisely, given any (k0, l0) ∈ N
2, k0 6= 0, gcd(k0, l0) = 1, for a resonant

region centered around a resonance I = l0/k0, the invariant tori are given by the
level sets of a function F , whose dominant term F̄ in ε is of the form (see Theorem
3.28 in [DH09])

F̄ (I, θ) =
(k0I − l0)

2

2
+ εk2

0U
k0,l0(θ), (41)

where θ = k0ϕ − l0s and the function Uk0,l0 contains the resonant terms of g with
respect to (k0, l0), that is,

Uk0,l0(θ) =
M∑

t=1

atk0,tl0 cos(tθ), (42)

where M = ε−1/(26+δ) and δ is a parameter satisfying 0 < δ < 1/10. The lower and
upper bounds for the coefficients akl of g provided by hypothesis (10) ensure that the
function (42) reaches a non-degenerate global maximum for any I = l0/k0 and any
M ≥ 1, independently of ε.

Indeed, the function Uk0,l0(θ) is analytic and 2π-periodic in θ. By (10), the
function Uk0,l0 in (42) is well approximated by its first order trigonometric polynomial

Uk0,l0(θ) = ak0,l0 cos(θ) + O2(ρ
k0rl0). (43)

As long as ρ, r are small enough, and replacing θ by θ+π if necessary (when ak0,l0 < 0),
the function (43) has two non-degenerate critical points corresponding to a global
maximum at θ = 0 and a global minimum at θ = π.

Notice that in the resonant region around I = l0/k0, the angle variable θ̃ intro-
duced in (36) satisfies θ̃ = ϕ − (l0/k0)s = θ/k0. Hence, the invariant tori in the
resonant region can be approximated by the level sets of a function that expressed
in the same variables (I, θ̃) as the scattering map in (37), takes the form

F ∗(I, θ̃) =

(
I − l0

k0

)2

2
+ εak0,l0(cos(k0θ̃) − 1), (44)
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which is the Hamiltonian of a pendulum in the variables (I, θ = k0θ̃). Notice that a
constant term −εak0,l0 has been added in order that the 0-level set corresponds to
the separatrices of the pendulum. It is worth noticing that the size in the action I of
the region enclosed by the two separatrices of (44), the gap, is given by

√
ε|ak0,l0 |.

In terms of the variable θ̃, the function F ∗ is 2πk0-periodic and therefore the region
enclosed by the separatrices has k0 components, the “eyes”.

The result of Theorem 3.1 in [DH09] provides a sequence of KAM tori consisting
of primary and secondary tori which are ε1+η-close spaced in terms of the action
variable I, for some η > 0.

The scattering map (34) detects the existence of heteroclinic connections among
primary or secondary invariant tori whose distance is smaller than ε. Thus, we will
distinguish two types of resonant regions depending whether the size of the gaps
created by the resonances is bigger or smaller than the size ε of the heteroclinic
jumps. The resonant region with big gaps corresponds to those resonances centered
around I = l0/k0 such that

√
|ak0,l0 | ≥ ε1/2 and for this region we have the large

gap problem. In these regions, we will include in the transition chain secondary tori
given approximately by negative level sets of the function (44). In the regions with
small gaps, centered around I = l0/k0 such that

√
|ak0,l0| < ε1/2, the gaps are of size

smaller than ε in terms of the I variable, so that it is possible to connect two primary
tori on both sides of the gap. This case does not present the large gap problem and
can be treated analogously as in the non-resonant region. Both regions, the small
gaps region and the non-resonant region, are called in [DH09] the flat tori region
and the dominant term in ε of the invariant tori is given there in first order by the
function

F ∗(I, θ̃) = I, (45)

where θ̃ = ϕ− Is.

3.4 Part 4. Combination of both dynamics

The geometric mechanism of diffusion close to the NHIM is based on the combination
of two types of dynamics, the inner one, provided by Hamiltonian (40) and the outer
one, approximately given by the time-ε map of the Hamiltonian (36).

Diffusion inside the three-dimensional NHIM can only take place between two-
dimensional invariant tori. In order to overcome the obstacles of these invariant KAM
tori present in the NHIM, we need to use the outer dynamics to “jump” from one
KAM invariant torus to another one. Of course, for this mechanism to be successful
the outer dynamics does not have to preserve the invariant KAM tori of the inner
one.

We have seen that the invariant KAM tori for Hamiltonian (40) are given by the
level sets of a function F , having different expressions in the flat tori region and
in the big gaps region. Indeed, its dominant term is given by a function F ∗ that
depends only on the variables (I, θ̃), having expression (44) for the big gaps region
and expression (45) for the flat tori region. Moreover, in equation (37) we showed
that the scattering map Sε is given in first order by the time-ε map of an integrable
Hamiltonian −L∗(I, θ̃) of the form (39). Therefore, imposing that F ∗ is not a first
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integral of the Hamiltonian L∗, or equivalently, that the functions F ∗ and L∗ are
functionally independent as variables of (I, θ̃):

∂F ∗

∂I
İ +

∂F ∗

∂θ̃

˙̃
θ = −∂F

∗

∂I

∂L∗

∂θ̃
+
∂F ∗

∂θ̃

∂L∗

∂I
= {F ∗,L∗} 6≡ 0, (46)

guarantees that the KAM tori in the NHIM are not invariant for the scattering map.
Moreover, it is easy to see that the Poisson bracket {F,L∗} provides, in first order,

the deformation under the scattering map of an invariant torus given by F (I, ϕ, s) =
cte , since

F ◦ Sε = F − ε{F,L∗} + O(ε2). (47)

Considering the torus
{F (I, ϕ, s) = E},

the image under the scattering map satisfies {F ◦ S−1
ε (I, ϕ, s) = E}, where F ◦ S−1

has the following expression:

F ◦ S−1
ε = F + ε{F,L∗} + O(ε2). (48)

Using that F can be approximated by its dominant term F ∗, it is enough to check

{F ∗,L∗} 6≡ 0 (49)

to guarantee that the scattering map moves the invariant tori of the inner dynamics.
In the flat tori region, F ∗ is independent of ε and is given in (45) so that

{F ∗,L∗}(I, θ̃) = −∂L
∗

∂θ̃
(I, θ̃), (50)

whereas in the big gaps region F ∗ has the form (44) and one can easily check that
the second term involving the derivative of F ∗ with respect to θ̃ in expression (46)
for {F ∗,L∗} is small compared with the first one (see Lemma tal in [DH09]). So, the
dominant term in ε of {F ∗,L∗}(I, θ̃) is

−
(
I − l0

k0

)
∂L∗

∂θ̃
(I, θ̃), (51)

for any I ∈ [−1/2, I∗+].
For Hamiltonian (7), by Proposition 3.5, we know that the reduced Poincaré func-

tion L∗ in (39) is non-constant in the variable θ̃ and indeed, for any I ∈ [−1/2, I∗+],
the function

θ̃ 7→ ∂L∗

∂θ̃
(I, θ̃)

vanishes only for θ̃ = 0, π, and is negative for values of θ̃ between 0 and π and positive
between π and 2π.

Hence, in view of equation (48), condition (49) guarantees that the scattering
map (outer dynamics) moves the invariant tori of the inner dynamics. It remains to
check now that the image under the scattering map of each of these tori intersects
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transversally another torus of the foliation. This provides the existence of a transverse
heteroclinic connection among these tori.

Since the different types of tori that appear in our problem have different quantita-
tive properties and also different expressions, we consider two different cases to check
the tranversality condition: the flat tori region and the big gaps region, introduced
in section 3.3.

In the case of flat tori, which by equation (45) are given approximately by I = cte ,
it is clear from expression (48) and (50) that the flat invariant tori are mapped under
the scattering map to

I − ε
∂L∗

∂θ̃
(I, θ̃) = cte .

Because of the cosinus-like behavior of L∗ described in Proposition 3.5 (see also
Remark 3.6), the image of this torus intersects transversally other invariant tori with
I = cte , that we know from the previous section that they are at a distance smaller
than ε.

Notice that depending on the point on the torus that we choose to apply the
scattering map, we can “jump” to different KAM invariant tori with either a higher
or a lower value of the action I. Hence, it is possible to construct several diffusing
orbits with increasing or decreasing I.

In the big gaps region the computation is more complex because in this case we
have primary and secondary KAM tori. Moreover, the invariant KAM tori are bent
near the separatrix. In a connected component of the big gaps regions, around a
resonance I = l0/k0, invariant KAM tori are given approximately by the implicit
equation

F ∗(I, θ̃) = E, (52)

for F ∗ as in (44) and E taking discrete values around 0.
When the value of E is positive, equation F ∗(I, θ̃) = E provides two primary

invariant tori T ±
E , whereas for E < 0, it provides a secondary torus TE. Equation

(52) defines two smooth surfaces given as graphs of the action I over the angle θ̃
defined in a certain range:

I = f∗±(θ̃, ε) =
l0
k0

±
√

2(E − εak0,l0(cos(k0θ̃) − 1)), (53)

corresponding to the + and − sign. When E > 0 these smooth surfaces correspond
to the two primary KAM tori T ±

E and the graph (53) is defined in the whole domain
[0, 2π). For E < 0, they correspond to the two components of the secondary KAM
torus TE and the graph (53) is defined in a domain strictly contained in (0, 2π).

By expressions (48), (51) and (53) we have that the image under the scattering
map of a torus satisfying {F (I, ϕ, s) = E} is given in first order by the set of points
(I, θ̃) satisfying

F ∗(I, θ̃) ∓ ε

√
2(E − εak0,l0(cos(k0θ̃) − 1)

∂L∗

∂θ̃

(
I, θ̃

)
= E.
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Figure 6: Invariant tori (primary and secondary) in the resonant region around I = 0

(red curves) given implicitly by the level sets of the function F ∗(I, θ̃) defined in (44) with
k0 = 1, l0 = 0 and a1,0 = 1/2. Images of these invariant tori (green curves) under the

scattering map (37) generated by the reduced Poincaré function L∗(I, θ̃) given in (39).

From this expression, it is clear that if the second term on the left-hand side,
namely

εM(θ̃, ε) := ε

√
2(E − εak0,l0(cos(k0θ̃) − 1)

∂L∗

∂θ̃
(I, θ̃), (54)

is non-constant, the image of the invariant torus intersects transversally other invari-
ant tori at a distance smaller than ε.

In the case of primary tori (when they are defined as a graph of I over θ̃ in the
whole domain [0, 2π)), there is an easy way to check this condition. Recall first that,
by Proposition 3.5, the function θ̃ 7→ L∗(I, θ̃) is “cosinus-like” and its dominant term
possesses two non-degenerate critical points at θ̃ = 0, π. Therefore, one can see that
the points on the torus corresponding to θ̃ = 0, π remain invariant for the scattering
map, so they are not good for diffusion. However, all the other points are moved by
the scattering map. Indeed, for θ̃ ∈ (0, π), the scattering map decreases the value of
the action I, whereas for θ̃ ∈ (π, 2π) the scattering map increases it. See Figure 6.
Again, as in the case of the flat tori region, depending on the point on the torus that
the scattering map is applied one can diffuse either increasing or decreasing the value
of the action I. In this paper we are concerned with diffusion with increasing I.

Thus, since
∂2L∗

∂θ̃2
6= 0
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Figure 7: Illustration of how to combine the two dynamics to cross the big gaps region.
Invariant tori for the inner dynamics (red curves) and invariant sets for the outer dynamics
(blue curves). Inner dynamics is represented by dashed lines whereas outer dynamics is
represented by solid lines.

in θ̃ = 0, π, because these points correspond to non-degenerate extrema of θ̃ 7→
L∗(I, θ̃), it is immediate that

∂

∂θ̃
M(θ̃, ε) 6= 0,

in θ̃ = 0, π. Therefore, there exists an open neighborhood around these points where
the intersection of the invariant tori with its image under the scattering map is
transversal. This is also true for secondary tori in θ̃ = π when k0 is odd. In the other
cases and also in general, it is easy to see in an analogous way that the intersections are
transversal because the “cosinus-like”behavior of the function θ̃ 7→ L∗(I, θ̃) described
in Proposition 3.5 guarantees that

∂

∂θ̃
M(I, θ̃) 6≡ 0.

Up to this point we have shown that it is possible to construct a sequence of
invariant tori in the inner dynamics having transverse heteroclinic connections among
them, by means of the combination of two dynamics. See Figure 7 for an illustration
of the combination of the two dynamics. Thus, we have constructed a transition
chain. Finally, using a standard obstruction property (see [DLS06, FM01]) one can
show that there exists an orbit that shadows this transition chain, and Theorem 2.1
follows.
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