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Abstract

We consider a magnetic Laplacian —Ay = (id + A)*(id + A)
on a noncompact hyperbolic surface M with finite area. A is a real
one-form and the magnetic field dA is constant in each cusp. When
the harmonic component of A satifies some quantified condition, the
spectrum of —A 4 is discrete. In this case we prove that the counting
function of the eigenvalues of —A 4 satisfies the classical Weyl formula,
even when dA = 0. !

Introduction

We consider a smooth, connected, complete and oriented Riemannian sur-
face (M, g) and a smooth, real one-form A on M. We define the magnetic
Laplacian, the Bochner Laplacian

—Ay = (id+ A (i d+ A) (1.1)

(Gd+Au=idu+uA, Vu € C;7(M;C).

The magnetic field is the exact two-form pp = dA .
If dm is the Riemannian measure on M | then

pp = bdm, with b € C°(M:R). (1.2)

! Keywords : spectral asymptotics, magnetic field, Aharanov-Bohm, hyperbolic surface.



The magnetic intensity is b = |b] .

It is well known, (see [Shu] ), that —A 4 has a unique self-adjoint extension
on L?*(M) , containing in its domain C5°(M;C) , the space of smooth and
compactly supported functions. The spectrum of —A, is gauge invariant :
for any f € CY(M;R), —A, and —A 4 are unitarily equivalent, hence
they have the same spectrum.

We are interested in constant magnetic fields on M in the case when
(M, ¢) is a non-compact geometrically finite hyperbolic surface of finite
area; (see [Per| or [Bor] for the definition and the related references). More
precisely

M = M (1.3)

where the M; are open sets of M, such that the closure of M, is compact,
and (when J > 1) the other M; are cuspidal ends of M.

This means that, for any j, 1 < 5 < J |, there exist strictly positive
constants a; and L; such that M, is isometric to Sx]a§,+oo[ , equipped
with the metric

ds? = y (L3 d¢* + dy*); (1.4)

(S = S' is the unit circle and M; "M, = Qif j £k ).
Let us choose some z, € M, and let us define

d: M — Ri; d(z) = dy(z,2); (1.5)

dy( ., .) denotes the distance with respect to the metric g.
For any b € R’ | there exists a one-form A , such that the corresponding
magnetic field dA satisfies

dA = b(z)dm with b(z) = b;Vz € M, . (1.6)
The following statement on the essential spectrum is proven in [Mo-Tr1] :

Theorem 1.1 Assume (1.3) and (1.6). Then for any j , 1 < j < .J and
for any z € M; there exists a unique closed curve through z , C;,
in (Mj, g), not contractible and with zero g—curvature. (C;, is called an
horocycle of M; ). The following limit exists and is finite:

Aly, = i A. 1.7
[ ]M] d(z)l—rg-oo /ij2 ( )
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IfJ* = {jeN, 1<j<Jst [Aly, €2aZ} # 0, then

1 .o

Spess(_AA) = [Z_l +]II€1}% bj ) +OO[ . (18)
[fJA = ®7 then Spess(_AA) = @ :

—Ay has purely discrete spectrum, (its resolvent is compact).

When the magnetic Laplacian —A, has purely discrete spectrum, it is
called a magnetic bottle, (see [Col2]).

If A=df+ A" + A% is the Hodge decomposition of A with A* harmonic,
(dA" =0 and d*A" =0) , then V j , [A]la, = [A"]a;, , so the discreteness
of the spectrum of —A 4 depends only on the harmonic component of A . So
one can see the case J* = () as an Aharonov-Bohm phenomenon [Ah-Bo],
a situation where the magnetic field dA is not sufficicient to describe —A4
and the use of the magnetic potential A is essential : we can have magnetic
bottle with null intensity.

2 The Weyl formula in the case of finite area
with a non-integer class one-form

Here we are interested in the pure point part of the spectrum. We assume
that J4 = 0, then the spectrum of —A, is discrete. In this case, we denote
by (A;); the increasing sequence of eigenvalues of —A 4 , (each eigenvalue is
repeated according to its multiplicity). Let

N\ =Ay) = > 1. (2.1)

Aj<A

We will show that the asymptotic behavior of N()) is given by the Weyl
formula :

Theorem 2.1 Consider a geometrically finite hyperbolic surface (M, g) of
finite area, and assume (1.6) with J* = 0, (see (1.7 for the definition).
Then M
N, —Ay) = )\|4 L O(VAIn)) . (2.2)
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Remark 2.2 As J4 depends only on the harmonic component of A, J4 is
not empty when M is simply connected. In [Go-Mo] there are some results
close to Theorem 2.1, but for simply connected manifolds.

The cases where the magnetic field prevails were studied in [Mo-Tr1] and
in [Mo-Tr2].

Proof of Theorem 2.1. Any constant depending only on the b; and on

min inf [[A]y;, — 2k7| will be denoted invariably C' .
1<5<J keZ

Consider a cusp M = M; = Sx]a?, +oo[ equipped with the metric

ds* = L?e72'd0? + dt* for some o >0 and L >0 .
Let us denote by —AX the Dirichlet operator on M | associated to —A, .
The first step will be to prove that

N, =AM = 'i”' + O(VAIn)) . (2.3)

Since —A} and —ANY, ;.4 are gauge equivalent for any ¢ € C*(M;R)
and any k € Z, we can assume that

1
—AM = L7222 (Dy — A))? + D? + 1 with A} = —£4+bLe™, £€]0,1],

(b="0;, 2m& — [Alyy € 27Z) . Then we get that

Sp<_A%):€€LJZSP(P£)§PEID?-F%—F( (ézf)ib> :

for the Dirichlet condition on L?(I;dt) ; I =]a? +oo| . This implies that

N =AY) = Y N P) =Y N\ P) (2.4)

LeL e Xy

with X, = {¢ / ¢ M—Li_§|<\/)\ i—b1.

Denoting by @, the Dirichlet operator on I associated to

1 (£+5)
2
Qv = D; +4+ 72 ;
we easily get that
-CyQr < P < Qi +CVQy . (2.5)
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Therefore one can find a constant C'(b) , depending only on b , such that,
for any A >> 1+ C(b) ,

NA=VACD1), Q) < N\ P) < NA+VAC(h), Q) . (2.6)

Following Titchmarsh’s method ( [Tit], Theorem 7.4) we establish the fol-
lowing bounds

Lemma 2.3 There exists C > 1 so that for any p >>1 and any { € X, ,

wil) —7 < AN(u-1.Q) < w4 Shpt O, (@27)

with ) : )2 12
Y P Gt Qt} dt 2.8
wtn) = [ =] (25)

_ Tt _(e+¢)? 21‘} 2 dt -
[ -t
(e'r = Ly/p/(inf [€ = k) ) -

Proof of Lemma 2.3

The lower bound is easily obtained (see [Tit], Formula 7.1.2 p 143) so we
focus on the upper bound.

Let us define V, = “}—92@% and denote by (bﬁ a solution of Q¢ = (u— %)(b.
Consider z, and y, so that Vy(xy) = p and Vi(y,) = v, for a given 0 < v < p
to be determined later. We denote by m the number of zeros of gzﬁﬁ on |a?, yg[.
Recall that the number n of zeros of gbf; on |a?, z,] is equal to N(u — ;11, Qo).

Applying Lemma 7.3 p 146 in [Tit] we deduce that

Ye
mm = / [w— V" dt + R,

2

with Ry = $In(p — Vi(e?)) — 3 In(p — Vi(ye)) + , hence
Ty
o — / = Vi) dt| < (2 = ye) (= v)/* + Re + (n — m)m

According to the Sturm comparison theorem ([Tit], p 107-108), we have

(n—m)m < (20— ye)(u—v)"?

5



and
e 1/2 H 1/2 1 1
Inm — [ — Vo7 dt] <In(=)(p—v) +Zlnu—zln(,u—u)+27r
a2 14
Now taking v = p — p?/3 we get the desired estimate.
In view of (2.4) we now compute » ., we(p) . We first get the following

Lemma 2.4 There exists C' > 1 such that, for any p >> 1 and any
t € [a2’TM»L]’

+£2t1/2 €+€2t1/2
/R{'u_(x[}) 62} de — Z{M_( L2) 62:|+

+ LEZ

< Cvi+ ).

This leads to

Lemma 2.5 There exists C' > 1 such that, for any p>>1,

Tt (z+8)? 5"
/2 / {,u -3 62t:| dxdt — ng(,u) < Cyplnp.
o R + 1</
We now compute the integral in the left-hand side.
2
Making the change of variables y? = %ezt we obtain that it is equal to

pL fs;”’L e tdt [, [1— xQ]i/Q dx, so we get
Lemma 2.6 There exists C > 1 such that, for any p>>1,

TyL z+ €)?2 1/2 - s
/2 / [,u — ( 73 ) th] dxdt — ple C“2/ [1 — xﬂf dx
« R R

+

< O\

Noticing that |M| = 2rLe~*" and using Lemmas 2.5 and 2.6 we have

Lemma 2.7

1 M
;ZG’LU@(M) = %,LL + O(yplnp), as p— +oo.
¢



In view of (2.4),(2.6) and (2.7) Lemma 2.7 ends the proof of formula (2.3).
Now it remains to consider the whole surface M.

J
We have: M = UMj
=0

where the M, are open sets of M, such that the closure of M, is compact,
and the other M; are cuspidal ends of M and

J
M;jN My =0, if j # k. We denote M¢ =M\ (| J11;), then

Jj=1

M = M (OE) . (2.9)

Let us denote respectively by —A% p and by —A% n the Dirichlet operator
and the Neumann-like operator on an open set 2 of M associated to —Ay4 .
The minimax principle and (2.9) imply that

N =AY+ ST NG —AY) < N4 A (2.10)

1<5<J
< NOL-AY + ST NS -aly)
1<5<J

The Weyl formula with remainder, (see [Hor] for Dirichlet boundary con-
dition and [Sa-Va] p. 9 for Neumann-like boundary condition), gives that

Mg -
N, =Aup) = (4m) M+ O(VA) | (2.11)
N(A, =A%) = (4m) [ MIIA + O(VA)
The asymptotic formula for N (A, —A%]N) ;
. M;
N =AM = )\—|4 il O(VAIn)), (2.12)
) T

is obtained as for the Dirichlet case (2.3) (with M = M; ), by noticing that

N\ Pip) < N\, Pin) < N, Py p)+1, where Py p and Py x are Dirichlet

and Neumann operators on a half-line I =]a?, +oo[ , associated to the same
14

1
differential Schodinger operator Py = Df + -+ I
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more precisely Py y is of Robin type condition dyu(a?) + u(a?)/2 = 0 cause
of change of density.

We get (2.2) from (2.3) with M = M; , (2.12), (for any j =1,...,J),
(2.10) and (2.11).0

Remark 2.8 Theorem 2.1 still holds if the metric of M is modified in a
compact set.

When A = 0, —A = —Aqy has embedded eigenvalues in its essential
spectrum, (spess(—A) = [§,+00[) . If Ness(X, —A) denotes the number of
these eigenvalues in [i,)\[ , then it is well known that one has an upper

M
bound Ness(A, —A) < )\|4—| ; see [Coll] and [Hej] for the history and
m

related improvement of the upper bound.
Recently [Mul] established a sharp asymptotic formula, similar to our case,
M
Negs(A, —A) = /\|4—| + O(VAln ),
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for some particular M .
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