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ABSTRACT. In this work we prove sharp weighted Rellich-type inequalities and their improved
versions for general Carnot groups. To derive the improved Rellich-type inequalities we have estab-
lished new weighted Hardy-type inequalities with remainder terms. We also prove new sharp forms
of the weighted Hardy-Poincaré and uncertainty principle inequalities for polarizable Carnot groups.
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1. INTRODUCTION

The classical Rellich inequality [26] states that for n ≥ 5, for all φ ∈ C∞0 (Rn),∫
Rn
|∆φ(x)|2dx ≥ n2(n− 4)2

16

∫
Rn

|φ(x)|2

|x|4
dx. (1.1)

It is well-known that the constant n2(n−4)2

16
in inequality (1.1) is sharp. In a recent pa-

per, Tertikas and Zographopoulos [28] obtained the following Rellich-type inequality

that connects first to second-order derivatives:∫
Rn
|∆φ(x)|2dx ≥ n2

4

∫
Rn

|∇φ(x)|2

|x|2
dx, (1.2)

where φ ∈ C∞0 (Rn), n ≥ 5 and the constant n2

4
is sharp. There has been considerable

amount work on the Rellich-type inequalities in Euclidean spaces and Riemannian

manifolds, e.g., [14], [5], [28], [24], [20] and the references therein. However, Rellich-

type inequalities have not been established for general Carnot groups. Our main

contribution in this direction is to find sharp weighted Rellich-type inequalities and

their improved versions for general Carnot groups.

The Rellich inequality (1.1) is the first generalization of Hardy’s inequality

∫
Rn
|∇φ(x)|2dx ≥ (n− 2)2

4

∫
Rn

|φ(x)|2

|x|2
dx (1.3)
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to the higher order derivatives and they are intimately related. For example, the

Rellich inequality (1.1) is an easy consequence of (1.2) and the weighted Hardy in-

equality: ∫
Rn

|∇φ(x)|2

|x|2
dx ≥ (n− 4)2

4

∫
Rn

|φ(x)|2

|x|4
dx, (1.4)

where φ ∈ C∞0 (Rn), n ≥ 5 and the constant (n−4)2

4
is sharp.

It is well-known that Hardy and Rellich inequalities as well as their improved ver-

sions play important roles in many questions from spectral theory, harmonic analysis

and analysis of linear and nonlinear partial differential equations. A striking example

where the sharp Hardy inequality (1.3) plays a major role is the following linear heat

equation: ∂u
∂t

= ∆u+ c
|x|2u in Rn × (0, T ),

u(x, 0) = u0(x) ≥ 0 in Rn.
(1.5)

In their classical paper Baras and Goldstein [4] proved that the initial value problem

(1.5) has no nonnegative solutions except u ≡ 0 if c > C∗(n) = (n−2
2

)2. Moreover,

all positive solutions blow up instantaneously in the sense that if un is the solution

of the same problem with the potential c/|x|2 replaced by Vn = min{c/|x|2, n}, then

limn−→∞ un(x, t) =∞ for all x ∈ Rn and t > 0. If c ≤ C∗(n) = (n−2
2

)2, positive weak

solutions do exist.

Note that the above inequalities are strict unless φ is identically equal to 0.

Therefore it is natural to expect some extra term might be added on the right hand

side of the inequalities (1.1), (1.2), (1.3) and (1.4). A remarkable result in this

direction has been obtained by Brezis and Vázquez [8]. They have discovered the

following sharp improved Hardy inequalities for a bounded domain Ω ⊂ Rn∫
Ω

|∇φ(x)|2dx ≥
(n− 2

2

)2
∫

Ω

|φ(x)|2

|x|2
dx+ µ

( ωn
|Ω|
)2/n

∫
Ω

φ2dx, (1.6)

∫
Ω

|∇φ(x)|2dx ≥
(n− 2

2

)2
∫

Ω

|φ(x)|2

|x|2
dx+ C

(∫
Ω

φqdx
) 2
q
, (1.7)

where φ ∈ H1
0 (Ω), C = C(Ω, n) > 0, ωn and |Ω| denote the n-dimensional Lebesgue

measure of the unit ball B ⊂ Rn and the domain Ω respectively. Here µ is the first

eigenvalue of the Laplace operator in the two dimensional unit disk, and it is optimal

when Ω is a ball centered at the origin. In (1.7) we assume that 2 ≤ q < 2n
n−2

and

the critical Sobolev exponent q = 2∗ = 2n
n−2

is not included. The work of Brezis and

Vazquez [8] has been a continuous source of inspiration and a lot of progress has been

made to find further improvement of the inequalities (1.1), (1.2), (1.3), (1.4), (1.6)

and (1.7) in the various settings e.g., [30], [2], [6], [31], [1], [5], [19], [28], [24], [20],

[23] and the references therein.
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The connection between weighted Hardy and Rellich inequalities, and the impor-

tance of Hardy’s inequality in analysis and partial differential equations motivates us

to establish weighted Hardy-type inequalities and their improved versions on Carnot

groups. Indeed, in our earlier paper, we found some sharp weighted Hardy-type in-

equalities and their improved versions for L2-norms of gradients on Carnot groups

[23]. In the present paper we first prove a new (non standard) form of weighted

Lp-Hardy-type inequality with a sharp constant and then derive new weighted L2-

Hardy-type inequalities with remainder terms for bounded domains in Carnot groups.

We stress here that weighted Hardy-type inequalities and their improved versions are

the main tools for establishing weighted Rellich-type inequalities and their improved

versions, respectively.

We should mention that Hardy-type inequalities have been the target of inves-

tigation in Carnot-Carathéodory spaces since the work of Garofalo and Lanconelli

[18], and there has been a continuously growing literature in this direction. We refer

to the recent papers by Danielli, Garofalo and Phuc [13], and Goldstein and Kombe

[21], and the monograph by Capogna et al. [11] and the references therein.

It is known that Hardy and Sobolev inequalities are closely related to the Heisen-

berg uncertainty principle in quantum mechanics. The Heisenberg uncertainty princi-

ple says that the position and momentum of a particle cannot be determined exactly

at the same time but only with an “uncertainty”. More precisely, the uncertainty

principle on the Euclidean space Rn can be stated in the following way:(∫
Rn
|x|2|f(x)|2dx

)(∫
Rn
|∇f(x)|2dx

)
≥ n2

4

(∫
Rn
|f(x)|2dx

)2

(1.8)

for all f ∈ L2(Rn). It is well known that equality is attained in the above if and only

if f is a Gaussian function (i.e. f(x) = Ae−α|x|
2

for some A ∈ R, α > 0). There exists

large literature devoted to deriving various uncertainty principle type inequalities in

the Euclidean and other settings (see [16], [23] and the references therein). However,

much less is known about sharp uncertainty principle inequalities on Carnot groups.

In [23] we obtained the following uncertainty principle-type inequality:(∫
G
N2|∇GN |2φ2dx

)(∫
G
|∇Gφ|2dx

)
≥
(Q− 2

2

)2(∫
G
|∇GN |2φ2dx

)2

, (1.9)

where N = u1/(2−Q) is the homogeneous norm associated to Folland’s fundamental

solution u for the sub-Laplacian ∆G and Q is the homogeneous dimension of G. It is

clear that this inequality is not sharp. In this paper, motivated by a result of Balogh

and Tyson [3], we prove a sharp analog of the uncertainty principle inequality (1.8)

for polarizable Carnot groups.

In order to state and prove our theorems, we first recall the basic properties of

Carnot group G and some well-known results that will be used in the sequel. Further

information can be found in [3], [7], [10], [12], [15], [17], [25], [27], [29].
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2. PRELIMINARIES

A Carnot group is a connected, simply connected, nilpotent Lie group G whose

Lie algebra G admits a stratification. That is, there exist linear subspaces V1, ..., Vk

of G such that

G = V1⊕ ...⊕ Vk, [V1, Vi] = Vi+1, for i = 1, 2, ..., k− 1 and [V1, Vk] = 0 (2.1)

where [V1, Vi] is the subspace of G generated by the elements [X, Y ] with X ∈ V1 and

Y ∈ Vi. This defines a k-step Carnot group and integer k ≥ 1 is called the step of G.

Via the exponential map, it is possible to induce on G a family of automorphisms

of the group, called dilations, δλ : Rn −→ Rn(λ > 0) such that

δλ(x1, ..., xn) = (λα1x1, ..., λ
αnxn)

where 1 = α1 = ... = αm < αm+1 ≤ ... ≤ αn are integers and m = dim(V1).

The group law can be written in the following form

x · y = x+ y + P (x, y), x, y ∈ Rn (2.2)

where P : Rn × Rn −→ Rn has polynomial components and P1 = ... = Pm = 0. Note

that the inverse x−1 of an element x ∈ G has the form x−1 = −x = (−x1, ...,−xn).

LetX1, ..., Xm be a family of left invariant vector fields which form an orthonormal

basis of V1 ≡ Rm at the origin, that is, X1(0) = ∂x1 , ..., Xm(0) = ∂xm . The vector

fields Xj have polynomial coefficients and can be assumed to be of the form

Xj(x) = ∂j +
n∑

i=j+1

aij(x)∂i, Xj(0) = ∂j, j = 1, ...,m,

where each polynomial aij is homogeneous with respect to the dilations of the group,

that is aij(δλ(x)) = λαi−αjaij(x). The horizontal gradient on Carnot group G is the

vector valued operator

∇G = (X1, ..., Xm)

where X1, ..., Xm are the generators of G. The sub-Laplacian is the second-order

partial differential operator on G given by

∆G =
m∑
j=1

X2
j .

The fundamental solution u for ∆G is defined to be a weak solution to the equation

−∆Gu = δ (2.3)

where δ denotes the Dirac distribution with singularity at the neutral element 0 of

G. In [15], Folland proved that in any Carnot group G, there exists a homogeneous

norm N such that

u = N2−Q
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is harmonic in G\{0}. Furthermore there exists a constant c2 > 0 so that c2u satisfies

(2.3) in the sense of distributions. The number Q, called the homogeneous dimension

of G, is defined by

Q =
k∑
j=1

j(dimVj)

and plays an important role in in the analysis of Carnot groups.

We now set

N(x) :=

u
1

2−Q if x 6= 0,

0 if x = 0.
(2.4)

We recall that a homogeneous norm on G is a continuous function N : G −→ [0,∞)

smooth away from the origin which satisfies the conditions : N(δλ(x)) = λN(x),

N(x−1) = N(x) and N(x) = 0 iff x = 0.

A Carnot group G is said to be polarizable if the homogeneous norm N = u1/(2−Q)

satisfies the following ∞- sub-Laplace equation,

∆G,∞N :=
1

2
〈∇G(|∇GN |2),∇GN〉 = 0, in G \ {0}. (2.5)

This class of groups were introduced by Balogh and Tyson [3] and admit the analogue

of polar coordinates. It is known that Euclidean space, the Heisenberg group and the

Kaplan’s H-type group [22] are polarizable Carnot groups (see [12], [3]).

In [3], Balogh and Tyson proved that the homogeneous norm N = u1/(2−Q), asso-

ciated to Folland’s solution u for the sub-Laplacian ∆G, enters also in the expression

of the fundamental solution of the sub-elliptic p-Laplacian:

∆G,pu =
m∑
i=1

Xi(|Xu|p−2Xiu), 1 < p <∞, (2.6)

on polarizable Carnot groups. More precisely, they proved that for every 1 < p <

∞, p = Q

up =

 N
p−Q
p−1 , if p 6= Q,

−logN, if p = Q.
(2.7)

is p-harmonic in G \ {0}. Furthermore there exists a constant cp so that cpup satisfies

−∆G,p(cpup) = δ

in the sense of distributions. In the setting of H-type groups, explicit formulas for

the fundamental solutions of the sub-elliptic p-Laplacian has been found by Capogna,

Danielli and Garofalo [10].

The following formula:

∇G ·
( N

|∇GN |2
· ∇GN

)
= Q in G \ Z (2.8)
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was proved by Balogh and Tyson [3]. Here Z := {0} ∪ {x ∈ G \ {0} : ∇GN(x) = 0}
has Haar measure zero and ∇GN 6= 0 for a.e. x ∈ G.

The curve γ : [a, b] ⊂ R −→ G is called horizontal if its tangents lie in V1, i.e,

γ′(t) ∈ span{X1, ..., Xm} for all t. Then, the Carnot-Carathéodory distance dCC(x, y)

between two points x, y ∈ G is defined to be the infimum of all horizontal lengths∫ b
a
〈γ′(t), γ′(t)〉1/2dt over all horizontal curves γ : [a, b] −→ G such that γ(a) = x

and γ(b) = y. Notice that dcc is a homogeneous distance and satisfies the invariance

property

dcc(z · x, z · y) = dcc(x, y), for all x, y, z ∈ G,

and is homogeneous of degree one with respect to the dilation δλ, i.e.

dcc(δλ(x), δλ(y)) = λdcc(x, y), for all x, y, z ∈ G, for allλ > 0.

The Carnot-Carathéodory balls are defined by B(y,R) = {x ∈ G|dcc(y, x) < R}. By

left-translation and dilation, it is easy to see that the Haar measure of B(y,R) is

proportional by RQ. More precisely

|B(y,R)| = RQ|B(y, 1)| = RQ|B(0, 1)|.

We now set

B% := B(0, R) = {x ∈ G : %(x) < R}

where % := dcc(0, x) is the Carnot-Carathéodory distance of x from the origin. Note

that % is a homogeneous norm and equivalent to other homogeneous norm on G. At

this point we remark that |∇GN | is uniformly bounded and N : (G, dcc) −→ R is

Lipschitz (see [3]).

We now recall the following integration formula in polar coordinates on G∫
G
f(x)dx =

∫ ∞
0

∫
S

f(δλu)λQ−1dσ(u)dλ

which is valid for all f ∈ L1(G). Here S = {N = 1} is the unit sphere with respect

to the homogeneous norm N and dσ is a Radon measure on S (see [17], [3], [25], [7]).

Now it is clear the radial function ρα ( % is any homogeneous norm on G) is locally

integrable if α > −Q.

3. SHARP WEIGHTED HARDY TYPE INEQUALITIES

In this section we prove various weighted Hardy-type inequalities and their im-

proved versions. We begin this section by proving a new form of the weighted Hardy-

Poincaré-type inequality with a sharp constant.
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Theorem 3.1. Let G be a polarizable Carnot group with homogeneous dimension

Q ≥ 3 and let φ ∈ C∞0 (G), 1 < p < Q and α > −Q. Then the following inequality is

valid : ∫
G
Nα+p |∇GN · ∇Gφ|p

|∇GN |2p
dx ≥

(Q+ α

p

)p ∫
G
Nα|φ|pdx. (3.1)

Furthermore, the constant (Q+α
p

)p is sharp.

Proof. Using the volume growth condition formula (2.8) and integration by parts, we

get

(Q+ α)

∫
G
Nα|φ|pdx = −p

∫
G

|φ|p−2φNα+1

|∇GN |2
∇GN · ∇Gφdx.

An application of Hölder’s and Young’s inequality yields

(Q+ α)

∫
G
Nα|φ|pdx ≤ p

(∫
G
Nα|φ|pdx

)(p−1)/p(∫
G

Nα+p|∇GN · ∇Gφ|p

|∇GN |2p
dx
)1/p

≤ (p− 1)ε−p/(p−1)

∫
G
Nα|φ|pdx+ εp

∫
G

Nα+p|∇GN · ∇Gφ|p

|∇GN |2p
dx

for any ε > 0. Therefore

∫
G

Nα+p|∇GN · ∇Gφ|p

|∇GN |2p
dx ≥ ε−p

(
Q+ α− (p− 1)ε−p/(p−1)

)∫
G
Nα|φ|pdx. (3.2)

Note that the function ε −→ ε−p
(
Q+ α− (p− 1)ε−p/(p−1)

)
attains the maximum for

εp/(p−1) = p
Q+α

, and this maximum is equal to
(
Q+α
p

)p
. Now we obtain the desired

inequality ∫
G
Nα+p |∇GN · ∇Gφ|p

|∇GN |2p
dx ≥

(Q+ α

p

)p ∫
G
Nα|φ|pdx.

Next we claim that
(
Q+α
p

)p
is the best constant in (3.1):

CH : = inf
0 6=φ∈C∞0 (G)

∫
GN

α+p |∇GN ·∇Gφ|p
|∇GN |2p

dx∫
GN

α|φ|pdx
,

=
(Q+ α

p

)p
.

It is clear that

(Q+ α

p

)p ≤ ∫GN
α+p |∇GN ·∇Gφ|p

|∇GN |2p
dx∫

GN
α|φ|pdx

(3.3)

holds for all φ ∈ C∞0 (G). If we pass to the inf in (3.3) we get that
(
Q+α
p

)p ≤ CH .

We only need to show that CH ≤
(
Q+α
p

)p
and for this we use the following family of

radial functions
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φε(N) =

N
Q+α
p

+ε if N ∈ [0, 1],

N−(Q+α
p

+ε) if N > 1,
(3.4)

where ε > 0. Notice that φε(N) can be approximated by smooth functions with

compact support in G.

A direct computation shows that

Nα+p |∇GN · ∇Gφε|p

|∇GN |2p
=


(
Q+α
p

+ ε
)p
NQ+2α+pε if N ∈ [0, 1],(

Q+α
p

+ ε
)p
N−Q−pε if N > 1.

Let us denote by B1 = {x ∈ G : N(x) ≤ 1} the unit ball with respect to the

homogeneous norm N . Hence∫
G
Nα|φε|pdx =

∫
B1

NQ+2α+pεdx+

∫
G\B1

N−Q−pεdx.

Note that, for every ε > 0, the weights NQ+2α+pε and N−Q−pε are integrable at 0 and

∞, respectively. This implies that
∫

GN
α|φε|pdx is finite. Thus we have(Q+ α

p
+ ε
)p ∫

G
Nα|φε|pdx =

(Q+ α

p
+ ε
)p[ ∫

B1

NQ+2α+pεdx+

∫
G\B1

N−Q−pεdx
]

=

∫
G
Nα+p |∇GN · ∇Gφε|p

|∇GN |2p
dx.

On the other hand

(
Q+α
p

+ ε
)p

CH

∫
G
Nα+p |∇GN · ∇Gφε|p

|∇GN |2p
dx ≥

(Q+ α

p
+ ε
)p ∫

G
Nα|φε|pdx

=

∫
G
Nα+p |∇GN · ∇Gφε|p

|∇GN |2p
dx.

It is clear that
(
Q+α
p

+ ε
)p ≥ CH and letting ε −→ 0 we obtain

(
Q+α
p

)p ≥ CH .

Therefore CH =
(
Q+α
p

)p
.

The following Lp-Hardy-type inequality is the weighted extension of Theorem 3.1

in [21] and plays important roles in the proof of Theorem 3.6 and Section 4.

Theorem 3.2. Let G be a polarizable Carnot group with homogeneous dimension

Q ≥ 3 and let φ ∈ C∞0 (G), α ∈ R, 1 < p < Q and Q+α− p > 0. Then the following

inequality is valid :∫
G
Nα|∇Gφ|pdx ≥

(Q+ α− p
p

)p ∫
G
Nα |∇GN |p

Np
|φ|pdx. (3.5)

Furthermore, the constant (Q+α−p
p

)p is sharp.
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Proof. Let φ ∈ C∞0 (G) and define ψ = N−γφ where γ < 0. A direct calculation shows

that

|∇Gφ| = |γNγ−1ψ∇GN +Nγ∇Gψ|. (3.6)

We now use the following convexity inequality

|a+ b|p − |a|p ≥ c(p)|b|p + p|a|p−2a · b, (3.7)

where a, b ∈ Rn, p ≥ 2 and c(p) > 0 (see [6]). In view of (3.7) we have that∫
G
Nα|∇Gφ|pdx ≥ |γ|p

∫
G
Nα+γp−p|∇GN |p|ψ|pdx

+ |γ|p−2γ

∫
G
Nα+γp−p+1|∇GN |p−2∇GN · ∇G(|ψ|p)dx

+ c(p)

∫
G
Nα+pγ|∇Gψ|pdx.

Clearly ∫
G
Nα|∇Gφ|pdx ≥ |γ|p

∫
G
Nα+γp−p|∇GN |p|ψ|pdx

+ |γ|p−2γ

∫
G
Nα+γp−p+1|∇GN |p−2∇GN · ∇G(|ψ|p)dx,

and integration by parts gives∫
G
Nα|∇Gφ|pdx ≥ |γ|p

∫
G
Nα+γp−p|∇GN |p|ψ|pdx

− |γ|p−2γ

∫
G
∇G · (Nα+γp−p+1|∇GN |p−2∇GN)|ψ|pdx.

We now choose γ = p−Q−α
p

; then we get∫
G
∇G · (Nα+γp−p+1|∇GN |p−2∇GN)|ψ|pdx =

∫
G
∇G · (N1−Q|∇GN |p−2∇GN)|ψ|pdx.

(3.8)

Since up is the fundamental solution of sub-p-Laplacian −∆G,p, we then have∫
G
∇G · (N1−Q|∇GN |p−2∇GN)|ψ|pdx = −c(G, p)|φ(0)|pN (Q+α−p)(0)

= 0

(3.9)

where c(G, p) is a positive constant (see [3]). Hence we obtain the desired inequality∫
G
Nα|∇Gφ|pdx ≥

(Q+ α− p
p

)p ∫
G
Nα |∇GN |p

Np
|φ|pdx. (3.10)

To show that the constant
(
Q+α−p

p

)p
is sharp, we use the following family of radial

functions

φε(N) =

N
Q+α−p

p
+ε if N ∈ [0, 1],

N−(Q+α−p
p

+ε) if N > 1,
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and pass to the limit as ε −→ 0. Note that the Theorem (3.2) also holds for 1 < p < 2

and in this case we use the following inequality:

|a+ b|p − |a|p ≥ c(p)
|b|2

(|a|+ |b|)2−p + p|a|p−2a · b (3.11)

where a ∈ Rn, b ∈ Rn and c(p) > 0 (see [6]).

Remark 3.3. We remark that if p = 2 then we remove the polarizability condition

and the inequality (3.5) holds in any Carnot group (see [23]).

IMPROVED HARDY TYPE INEQUALITIES. We now prove improved weighted

Hardy-type inequalities and also collect other known improved weighted Hardy-type

inequalities that will be used in Section 4. To motivate our discussion, let us recall

the the following sharp improved Hardy inequality from the Euclidean setting:∫
Ω

|x|α|∇φ|2dx ≥
(n+ α− 2

2

)2
∫

Ω

|x|α φ
2

|x|2
dx+

1

4

∫
Ω

|x|α φ2

|x|2(ln R
|x|)

2
dx, (3.12)

where Ω is abounded domain with smooth boundary, 0 ∈ Ω, φ ∈ C∞0 (Ω), n ≥ 1,

α ∈ R, R ≥ e supΩ |x| and n + α − 2 > 0. Furthermore, the constant 1
4

is sharp and

this inequality has immediate applications in partial differential equations (see [2],

[31], [1] [19]). Motivated by the above results our first goal is to obtain the analog of

(3.12) for bounded domains in Carnot groups.

Theorem 3.4. Let G be a Carnot group with homogeneous norm N = u1/(2−Q) and

let Ω ⊂ G be a bounded domain with smooth boundary, 0 ∈ Ω, R ≥ e supΩN , α ∈ R,

Q ≥ 3, Q+ α− 2 > 0. Then the following inequality holds:∫
Ω

Nα|∇Gφ|2dx ≥
(Q+ α− 2

2

)2
∫

Ω

Nα |∇GN |2

N2
φ2dx+

1

4

∫
Ω

Nα |∇GN |2

N2

φ2

(ln R
N

)2
dx

(3.13)

for all compactly supported smooth function φ ∈ C∞0 (Ω).

Proof. Let φ ∈ C∞0 (Ω) and define ψ = N−βφ where β < 0. A direct calculation shows

that

|∇Gφ|2 = β2N2β−2|∇GN |2ψ2 + 2βN2β−1ψ∇GN · ∇Gψ +N2β|∇Gψ|2. (3.14)

Multiplying both sides of (3.14) by the Nα and applying integration by parts over Ω

gives∫
Ω

Nα|∇Gφ|2dx = β2

∫
Ω

Nα+2β−2|∇GN |2ψ2dx− β

α + 2β

∫
Ω

∆G(Nα+2β)ψ2dx

+

∫
Ω

Nα+2β|∇Gψ|2dx.
(3.15)
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We can easily show that

− β

α + 2β
∆G(Nα+2β) = −β(α+ 2β+Q− 2)Nα+2β−2|∇GN |2−

β

2−Q
Nα+2β+Q−2∆Gu.

(3.16)

Substituting (3.16) into (3.15) and using the fact that ψ2 = N−2βφ2 yield∫
Ω

Nα|∇Gφ|2dx = (−β2 − β(α +Q− 2)

∫
Ω

Nα |∇GN |2

N2
φ2dx− β

2−Q

∫
Ω

(∆Gu)Nα+Q−2φ2dx

+

∫
Ω

Nα+2β|∇Gψ|2dx.

The middle integral vanishes since u is the fundamental solution of sub-Laplacian

∆G, therefore we have

∫
Ω

Nα|∇Gφ|2dx =
(
− β2 − β(α +Q− 2)

) ∫
Ω

Nα |∇GN |2

N2
φ2dx+

∫
Ω

Nα+2β|∇Gψ|2dx.

Note that the quadratic function −β2−β(α+Q−2) attains maximum for β = 2−Q−α
2

and this maximum equal to (Q+α−2
2

)2. Therefore∫
Ω

Nα|∇Gφ|2dx =
(Q+ α− 2

2

)2
∫

Ω

Nα |∇GN |2

N2
φ2dx+

∫
Ω

N2−Q|∇Gψ|2dx. (3.17)

Let us define ϕ(x) = (ln R
N

)−
1
2ψ(x) where N is the homogeneous norm which is defined

as in (2.4). A direct calculation shows that∫
Ω

N2−Q|∇Gψ|2dx =
1

4

∫
Ω

N−Q|∇GN |2(ln(
R

N
)−1ϕ2 +

∫
Ω

N2−Q ln(
R

N
)|∇Gϕ|2dx

− 1

2(2−Q)

∫
Ω

∆G(N2−Q)ϕ2dx.

It is clear that the last integral term vanishes. Therefore we have∫
Ω

N2−Q|∇Gψ|2dx ≥
1

4

∫
Ω

N−Q|∇GN |2(ln(
R

N
)−1ϕ2

=
1

4

∫
Ω

N−Q|∇GN |2
ψ2

(ln R
N

)2
dx

=
1

4

∫
Ω

Nα−2|∇GN |2
φ2

(ln R
N

)2
dx.

(3.18)

Substituting (3.18) into (3.17) which yields the desired inequality (3.13).

One of the advantages of our approach is that it automatically yields a remainder

term and then using a suitable functional change lead us to obtain an explicit remain-

der term as in the Theorem 3.3. On the other hand, there are other techniques that

we can use to obtain explicit remainder term. In our earlier paper [23] we have used

weighted Sobolev-Poincare inequalities and obtained the following improved weighted

Hardy-type inequalities.
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Theorem 3.5. ([23]) Let G be a Carnot group with homogeneous norm N = u1/(2−Q),

and let φ ∈ C∞0 (B%), α ∈ R, Q ≥ 3 and Q+α− 2 > 0. Then the following inequality

is valid:∫
B%

Nα|∇Gφ|2dx ≥
(Q+ α− 2

2

)2
∫
B%

Nα |∇GN |2

N2
φ2dx+

1

C2R2

∫
B%

Nαφ2dx, (3.19)

where C is a positive constant and R is the radius of the ball B%.

Theorem 3.6. ([23]) Let G be a Carnot group with homogeneous norm N = u1/(2−Q)

and let φ ∈ C∞0 (B%), α ∈ R, Q ≥ 3, Q + α − 2 > 0 and q > 2. Then the following

inequality is valid:∫
B%

Nα|∇Gφ|2dx ≥
(Q+ α− 2

2

)2
∫
B%

Nα |∇GN |2

N2
φ2dx+

K

C2R2

(∫
B%

Nσφqdx
)2/q

,

(3.20)

where C > 0, R is the radius of the ball B%, σ = (2−Q)(2−q)+αq
2

and K =
( ∫

B%
N2−Qdx

) q−2
q
.

Notice that the remainder terms in Theorems 3.4 and 3.5 contain functions of the

homogeneous norm N and φ. Motivated by the recent work of Abdellaoui, Colorado

and Peral [1] we have following inequality (which is a weighted version of the inequality

(3.4) in [23]) so that remainder term contains functions of N and |∇Gφ|.

Theorem 3.7. Let G be a polarizable Carnot group with homogeneous dimension

Q ≥ 3 and let Ω be a bounded domain with smooth boundary which contains the

origin, α ∈ R, Q + α − 2 > 0, and 1 < q < 2. Then there exists a positive constant

C = C(Q, q,Ω) such that the following inequality holds:∫
Ω

Nα|∇Gφ|2dx ≥
(Q+ α− 2

2

)2
∫

Ω

Nα |∇GN |2

N2
φ2dx+ C

(∫
Ω

N
αq
2 |∇Gφ|qdx

)2/q

(3.21)

for all compactly supported smooth function φ ∈ C∞0 (Ω).

Proof. The proof is similar to the proof Theorem in [23] ( see also [24]). We only need

to use the weighted Lp-Hardy-type inequality (3.5).

4. SHARP WEIGHTED RELLICH TYPE INEQUALITIES AND

THEIR IMPROVED VERSIONS

Our main goal in this section is to obtain weighted analogues of the Rellich

inequality (1.1) and (1.2) for general Carnot groups. Furthermore, we shall also

obtain their improved versions for bounded domains. The following is the first result

of this section.
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Theorem 4.1. Let G be a Carnot group with homogeneous norm N = u1/(2−Q) and

let φ ∈ C∞0 (G), α ∈ R, Q ≥ 3, Q+ α− 4 > 0. Then the following inequality is valid:∫
G

Nα

|∇GN |2
|∆Gφ|2dx ≥

(Q+ α− 4)2(Q− α)2

16

∫
G
Nα |∇GN |2

N4
φ2dx. (4.1)

Furthermore, the constant (Q+α−4)2(Q−α)2

16
is sharp.

Proof. A straightforward computation shows that

∆GN
α−2 = (Q+ α− 4)(α− 2)Nα−4|∇GN |2 +

α− 2

2−Q
NQ+α−4∆u. (4.2)

Multiplying both sides of (4.2) by φ2 and integrating over the domain G, we obtain∫
G
φ2∆GN

α−2dx =

∫
G
Nα−2(2φ∆Gφ+ 2|∇Gφ|2)dx.

Since u is the fundamental solution of ∆G and Q+ α− 4 > 0 we obtain∫
G
φ2∆GN

α−2dx = (Q+ α− 4)(α− 2)

∫
G
Nα−4|∇GN |2φ2dx.

Therefore

(Q+ α− 4)(α− 2)

∫
G
Nα−4|∇GN |2φ2dx− 2

∫
G
Nα−2φ∆Gφdx = 2

∫
G
Nα−2|∇Gφ|2dx.

(4.3)

Applying the weighted Hardy inequality (3.5) on the right hand side of (4.3), we get

(Q+ α− 4)(α− 2)

∫
G
Nα−4|∇GN |2φ2dx− 2

∫
G
Nα−2φ∆Gφdx

≥ 2(
Q+ α− 4

2
)2

∫
G
Nα−4|∇GN |2φ2dx.

Now it is clear that,

−
∫

G
Nα−2φ∆Gφdx ≥ (

Q+ α− 4

2
)(
Q− α

2
)

∫
G
Nα−4|∇GN |2φ2dx. (4.4)

Next, we apply the Cauchy-Schwarz inequality to the integrand −
∫

GN
α−2φ∆φdx

and we obtain

−
∫

G
Nα−2φ∆Gφdx ≤

(∫
G
Nα−4|∇GN |2φ2dx

)1/2(∫
G

|∆Gφ|2

|∇GN |2
Nαdx

)1/2

. (4.5)

Combining (4.5) and (4.4), we obtain the inequality (4.1).

Now we prove that the constant C(Q,α) = (Q+α−4)2(Q−α)2

16
is the best constant

for the Rellich-type inequality (4.1), that is

CR : = inf
06=f∈C∞0 (G)

∫
GN

α |∆Gf |2
|∇GN |2

dx∫
GN

α |∇GN |2
N4 f 2dx

=
(Q+ α− 4)2(Q− α)2

16
.
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It is clear that

(Q+ α− 4)2(Q− α)2

16
≤

∫
GN

α |∆Gf |2
|∇GN |2

dx∫
GN

α |∇GN |2
N4 f 2dx

. (4.6)

If we pass to the infimum in (4.6) we get that (Q+α−4)2(Q−α)2

16
≤ CR. We only need to

show that CR ≤ (Q+α−4)2(Q−α)2

16
. Given ε > 0, we define the function φε(N) by

φε(N) =

−(Q+α−4
2

+ ε)
(
N − 1

)
+ 1 if N ∈ [0, 1],

N−(Q+α−4
2

+ε) if N > 1.
(4.7)

Notice that φε(N) can be well approximated by smooth functions with compact sup-

port in G. By direct computation we get

|∆Gφε|2 =

(Q+α−4
2

+ ε)2|∇GN |4 (Q−1)2

N2 if N ≤ 1,

(Q+α−4
2

+ ε)2(Q−α
2
− ε)2N−Q−α−2ε|∇GN |4 if N > 1.

Let us denote by B1 = {x ∈ G : N ≤ 1} the unit ball with respect to the homogeneous

norm N . Hence∫
G
Nα |∆Gφε|2

|∇GN |2
dx = A(Q,α, ε)

∫
B1

Nα−2|∇GN |2dx+B(Q,α, ε)

∫
G\B1

N−Q−2ε|∇GN |2dx

where A(Q,α, ε) = (Q−1)2(Q+α−4
2

+ε)2 and B(Q,α, ε) = (Q+α−4
2

+ε)2(Q−α
2
−ε)2. Note

that the integrand
∫

B1
Nα−2|∇GN |2dx is finite because |∇GN | is uniformly bounded

and Q+ α− 4 > 0. Therefore

∫
G
Nα |∆Gφε|2

|∇GN |2
dx = B(Q,α, ε)

∫
G\B1

N−Q−2ε|∇GN |2dx+O(1). (4.8)

Next, ∫
G
Nα |∇GN |2

N4
φ2
εdx =

∫
B1

Nα |∇GN |2

N4
φ2
εdx+

∫
G\B1

Nα |∇GN |2

N4
φ2
εdx.

It is clear that the first integrand
∫

B1
Nα |∇GN |2

N4 φ2
εdx is finite and we get

∫
G
Nα |∇GN |2

N4
φ2
εdx =

∫
G\B1

N−Q−2ε|∇GN |2dx+O(1). (4.9)

Taking the limit as ε −→ 0 and noting that

∫
G\B1

N−Q−2ε|∇GN |2dx −→∞

we get
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∫
GN

α |∆Gφε|2
|∇GN |2

dx∫
GN

α |∇GN |2
N4 φ2

εdx
≤ (Q+ α− 4)2(Q− α)2

16
.

Therefore CR = (Q+α−4)2(Q−α)2

16
.

Remark 4.2. In the Abelian case, when G = Rn with the ordinary dilations, one has

G = V1 = Rn so that Q = n. It is clear that the inequality (4.1) with the homogeneous

norm N(x) = |x| and α = 0 reduces the Rellich inequality (1.1).

IMPROVED RELLICH TYPE INEQUALITIES. In this subsection we obtain

various improved versions of the weighted Rellich-type inequality (4.1) for smooth

bounded domains. One virtue of our approach is that, one can obtain as many as

improved weighted Rellich-type inequalities as one can construct improved weighted

L2-Hardy-type inequalities. The following theorem is the first result in this direction.

Theorem 4.3. Let G be a Carnot group with homogeneous norm N = u1/(2−Q) and

let Ω ⊂ G be a bounded domain with smooth boundary, 0 ∈ Ω, Q ≥ 3, 4−Q < α < Q

and R ≥ e supΩN . Then the following inequality holds:∫
Ω

Nα

|∇GN |2
|∆Gφ|2dx ≥

(Q+ α− 4)2(Q− α)2

16

∫
Ω

Nα |∇GN |2

N4
φ2dx

+
(Q+ α− 4)(Q− α)

8

∫
Ω

Nα |∇GN |2

N4

φ2

(ln R
N

)2
dx

(4.10)

for all compactly supported functions φ ∈ C∞0 (Ω).

Proof. The proof of Theorem 4.2 is similar to that of Theorem 4.1. Let φ ∈ C∞0 (Ω)

and using the same argument as in Theorem 4.1, we have the following identity:

(Q+ α− 4)(α− 2)

∫
Ω

Nα−4|∇GN |2φ2dx− 2

∫
Ω

Nα−2φ∆Gφdx = 2

∫
Ω

Nα−2|∇Gφ|2dx.

(4.11)

We now apply improved weighted Hardy-type inequality (3.13) to the right hand side

of (4.11):

(Q+ α− 4)(α− 2)

∫
Ω

Nα−4|∇GN |2φ2dx− 2

∫
Ω

Nα−2φ∆Gφdx

≥ 2
[(Q+ α− 4

2

)2
∫

Ω

Nα−4|∇GN |2φ2dx+
1

4

∫
Ω

Nα−4|∇GN |2
φ2

(ln R
N

)2
dx.
]

Now it is clear that

−
∫

Ω

Nα−2φ∆Gφdx ≥
(Q+ α− 4

2

)(Q− α
2

) ∫
Ω

Nα−4|∇GN |2φ2dx

+
1

4

∫
Ω

Nα−4|∇GN |2
φ2

(ln R
N

)2
dx.

(4.12)
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On the other hand we have, by the Young’s inequality,

−
∫
B

Nα−2φ∆Gφdx ≤ ε

∫
B

Nα−4|∇GN |2φ2dx+
1

4ε

∫
B

Nα

|∇GN |2
|∆Gφ|2dx, (4.13)

where ε > 0 and will be chosen later. Substituting (4.13) into (4.12) we obtain∫
B

Nα

|∇GN |2
|∆Gφ|2dx ≥

(
− 4ε2 + (Q+ α− 4)(Q− α)ε

) ∫
B

Nα−4|∇GN |2φ2dx

+ ε

∫
Ω

Nα−4|∇GN |2
φ2

(ln R
N

)2
dx.

It is clear that the quadratic function −4ε2+(Q+α−4)(Q−α)ε attains the maximum

for ε = (Q+α−4)(Q−α)
8

and this maximum is equal to (Q+α−4)2(Q−α)2

16
. Hence we obtain

the desired inequality:

∫
B

Nα

|∇GN |2
|∆Gφ|2dx ≥

(Q+ α− 4)2(Q− α)2

16

∫
B

Nα |∇GN |2

N4
φ2dx

+
(Q+ α− 4)(Q− α)

8

∫
Ω

Nα |∇GN |2

N4

φ2

(ln R
N

)2
dx.

Using the same arguments as in Theorem 4.2 and improved Hardy-type inequal-

ities (3.19) and (3.20) we obtain the following improved Rellich-type inequalities on

a metric ball, respectively.

Theorem 4.4. Let G be a Carnot group with homogeneous norm N = u1/(2−Q) and

let B% ⊂ G be a %-ball in G, Q ≥ 3, α ∈ R and 4−Q < α < Q. Then the following

inequality holds:∫
B%

Nα

|∇GN |2
|∆Gφ|2dx ≥

(Q+ α− 4)2(Q− α)2

16

∫
B%

Nα |∇GN |2

N4
φ2dx

+
(Q+ α− 4)(Q− α)

2c2r2

∫
B%

Nα−2φ2dx

(4.14)

for all compactly supported smooth functions φ ∈ C∞0 (B%).

Theorem 4.5. Let G be a Carnot group with homogeneous norm N = u1/(2−Q) and

let B% ⊂ G be a %-ball in G, φ ∈ C∞0 (B%), Q ≥ 3, α ∈ R, 4−Q < α < Q and q > 2.

Then the following inequality is valid:∫
B%

Nα

|∇GN |2
|∆Gφ|2dx ≥

(Q+ α− 4)2(Q− α)2

16

∫
B%

Nα |∇GN |2

N4
φ2dx

+
(Q+ α− 4)(Q− α)

2c2r2
K
(∫

B%

Nσ′φqdx
)2/q

,

(4.15)
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where c is a positive constant, σ′ = (2−Q)(2−q)+(α−2)q
2

and K =
( ∫

B%
N2−Qdx

) q−2
q

.

The following improved Rellich-type inequality holds for bounded domains in

polarizable Carnot groups.

Theorem 4.6. Let G be a polarizable Carnot group and let Ω ⊂ G be a bounded

domain with smooth boundary, 0 ∈ Ω, α ∈ R, Q ≥ 3 and 4−Q < α < Q. Then the

following inequality holds:∫
Ω

Nα

|∇GN |2
|∆Gφ|2dx ≥

(Q+ α− 4)2(Q− α)2

16

∫
Ω

Nα |∇GN |2

N4
φ2dx

+
C(Q+ α− 4)(Q− α)

2

( ∫
Ω

|∇Gφ|qN
(α−2)q

2 dx
)2/q

(4.16)

for all compactly supported smooth functions φ ∈ C∞0 (Ω).

Proof. The proof is similar to the proof of Theorem 4.2. We only need to use the

improved Hardy-type inequality (3.21).

WEIGHTED RELLICH TYPE INEQUALITY II.

We now turn our attention to another Rellich-type inequality that connects first

to second order derivatives. The following theorem is first result in this direction.

Theorem 4.7. (Weighted Rellich-type inequality II) Let G be a Carnot group with

homogeneous norm N = u1/(2−Q) and let φ ∈ C∞0 (G), Q ≥ 3 and 8−Q
3

< α < Q.

Then the following inequality is valid:∫
G
Nα |∆Gφ|2

|∇GN |2
dx ≥ (Q− α)2

4

∫
G
Nα |∇Gφ|2

N2
dx. (4.17)

Furthermore, the constant C(Q,α) =
(
Q−α

2

)2
is sharp.

Proof. Our starting point is the identity

∫
G
Nα−2|∇Gφ|2dx =

(Q+ α− 4)(α− 2)

2

∫
G
Nα−4|∇GN |2φ2dx

−
∫

G
Nα−2φ∆Gφdx

(4.18)

valid for all φ ∈ C∞0 (G) and Q+ α− 4 > 0 (see (4.3)).

By applying Cauchy’s inequality we obtain

−
∫

G
Nα−2φ∆Gφdx ≤ ε

∫
G
Nα−4|∇GN |2φ2dx+

1

4ε

∫
G
Nα |∆Gφ|2

|∇GN |2
dx, (4.19)
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where ε > 0 and will be chosen later. Combining (4.19) and (4.18), we get∫
G
Nα−2|∇Gφ|2dx ≤

((Q+ α− 4)(α− 2)

2
+ ε
)∫

G
Nα−4|∇GN |2φ2dx

+
1

4ε

∫
G
Nα |∆Gφ|2

|∇GN |2
dx.

(4.20)

We only consider the case (Q+α−4)(α−2)
2

+ ε > 0 because other cases do not allow us

to obtain sharp weighted Rellich-type inequality that connects first to second-order

derivatives. We now apply the Rellich-type inequality (4.1) to the first integral term

on the right hand side of (4.20) and get∫
G
Nα |∇Gφ|2

N2
dx ≤

[ 16ε

(Q+ α− 4)2(Q− α)2
+

8(α− 2)

(Q+ α− 4)(Q− α)2
+

1

4ε

] ∫
G

|∆Gφ|2

|∇GN |2
dx.

Note that the function ε −→ 16ε
(Q+α−4)2(Q−α)2

+ 8(α−2)
(Q+α−4)(Q−α)2

+ 1
4ε

attains the minimum

for ε = (Q+α−4)(Q−α)
8

, and this minimum is equal to 4
(Q−α)2

. Therefore we obtain the

desired inequality: ∫
G
Nα |∆Gφ|2

|∇GN |2
dx ≥ (Q− α)2

4

∫
G
Nα |∇Gφ|2

N2
dx. (4.21)

To show that constant
(
Q−α

2

)2
is sharp, we again use the same sequence of func-

tions (4.7) and we get ∫
GN

α |∆Gφε|2
|∇GN |2

dx∫
GN

α |∇Gφε|2
N2 dx

−→
(Q− α

2

)2

as ε −→ 0.

Remark 4.8. Note that one can also apply the weighted Hardy-type inequality (3.5)

with p = 2 to the first integral on the right hand side of (4.20) and reach the same

inequality (4.21).

IMPROVED RELLICH TYPE INEQUALITY II. We now present improved

versions of the Rellich-type inequality (4.17) for bounded domains. Their proofs are

very similar to that of Theorem 4.6, except instead of using plain weighted Hardy-type

inequality, we use improved weighted Hardy-type inequalities, (3.13), (3.19), (3.20)

and (3.21), respectively.

Theorem 4.9. Let G be a Carnot group with homogeneous norm N = u1/(2−Q) and

let Ω ⊂ G be a bounded domain with smooth boundary, 0 ∈ Ω, Q ≥ 3, 8−Q
3

< α < Q

and R ≥ e supΩN . Then the following inequality holds:∫
Ω

Nα |∆Gφ|2

|∇GN |2
dx ≥ (Q− α)2

4

∫
Ω

Nα |∇Gφ|2

N2
dx

+ C(Q,α)

∫
Ω

Nα−4|∇GN |2
φ2

(ln R
N

)2
dx

(4.22)
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for all compactly supported smooth functions φ ∈ C∞0 (Ω). Here C(Q,α) = (Q−α)(Q+3α−8)
16

.

Theorem 4.10. Let G be a Carnot group with homogeneous norm N = u1/(2−Q) and

let B% be a %-ball in G, φ ∈ C∞0 (B%), Q ≥ 3 and 8−Q
3

< α < Q. Then the following

inequality holds:∫
B%

Nα |∆Gφ|2

|∇GN |2
dx ≥ (Q− α)2

4

∫
B%

Nα |∇Gφ|2

N2
dx

+
(Q− α)(Q+ 3α− 8)

4C2R2

∫
B%

Nα φ
2

N2
dx,

(4.23)

where C > 0 and R is the radius of the ball B%.

Theorem 4.11. Let G be a Carnot group with homogeneous norm N = u1/(2−Q) and

let B% be a %-ball in G, φ ∈ C∞0 (B%), Q ≥ 3 and 8−Q
3

< α < Q. Then the following

inequality is valid:∫
B%

Nα |∆Gφ|2

|∇GN |2
dx ≥ (Q− α)2

4

∫
B%

Nα |∇Gφ|2

N2
dx

+
(Q− α)(Q+ 3α− 8)

4C2R2
K

∫
B%

Nσ′φqdx,

(4.24)

where R is the radius of the ball B%, C > 0, σ′ = (2−Q)(2−q)+(α−2)q
2

and K =( ∫
B%
N2−Qdx

) q−2
q

.

Theorem 4.12. Let G be a polarizable Carnot group with homogeneous norm N =

u1/(2−Q) and let Ω be a bounded domain with smooth boundary, 0 ∈ Ω, Q ≥ 3 and
8−Q

3
< α < Q. Then the following inequality holds:∫

Ω

Nα |∆Gφ|2

|∇GN |2
dx ≥ (Q− α)2

4

∫
Ω

Nα |∇Gφ|2

N2
dx+ C̃

(∫
Ω

|∇Gφ|qN
(α−2)q

2 dx
)2/q

(4.25)

for all compactly supported smooth functions φ ∈ C∞0 (Ω). Here C̃ = C(Q−α)(Q+3α−8)
4

and C > 0.

5. UNCERTAINTY PRINCIPLE INEQUALITY

In [23] we obtained the following uncertainty principle-type inequality for general

Carnot groups:

(∫
G
N2|∇GN |2φ2dx

)(∫
G
|∇Gφ|2dx

)
≥
(Q− 2

2

)2(∫
G
|∇GN |2φ2dx

)2

, (5.1)

where φ ∈ C∞0 (G). It is clear that this inequality does not recover the Euclidean

uncertainty principle inequality (1.8). As we pointed out before one of the main goal

of this paper is to establish a sharp uncertainty principle inequality for Carnot groups

and the following theorem is the main result of this section.
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Theorem 5.1. Let G be a polarizable Carnot group with homogeneous norm N =

u1/(2−Q) and let Q ≥ 3 and φ ∈ C∞0 (G). Then the following inequality is valid:(∫
G
N2φ2dx

)(∫
G

|∇Gφ|2

|∇GN |2
dx
)
≥ Q2

4

(∫
G
φ2dx

)2

. (5.2)

Proof. By the volume growth formula (2.8) and integration by parts, we get∫
G
Qφ2dx = −2

∫
G

( φN

|∇GN |2
∇Gφ · ∇GN

)
dx. (5.3)

Applying Cauchy-Schwarz inequality to the right hand-side of (5.3) gives the desired

inequality: (∫
G
N2φ2dx

)(∫
G

|∇Gφ|2

|∇GN |2
dx
)
≥ Q2

4

(∫
G
φ2dx

)2

.

It is easy to verify that the equality is attained in Theorem 5.1 by the functions

φ = Ae−βN
2

for some A ∈ R, β > 0.

Remark 5.2. In the Abelian case, when G = Rn with the ordinary dilations, one has

G = V1 = Rn so that Q = n. It is clear that the inequality (5.2) with the homogeneous

norm N(x) = |x| recover the uncertainty principle inequality (1.8).

In connection with uncertainty principle inequality we now present the following

Caffarelli-Kohn-Nirenberg [9]-type inequality for polarizable Carnot groups. It is clear

that this inequality reduces to the uncertainty principle inequality (5.2) for α = 0

and p = q = 2.

Theorem 5.3. Let G be a polarizable Carnot group with homogeneous norm N =

u1/(2−Q) and let Q ≥ 3, α > −Q, p > 1, q = p
p−1

and φ ∈ C∞0 (G). Then the following

inequality is valid:(∫
G
N

q
q−1 |φ|(

p−1
q−1

)qdx
) q−1

q
(∫

G

|∇Gφ|q

|∇GN |q
Nαqdx

)1/q

≥
(Q+ α

p

) ∫
G
Nα|φ|pdx. (5.4)

Proof. The proof is similar to the proof of Theorem 3.1. We omit the details.
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