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Abstract

We consider the semiclassical limit of nonrelativistic quantum many-boson systems with delta po-
tential in one dimensional space. We prove that time evolved coherent states behave semiclassically as
squeezed states by a Bogoliubov time-dependent affine transformation. This allows us to obtain prop-
erties analogous to those proved by Hepp and Ginibre-Velo ([Hep], [GiVe1, GiVe2]) and also to show
propagation of chaos for Schrödinger dynamics in the mean field limit. Thus, we provide a derivation of
the cubic NLS equation in one dimension.

2000 Mathematics subject classification: 81S30, 81S05, 81T10, 35Q55

1 Introduction
The justification of the chaos conservation hypothesis in quantum many-body theory is the main concern of
the present paper. This well-know hypothesis finds its roots in statistical physics of classical many-particle
systems as a quantum counterpart. See, for instance [MS], [Go] and references therein.

Non-relativistic quantum systems of N bosons moving in d-dimensional space are commonly described
by the Schrödinger Hamiltonian

HN :=
N

∑
i=1
−∆xi + ∑

i< j
VN(xi− x j) , x ∈ Rd , (1)

acting on the space of symmetric square-integrable functions L2
s (RdN) over RdN. Here VN stands for an

even real pair-interaction potential. The Hamiltonian (1), under appropriate conditions on VN, defines a
self-adjoint operator and hence the Schrödinger equation

i∂tΨ
t
N = HNΨ

t
N, (2)

admits a unique solution for any initial data Ψ0
N ∈ L2(RdN). The interacting N-boson dynamics (2) are

considered in the mean field scaling, namely, when N is large and the pair-potential is given by

VN(x) =
1
N

V (x) ,

with V independent of N. The chaos conservation hypothesis for the N-boson system (2) amounts to the
study of the asymptotics of the k-particle correlation functions γ t

k,N given by

γ
t
k,N(x1, · · · ,xk;y1, · · · ,yk) =

∫
Rd(N−k)

γ
t
N(x1, · · · ,xk,zk+1, · · · ,zN;y1, · · · ,yk,zk+1,zN)dzk+1 · · ·dzN , (3)
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where γ t
N = Ψt

N(x1, · · · ,xN)Ψt
N(y1, · · · ,yN). More precisely, this hypothesis holds if for an initial datum

which factorizes as
Ψ

0
N = ϕ0(x1) · · ·ϕ0(xN) such that ||ϕ0||L2(Rd) = 1 ,

the k-particle correlation functions converges in the trace norm

γ
t
k,N

N→∞−→ ϕt(x1) · · ·ϕt(xk)ϕt(y1) · · ·ϕt(yk), (4)

where ϕt solves the nonlinear Hartree equation{
i∂tϕ =−∆ϕ +V ∗ |ϕ|2ϕ

ϕ|t=0 = ϕ0 .
(5)

The convergence of correlation functions (4) for the Schrödinger dynamics (2) is equivalent to the statement
below :

lim
N→∞
〈Ψt

N,ONΨ
t
N〉 = lim

N→∞

∫
R2dk

γ
t
k,N(x1, · · · ,xk;y1, · · · ,yk)Õ(y1, · · · ,yk;x1, · · · ,xk)dx1 · · ·dxkdy1 · · ·dyk

= 〈ϕ⊗k
t ,Oϕ

⊗k
t 〉 , (6)

where ON are observables given by ON := O ⊗ 1(N−k) acting on L2(RdN) with O : L2(Rdk)→ L2(Rdk) a
bounded operator with kernel Õ and k is a fixed integer. The relevance of those observables is justified by
the fact that ON are essentially canonical quantizations of classical quantities.

In the recent years, mainly motivated by the study of Bose-Einstein condensates, there is a renewed
and growing interest in the analysis of many-body quantum dynamics in the mean field limit (for instance
see [ABGT],[BEGMY],[BGM],[ESY],[EY],[FGS],[FKP],[FKS], etc.). For a general presentation on the
subject we refer the reader to the reviews [Spo] and [Gol]. Various strategies were developed in order to
prove the chaos conservation hypothesis or even stronger statements. One of the oldest approaches is the
so-called BBGKY hierarchy (named after Bogoliubov, Born, Green, Kirkwood, and Yvon) which consists
in considering the Heisenberg equation,{

∂tρt = i[ρt ,HN],
ρ|t=0 = |ϕ⊗N

0 〉〈ϕ
⊗N
0 | ,

(7)

together with the finite chain of equations arising from (7) by taking partial traces on 0≤ k ≤ N variables.
Since ρt are trace class operators one can write the corresponding hierarchy of equations on the k-particle
correlation functions γ t

k,N:

i∂tγ
t
k,N =

N

∑
i=1

[−∆xi +∆yi ]γ
t
k,N +

1
N ∑

1≤i< j≤k
[V (xi− x j)−V (yi− y j)]γ t

k,N

+
1
N ∑

1≤i≤k,k+1≤ j≤N

∫
R(N−k)d

[V (xi− x j)−V (yi− y j)]γ t
N dxk+1 · · ·dxN

+
1
N ∑

k+1≤i< j≤N

∫
R(N−k)d

[V (xi− x j)−V (yi− y j)]γ t
N dxk+1 · · ·dxN

γ
0
k,N = ϕ0(x1) · · ·ϕ0(xk)ϕ0(y1) · · ·ϕ0(yk) .

An alternative approach to the chaos conservation hypothesis uses the second quantization framework
(details on this notions are recalled in Section 2). Consider the Hamiltonian,

ε
−1Hε =

∫
Rd

∇a∗(x)∇a(x) dx+
ε

2

∫
R2d

V (x− y)a∗(x)a∗(y)a(x)a(y) dxdy ,

where a,a∗ are the usual creation-annihilation operator-valued distributions in the Fock space over L2(Rd).
Recall that a and a∗ satisfy the canonical commutation relations

[a(x),a∗(y)] = δ (x− y) , [a∗(x),a∗(y)] = 0 = [a(x),a(y)] .
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A simple computation leads to the following identity

ε
−1Hε|L2

s (RdN)
= HN, if ε =

1
N

.

Thus, the statement on the chaos propagation stated in (6) may be written (up to an unessential factor) as

lim
ε→0

〈
e−itε−1Hε Ψ

0
ε , bWicke−itε−1Hε Ψ

0
ε

〉
= 〈ϕ⊗k

t ,Oϕ
⊗k
t 〉 ,

where bWick denotes ε-dependent Wick observables defined by

bWick = ε
k
∫

R2kd

k

∏
i=1

a∗(xi) Õ(x1, · · · ,xk;y1, · · · ,yk)
k

∏
j=1

a(y j) dx1 · · ·dxkdy1 · · ·dyk,

with Õ(x1, · · · ,xk;y1, · · · ,yk) the distribution kernel of a bounded operator O on L2(Rkd). Therefore, the
mean field limit N→ ∞ for HN can be converted to a semiclassical limit ε → 0 for Hε . The study of the
semiclassical limit of the many-boson systems traces back to the work of Hepp [Hep] and was subsequently
improved by Ginibre and Velo [GiVe1, GiVe2]. The latter analysis are based on coherent states, i.e.,

Ψ
0
ε = e−

|ϕ|2
2ε

∞

∑
n=0

ε
−n/2 ϕ⊗n
√

n!
, ϕ ∈ L2(Rd) ,

which have infinite number of particles in contrast to the Hermite states Ψ0
N = ϕ

⊗N
0 . However, a simple

argument in the work of Rodnianski and Schlein [RoSch] shows that the semiclassical analysis is enough
to justify the chaos conservation hypothesis and even provides convergence estimates on the k-particle
correlation functions. The authors of [RoSch] considered the problem under the assumption of (−∆+1)1/2-
bounded potential (i.e., V (−∆+1)−1/2 is bounded). The main purpose of the present paper is to extend the
latter result to more singular potentials using the ideas of Ginibre and Velo [GiVe2].

For the sake of clarity, we restrict ourselves in this paper to the particular example of point interaction
potential in one dimension, i.e.,

V (x) = δ (x) , x ∈ R . (8)

This example is typical for potentials which are −∆-form bounded (i.e., (−∆ + 1)−1/2V (−∆ + 1)−1/2 is
bounded). Indeed, we believe that such simple example sums up the principal difficulties on the problem.
Moreover, we state in Appendix C some abstract results on the non-autonomous Schrödinger equation
which have their own interest and allow to consider a more general setting. We also remark that the results
here can be easily extended to the case V (x) =−δ (x) at the price to work locally in time.

The paper is organized as follows. We first recall the basic definitions for the Fock space framework
in Section 2. Then we accurately introduce the quantum dynamics of the considered many-boson system
and its classical counterpart, namely the cubic NLS equation. The study of the semiclassical limit through
Hepp’s method is carried out in Section 6 where we use results on the time-dependent quadratic approx-
imation derived in Section 5. Finally, in Section 7 we apply the argument of [RoSch] to prove the chaos
propagation result.

2 Preliminaries
Let H be a Hilbert space. We denote by L (H) the space of all linear bounded operators on H. For a linear
unbounded operator L acting on H, we denote by D(L) ( respectively Q(L)) the operator domain (respec-
tively form domain) of L. Let Dx j denotes the differential operator−i∂x j on L2(Rn) where (x1, · · · ,xn)∈Rn.

In the following we recall the second quantization framework. We denote by L2
s (Rnd) the space of

symmetric square integrable functions, i.e.,

Ψn ∈ L2
s (Rnd) iff Ψn ∈ L2(Rnd) and Ψn(x1, · · · ,xn) = Ψn(xσ1 , . . . ,xσn) a.e.,
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for any permutation σ on the symmetric group Sym(n). The orthogonal projection from L2(Rnd) onto the
closed subspace L2

s (Rnd) is given by

SnΨn(x1, · · · ,xn) =
1
n! ∑

σ∈Sym(n)
Ψn(xσ(1), · · · ,xσ(n)), Ψn ∈ L2(Rnd) .

We will often use the notation
Ss(Rnd) := SnS (Rnd)

where S (Rnd) is the Schwartz space on Rnd . The symmetric Fock space over L2(R) is defined as the
Hilbert space,

F =
∞⊕

n=0

L2
s (Rnd) ,

endowed with the inner product

〈Ψ,Φ〉=
∞

∑
n=0

∫
Rnd

Ψn(x1, · · · ,xn) Φn(x1, · · · ,xn) dx1 · · ·dxn ,

where Ψ = (Ψn)n∈N and Φ = (Φn)n∈N are two arbitrary vectors in F . A convenient subspace of F is given
as the algebraic direct sum

S :=
alg⊕

n=0

Ss(Rnd) .

Most essential linear operators on F are determined by their action on the family of vectors

ϕ
⊗n(x1, . . . ,xn) =

n

∏
i=1

ϕ(xi) , ϕ ∈ L2(Rd) ,

which spans the space L2
s (Rnd) thanks to the polarization identity,

Sn

n

∏
i=1

ϕi(xi) =
1

2nn! ∑
εi=±1

ε1 · · ·εn

n

∏
i=1

( n

∑
j=1

ε jϕ j(xi)
)
.

For example, the creation and annihilation operators a∗( f ) and a( f ), parameterized by ε > 0, are defined
by

a( f )ϕ⊗n =
√

εn 〈 f ,ϕ〉ϕ⊗(n−1)

a∗( f )ϕ⊗n =
√

ε(n+1) Sn+1( f ⊗ϕ
⊗n) , ∀ϕ, f ∈ L2(Rd).

They can also by written as

a( f ) =
√

ε

∫
Rd

f (x)a(x)dx, a∗( f ) =
√

ε

∫
Rd

f (x)a∗(x)dx,

where a∗(x),a(x) are the canonical creation-annihilation operator-valued distributions. Recall that for any
Ψ = (Ψ(n))n∈N ∈S , we have

[a(x)Ψ](n)(x1, · · · ,xn) =
√

(n+1)Ψ(n+1)(x,x1, · · · ,xn),

[a∗(x)Ψ](n)(x1, · · · ,xn) =
1√
n

n

∑
j=1

δ (x− x j)Ψ(n−1)(x1, · · · , x̂ j, · · · ,xn) ,

where δ is the Dirac distribution at the origin and x̂ j means that the variable x j is omitted. The Weyl
operators are given for f ∈ L2(Rd) by

W ( f ) = e
i√
2
[a∗( f )+a( f )]

,
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and they satisfy the Weyl commutation relations,

W ( f1)W ( f2) = e−
iε
2 Im〈 f1, f2〉W ( f1 + f2), (9)

with f1, f2 ∈ L2(Rd).

Let us briefly recall the Wick-quantization procedure of polynomial symbols.

Definition 2.1 We say that a function b : S (Rd)→ C is a continuous (p,q)-homogenous polynomial on
S (Rd) iff it satisfies:
(i) b(λ z) = λ̄ qλ pb(z) for any λ ∈ C and z ∈S (Rd),
(ii) there exists a (unique) continuous hermitian form Q : Ss(Rdq)×Ss(Rd p)→ C such that

b(z) = Q(z⊗q,z⊗p).

We denote by E the vector space spanned by all those polynomials.

The Schwartz kernel theorem ensures for any continuous (p,q)-homogenous polynomial b, the existence
of a kernel b̃(., .) ∈S ′(Rd(p+q)) such that

b(z) =
∫

Rd(p+q)
b̃(k′1, · · · ,k′q;k1, · · · ,kp)z(k′1) · · ·z(k′q)z(k1) · · ·z(kp) dk′dk ,

in the distribution sense. The set of (p,q)-homogenous polynomials b ∈ E such that the kernel b̃ defines a
bounded operator from L2

s (Rd p) into L2
s (Rdq) will be denoted by Pp,q(L2(Rd)). Those classes of polyno-

mial symbols are studied and used in [AmNi1, AmNi2].

Definition 2.2 The Wick quantization is the map which associate to each continuous (p,q)-homogenous
polynomial b ∈ E , a quadratic form bWick on S given by

〈Ψ,bWick
Φ〉 = ε

p+q
2

∫
Rd(p+q)

b̃(k′,k) 〈a(k′1) · · ·a(k′q)Ψ,a(k1) · · ·a(kp)Φ〉F dk dk′

=
∞

∑
n=p

ε
p+q

2

√
n!(n− p+q)!

(n− p)!

∫
Rd(n−p)

dx
∫

Rd(p+q)
dkdk′ b̃(k′,k)Ψ(n)(k,x)Φ(n−p+q)(k′,x),

for any Φ,Ψ ∈S .

We have, for example,

a∗( f ) = 〈z, f 〉Wick and a( f ) = 〈 f ,z〉Wick .

Furthermore, for any self-adjoint operator A on L2(Rd) such that S (Rd) is a core for A, the Wick quanti-
zation

dΓ(A) := 〈z,Az〉Wick ,

defines a self-adjoint operator on F . In particular, if A is the identity we get the ε-dependent number
operator

N := 〈z,z〉Wick .

We recall the standard number estimate (see, e.g., [AmNi1, Lemma 2.5]),∣∣∣〈Ψ,bWick
Φ〉
∣∣∣≤ ||b̃||L (L2

s (Rd p),L2
s (Rdq)) ||N

q/2
Ψ||× ||N p/2

Φ|| , (10)

which holds uniformly in ε ∈ (0,1] for b ∈Pp,q(L2(Rd)) and any Ψ,Φ ∈D(Nmax(p,q)/2).
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3 Many-boson system
In nonrelativistic many-body theory, boson systems are described by the second quantized Hamiltonian in
the symmetric Fock space F formally given by

−ε

∫
Rd

a∗(x)∆a(x)dx+
ε2

2

∫
Rd

∫
Rd

a∗(x)a∗(y)δ (x− y)a(x)a(y)dxdy . (11)

The rigorous meaning of formula (11) is as a quadratic form on S , which we denote by hWick, obtained by
Wick quantization of the classical energy functional

h(z) =
∫

Rd
|∇z(x)|2 dx+P(z), where P(z) =

1
2

∫
Rd
|z(x)|4 dx, z ∈S (Rd) . (12)

More explicitly, we have for Ψ ∈S

〈Ψ,hWick
Ψ〉 = ε

∞

∑
n=1

n
∫

Rdn

∣∣∣∂x1Ψ
(n)(x1, · · · ,xn)

∣∣∣2 dx1 · · ·dxn

+ ε
2

∞

∑
n=2

n(n−1)
2

∫
Rd(n−1)

∣∣∣Ψ(n)(x2,x2, · · · ,xn)
∣∣∣2 dx2 · · ·dxn .

Moreover, in one dimensional space (i.e., d = 1) one can show the existence of a unique self-adjoint operator
bounded from below, which we denote by Hε , such that

〈Ψ,Hε Ψ〉= 〈Ψ,hWick
Ψ〉, for any Ψ ∈S .

This is proved in Proposition 3.3.
In all the sequel we restrict our analysis to space dimension d = 1 and consider the small parameter ε

such that ε ∈ (0,1]. The ε-independent self-adjoint operator,

Sµ Ψ := Ψ+
∞

∑
n=1

[
nµ

Ψ
(n) +

n

∑
j=1
−∆x j Ψ

(n)

]
=
(
ε
−1dΓ(−∆)+ ε

−µ Nµ +1
)

Ψ ,

with µ > 0, defines the Hilbert space F µ

+ given as the linear space D(S1/2
µ ) equipped with the inner product

〈Ψ,Φ〉F µ

+
:= 〈S1/2

µ Ψ,S1/2
µ Φ〉F .

We denote by F µ

− the completion of D(S−1/2
µ ) with respect to the norm associated to the following inner

product
〈Ψ,Φ〉F µ

−
:= 〈S−1/2

µ Ψ,S−1/2
µ Φ〉F .

Therefore, we have the Hilbert rigging
F µ

+ ⊂F ⊂F µ

− .

Note that the form domain of the ε-dependent self-adjoint operator dΓ(−∆)+Nµ with µ > 0 is

Q(dΓ(−∆)+Nµ) = F µ

+ for any ε ∈ (0,1] .

Lemma 3.1 For any Ψ,Φ ∈S ,∣∣∣〈Ψ,PWick
Φ〉
∣∣∣≤ 1

4
||[dΓ(−∆)+N3]1/2

Ψ|| × ||[dΓ(−∆)+N3]1/2
Φ|| .

Proof. A simple computation yields for any Ψ,Φ ∈S

〈Ψ,PWick
Φ〉=

∞

∑
n=2

ε
2 n(n−1)

2

∫
Rn−1

Ψ(n)(x2,x2,x3, · · · ,xn) Φ
(n)(x2,x2,x3, · · · ,xn)dx2 · · ·dxn .
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Cauchy-Schwarz inequality yields

∣∣∣〈Ψ,PWick
Φ〉
∣∣∣ ≤ [

∞

∑
n=2

ε
2 n(n−1)

2

∫
Rn−1
|Ψ(n)(x2,x2,x3, · · · ,xn)|2 dx2 · · ·dxn

]1/2

×

[
∞

∑
n=2

ε
2 n(n−1)

2

∫
Rn−1
|Φ(n)(x2,x2,x3, · · · ,xn)|2 dx2 · · ·dxn

]1/2

.

Using Lemma A.1, we get for any α(n) > 0

∣∣∣〈Ψ,PWick
Φ〉
∣∣∣ ≤ [

∞

∑
n=2

ε
2 n(n−1)

2
√

2

(
α(n)〈D2

x1
Ψ

(n),Ψ(n)〉+ α(n)−1

2
〈Ψ(n),Ψ(n)〉

)]1/2

×

[
∞

∑
n=2

ε
2 n(n−1)

2
√

2

(
α(n)〈D2

x1
Φ

(n),Φ(n)〉+ α(n)−1

2
〈Φ(n),Φ(n)〉

)]1/2

.

Hence, by choosing α(n) = 1√
2ε(n−1)

, it follows that

∣∣∣〈Ψ,PWick
Φ〉
∣∣∣ ≤ 1

4

[
∞

∑
n=2

εn〈D2
x1

Ψ
(n),Ψ(n)〉+

∞

∑
n=2

ε
3n(n−1)2〈Ψ(n),Ψ(n)〉

]1/2

×

[
∞

∑
n=2

εn〈D2
x1

Φ
(n),Φ(n)〉+

∞

∑
n=2

ε
3n(n−1)2〈Φ(n),Φ(n)〉

]1/2

≤ 1
4

√
〈Ψ, [dΓ(−∆)+N3]Ψ〉 ×

√
〈Φ, [dΓ(−∆)+N3]Φ〉 .

This leads to the claimed estimate. �

Remark 3.2 Note that, as in Lemma 3.1, the estimate∣∣∣〈Ψ,PWick
Φ〉
∣∣∣≤ ε2

4
||Ψ||F 3

+
||Φ||F 3

+
(13)

holds true for any Ψ,Φ ∈S and ε ∈ (0,1].

We can show that hWick is associated to a self-adjoint operator by considering its restriction to each
sector L2

s (Rn), however we will prefer the following point of view.

Proposition 3.3 There exists a unique self-adjoint operator Hε such that

〈Ψ,hWick
Φ〉= 〈Ψ,Hε Φ〉 for any Ψ ∈F 3

+,Φ ∈D(Hε)∩F 3
+ .

Moreover, e−it/εHε preserves F 3
+.

Proof. We first use the KLMN theorem ([RS, Theorem X17]) and Lemma 3.1 to show that the quadratic
form hWick +N3 +1 is associated to a unique (positive) self-adjoint operator L with

Q(L) = Q(dΓ(−∆)+N3) = F 3
+ .

Observe that we also have

||[dΓ(−∆)+N3]1/2
Ψ|| ≤ ||L1/2

Ψ|| for any Ψ ∈F 3
+ . (14)

Next, by the Nelson commutator theorem (Theorem B.2) we can prove that the quadratic form hWick is
uniquely associated to a self-adjoint operator denoted by Hε with D(L) ⊂ D(Hε)∩F 3

+ and deduce the
invariance of F 3

+. Indeed, we easily check using Lemma 3.1 and (14) that∣∣∣〈Ψ,hWick
Φ〉
∣∣∣≤ 5

4
||L1/2

Ψ|| ||L1/2
Φ|| for any Ψ,Φ ∈F 3

+. (15)
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Furthermore, we have for Ψ,Φ ∈F 3
+ and λ > 0

〈L(λL+1)−1
Ψ,hWick(λL+1)−1

Φ〉−〈(λL+1)−1
Ψ,hWickL(λL+1)−1

Φ〉= 0 . (16)

The statements (15)-(16) with the help of Lemma B.3, allow to use Theorem B.2. �

Remark 3.4 The same argument as in Proposition 3.3 shows that the quadratic form on F 3
+ given by

G := ε
−1dΓ(−∆)+ ε

−2PWick + ε
−1N +1 ,

is associated to a unique (positive) self-adjoint operator which we denote by the same symbol G.

4 The cubic NLS equation
Let Hs(Rm) denote the Sobolev spaces. The energy functional h given by (12) has the associated vector
field

X : H1(R) −→ H−1(R)
z 7−→ X(z) =−∆z+∂z̄P(z) ,

which leads to the nonlinear classical field equation

i∂tϕ = X(ϕ)
= −∆ϕ + |ϕ|2ϕ

(17)

with initial data ϕ|t=0 = ϕ0 ∈ H1(R). It is well-known that the above cubic defocusing NLS equation is
globally well-posed on Hs(R) for s≥ 0. In particular, the equation (17) admits a unique global solution on
C0(R,Hm(R))∩C1(R,Hm−2(R)) for any initial data ϕ ∈ Hm(R) when m = 1 and m = 2 (see [GiVe3] for
m = 1 and [T] for m = 2). Moreover, we have energy and mass conservations i.e.,

h(ϕt) = h(ϕ0) and ||ϕt ||L2(R) = ||ϕ0||L2(R) ,

for any initial data ϕ0 ∈ H1(R) and ϕt solution of (17). It is not difficult to prove the following estimates

||ϕ||2L∞(R) ≤ 2||ϕ||L2(R) ||∂xϕ||L2(R) ≤ 2 ||ϕ||L2(R) h(ϕ)1/2 ,

||ϕ||pLp(R) ≤ 2
p−2

2 ||ϕ||
p+2

2
L2(R) ||∂xϕ||

p−2
2

L2(R) ≤ 2
p−2

2 ||ϕ||
p+2

2
L2(R) h(ϕ)

p−2
4 ,

(18)

for p≥ 2 and any ϕ ∈ H1(R). Furthermore, using Gronwall’s inequality we show for any ϕ0 ∈ H2(R) the
existence of c > 0 depending only on ϕ0 such that

||ϕt ||H2(R) ≤ ec |t| ||ϕ0||H2(R) , (19)

where ϕt is a solution of the NLS equation (17) with initial condition ϕ0.

5 Time-dependent quadratic dynamics
In this section we construct a time-dependent quadratic approximation for the Schrödinger dynamics. We
prove existence of a unique unitary propagator for this approximation using the abstract results for non-
autonomous linear Schrödinger equation stated in the Appendix C. This step will be useful for the study of
propagation of coherent states in the semiclassical limit in section 6.

The polynomial P has the following Taylor expansion for any z0 ∈ H1(R)

P(z+ z0) =
4

∑
j=0

D( j)P
j!

(z0)[z] .
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Let ϕt be a solution of the NLS equation (17) with an initial data ϕ0 ∈H1(R). Consider the time-dependent
quadratic polynomial on S (R) given by

P2(t)[z] :=
D(2)P

2
(ϕt)[z]

= Re
∫

R
z(x)

2
ϕt(x)2 dx+2

∫
R
|z(x)|2 |ϕt(x)|2 dx .

Let {A2(t)}t∈R be the ε-independent family of quadratic forms on S defined by

εA2(t) := dΓ(−∆)+P2(t)Wick . (20)

Lemma 5.1 For ϕ0 ∈ H1(R) let

ϑ1 := 162(||ϕ0||L2(R) +1)3(h(ϕ0)+1) and ϑ2 := 162(||ϕ0||L2(R) +1)3/2
√

h(ϕ0)+1.

The quadratic forms on S defined by

S2(t) := A2(t)+ϑ1ε
−1N +ϑ21 , t ∈ R ,

are associated to unique self-adjoint operators, still denoted by S2(t), satisfying

• S2(t)≥ 1,

• D(S2(t)1/2) = F 1
+ for any t ∈ R .

Proof. The case ϕ0 = 0 is trivial. By definition of Wick quantization we have for Ψ,Φ ∈S ,

〈Φ,P2(t)Wick
Ψ〉= 2

∞

∑
n=1

εn
∫

Rn
|ϕt(x1)|2 Φ(n)(x1, · · · ,xn)Ψ(n)(x1, · · · ,xn)dx1 · · ·dxn

+
∞

∑
n=0

ε
√

(n+1)(n+2)
∫

Rn
Φ(n)(x1, · · · ,xn)

(∫
R

ϕt(x)
2
Ψ

(n+2)(x,x,x1, · · · ,xn)dx
)

dx1 · · ·dxn

+
∞

∑
n=0

ε
√

(n+1)(n+2)
∫

Rn
Ψ

(n)(x1, · · · ,xn)
(∫

R
ϕt(x)2

Φ(n+2)(x,x,x1, · · · ,xn)dx
)

dx1 · · ·dxn.

(21)

Therefore, using Cauchy-Schwarz inequality, we show

|〈Φ,P2(t)Wick
Ψ〉| ≤ 2||ϕt ||2L∞(R)||N

1/2
Φ||× ||N1/2

Ψ||

+ ||ϕt ||2L4(R) ||(N + ε)1/2
Φ||×

[
∞

∑
n=0

ε(n+2)||Ψ(n+2)(x,x,x1, · · · ,xn)||2L2(Rn+1)

]1/2

+ ||ϕt ||2L4(R) ||(N + ε)1/2
Ψ||×

[
∞

∑
n=0

ε(n+2)||Φ(n+2)(x,x,x1, · · · ,xn)||2L2(Rn+1)

]1/2

.

Now we prove, by Lemma A.1, the crude estimate

|〈Φ,P2(t)Wick
Ψ〉| ≤ max(||ϕt ||2L4(R), ||ϕt ||2L∞(R))

[
2||N1/2

Φ||× ||N1/2
Ψ||

+ ||(N + ε)1/2
Φ||× ||(αdΓ(−∆)+α

−1N)1/2
Ψ||

+ ||(N + ε)1/2
Ψ||× ||(αdΓ(−∆)+α

−1N)1/2
Φ||
]

.

This yields for any α > 0

|〈Φ,P2(t)WickΨ〉| ≤ α max(||ϕt ||2L4(R), ||ϕt ||2L∞(R))

×||
[
dΓ(−∆)+(α−1 +3)α−1N +α−1ε1

]1/2
Φ||

×||
[
dΓ(−∆)+(α−1 +3)α−1N +α−1ε1

]1/2
Ψ|| .

(22)
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Remark now that (18) yields

max(||ϕt ||2L4(R), ||ϕt ||2L∞(R))≤ 2(||ϕ0||L2(R) +1)3/2
√

h(ϕ0)+1 .

Hence, for α−1 = 3(||ϕ0||L2(R) +1)3/2
√

h(ϕ0)+1 > 0, we obtain

ε−1|〈Φ,P2(t)WickΨ〉| ≤ 2
3 ||[ε

−1dΓ(−∆)+ϑ1ε−1N +ϑ21]1/2Φ||
×||[ε−1dΓ(−∆)+ϑ1ε−1N +ϑ21]1/2Ψ|| . (23)

Applying now the KLMN theorem (see [RS, Theorem X.17]) with the help of inequality (23) we show that

S2(t) = A2(t)+ϑ1ε
−1N +ϑ21 with ϑ1 > (α−1 +3)α−1, and ϑ2 > α

−1 +1 ,

are associated to unique self-adjoint operators S2(t) satisfying S2(t) ≥ 1. Furthermore, we have that the
form domains of those operators are time-independent, i.e.,

Q(S2(t)) = F 1
+

for any t ∈ R. �

Remark 5.2 The choice of ϑ1, ϑ2 in the previous lemma takes into account the use of KLMN’s theorem in
the proof of Lemma 6.3.

We consider the non-autonomous Schrödinger equation{
i∂tu = A2(t)u , t ∈ R,
u(t = s) = us .

(24)

Here R 3 t 7→ A2(t) is considered as a norm continuous L (F 1
+,F 1

−)-valued map (see Lemma 5.3). We
show in Proposition 5.5 the existence of a unique solution for any initial data us ∈F 1

+ using Corollary C.4.
Moreover, the Cauchy problem’s features allow to encode the solutions on a unitary propagator mapping
(t,s) 7→U2(t,s) such that

U2(t,s)us = ut ,

satisfying Definition C.1 with H = F , H± = F 1
± and I = R.

In the following two lemmas we check the assumptions in Corollary C.4.

Lemma 5.3 For any ϕ0 ∈ H1(R) and t ∈ R the quadratic form A2(t) defines a symmetric operator on
L (F 1

+,F 1
−) and the mapping t ∈ R 7→ A2(t) ∈L (F 1

+,F 1
−) is norm continuous.

Proof. Using (23) we show for any Ψ,Φ ∈S

|〈Φ,A2(t)Ψ〉| ≤ |〈Φ,ε−1dΓ(−∆)Ψ〉|+ |〈Φ,ε−1P2(t)WickΨ〉|

≤ ||S1/2
1 Φ|| ||S1/2

1 Ψ||+ 2
3 ϑ1||S1/2

1 Φ|| ||S1/2
1 Ψ||

≤ 5
3 ϑ1 ||Ψ||F 1

+
||Φ||F 1

+
,

(25)

where ϑ1,ϑ2 are the parameters introduced in Lemma 5.1. Hence, this allows to consider A2(t) as a bounded
operator in L (F 1

+,F 1
−). Since A2(t) is a symmetric quadratic form it follows that it is also symmetric as

an operator in L (F 1
+,F 1

−).
Now, using a similar estimate as (22) we prove norm continuity. Indeed, we have

|〈Φ, [A2(t)−A2(s)]Ψ〉| = ε
−1|〈Φ, [P2(t)−P2(s)]Wick

Ψ〉|

≤ 4 max
(
||ϕ2

t −ϕ
2
s ||L2(R),

∥∥|ϕt |2−|ϕs|2
∥∥

L∞(R)

)
||Ψ||F 1

+
||Φ||F 1

+
.

Note that it is not difficult to prove that

max
(
||ϕ2

t −ϕ
2
s ||L2(R),

∥∥|ϕt |2−|ϕs|2
∥∥

L∞(R)

)
−→ 0 when t→ s .

This follows by (18) and the fact that ϕt ∈C0(R,H1(R)). �
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Lemma 5.4 For any ϕ0 ∈ H2(R) there exists c > 0 (depending only on ϕ0) such that the two statements
below hold true.
(i) For any Ψ ∈F 1

+, we have

|∂t〈Ψ,S2(t)Ψ〉| ≤ ec(|t|+1)||S2(t)1/2
Ψ||F .

(ii) For any Ψ,Φ ∈D(S2(t)3/2), we have

|〈Ψ,A2(t)S2(t)Φ〉−〈S2(t)Ψ,A2(t)Φ〉| ≤ c ||S2(t)1/2
Ψ||F ||S2(t)1/2

Φ||F .

Proof. (i) Let Ψ ∈S , we have

∂t〈Ψ,S2(t)Ψ〉 = ε
−1

∂t〈Ψ,P2(t)Wick
Ψ〉

= ε
−1〈Ψ, [∂tP2(t)]

Wick
Ψ〉 ,

where ∂tP2(t) is a continuous polynomial on S (R) given by

∂tP2(t)[z] = 2Re
∫

R
z(x)

2
ϕt(x)∂tϕt(x)dx+4Re

∫
R
|z(x)|2 ϕt(x)∂tϕt(x)dx .

A simple computation yields

〈Ψ, [∂tP2(t)]
Wick

Ψ〉= 4Re
∞

∑
n=1

nε

(1)︷ ︸︸ ︷∫
Rn

ϕt(x1)∂tϕt(x1) |Ψ(n)(x1, · · · ,xn)|2 dx1 · · ·dxn

+
∞

∑
n=0

ε
√

(n+2)(n+1)
∫

Rn
Ψ(n)(x1, · · · ,xn)

(∫
R

ϕt(x)∂tϕt(x)Ψ
(n+2)(x,x,x1, · · · ,xn) dx

)
dx1 · · ·dxn

+hc .

From (18) we get

|(1)| ≤ ||ϕt ∂tϕt ||L1(R)

∫
Rn−1

sup
x1∈R

∣∣∣Ψ(n)(x1, · · · ,xn)
∣∣∣2 dx2 · · ·dxn

≤ ||ϕt ||L2(R)×||∂tϕt ||L2(R) 〈(1−∂
2
x1

)Ψ(n),Ψ(n)〉L2(Rn) .

Now we apply Cauchy-Schwarz inequality,

|〈Ψ, [∂tP2(t)]
Wick

Ψ〉| ≤ 4 ||ϕt ||L2(R) ||∂tϕt ||L2(R)

(
∞

∑
n=1

εn〈(1−∂
2
x1

)Ψ(n),Ψ(n)〉L2(Rn)

)

+2||ϕt ||L∞(R)||∂tϕt ||L2(R)

(
∞

∑
n=0

ε(n+2)||Ψ(n+2)(x,x, .)||2L2(Rn+1)

)1/2

×

(
∞

∑
n=0

ε(n+1)||Ψ(n)||2L2(Rn)

)1/2

.

In the same spirit as in (22), we obtain a rough inequality

|〈Ψ, [∂tP2(t)]
Wick

Ψ〉| ≤ max(||ϕt ||L∞(R), ||ϕt ||L2(R)) ||∂tϕt ||L2(R)

[
4 ||(dΓ(−∆)+N)1/2

Ψ||2

+2 ||(dΓ(−∆)+N +1)1/2
Ψ||2

]
.

Observe that (23) implies S1 ≤ 3S2(t) for all t ∈ R. Hence, we have

ε
−1|〈Ψ, [∂tP2(t)]

Wick
Ψ〉| ≤ 6 max(||ϕt ||L∞(R), ||ϕt ||L2(R)) ||∂tϕt ||L2(R) ||Ψ||

2
F 1

+

≤ 18 max(||ϕt ||L∞(R), ||ϕt ||L2(R)) ||∂tϕt ||L2(R) ||S2(t)1/2
Ψ||2F .

This proves (i) since (18)-(19) ensure the existence of c > 0 (depending only on ϕ0) such that

max(||ϕt ||L∞(R), ||ϕt ||L2(R)) ||∂tϕt ||L2(R) ≤ ec(|t|+1) .
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(ii) If Ψ,Φ ∈D(S2(t)3/2) the quantity

C := 〈Ψ,A2(t)S2(t)Φ〉−〈S2(t)Ψ,A2(t)Φ〉,

is well-defined since A2(t) ∈ L (F 1
+,F 1

−) and S2(t)D(S2(t)3/2) ⊂ D(S2(t)1/2) = F 1
+. Note that N ∈

L (F 1
+,F 1

−). Hence, we can write

C = 〈Ψ, [S2(t)−ϑ1ε
−1N−ϑ21]S2(t)Φ〉−〈S2(t)Ψ, [S2(t)−ϑ1ε

−1N−ϑ21]Φ〉

= ϑ1
(
〈S2(t)Ψ,ε−1NΦ〉−〈ε−1NΨ,S2(t)Φ〉

)
.

Observe that, for λ > 0, ε−1N(λε−1N +1)−1F 1
+ ⊂F 1

+ and that

s− lim
λ→0+

ε
−1N(λε

−1N +1)−1 = ε
−1N in L (F 1

+,F 1
−).

Therefore, we have

C = ϑ1 lim
λ→0+

〈S2(t)Ψ,ε−1N(λε
−1N +1)−1

Φ〉−〈ε−1N(λε
−1N +1)−1

Ψ,S2(t)Φ〉︸ ︷︷ ︸
Cλ

.

Let Nλ denote ε−1N(λε−1N +1)−1. A simple computation yields

εCλ = 〈Ψ,P2(t)WickNλ Φ〉−〈Nλ Ψ,P2(t)Wick
Φ〉

= 〈Ψ,g(t)WickNλ Φ〉−〈Nλ Ψ,g(t)Wick
Φ〉 ,

where g(t) is the polynomial given by

g(t)[z] = Re
∫

R
z(x)

2
ϕt(x)2 dx .

A similar computation as (21) yields

Cλ =
∞

∑
n=0

κ(n)
∫

Rn
Ψ(n)(x1, · · · ,xn)

(∫
R

ϕt(x)
2
Φ

(n+2)(x,x,x1, · · · ,xn)dx
)

dx1 · · ·dxn

−
∞

∑
n=0

κ(n)
∫

Rn
Φ

(n)(x1, · · · ,xn)
(∫

R
ϕt(x)2

Ψ(n+2)(x,x,x1, · · · ,xn)dx
)

dx1 · · ·dxn ,

where

κ(n) =
(n+2)

√
(n+1)(n+2)

(λ (n+2)+1)
−

n
√

(n+1)(n+2)
(λn+1)

.

Note that κ(n)≤ 2(n+2). Hence, using Cauchy-Schwarz inequality, we show

|Cλ | ≤ 2 ||ϕt ||2L4(R)

[
∞

∑
n=0

(n+2)||Ψ(n)||2L2(Rn)

]1/2[
∞

∑
n=0

(n+2) ||Φ(n+2)(x,x, .)||2L2(Rn+1)

]1/2

+2 ||ϕt ||2L4(R)

[
∞

∑
n=0

(n+2)||Φ(n)||2L2(Rn)

]1/2[
∞

∑
n=0

(n+2) ||Ψ(n+2)(x,x, .)||2L2(Rn+1)

]1/2

.

Using Lemma A.1, with α = 1√
2
, we get

∞

∑
n=0

(n+2) ||Ψ(n+2)(x,x, .)||2L2(Rn+1) ≤ 1
2

∞

∑
n=0

(n+2)〈D2
x1

Ψ
(n+2),Ψ(n+2)〉+(n+2)||Ψ(n+2)||2L2(Rn+2)

≤ 1
2
〈Ψ,S1Ψ〉 ,

together with an analogue estimate where Ψ is replaced by Φ. Now, we conclude that there exists c > 0
depending only on ϕ0 such that

ϑ1 |Cλ | ≤ c ||Ψ||F 1
+
||Φ||F 1

+
. (26)

This proves part (ii). �
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Proposition 5.5 Let ϕ0 ∈ H2(R) and A2(t) given by (20). Then the non-autonomous Cauchy problem{
i∂tu = A2(t)u , t ∈ R,
u(t = s) = us ,

admits a unique unitary propagator U2(t,s) in the sense of Definition C.1 with I = R and H± = F 1
±.

Moreover, there exists c > 0 depending only on ϕ0 such that

||U2(t,0)||L (F 1
+) ≤ ecec|t|

.

Proof. The proof immediately follows using Corollary C.4 with the help of Lemma 5.3-5.4 and the inequal-
ity

c1S1 ≤ S2(t)≤ c2S1,

which holds true using (25). �

6 Propagation of coherent states
In finite dimensional phase-space, coherent state analysis is a well developed powerful tool, see for instance
[CRR]. Here we study, using the ideas of Ginibre and Velo in [GiVe2], the asymptotics when ε → 0 of the
time-evolved coherent states

e−it/εHεW (
√

2
iε

ϕ0)Ψ ,

for Ψ in a dense subspace G+ ⊂F defined below. We consider the following Hilbert rigging

G+ ⊂F ⊂ G− ,

defined via the ε-independent self-adjoint operator (see Remark 3.4) given by

G := ε
−1dΓ(−∆)+ ε

−2PWick + ε
−1N +1 ,

as the completion of D(G±1/2) with the respect to the inner product

〈Ψ,Φ〉G± := 〈G±1/2
Ψ,G±1/2

Φ〉F .

We have the continuous embedding

F 3
+ ⊂ G+ ⊂F 1

+ .

The main result of this section is the following proposition which describes the propagation of coherent
states in the semiclassical limit.

Proposition 6.1 For any ϕ0 ∈ H2(R) there exists c > 0 depending only on ϕ0 such that∥∥∥∥∥e−it/εHεW (
√

2
iε

ϕ0)Ψ− eiω(t)/εW (
√

2
iε

ϕt)U2(t,0)Ψ

∥∥∥∥∥
F

≤ ecec|t|
ε

1/8 ‖Ψ‖G+
,

holds for any t ∈ R and Ψ ∈ G+ where ϕt solves the NLS equation (17) with the initial condition ϕ0 and
ω(t) =

∫ t
0 P(ϕs) ds. Here U2(t,s) is the unitary propagator given by Proposition 5.5.

To prove this proposition we need several preliminary lemmas.

Lemma 6.2 The following three assertions hold true.

(i) For any ξ ∈ L2(R) and k ∈ N, the Weyl operator W (ξ ) preserves D(Nk/2). If in addition ξ ∈ H1(R)
then W (ξ ) preserves also F µ

+ when µ ≥ 1.
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(ii) For any ξ ∈ H1(R), we have in the sense of quadratic forms on F 3
+ ,

W (
√

2
iε

ξ )∗ hWick W (
√

2
iε

ξ ) = h(.+ξ )Wick .

(iii) Let (R 3 t 7→ ϕt) ∈C1(R,L2(R)), then for any Ψ ∈D(N1/2) we have in F

iε∂tW (
√

2
iε

ϕt)Ψ = W (
√

2
iε

ϕt)
[
Re〈ϕt , i∂tϕt〉+2Re〈z, i∂tϕt〉Wick

]
Ψ

=
[
−Re〈ϕt , i∂tϕt〉+2Re〈z, i∂tϕt〉Wick

]
W (
√

2
iε

ϕt)Ψ .

Proof. (i) Let F0 be the linear space spanned by vectors Ψ ∈F such that Ψ(n) = 0 for any n except for a
finite number. It is known that for any ξ ∈ L2(R) and Ψ ∈F0

ÑΨ := W (
√

2
iε

ξ )∗NW (
√

2
iε

ξ )Ψ =
(

N +2Re〈z,ξ 〉Wick + ||ξ ||21
)

Ψ . (27)

For a proof of the latter identity see [AmNi1, Lemma 2.10 (iii)]. Hence, by Cauchy-Schwarz inequality it
follows that

||N1/2W (
√

2
iε

ξ )Ψ||2 = 〈Ψ,
[
N +2Re〈z,ξ 〉Wick + ||ξ ||21

]
Ψ〉

= 〈Ψ,(N + ||ξ ||2L2(R)1)Ψ〉

+
∞

∑
n=0

√
ε(n+1)

∫
Rn

Ψ(n)(y)
(∫

R
ξ (x)Ψ(n+1)(x,y)dx

)
dy+hc

≤ (1+ ||ξ ||L2(R))
2 ||(N +1)1/2

Ψ||2 .

Now, for k ≥ 1 we show the existence of an ε-independent constant Ck > 0 depending only on k and
||ξ ||L2(R) such that

||Nk/2W (
√

2
iε

ξ )Ψ||2 = 〈Ψ, Ñk
Ψ〉 ≤Ck ||(N +1)k/2

Ψ||2 . (28)

This is a consequence of the number operator estimate (10) and the fact that Ñk is a Wick polynomial in
∑0≤r,s≤k Pr,s(L2(R)) (see, e.g.,[AmNi1, Prop. 2.7 (i)]). Thus, we have proved the invariance of D(Nk/2)
since F0 is a core of Nk/2.

Now the invariance of F µ

+ , µ ≥ 1, follows by Faris-Lavine Theorem B.1 where we take the operator

A =
√

2Re〈z,ξ 〉Wick and S = Sµ = ε
−1dΓ(−∆)+ ε

−µ Nµ +1 ,

and remember that

W (ξ ) = ei
√

2Re〈z,ξ 〉Wick
.

In fact, assuming ξ ∈ H1(R) we have to check assumptions (i)-(ii) of Theorem B.1. For any Ψ ∈F µ

+ , we
have by Wick quantization

2Re〈z,ξ 〉Wick
Ψ =

∞

∑
n=0

√
ε(n+1)

∫
R

ξ (x)Ψ(n+1)(x,x1, · · · ,xn)dx

+
∞

∑
n=1

√
ε

n

n

∑
j=1

ξ (x j)Ψ
(n−1)(x1, · · · , x̂ j, · · · ,xn) .

Therefore, it is easy to show

||Re〈z,ξ 〉Wick
Ψ|| ≤

√
ε||ξ ||L2(R) ||(ε

−1N +1)1/2
Ψ||

≤
√

ε||ξ ||L2(R) ||S1Ψ|| ,
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and hence we obtain that D(Sµ)⊂D(A). Let Ψ ∈D(Sµ), a standard computation yields
√

2
(
〈AΨ,Sµ Ψ〉−〈Sµ Ψ,AΨ〉

)
= 〈a(−∆ξ )Ψ,Ψ〉−〈Ψ,a(−∆ξ )Ψ〉

+ 〈[(N
ε

+1)µ − (N
ε
)µ ]Ψ,a∗(ξ )Ψ〉−hc .

(29)

Each two terms in the same line of (29) are similar and it is enough to estimate only one of them. We have
by Cauchy-Schwarz inequality

|〈a(−∆ξ )Ψ,Ψ〉| ≤

∣∣∣∣∣ ∞

∑
n=0

√
ε(n+1)

∫
Rn

Ψ(n)(y)
(∫

R
−∆ξ (x)Ψ(n+1)(x,y)dx

)
dy

∣∣∣∣∣
≤ ||ξ ||H1(R) ||S

1/2
1 Ψ||2 ,

and for 1≤ θ ≤ µ−1∣∣∣〈ε−θ Nθ
Ψ,a∗(ξ )Ψ〉

∣∣∣ ≤ ∣∣∣∣∣ ∞

∑
n=0

√
ε(n+1)(n+1)θ

∫
Rn

Ψ
(n)(y)

(∫
R

ξ (x)Ψ(n+1)(x,y)dx
)

dy

∣∣∣∣∣
≤ 2µ ||ξ ||L2(R) ||S

1/2
µ Ψ||2 .

This shows for any Ψ ∈D(Sµ),

±i〈Ψ, [A,Sµ ]Ψ〉 ≤C ||S1/2
µ Ψ||2.

Part (ii) follows by a similar argument as [AmNi1, Lemma 2.10 (iii)] and part (iii) is a well-known formula,
see [GiVe1, Lemma 3.1 (3)]. �

Set

W (t) = W (
√

2
iε

ϕt)∗ e−iω(t)/ε e−it/εHεW (
√

2
iε

ϕ0) .

Lemma 6.3 For any ϕ0 ∈ H2(R) there exists c > 0 such that the inequality

‖W (t)‖L (G+,F 1
+) ≤ ecec|t|

holds for t ∈ R uniformly in ε ∈ (0,1].

Proof. Observe that the subspace D+ given as the image of D(Hε)∩F 3
+ by W (

√
2

iε ϕ0)∗ is dense in F .
Let Ψ ∈ D+ and Φ ∈ G+, then differentiating the quantity 〈Φ,W (t)Ψ〉 with the help of Lemma 6.2 and
Proposition 3.3, we obtain

iε∂t〈Φ,W (t)Ψ〉 = 〈Φ, [P(ϕt)−Re〈ϕt , i∂tϕt〉−2Re〈z, i∂tϕt〉Wick]W (t)Ψ〉

+ 〈Φ,W (
√

2
iε

ϕt)∗ e−iω(t)/ε Hε W (
√

2
iε

ϕ0)Ψ〉︸ ︷︷ ︸
(1)

. (30)

Let Rν := 1[0,ν ](ε−1N) and remark that s− limν→∞ Rν = 1. Furthermore, we have that RνG+ ⊂F 3
+ since

it easily holds that

||Rν Φ||2
F 3

+
≤ ν

3 ||Φ||2G+
.

Therefore, since W (
√

2
iε ϕt)Rν Φ and W (

√
2

iε ϕ0)Ψ belong to F 3
+, we have

(1) = lim
ν→∞
〈Rν Φ,W (

√
2

iε
ϕt)∗ e−iω(t)/ε Hε W (

√
2

iε
ϕ0)Ψ〉

= lim
ν→∞
〈Rν Φ,h(.+ϕt)Wick W (t)Ψ〉 .
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So, we get

iε∂t〈Φ,W (t)Ψ〉 = (1)+ lim
ν→∞
〈Rν Φ,

[
P(ϕt)−Re〈ϕt , i∂tϕt〉−2Re〈z, i∂tϕt〉Wick

]
W (t)Ψ〉

= lim
ν→∞
〈Rν Φ,(εA2(t)+P3(t)Wick +PWick︸ ︷︷ ︸

=:εΘ(t)

)W (t)Ψ〉 ,

where we denote

P3(t)[z] :=
D(3)P

3!
(ϕt)[z] = 2Re

∫
R

ϕt(x)z(x)|z(x)|2 dx and P(z) =
D(4)P

4!
(ϕt)[z] =

1
2

∫
R
|z(x)|4 dx .

A simple computation yields

〈Φ,P3(t)Wick
Ψ〉 =

∞

∑
n=1

√
n2(n+1)ε3

∫
Rn−1

(∫
R

ϕt(x)Φ(n)(x,y)Ψ
(n+1)(x,x,y)dx

)
dy

+
∞

∑
n=1

√
n2(n+1)ε3

∫
Rn−1

(∫
R

ϕt(x)Φ(n+1)(x,x,y)Ψ
(n)(x,y)dx

)
dy .

Using Cauchy-Schwarz inequality and Lemma A.1, we obtain∣∣〈Φ,P3(t)WickΨ〉
∣∣ ≤ 2

√
2
||ϕt ||L∞(R)√

ϑ2

√
〈Φ, [ε−1PWick +ϑ1ε−1N +ϑ21]Φ〉

×
√
〈Ψ, [ε−1PWick +ϑ1ε−1N +ϑ21]Ψ〉 ,

(31)

where ϑ1,ϑ2 are the parameters in Lemma 5.1. Hence, Θ(t) extends to a bounded operator in L (G+,G−)
since A2(t) and PWick belong to L (G+,G−). As an immediate consequence we obtain

iε∂t〈Φ,W (t)Ψ〉= 〈Φ,εΘ(t)W (t)Ψ〉. (32)

Now, we consider the quadratic form Λ(t) on G+ given by

Λ(t) := Θ(t)+ϑ1ε
−1N +ϑ21 .

It is easily follows, by (18) and (31), that∣∣〈Φ,P3(t)WickΨ〉
∣∣ ≤ 1

4 ||
(
−ε−1dΓ(−∆)+ ε−1PWick +ϑ1ε−1N +ϑ21

)1/2
Φ||

||
(
−ε−1dΓ(−∆)+ ε−1PWick +ϑ1ε−1N +ϑ21

)1/2
Ψ|| .

(33)

Therefore, using (23) and (33) we show that

ε
−1

[
D(2)P

2
(ϕt)[z]+

D(3)P
3!

(ϕt)[z]

]Wick

is form bounded by ε−1dΓ(−∆)+ ε−1PWick + ϑ1ε−1N + ϑ21 with a form-bound less than 1 uniformly in
ε ∈ (0,1]. Hence, by the KLMN Theorem [RS, Thm. X17], the quadratic form Λ(t) is associated to a unique
self-adjoint operator which we still denote by Λ(t), satisfying Q(Λ(t)) = G+ and Λ(t)≥ 1. Moreover, it is
not difficult to show the existence of c1,c2 > 0 such that

c1 S1 ≤ Λ(t)≤ c2 G (34)

uniformly in ε ∈ (0,1] for any t ∈ R . Now, we consider the non-autonomous Schrödinger equation

i∂tut = Θ(t)ut , (35)

with initial data u0 ∈ G+. Next, we prove existence and uniqueness of a unitary propagator V (t,s) of the
Cauchy problem (35). This will be done if we can check assumptions of Corollary C.4 with G± = H±,
A(t) = Θ(t) and S(t) = Λ(t). Thus, we will conclude that

||Λ(t)1/2V (t,0)Ψ||F ≤ ecec|t| ||Λ(0)1/2
Ψ||F . (36)
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Observe that R 3 t 7→Θ(t) ∈L (G+,G−) is norm continuous since

|〈Φ,(Θ(t)−Θ(s))Ψ〉| ≤ ||Φ||G+ ||A2(t)−A2(s)||L (F 1
+,F 1

−) ||Ψ||G+ + |〈Φ,ε−1(P3(t)−P3(s))Wick
Ψ〉| ,

and an estimate similar to (31) yields

|〈Φ,ε−1(P3(t)−P3(s))Wick
Ψ〉| ≤ 2

√
2||ϕt −ϕs||L∞(R) ||Φ||G+ ||Ψ||G+ .

Let us check assumption (i) of Corollary C.4. We have for Ψ ∈ G+ ⊂F 1
+,

∂t〈Ψ,Λ(t)Ψ〉= ∂t〈Ψ,S2(t)Ψ〉+∂t〈Ψ,ε−1P3(t)Wick
Ψ〉 .

A simple computation yields

∂t〈Ψ,ε−1P3(t)Wick
Ψ〉= 2Re

[
∞

∑
n=1

√
n2(n+1)ε

∫
Rn−1

(∫
R

∂tϕt(x)Ψ(n)(x,y)Ψ(n+1)(x,x,y)dx
)

dy

]
.

So, by Cauchy-Schwarz inequality and Lemma A.1, we get

∣∣∣∂t〈Ψ,ε−1P3(t)Wick
Ψ〉
∣∣∣ ≤ 2||∂tϕt ||L2(R)

[
∞

∑
n=1

(n+1)||sup
x∈R

∣∣∣Ψ(n)(x, .)
∣∣∣ ||2L2(Rn−1)

]1/2

×

[
∞

∑
n=1

n2
ε||Ψ(n+1)(x,x, .)||2L2(Rn)

]1/2

≤ 2
√

2 ||∂tϕt ||L2(R) ||Λ(t)1/2
Ψ||2 .

The latter estimate with Lemma 5.4 (i) and (18)-(19) give us

|∂t〈Ψ,Λ(t)Ψ〉| ≤ ec(|t|+1)||Λ(t)1/2
Ψ||2 .

Now, we check assumption (ii) of Corollary C.4. We follow the same lines of the proof of Lemma 5.4
(ii) by replacing S2(t) by Λ(t) and A2(t) by Θ(t). So, we arrive at the step where we have to estimate for
Ψ,Φ ∈D(Λ(t)3/2) and λ > 0, the quantity

Cλ [g(t)] := 〈Ψ,ε−1g(t)WickNλ Φ〉−〈Nλ Ψ,ε−1g(t)Wick
Φ〉 ,

where Nλ := ε−1N(λε−1N +1)−1 and g(t) is the continuous polynomial on S (R) given by

g(t)[z] = P2(t)[z]+P3(t)[z] .

Note that the part Cλ [P2(t)] involving only the symbol P2(t) is already bounded by (26). Thus, we need
only to consider Cλ [P3(t)]. A simple computation yields

Cλ [P3(t)] =
∞

∑
n=1

κ(n)
∫

Rn−1

(∫
R

ϕt(x)Φ
(n+1)(x,x,y)Ψ(n)(x,y) dx

)
dy

−
∞

∑
n=1

κ(n)
∫

Rn−1

(∫
R

ϕt(x)Φ(n)(x,y)Ψ(n+1)(x,x,y)dx
)

dy ,

where

κ(n) =
(n+1)

√
εn2(n+1)

(λ (n+1)+1)
− n
√

εn2(n+1)
(λn+1)

satisfying |κ(n)| ≤
√

n2(n+1) uniformly in ε ∈ (0,1] and λ > 0. So, using a similar estimate as (31), we
obtain

|Cλ [P3(t)]| ≤
1√
2
||ϕt ||L∞(R) ||Λ(t)1/2

Ψ|| ||Λ(t)1/2
Φ|| .
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This proves assumption (ii) of Corollary C.4. Now, we check that

W (t) = V (t,0).

In fact, for Φ ∈ G+ and Ψ ∈D+ we have

i∂r〈Φ,V (0,r)W (r)Ψ〉=−〈Θ(r)V (r,0)Φ,W (r)Ψ〉+ i lim
s→0
〈V (r + s,0)Φ,

W (r + s)−W (r)
s

Ψ〉 ,

and since by (30) we know that lims→0
W (r+s)−W (r)

s Ψ exists in F , we conclude using (32) that

∂r〈Φ,V (0,r)W (r)Ψ〉= 0 .

This identifies W (t) as the unitary propagator of the non-autonomous Schrödinger equation (35). Therefore,
by (34)-(36) we get

√
c1 ||W (t)Ψ||F 1

+
≤ ||Λ(t)1/2W (t)Ψ||F ≤ ecec|t| ||Λ(0)1/2

Ψ||F ≤
√

c2 ecec|t| ||Ψ||G+ ,

for any t ∈ R uniformly in ε ∈ (0,1]. �

Lemma 6.4 For any ϕ0 ∈ H2(R) and Ψ ∈ G+ we have

‖W (t)Ψ−U2(t,0)Ψ‖2
F = 2〈Ψ,(1−Rν)Ψ〉−2Re〈W (t)Ψ,(1−Rν)U2(t,0)Ψ〉

+2 Im
∫ t

0
〈W (s)Ψ, [Θ(s)Rν −Rν A2(s)]U2(s,0)Ψ〉 ds ,

where Rν := σ( ε−1N
ν

) with σ any bounded Borel function on R+ with compact support and here

Θ(s) = A2(s)+ ε
−1Qs(z)wick ,

with Qs(z) the continuous polynomial on S (R) given by

Qs(z) =
D(3)P

3!
(ϕs)[z]+

D(4)P
4!

(ϕs)[z] .

Proof. We have

‖W (t)Ψ−U2(t,0)Ψ‖2
F = 2‖Ψ‖2

F −2Re〈W (t)Ψ,U2(t,0)Ψ〉

= 2〈Ψ,(1−Rν)Ψ〉−2Re〈W (t)Ψ,(1−Rν)U2(t,0)Ψ〉
+2Re〈Ψ,Rν Ψ〉−2Re〈W (t)Ψ,RνU2(t,0)Ψ〉.

(37)

Hence to prove the lemma it is enough to show that

R 3 s 7→ Re〈W (s)Ψ,RνU2(s,0)Ψ〉 ∈C1(R) (38)

and compute its derivative. Recall that the propagator U2(s,0) ∈ C0(R,L (F 1
+)), by Proposition 5.5 and

that W (s) ∈C0(R,L (G+)) since it is the unitary propagator of the Cauchy problem (35). It is easily seen
that

s 7→ RνU2(s,0)Ψ ,

are in ∈C0(R,G+) since Rν maps continuously F 1
+ into G+. We also have that

s 7→W (s)Ψ ∈C1(R,G−) and s 7→U2(s,0)Ψ ∈C1(R,F 1
−) .

This proves the statement (38). Therefore, we have

2Re〈Ψ,Rν Ψ〉−2Re〈W (t)Ψ,RνU2(t,0)Ψ〉=−2
ε

Im
∫ t

0
iε∂s 〈W (s)Ψ,RνU2(s,0)Ψ〉 ds . (39)
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The fact that W (t) is the unitary propagator of (35) with Proposition 5.5 yields

iε∂s〈W (s)Ψ,RνU2(s,0)Ψ〉=−〈εΘ(s)W (s)Ψ,RνU2(s,0)Ψ〉+ 〈W (s)Ψ,Rν εA2(s)U2(s,0)Ψ〉 . (40)

Now, collecting (37), (39) and (40) we obtain the claimed identity. �

Proof of Proposition 6.1 We are now ready to prove Proposition 6.1.
First observe that we have∥∥∥∥∥e−it/εHεW (

√
2

iε
ϕ0)Ψ− eiω(t)/εW (

√
2

iε
ϕt)U2(t,0)Ψ

∥∥∥∥∥
2

F

= ‖W (t)Ψ−U2(t,0)Ψ‖2
F .

Now, using Lemma 6.4 one obtains for t > 0 (the case t < 0 is similar) the estimate

‖W (t)Ψ−U2(t,0)Ψ‖2
F ≤ 2 |〈Ψ,(1−Rν)Ψ〉|+2 |〈W (t)Ψ,(1−Rν)U2(t,0)Ψ〉|

+2
∫ t

0
|〈W (s)Ψ, [Θ(s)Rν −Rν A2(s)]U2(s,0)Ψ〉| ds .

Here we consider σ to be in the class C1(R+), decreasing and satisfying σ(s) = 1 if s≤ 1 and σ(s) = 0 if
s≥ 2. We have for ν positive integer,

〈Ψ,(1−Rν)Ψ〉 ≤ 1
ν

∞

∑
n=ν+1

n〈Ψ(n),(D2
x1

+1)Ψ(n)〉

≤ 1
ν
〈Ψ,ε−1[dΓ(−∆)+N]Ψ〉 ≤ 1

ν
‖Ψ‖2

F 1
+

.

Hence, we easily check with the help of Proposition 5.5 and Lemma 6.3 that

|〈W (t)Ψ,(1−Rν)U2(t,0)Ψ〉| ≤ 1
ν
||U2(t,0)Ψ||F 1

+
||W (t)Ψ||F 1

+

≤ 1
ν

ec1ec1t ||Ψ||F 1
+
||Ψ||G+ ≤ 1

ν
ec1ec1t ||Ψ||2G+

.

Next, we show that there exists C > 0 depending only on ϕ0 such that∥∥∥ε
−1Qs(z)WickRν

∥∥∥
L (F 1

+,F 1
−)
≤C (ν ε

1/2 +ν
2
ε) .

The latter bound follows by Cauchy-Schwarz inequality, Lemma A.1 and (18),

|〈Φ,
P3(s)

ε

Wick

Rν Ψ〉| ≤
√

ε||ϕt ||L∞(R)

[
2ν

∑
n=1

(n+1)||Φ(n)||2L2(Rn)

]1/2 [ 2ν

∑
n=1

n2||Ψ(n+1)(x,x, .)||2L2(Rn)

]1/2

+
√

ε||ϕt ||L∞(R)

[
2ν

∑
n=1

(n+1)||Ψ(n)||2L2(Rn)

]1/2 [ 2ν

∑
n=1

n2||Φ(n+1)(x,x, .)||2L2(Rn)

]1/2

≤ 2ν
√

ε||ϕt ||L∞(R) ||(ε−1N +1)1/2
Φ||F ||Ψ||F 1

+

+ 2ν
√

ε||ϕt ||L∞(R) ||(ε−1N +1)1/2
Ψ||F ||Φ||F 1

+
,

and a similar estimate for PWick,

|〈Φ,PWickRν Ψ〉| ≤ ν
2
ε

2 ||Φ||F 1
+
||Ψ||F 1

+
.

Hence we can check that∫ t

0

∣∣∣〈W (s)Ψ,ε−1Qs(z)WickRνU2(s,0)Ψ〉
∣∣∣ ds ≤ C(νε

1/2 +ν
2
ε)
∫ t

0
||W (s)Ψ||F 1

+
||U2(s,0)Ψ||F 1

+
ds .
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Now, by Lemma 6.3 and Proposition 5.5 we obtain∫ t

0
‖W (s)Ψ‖F 1

+
‖U2(s,0)Ψ‖F 1

+
ds ≤

∫ t

0
ec1ec1s

‖Ψ‖G+
‖U2(s,0)Ψ‖F 1

+
ds

≤
∫ t

0
ec2ec2s

‖Ψ‖G+
‖Ψ‖F 1

+
ds

≤ ececs ‖Ψ‖2
G+

.

A simple computation yields

A2(s)Rν −Rν A2(s) =
1
2

[
σ(

ε−1N +2
ν

)−σ(
ε−1N

ν
)
](∫

R
ϕt(x)2z(x)

2
dx
)Wick

+
1
2

[
σ(

ε−1N−2
ν

)−σ(
ε−1N

ν
)
](∫

R
ϕt(x)

2
z(x)2 dx

)Wick

.

We easily check that ∥∥∥∥σ(
ε−1N±2

ν
)−σ(

ε−1N
ν

)
∥∥∥∥

L (F 1
+)
≤ 2

ν
||σ ′||L∞(R+) ,

since ε−1dΓ(−∆)+ ε−1N commute with ε−1N. Thus, using (23) there exists c0,c > 0 such that∫ t

0
|〈W (s)Ψ, [A2(s),Rν ]U2(s,0)Ψ〉| ds ≤ c0

ν

∫ t

0
‖W (s)Ψ‖F 1

+
‖U2(s,0)Ψ‖F 1

+
ds

≤ 1
ν

ecect ‖Ψ‖2
G+

.

Finally, the claimed inequality in Proposition 6.1 follows by collecting the previous estimates and letting
ν = ε−1/4. �

We have the following two corollaries.

Corollary 6.5 For any ϕ0 ∈ H2(R) and any ξ ∈ L2(R) we have the strong limit

s− lim
ε→0

W (
√

2
iε

ϕ0)∗ eit/εHε W (ξ )e−it/εHε W (
√

2
iε

ϕ0) = ei
√

2Re〈ξ ,ϕt 〉 1 ,

where ϕt solves the NLS equation (17) with initial data ϕ0.

Proof. It is enough to prove for any Ψ,Φ ∈ G+ the limit:

lim
ε→0
〈e−it/εHεW (

√
2

iε
ϕ0)Ψ, W (ξ )e−it/εHε W (

√
2

iε
ϕ0)Φ〉= ei

√
2Re(ξ ,ϕt ) 〈Ψ,Φ〉 . (41)

Indeed, using Proposition 6.1, we show

〈e−it/εHεW (
√

2
iε

ϕ0)Ψ,W (ξ )e−it/εHεW (
√

2
iε

ϕ0)Φ〉 = 〈W (
√

2
iε

ϕt)U2(t,0)Ψ,W (ξ )W (
√

2
iε

ϕt)U2(t,0)Φ〉

+ O(ε1/8).

Therefore by Weyl commutation relations we have

〈W (
√

2
iε

ϕt)U2(t,0)Ψ, W (ξ )W (
√

2
iε

ϕt)U2(t,0)Φ〉= 〈U2(t,0)Ψ, W (ξ )U2(t,0)Φ〉ei
√

2Re(ξ ,ϕt ) ,

Thus the limit is proved since s− limε→0 W (ξ ) = 1. �

Recall that F0 is the subspace of F spanned by vectors Ψ ∈F such that Ψ(n) = 0 for any index n ∈N
except for finite number. Note that F0∩G+ is dense in F .
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Corollary 6.6 For any ϕ0 ∈ H2(R) and any Ψ,Φ ∈F0∩G+ and b ∈Pp,q(L2(R)), we have

lim
ε→0
〈W (
√

2
iε

ϕ0)Ψ, eit/εHε bWick e−it/εHε W (
√

2
iε

ϕ0)Φ〉= b(ϕt)〈Ψ, Φ〉 ,

where ϕt solves the NLS equation (17) with initial data ϕ0.

Proof. Consider a (p,q)-homogenous polynomial b ∈Pp,q(L2(R)). We have

A := 〈W (
√

2
iε

ϕ0)Ψ, eit/εHε bWick e−it/εHε W (
√

2
iε

ϕ0)Φ〉

= 〈(N +1)qW (
√

2
iε

ϕ0)Ψ,eit/εHε Bε e−it/εHε (N +1)pW (
√

2
iε

ϕ0)Φ〉 ,

where Bε := (N +1)−qbWick(N +1)−p. The number estimate (10) yields

‖Bε‖ ≤
∥∥b̃
∥∥

L (L2
s (Rp),L2

s (Rq)) ,

uniformly in ε ∈ (0,1]. Let Ñt be the positive operator given by

Ñt = N +2Re〈z,ϕt〉Wick + ||ϕt ||2L2(R) .

By (27), we get

A = 〈W (
√

2
iε

ϕ0)(Ñ0 +1)q
Ψ, eit/εHε Bε e−it/εHε W (

√
2

iε
ϕ0)(Ñ0 +1)p

Φ〉 .

Now, observe that

lim
ε→0

(Ñ0 +1)p
Φ = (1+ ||ϕ||2L2(R))

p
Φ and lim

ε→0
(Ñ0 +1)q

Ψ = (1+ ||ϕ||2L2(R))
q
Ψ .

So, using Proposition 6.1 we obtain

A = (1+ ||ϕ0||2L2(R))
p+q 〈W (

√
2

iε
ϕt)U2(t,0)Ψ, Bε W (

√
2

iε
ϕt)U2(t,0)Φ〉+O(ε1/8)

= 〈U2(t,0)Ψ, (Ñt +1)−q b(.+ϕt)Wick (Ñt +1)−p U2(t,0)Φ〉+O(ε1/8) .

We set Ψε = (N +1)q(Ñt +1)−qU2(t,0)Ψ and Φε = (N +1)p(Ñt +1)−pU2(t,0)Φ and remark that we can
show for ϕ0 6= 0 and µ a positive integer the following strong limit

s− lim
ε→0

(N +1)µ(Ñt +1)−µ =
1

(1+ ||ϕt ||2L2(R))
µ

. (42)

This holds since we have by explicit computation

||(a(ϕt)+a∗(ϕt))(N + ||ϕt ||2 +1)−1|| ≤ ||ϕt ||
2
√
||ϕt ||2 +1

+
||ϕt ||

2
√
||ϕt ||2 +1− ε

< 1,

for ε sufficiently small and hence we can write

(N +1)(Ñt +1)−1 = (N +1)(N + ||ϕt ||2 +1)−1[

Rε︷ ︸︸ ︷
(a(ϕt)+a∗(ϕt))(N + ||ϕt ||2 +1)−1 +1]−1 .

This proves (42) for µ = 1 since s− limε→0 Rε = 0. Now, we proceed by induction on µ using a commutator
argument

(N +1)µ+1(Ñt +1)−(µ+1) = (N +1)µ(Ñt +1)−µ(N +1)(Ñt +1)−1

+ (N +1)µ(Ñt +1)−µ [(Ñt +1)µ ,N](Ñt +1)−(µ+1) ,
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with the observation that the second term of (r.h.s.) converges strongly to 0. Therefore, we obtain

lim
ε→0

Ψε =
1

(1+ ||ξ ||2L2(R))
q U2(t,0)Ψ and lim

ε→0
Φε =

1
(1+ ||ξ ||2L2(R))

p U2(t,0)Φ .

It is also easy to show by explicit computation that

w− lim
ε→0

(N +1)−qbWick
r,s (N +1)−p = 0 ,

for any br,s ∈Pr,s(L2(R)) such that 0 < r ≤ p and 0 < s≤ q. Hence, letting ε → 0, we get

lim
ε→0

A = (1+ ||ϕ0||2L2(R))
p+q lim

ε→0
〈Ψε ,(N +1)−qb(ϕt)(N +1)−p

Φε〉

= b(ϕt)〈U2(t,0)Ψ, U2(t,0)Φ〉= b(ϕt) 〈Ψ, Φ〉 ,

since ||ϕt ||L2(R) = ||ϕ0||L2(R) and s− limε→0(N +1)−µ = 1 for µ > 0. �

We identify the propagator U2(t,s) as a time-dependent Bogoliubov’s transform on the Fock represen-
tation of the Weyl commutation relations.

Proposition 6.7 Let ϕ0 ∈H2(R) and consider the propagator U2(t,0) given in Proposition 5.5. For a given
s ∈ R let ξs ∈ H2(R), we have

U2(t,s)W (
ξs

i
√

ε
)U2(s, t) = W (

β (t,s)ξs

i
√

ε
)

where β (t,s) is the symplectic propagator on L2(R), solving the equation{
i∂tξt(x) = [−∆+2|ϕt(x)|2] ξt(x)+ϕt(x)2 ξt(x) ,
ξ|t=s = ξs ,

(43)

such that β (t,s)ξs = ξt .

Proof. Observe that if ϕ0 ∈ H2(R) then the solution ϕt of the NLS equation (17) with initial condition
ϕ0 satisfies ϕt ∈C0(R,L∞(R)). Hence, by standard arguments the equation (43) admits a unique solution
ξt ∈C0(R,H2(R))∩C1(R,L2(R)) for any ξs ∈ H2(R). Moreover, the propagator

β (t,s)ξs = ξt ,

defines a symplectic transform on L2(R) for any t,s ∈ R. This follows by differentiating

Im〈β (t,s)ξ ,β (t,s)η〉 ,

with respect to t for ξ ,η ∈ H2(R). Furthermore, β satisfies the laws

β (s,s) = 1, β (t,s)β (s,r) = β (t,r) for t,r,s ∈ R.

Now, we differentiate with respect to t the quantity

U2(s, t)W (
ξt

i
√

ε
)U2(t,s)

in the sense of quadratic forms on F 1
+, with ξt solution of (43). Hence, using Lemma 6.2 (ii), we get

∂t

[
U2(s, t)W (

√
2

i
√

ε
ξt)U2(t,s)

]
= U2(s, t)W (

√
2

i
√

ε
ξt)
[
W (

√
2

i
√

ε
ξt)∗iA2(t)W (

√
2

i
√

ε
ξt)− iA2(t)

−i
(

Re〈ξt , i∂tξt〉+ 2√
ε

Re〈z, i∂tξt〉Wick
)]

U2(t,s) .

(44)
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Now, by [AmNi1, Lemma 2.10], we obtain

W (
√

2
i
√

ε
ξt)∗A2(t)W (

√
2

i
√

ε
ξt) = ε

−1m(t)[z+
√

εξt ]Wick ,

where m(t)[z] is the continuous polynomial on S (R) given by

m(t)[z] = 〈z,−∆z〉+P2(t)[z] .

Therefore, the (r.h.s.) of (44) is null if we show that

m(t)[z+
√

εξt ]−m(t)[z]−
(
εRe〈ξt , i∂tξt〉+2

√
εRe〈z, i∂tξt〉

)
= 0 .

This follows by straightforward computation. �

7 Propagation of chaos
Propagation of chaos for a many-boson system with point pair-interaction in one dimension was studied in
[ABGT] (see also the related work [AGT]). Here we prove this conservation hypothesis for such quantum
system using the method in [RoSch]. Thus, we are led to study the asymptotics of time-evolved Hermite
states

e−it/εnHεn ϕ
⊗n
0 with ϕ0 ∈ H2(R), ||ϕ0||L2(R) = 1 ,

when n→ ∞ with nεn = 1. We denote the coherent states by

E(ϕ0) := W (
√

2
iε

ϕ0)Ω0,

where Ω0 = (1,0, · · ·) is the vacuum vector in the Fock space F . To pass from coherent states to Hermite
states we use the integral representation proved in [RoSch],

ϕ
⊗n
0 =

γn

2π

∫ 2π

0
e−iθn E(eiθ

ϕ0) dθ , where γn :=
e1/2εn

√
n!

ε
−n/2
n

. (45)

Asymptotically, the factor γn grows as (2πn)1/4 when n→ ∞.

In the following proposition we prove the chaos conservation hypothesis.

Proposition 7.1 For any ϕ0 ∈ H2(R) such that ||ϕ0||L2(R) = 1 and any b ∈Pp,p(L2(R)), we have

lim
n→∞
〈ϕ⊗n

0 ,eit/εnHεn bWick e−it/εnHεn ϕ
⊗n
0 〉= b(ϕt) ,

where nεn = 1 and ϕt solves the NLS equation (17) with initial data ϕ0.

Proof. It is known that if a sequence of positive trace-class operators ρn on L2(R) converges in the weak
operator topology to ρ such that limn→∞ Tr[ρn] = Tr[ρ] < ∞ then ρn converges in the trace norm to ρ (see,
for instance [DA]). This argument reduces the proof to the case

b(z) =
p

∏
i=1
〈z, fi〉 〈gi,z〉 ,

where fi,gi ∈ L2(R). For shortness, we set

Eθ = E(eiθ
ϕ0) and Et

θ = e−it/εnHεn Eθ .

Using formula (45), we get

Γn := 〈ϕ⊗n
0 ,eit/εnHεn bWick e−it/εnHεn ϕ

⊗n
0 〉=

γ2
n

(2π)2

∫
[0,2π]2

e−in(θ−θ ′)〈Et
θ ′ , bWick Et

θ 〉 dθdθ
′ .
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It is easily seen that
(N +1)−pe−it/εnHεn ϕ

⊗n
0 = 2−pe−it/εnHεn ϕ

⊗n
0 .

Therefore, we write

Γn =
4pγ2

n

(2π)2

∫
[0,2π]2

e−in(θ−θ ′)〈Et
θ ′ , (N +1)−p

p

∏
i=1

a∗( fi)
p

∏
j=1

a(g j)(N +1)−p Et
θ 〉 dθdθ

′ .

Now, we use the decomposition

p

∏
i=1

a∗( fi)
p

∏
j=1

a(g j) = ∑
I,J⊂Np

∏
i∈Ic

[a∗( fi)−〈ϕθ ′
t , fi〉] ∏

j∈Jc
[a(g j)−〈g j,ϕ

θ
t 〉]e−i(#Iθ ′−#Jθ)

× ∏
i∈I
〈 fi,ϕt〉∏

j∈J
〈g j,ϕt〉 ,

where the sum runs over all subsets I,J of Np := {1, · · · , p}. Thus, we can write

Γn−b(ϕt) =
#I+#J<2p

∑
I,J⊂Np

4pγ2
n

(2π)2

∫
[0,2π]2

e−i[(n−#J)θ−(n−#I)θ ′]〈Ẽt
θ ′ , BWick

I,J Ẽt
θ 〉 dθdθ

′ , (46)

where Ẽt
θ

:= (N +1)−p Et
θ

and BI,J(z) are sums of homogenous polynomials such that

〈Ẽt
θ ′ ,B

Wick
I,J Ẽt

θ 〉= ∏
i∈I
〈ϕt , fi〉∏

j∈J
〈g j,ϕt〉×

〈
∏
i∈Ic

[a( fi)−〈 fi,ϕ
θ ′
t 〉]Ẽt

θ ′ , ∏
j∈Jc

[a(g j)−〈g j,ϕ
θ
t 〉]Ẽt

θ

〉
.

We have, for 0≤ #I,#J < p, by Cauchy-Schwarz inequality∣∣∣〈Ẽt
θ ′ ,B

Wick
I,J Ẽt

θ 〉
∣∣∣≤ ∏

i∈I, j∈J
||g j||L2(R) || fi||L2(R)

×

∥∥∥∥∥∏i∈Ic
[a( fi)−〈 fi,ϕ

θ ′
t 〉]Ẽt

θ ′

∥∥∥∥∥
F

×

∥∥∥∥∥∏
j∈Jc

[a(g j)−〈g j,ϕ
θ
t 〉]Ẽt

θ

∥∥∥∥∥
F

.

In the following we make use of the positive self-adjoint operator

Ñ := N +2Re〈z,ϕt〉Wick + ||ϕt ||21 .

Observe that we have for any θ ′ ∈ [0,2π] and r ≥ 1,∥∥∥∥∥ r

∏
i=1

[a( fi)−〈 fi,ϕ
θ ′
t 〉]Ẽt

θ ′

∥∥∥∥∥
F

=

∥∥∥∥∥ r

∏
i=1

a( fi)(Ñ +1)−pW (t)Ω0

∥∥∥∥∥
F

≤

∥∥∥∥∥r−1

∏
i=1

a( fi)(Ñ +1)−pa( fr)W (t)Ω0

∥∥∥∥∥
F

+

∥∥∥∥∥r−1

∏
i=1

a( fi)[a( fr),(Ñ +1)−p]W (t)Ω0

∥∥∥∥∥
F

.

We easily show that

‖a( fr)W (t)Ω0‖F ≤ || fr||L2(R)
√

εn ‖W (t)‖L (G+,F 1
+) .

Furthermore, we have ∥∥[a( fr),(Ñ +1)p](Ñ +1)−p∥∥
L (F ) ≤C εn ,
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using (28) and the fact that [a( fr),(Ñ + 1)p] is a Wick polynomial where we gained εn in its symbol, see
[AmNi1, Proposition 2.7 (ii)]. Recall also that we have by the number estimate (10) and (28),∥∥∥∥∥r−1

∏
i=1

a( fi)(Ñ +1)−p

∥∥∥∥∥
L (F )

≤C ,

uniformly in n and θ ′ ∈ [0,2π]. Therefore, we have∣∣∣∣∣ ∑
0≤#I,#J<p

4pγ2
n

(2π)2

∫
[0,2π]2

e−i[(n−#J)θ−(n−#I)θ ′]〈Ẽt
θ ′ , BWick

I,J Ẽt
θ 〉 dθdθ

′

∣∣∣∣∣≤C γ
2
n ε

2p−(#I+#J)
n

n→∞

−→ 0 . (47)

It still to control the terms #I = p,#J = p−1 and #I = p−1,#J = p which are similar. In fact, remark that
we have

4pγ2
n

(2π)2

∫
[0,2π]2

e−i[(n−p)θ−(n−p+1)θ ′]〈Ẽt
θ ′ , BWick

I,Np
Ẽt

θ 〉 dθdθ
′ =

4pγn

2π

∫ 2π

0
ei(n−p+1)θ ′〈Ẽt

θ ′ , BWick
I,Np

eit/εnHεn ϕ
⊗(n−p)
0 〉 dθ

′ .

Now, a similar estimate as (47) yields that∣∣∣∣ 4pγ2
n

(2π)2

∫
[0,2π]2

e−i[(n−p)θ−(n−p+1)θ ′] 〈Et
θ ′ , BWick

I,Np
Ẽt

θ 〉 dθdθ
′
∣∣∣∣≤C γn

√
εn

n→∞

−→ 0 .

Thus, we conclude that lim
n→∞

Γn−b(ϕt) = 0. �

Remark 7.2
1) Let γ t

k,n be the k-particle correlation functions, defined by (3), associated to the states e−it/εnHεn ϕ
⊗n
0 .

Then Proposition 7.1 implies the following convergence in the trace norm

lim
n→∞

γ
t
k,n = ϕt(x1) · · ·ϕt(xk) ϕt(y1) · · ·ϕt(yk) .

2) In terms of Wigner measures, introduced in [AmNi1, AmNi2], Proposition 7.1 says that the sequence
(e−it/εnHεn ϕ

⊗n
0 )n∈N admits a unique (Borel probability) Wigner measure µt given by

µt =
1

2π

∫ 2π

0
δeiθ ϕt

dθ ,

where δeiθ ϕt
is the Dirac measure on L2(R) at the point eiθ ϕt .

Appendix

A Elementary estimate

Lemma A.1 For any α > 0 and any Ψ(n) ∈Ss(Rn), we have∫
Rn−1
|Ψ(n)(x2,x2, · · · ,xn)|2dx2 · · ·dxn ≤

α√
2
〈D2

x1
Ψ

(n),Ψ(n)〉L2(Rn) +
α−1

2
√

2
|Ψ(n)|2L2(Rn) . (48)

Proof. Let x′,ξ ′ ∈ Rn−1 and g ∈S (Rn). Let us denote the Fourier transform of g by

ĝ(ξ ) =
∫

Rn
e−ixξ g(x)dx.

We have

g(0,x′) =
1

(2π)n−1

∫
Rn−1

eix′ξ ′
(

1
2π

∫
R

ĝ(ξ1,ξ
′)dξ1

)
dξ
′ .
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Cauchy-Schwarz inequality yields∣∣∣∣∫R
ĝ(ξ1,ξ

′)dξ1

∣∣∣∣2 ≤ ∫R

∣∣ĝ(ξ1,ξ
′)
∣∣2 (α−1 +αξ

2
1 )dξ1×

∫
R

dξ1

α−1 +αξ 2
1

.

Therefore, we get

∫
Rn−1

∣∣g(0,x′)
∣∣2 dx′ =

1
4π2(2π)n−1

∫
Rn−1

∣∣∣∣∫R
ĝ(ξ1,ξ

′)dξ1

∣∣∣∣2 dξ
′

≤ 1
2(2π)n

∫
Rn
|ĝ(ξ1,ξ

′)|2 (α−1 +αξ
2
1 )dξ1dξ

′ .

Set g(x1, · · · ,xn) = Ψ(n)( x1+x2√
2

, x2−x1√
2

,x3, · · · ,xn), we obtain

∫
Rn−1

∣∣∣Ψ(n)(x2,x2, · · · ,xn)
∣∣∣2 dx2 · · ·dxn =

1√
2

∫
Rn−1

∣∣∣g(n)(0,x2, · · · ,xn)
∣∣∣2 dx2 · · ·dxn

≤ (2π)−n

2
√

2

∫
Rn
|ĝ(n)(ξ1,ξ

′)|2 (α−1 +αξ
2
1 +αξ

2
2 )dξ1dξ

′

≤ (2π)−n

2
√

2

∫
Rn
|Ψ̂(n)(ξ1,ξ

′)|2 (α−1 +αξ
2
1 +αξ

2
2 )dξ1dξ

′ .

Thus, by Plancherel’s identity we obtain∫
Rn−1
|Ψ(n)(x2,x2, · · · ,xn)|2dx2 · · ·dxn ≤

α

2
√

2
〈(D2

x1
+D2

x2
)Ψ(n),Ψ(n)〉L2(Rn) +

α−1

2
√

2
|Ψ(n)|2L2(Rn) .

Thanks to the symmetry of Ψ(n), it is easy to see that

〈(D2
x1

+D2
x2

)Ψ(n),Ψ(n)〉= 2〈D2
x1

Ψ
(n),Ψ(n)〉 .

Hence, we arrive at the claimed estimate (48). �

B Commutator theorems
Here we first recall an abstract regularity argument from Faris-Lavine work [FL, Theorem 2].

Theorem B.1 Let A be a self-adjoint operator and let S be a positive self-adjoint operator satisfying

• D(S)⊂D(A),

• ±i [〈AΨ,SΨ〉−〈SΨ,AΨ〉]≤ c||S1/2Ψ||2 for all Ψ ∈D(S).

Then Q(S) is invariant by e−itA for any t ∈ R and the inequality

||S1/2e−itA
Ψ|| ≤ ec|t| ||S1/2

Ψ||

holds true.

Next we recall the Nelson commutator theorem (see, e.g., [RS, Theorem X.36’],[N]) with a useful regularity
property added as a consequence of Faris-Lavine’s Theorem B.1.

Theorem B.2 Let S be a self-adjoint operator on a Hilbert space H such that S≥ 1. Consider a quadratic
form a(., .) with Q(a) = D(S1/2) and satisfying:

(i) |a(Ψ,Φ)| ≤ c1||S1/2Ψ|| ||S1/2Φ|| for any Ψ,Φ ∈D(S1/2);

(ii) |a(Ψ,SΦ)−a(SΨ,Φ)| ≤ c2||S1/2Ψ|| ||S1/2Φ|| for any Ψ,Φ ∈D(S3/2).
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Then the linear operator A : D(A)→H , D(A) = {Φ ∈ D(S1/2) : H 3Ψ 7→ a(Ψ,Φ) continuous } asso-
ciated to the quadratic form a(., .) through the relation

〈Ψ,AΦ〉H = a(Ψ,Φ) for all Ψ ∈D(S1/2),Φ ∈D(A)

is densely defined and satisfies:

1. D(S)⊂D(A) and ||AΨ|| ≤ c||SΨ|| for any Ψ ∈D(S);

2. A is essentially self-adjoint on any core of S;

3. e−itÃ preserves D(S1/2) with the inequality

||S1/2e−itÃ
Ψ|| ≤ ec2|t| ||S1/2

Ψ||

where Ã denotes the self-adjoint extension of A.

Proof. The point (3) follows from Theorem B.1 since its assumptions:

• D(S)⊂D(A),

• ±i [〈AΨ,SΨ〉−〈SΨ,AΨ〉]≤ c2||S1/2Ψ||2, for any Ψ ∈D(S),

hold true using items 1), 2) and hypothesis (ii). �
We naturally associate to a self-adjoint operator S ≥ 1 acting on a Hilbert space H , a Hilbert rigging

H±1 where H+1 is defined as D(S1/2) endowed with the inner product

〈ψ,φ〉H+1
:= 〈S1/2

ψ,S1/2
φ〉H ,

and H−1 is the completion of D(S−1/2) with respect to the inner product

〈ψ,φ〉H−1
:= 〈S−1/2

ψ,S−1/2
φ〉H .

Assumption (ii) of Theorem B.2 can be reformulated in some other slightly different ways.

Lemma B.3 Consider a self-adjoint operator S satisfying S ≥ 1 with the associated Hilbert rigging H±1
defined above. Let A be a symmetric bounded operator in L (H+1,H−1), then the three following state-
ments are equivalent,

(1) There exists c > 0 such that for any Ψ,Φ ∈D(S3/2),

|〈SΨ,AΦ〉−〈AΨ,SΦ〉| ≤ c ||Ψ||H+1 ||Φ||H+1 ,

(2) There exists c > 0 such that for any Ψ,Φ ∈D(S1/2) and λ > 0,

|〈(λS +1)−1SΨ,A(λS +1)−1
Φ〉−〈A(λS +1)−1

Ψ,(λS +1)−1SΦ〉| ≤ c ||Ψ||H+1 ||Φ||H+1 ,

(3) There exists c > 0 such that for any Ψ,Φ ∈D(S1/2) and λ > 0,

|〈(λS +1)−1SΨ,AΦ〉−〈AΨ,(λS +1)−1SΦ)| ≤ c ||Ψ||H+1 ||Φ||H+1 .

Proof. • (1)⇔(2):
Observe that if λ > 0 then (λS + 1)−1D(S1/2) ⊂ D(S3/2). Assume (1) and let us prove (2) for Ψ,Φ ∈
D(S1/2). Using (1) with Ψ̃ = (λS +1)−1Ψ ∈D(S3/2) and Φ̃ = (λS +1)−1Φ ∈D(S3/2), we obtain∣∣〈SΨ̃,AΦ̃〉−〈AΨ̃,SΦ̃〉

∣∣≤ c
∥∥(λS +1)−1

Ψ
∥∥

H+1
×
∥∥(λS +1)−1

Φ
∥∥

H+1
. (49)

It is easy to see that the right hand side of (49) is bounded by c||Ψ||H+1 ||Φ||H+1 . Thus, we obtain (2). Now,
to prove (2)⇒(1), we observe that (λS+1)D(S3/2)⊂D(S1/2) and use (2) with Ψλ = (λS+1)Ψ∈D(S1/2),
Φλ = (λS +1)Φ ∈D(S1/2) such that Ψ,Φ ∈D(S3/2). Therefore, we get for λ > 0

|〈SΨ,AΦ〉−〈AΨ,SΦ〉| ≤ c‖Ψλ‖H+1
×‖Φλ‖H+1

. (50)
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Letting λ → 0 in the right hand side of (50), we obtain (2).
• (2)⇔(3):
Let Ψ,Φ ∈D(S1/2) and λ > 0, we have as identity in L (H+1,H−1)

A(λS +1)(λS +1)−1 = AλS(λS +1)−1 +A(λS +1)−1 ,

since λS(λS + 1)−1 ∈L (H+1) and (λS + 1)−1 ∈L (H+1). Therefore, since (λS + 1)−1SΨ ∈H+1 and
(λS +1)−1SΦ ∈H+1, the following computation is justified

〈(λS +1)−1SΨ,AΦ〉−〈AΨ,(λS +1)−1SΦ〉
= 〈(λS +1)−1SΨ,A(λS +1)(λS +1)−1

Φ〉−〈A(λS +1)(λS +1)−1
Ψ,(λS +1)−1SΦ〉

= 〈(λS +1)−1SΨ,A(λS +1)−1
Φ〉−〈A(λS +1)−1

Ψ,(λS +1)−1SΦ〉 .

So, this shows the equivalence of the statements (2) and (3). �

C Non-autonomous Schrödinger equation
Consider the Hilbert rigging

H+ ⊂H ⊂H− .

This means that H is a Hilbert space with an inner product (., .)H and H+ is a dense subspace of H
which is itself a Hilbert space with respect to another inner product (., .)H+ such that

||u||H :=
√

(u,u)H ≤ ||u||H+ :=
√

(u,u)H+ ∀u ∈H+ .

The Hilbert space H− is defined as the completion of H with respect to the norm

||u||H− := sup
f∈H+,|| f ||H+=1

|( f ,u)H | . (51)

This extends by continuity the inner product (., .)H to a sesquilinear form on H−×H+ satisfying

|(u,ξ )H | ≤ ||u||H+ ||ξ ||H− ∀u ∈H+,∀ξ ∈H− .

Furthermore, we have

||u||H+ = sup
ξ∈H−,||ξ ||H−=1

|(u,ξ )H | . (52)

Let I be a closed interval of R and let
(
A(t)

)
t∈I denote a family of self-adjoint operators on H such that

D(A(t))∩H+ is dense in H+ and A(t) are continuously extendable to bounded operators in L (H+,H−).
We aim to solve the following abstract non-autonomous Schrödinger equation{

i∂tu = A(t)u , t ∈ I
u(t = 0) = u0 ,

(53)

where u0 ∈H+ is given and t 7→ u(t) ∈H+ is the unknown. This is a particular case of the more gen-
eral topic of solving non-autonomous Cauchy problems where −iA(t) are infinitesimal generators of C0-
semigroups (see [Si],[Ki]). We provide here a useful result (Theorem C.2) which follows from the work of
Kato [Ka].

Definition C.1 We say that the map
I× I 3 (t,s) 7→U(t,s)

is a unitary propagator of the problem (53) iff:
(a) U(t,s) is unitary on H ,
(b) U(t, t) = 1 and U(t,s)U(s,r) = U(t,r) for all t,s,r ∈ I,
(c) The map t ∈ I 7→U(t,s) belongs to C0(I,L (H+))∩C1(I,L (H+,H−)) and satisfies

i∂tU(t,s)ψ = A(t)U(t,s)ψ, ∀ψ ∈H+,∀t,s ∈ I.
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Here Ck(I,B) denotes the space of k-continuously differentiable B-valued functions where B is endowed
with the strong operator topology.

Theorem C.2 Let I be a compact interval and let H+ ⊂H ⊂H− be a Hilbert rigging with
(
A(t)

)
t∈I a

family of self-adjoint operators on H as above satisfying:
(i) I 3 t 7→ A(t) ∈L (H+,H−) is norm continuous.
(ii) R 3 τ 7→ eiτA(t) ∈L (H+) is strongly continuous.
(iii) There exists a family of Hilbertian norms

(
||.||t

)
t∈I on H+ equivalent to ||.||H+ such that:

∃c > 0,∀ψ ∈H+ : ||ψ||t ≤ ec|t−s| ||ψ||s and ||eiτA(t)
ψ||t ≤ ec|τ|||ψ||t .

Then the non-autonomous Cauchy problem (53) admits a unique unitary propagator U(t,s).
Moreover, the following estimate holds

∀ψ ∈H+, ||U(t,s)ψ||t ≤ e2c|t−s| ||ψ||s .

Proof. We follow the same strategy as in [Ka] and split the proof into three steps. We assume, for reading
convenience, that the interval I is of the form [0,T ],T > 0 however the proof works exactly in the same way
for any compact interval. Remark also that there is no restriction if we assume that ||.||H+ = ||.||0 .
Propagator approximation:
Let (t0, · · · , tn) be a regular partition of the interval I with

t j =
jT
n

, j = 0, · · · ,n.

Consider the sequence of operator-valued step functions defined by

An(t) := A(T )1{T}(t)+
n−1

∑
j=0

A(t j)1[t j ,t j+1[(t) ,

for any n ∈ N∗ and t ∈ I. Assumption (i) ensures that

lim
n→∞
||An(t)−A(t)||L (H+,H−) = 0 ,

uniformly in t ∈ I. We now construct an approximating unitary propagator Un(t,s) as follows:
- if t j ≤ t,s≤ t j+1 then Un(t,s) = e−i(t−s)A(t j)

- if t j < s≤ t j+1 < · · ·< tl ≤ t < tl+1 then Un(t,s) = e−i(t−tl)A(tl) · · ·e−i(t j+1−s)A(t j)

- if t j < t ≤ t j+1 < · · ·< tl ≤ s < tl+1 then Un(t,s) = e−i(t−t j+1)A(t j) · · ·e−i(tl−s)A(tl) ,

(54)

for any j = 0, · · · ,n−1 and l = 1, · · · ,n with j < l.
By definition, the operators Un(t,s) are unitary on H for t,s ∈ I and satisfy

Un(t, t) = 1, Un(t,s)∗ = Un(s, t) . (55)

Moreover, one can first check that

Un(t,s)Un(s,r) = Un(t,r) for r ≤ s≤ t, with t,s,r ∈ I

and then extend it for any (t,s,r) ∈ I3 with the help of (55). Therefore, Un(t,s) satisfy the properties (a)-(b)
of Definition C.1. Again by (54) and assumptions (i)-(ii) we have

i∂tUn(t,s)ψ = An(t)Un(t,s)ψ and − i∂sUn(t,s)ψ = Un(t,s)An(s)ψ, (56)

for any ψ ∈H+ and any t,s 6= t j, j = 0, · · · ,n.

Convergence of the approximation:
Assumption (iii) implies that

||e−isnA(tn) · · ·e−is1A(t1)
ψ||T ≤ ecT ec(s1+···+sn)||ψ||0 ,

29



and

||e−is1A(t1) · · ·e−isnA(tn)
ψ||0 ≤ ecT ec(s1+···+sn)||ψ||T ,

for any s j ≥ 0, j = 1, · · · ,n. Hence, using the equivalence of the norms ||.||0 = ||.||H+ and ||.||T one shows
the existence of M > 0 (M = e2cT ) such that

||Un(t,s)||L (H+) ≤M ec|t−s| and by duality ||Un(t,s)||L (H−) ≤M ec|t−s| . (57)

Furthermore, the same argument above yields

||Un(t,s)ψ||t ≤ e2c(|t−s|+T/n)||ψ||s. (58)

Using (56) we obtain for any ψ ∈H+

∂r [Un(t,r)Um(r,s)ψ] = i Un(t,r)[An(r)−Am(r)]Um(r,s)ψ , (59)

for r 6= jT
n ,r 6= jT

m with j = 1, · · · ,max(n,m). Integrating (59) we get the identity

Um(t,s)ψ−Un(t,s)ψ = i
∫ t

s
Un(t,r) [An(r)−Am(r)]Um(r,s)ψ dr .

Now (57) yields

||Um(t,s)−Un(t,s)||L (H+,H−) ≤M2|t− s|e2c|t−s| sup
r∈I
||Am(r)−An(r)||L (H+,H−) . (60)

Therefore, for any t,s ∈ I, the sequence Un(t,s) converges in norm to a bounded linear operator U(t,s) ∈
L (H+,H−). Since Un(t,s) are norm bounded operators on H− uniformly in n, it follows by (57) that
they converge strongly to an operator in L (H−) continuously extending U(t,s). Moreover, this strong
convergence yields

lim
n→∞

(φ ,Un(t,s)ψ)H = (φ ,U(t,s)ψ)H ∀ψ ∈H+,∀φ ∈H+ .

where (., .)H is the continuous extension of the inner product of H to the rigged Hilbert spaces H±. Thus,
using (57), we obtain

|(φ ,U(t,s)ψ)H | ≤Mec|t−s|||φ ||H− ||ψ||H+ .

Hence, it is easy to see by (52) that

||U(t,s)||L (H+) ≤Mec|t−s| .

A similar argument yields

||U(t,s)||L (H ) ≤ 1 . (61)

Now, since Un(t,s) satisfy part (b) of Definition C.1, we easily conclude that

U(t, t) = 1, U(t,r)U(r,s) = U(t,s), t,s,r ∈ I, (62)

by strong convergence in L (H−). Furthermore, combining (61) and (62) we show the unitarity of U(t,s)
on H . Thus, we have proved that U(t,s) satisfy (a)-(b) of Definition C.1.

For any ψ ∈H+, the continuity of the map I 3 t 7→ Un(t,s)ψ ∈H− follows from the definition of
Un(t,s). Now, we prove

lim
t→s

(φ ,U(t,s)ψ)H = (φ ,ψ)H ∀ψ ∈H+,∀φ ∈H− ,

by applying an ε/3 argument when writing

|(φ ,U(t,s)ψ)H − (φ ,ψ)H | ≤ ||φ −φκ ||H− ||U(t,s)ψ||H + + |(φκ , [U(t,s)−Un(t,s)]ψ)H |
+ |(φκ , [Un(t,s)−1]ψ)H |+ ||φ −φκ ||H−‖|ψ||H+ ,
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where φκ → φ in H−. Therefore, by the duality (H+)′ 'H−, we get the weak limit

w− lim
t→s

U(t,s) = 1 ,

in L (H+). Now, observe that when t→ s we can show by (57) that

limsup
t→s

||U(t,s)ψ||H+ ≤ ||ψ||H+ .

So, we conclude that

limsup
t→s

||U(t,s)ψ−ψ||2H+
≤ limsup

t→s

(
||ψ||2H+

+ ||U(t,s)ψ||2H+
−2Re(ψ,U(t,s)ψ)H+

)
= 0 .

This gives the continuity of I 3 t 7→U(t,s)ψ ∈H+ since we have in H+

s− lim
t→r

U(t,s) = s− lim
t→r

U(t,r)U(r,s) = U(r,s).

Now, we have for ψ ∈H+ as identity in H−

e−iτA(s)
ψ = ψ− iA(s)

∫
τ

0
e−irA(s)

ψ dr , (63)

since this holds first for ψ ∈D(A(s))∩H+ and then extends by density of D(A(s))∩H+ in H+. By (63)
we have

||e
−iτA(s)ψ−ψ

τ
+ iA(s)ψ||H− ≤

1
τ
||A(s)||L (H+,H−)

∣∣∣∣∫ τ

0
||e−irA(s)

ψ−ψ||H+ dr
∣∣∣∣

and hence using assumption (ii), we show the differentiability of τ 7→ e−iτA(s)ψ for ψ ∈H+. By differen-
tiating e−i(t−r)A(s)Um(r,s)ψ with ψ ∈H+ and then integrating w.r.t. r, we get

Um(t,s)ψ− e−i(t−s)A(s)
ψ = i

∫ t

s
e−i(t−r)A(s)[A(s)−Am(r)]Um(r,s)ψ dr .

Letting m→ ∞ in the latter identity and estimating as in (60), one obtains

||U(t,s)ψ− e−i(t−s)A(s)
ψ||H− ≤M2e2c|t−s|

∣∣∣∣∫ t

s
||[A(s)−A(r)||L (H+,H−) dr

∣∣∣∣ ||ψ||H+ .

Using the fact that

lim
t→s

1
|t− s|

∫ t

s
||A(s)−A(r)||L (H+,H−)dr = 0 and lim

t→s

e−i(t−s)A(s)ψ−ψ

t− s
=−iA(s)ψ

it holds that

lim
t→s

∥∥∥∥U(t,s)ψ−ψ

t− s
+ iA(s)ψ

∥∥∥∥
H−

= 0.

Thus, we obtain with the help of (62)

i∂sU(s,r)ψ = lim
t→s

U(t,s)U(s,r)ψ−U(s,r)ψ
t− s

= A(s)U(s,r)ψ,

for any ψ ∈H+ and any r,s ∈ I. Hence we have proved the existence of a unitary propagator U(t,s) for the
non-autonomous Cauchy problem (53).

Uniqueness:
Suppose that V (t,s) is a unitary propagator for (53). By differentiating Un(t,r)V (r,s)ψ , ψ ∈H+ with
respect to r we get

V (t,s)ψ−Un(t,s)ψ = i
∫ t

s
Un(t,r)[An(r)−A(r)]V (r,s)ψ.
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Using a similar estimate as (60) we obtain

‖V (t,s)ψ−Un(t,s)ψ‖H+ ≤Mec|t−s| sup
r∈[s,t]

‖V (r,s)‖L (H+)

∣∣∣∣∫ t

s
||A(r)−An(r)||L (H+,H+)dr

∣∣∣∣ ||ψ||H+

and since the r.h.s. vanishes when n→ ∞ we conclude that V (t,s) = U(t,s).
Finally, the uniform boundedness principle, equivalence of norms ||.||t , ||.||H+ and the inequality (58) give
us the claimed estimate,

∀ψ ∈H+, ||U(t,s)ψ||t ≤ liminf
n→∞

||Un(t,s)ψ||t ≤ e2c|t−s|||ψ||s .

�

Remark C.3 It also follows that (t,s) 7→U(t,s) ∈L (H+) is jointly strongly continuous.

In the following we provide a more effective formulation of the above result (Theorem C.2) which
appears as a time-dependent version of the Nelson commutator theorem (see, e.g., [N], [RS] and Theorem
B.2).

We associate to each family of self-adjoint operators {S(t)t∈I ,S} on H such that S ≥ 1, S(t) ≥ 1 and
D(S(t)1/2) = D(S1/2) for any t ∈ I, a Hilbert rigging H±1 defined as the completion of D(S±1/2) with
respect to the inner product

〈ψ,φ〉H±1
= 〈S±1/2

ψ,S±1/2
φ〉H . (64)

Corollary C.4 Let I ⊂R be a closed interval and let {S(t)t∈I ,S} be a family of self-adjoint operators on a
Hilbert space H such that:

• S≥ 1 and S(t)≥ 1, ∀t ∈ I,

• D(S(t)1/2) = D(S1/2), ∀t ∈ I, and consider the associated Hilbert rigging H±1 given by (64).

Let {A(t)}t∈I be a family of symmetric bounded operators in L (H+1,H−1) satisfying:

• t ∈ I 7→ A(t) ∈L (H+1,H−1) is norm continuous.

Assume that there exists a continuous function f : I→ R+ such that for any t ∈ I, we have:
(i) for any ψ ∈D(S(t)1/2),

|∂t〈ψ,S(t)ψ〉| ≤ f (t) ||S(t)1/2
ψ||2 ;

(ii) for any Φ,Ψ ∈D(S(t)3/2),

|〈S(t)Ψ,A(t)Φ〉−〈A(t)Ψ,S(t)Φ〉| ≤ f (t) ||S(t)1/2
Ψ|| ||S(t)1/2

Φ||.

Then the non-autonomous Cauchy problem (53) admits a unique unitary propagator U(t,s). Moreover, we
have

||S(t)1/2U(t,s)ψ|| ≤ e2 |
∫ t

s f (τ)dτ| ||S(s)1/2
ψ|| .

In addition, if we have c1,c2 > 0 such that c1S≤ S(t)≤ c2S for t ∈ I, then there exists c > 0 such that

||U(t,s)||L (H+1) ≤ c e2|
∫ t

s f (τ)dτ| , ∀t ∈ I . (65)

Proof. First observe that the operator A(t) satisfies the hypothesis of Nelson’s commutator theorem (The-
orem B.2) for any t ∈ I. Hence, we conclude that A(t) is essentially self-adjoint on D(S(t)3/2) which is
dense in H+1. We keep the same notation for its closure. Moreover, the unitary group eiτA(t) preserves
H+1 and we have the estimate

||S(t)1/2eiτA(t)
ψ||H ≤ e f (t)|τ| ||ψ||H . (66)
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Now, observe that t 7→ e−itA(s)ψ ∈H+1 is weakly continuous for any ψ ∈H+. This holds using a η/3-
argument with the help of the estimate∣∣∣〈 f ,(e−itA(s)−1)ψ〉

∣∣∣≤ (1+ ec(|t|+1)) || f − fκ ||H−1 ||ψ||H+1 +
∣∣∣〈(eitA(s)−1) fκ ,ψ〉

∣∣∣
where fκ ∈H is a sequence convergent to f in H−1 and t is near 0. Since strong and weak continuity
of the group of bounded operators e−itA(s) in L (H+1) are equivalent, we conclude that assumption (ii) of
Theorem C.2 holds true.
By assumption (ii), we also have∣∣∣∣ d

dt
||S(t)1/2

ψ||2
∣∣∣∣≤ f (t)||S(t)1/2

ψ||2 .

Hence, by Gronwall’s inequality we have

||S(t)1/2
ψ||2 ≤ e|

∫ t
s f (τ)dτ|||S(s)1/2

ψ||2, ∀t,s ∈ I. (67)

Now, we use Theorem C.2 with the Hilbert rigging

H+ = H+1 ⊂H ⊂H− = H−1

and the family of equivalent norms on H+ given by

||ψ||t := ||S(t)1/2
ψ||H .

Indeed, assumptions (i)-(iii) of Theorem C.2 are satisfied in any compact subinterval of I with the help of
(67)-(66). Therefore, we obtain existence and uniqueness of a unitary propagator U(t,s) of the Cauchy
problem (53) in the whole interval I with the following estimate

||U(t,s)ψ||t ≤ e2|t−s| maxτ∈∆(t,s) f (τ) ||ψ||s ,

for any t,s ∈ I and where ∆(t,s) stands for the interval of extremities t, s.
Using the multiplication law of the propagator, we obtain for any partition (t0, · · · , tn) of the interval

∆(t,s) the inequality

||U(t,s)ψ||t ≤
n−1

∏
j=0

e2 |t−s|
n maxτ∈∆ j f (τ) ||ψ||s ,

where ∆ j are the subintervals [t j, t j+1]. Since f is continuous, by letting n→ ∞, we get

||U(t,s)ψ||t ≤ e2 |
∫ t

s f (τ)dτ| ||ψ||s .

Finally, the assumption c1S≤ S(t)≤ c2S for t ∈ I, allows to involve the norm ||.||H+1 . Thus we have

||U(t,s)ψ||H+1 ≤
1
√

c1
||U(t,s)ψ||t ≤

1
√

c1
e2 |

∫ t
s f (τ)dτ| ||ψ||s ≤

√
c2

c1
e2 |

∫ t
s f (τ)dτ| ||ψ||H+1 .

�
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