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Abstract.
We prove the Padé (Stieltjes) summability of the perturbation series of the
energy levels of the cubic anharmonic oscillator, H1(β) = p2+x2+ i

p
βx3, as

suggested by the numerical studies of Bender and Weniger. At the same time,
we give a simple and independent proof of the positivity of the eigenvalues of
the PT -symmetric operator H1(β) for real β (Bessis-Zinn Justin conjecture).
All the n 2 N zeros of an eigenfunction, real at β = 0, become complex with
negative imaginary part, for complex, non-negative β6= 0.
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1 Introduction

The anharmonic oscillators are interesting non-solvable models of quantum
physics, as the cubic one, for their simplicity. New interest comes from the
theory of the PT -symmetric operators. In particular, the interest is directed
to the summability of the perturbation series, also in connection to similar
problems in quantum field theory.
Many years ago [1], the Padé summability (PS) of the perturbation series
of the energy levels of the quartic anharmonic oscillator with Hamiltonian
K4,1(β) = p2 + x2 + βx4 was proved.
Some years later [2], the Borel summability of the perturbation series of each
eigenvalue En,α(β), n 2 N, of the cubic anharmonic oscillator,

Hα(β) = p2 + αx2 + i
√
βx3, (1)

for a fixed α > 0, was proved. This result was later extended [3], giving the
distributional Borel summability [4] of the perturbation series, in the case of
negative β.
The conjecture of Bessis-Zinn Justin (BZJ), was proved by Dorey et al. [11]
at α = 0. Shin [5] extended the proof to α 2 R, and proved the positivity
of the eigenvalues fEn,α(β)gn for α ¸ 0, β > 0. Strangely enough, Bessis
didn’t suggest, as far as we know, that the reality of the eigenvalues was
a consequence of his loved PS. Some years later, Bender and Weniger have
given numerical evidence of PS [8].
The BZJ conjecture was later extended by Bender and Boettcher (BB) [6],
to the family of PT -symmetric (PTS) Hamiltonians,

HN,α(1) = p2 + αx2 ¡ (ix)N ,

α ¸ 0, N ¸ 2, with analytic eigenfunctions φ(z), where z = x+ iy, vanishing
at infinity on the two Stokes angular sectors of the complex plane,

SN±1 = fj arg(iz)§
2π

(N + 2)
j < π

(N + 2)
g. (2)

The last conjecture was proved, as a part of a more general result, by Vladimir
Bouslaev and one of us [9] (see also [10]), in the relevant case of N = 4.
Shin has proved the BB conjecture, in the general case, for α · 0 [5].
From now on, we restrict the discussion to the cubic oscillator. The family of
operators H1(β) is an analytic family of type A on the cut plane Cc = fβ 2
C;β6= 0, j arg(β) = θj < πg, and we have the spectral equivalence [12],

H1(β) » α−1/2Hα(1), (3)
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where α = exp(¡i2θ/5). For β at the boundary of the cut, for instance,
β = b exp(¡iπ) = ¡b ¡ i0+, b > 0, the mechanical problem defined by the
Hamiltonian Hα(β), for α = a > 0, is uncomplete in both classical and quan-
tum case and can be defined by the physical hypothesis of the disapperance
of the particle when it reaches infinity. In the quantum case, this means to
define the Hamiltonian by the Gamow condition at ¡1 [2]. The eigenvalues
have the meaning of resonances and the eigenfunctions have the meaning
of metastable states for the dynamical problem. Thus, we expect, and we
prove, a negative imaginary part of the eigenvalues, related, in the usual way,
to the lifetime of the metastable state.
We consider the eigenfunction ψn,a,β(z), for a fixed a > 0, where n 2 N is
the number of its nodes, and β is on the complex cut plane Cc. The n nodes,
numerically studied in [7] for positive β, are stable at β = 0 and are the only
zeros on the lower half complex plane C− = fz 2 C;=(z) = y < 0g. On the
other side, there are no zeros on the strip 0 · =(z) · y+ = 2a<

p
β/3b.

We use the Loeffel-Martin method and the complex semiclassical Sibuya pic-
ture for proving the confinement of the nodes. We use also the hypothesis
of the boundedness of each eigenvalue for bounded parameters. This hy-
pothesis is verified by the Bohr-Sommerfeld quantization rule (21)(30) and
the invariance of the number of nodes. This fact forbids both, the disap-
pearence at infinity of the perturbative eigenvalues, and the appearence of
non-perturbative eigenvalues. We also prove the semiclassical nature of the
eigenvalues (30).
The crossings of eigenvalues and the branch point singularities are forbidden
by the unique characterization of the eigenfunctions by the number of their
nodes, and the simplicity of the spectrum. Let us remember that we have
the extended PT symmetry (see [2]) of the complex Hamiltonians,

H1(β) = PH∗

1 (β̄)P, where Pψ(x) = ψ(¡x).

The isolation and analyticity of each eigenvalue on the cut plane Cc and
the unique sum of the perturbation series, imply the extended PT symme-
try of the eigenfunctions, ψn,1,β(x) = ψ̄n,1,β̄(¡x), and eigenvalues En,1(β) =
Ēn,1(β̄). The identity, obtained by complex scaling for β6= 0, j arg(β)j < π,

fEn,1(β) = α−1/2En,α(1)gn∈N, (4)

where α = β−2/5, allows the global analytic continuation on the Riemann
surface of β1/5, of the set of the eigenvalues. In particular, we prove the
power law behavior of the eigenvalues at β = 1 by the scaling law (4) and
the analyticity of fEn,α(1)gn at α = 0.
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We prove the PS of the perturbation series of each eigenvalue to the eigen-
value itself. In order to be more precise, let us fix n 2 N = f0, 1, 2, ...g,
and set the simplified notations for the once subtracted eigenvalue, f(β) =
(En,1(β) ¡ En,1(0))/β, for any β on the cut complex plane Cc. Thus, for
β 2 Cc, we have the Stieltjes representation for f(β), and the asymptotics
for small b = jβj given by the formal perturbation series [2],

f(β) =
∫
∞

0

1

(1 + βλ)
ρ(λ)dλ » Σ(β) =

∞∑

k=0

ck+1β
k,

where ρ(λ) is non-negative, and the fcjgj∈N are the perturbation coefficients

of En,1(β).
Thus, we prove, in a new way, the positivity of the eigenvalues, for positive
β,

En,1(β) = En,1(0) + βf(β) = En,1(0) + β
∫
∞

0

1

(1 + βλ)
ρ(λ)dλ ¸ En,1(0) > 0.

The PS of the perturbation series to the eigenvalue is defined by the limit,

f(β) = lim
k→∞

Rkk(β),

where the Rkk(β) = Pk(β)/Qk(β), are the diagonal Padé approximants, Pk(β),
Qk(β) are polynomials of order k, with Qk(0) = 1, completely defined by the
asymptotics for jβj small,

jRkk(β)¡ Σ2k+1(β)j = O(jβj2k+1),

where Σk(β) =
∑k−1
j=0 cj+1β

j .
The semiclassical behavior, for large positive λ, of the discontinuity,

ln(ρ(λ)) = ¡C−1λ(1 +O(ln(λ)/λ)),

where C = 15/8, agrees with the asymptotics of the perturbation coefficients
for large j, as computed in [8], for n = 0,

cj = (¡1)j+14
p
15Cj(2π)−3/2Γ(j + 1/2)(1 +O(1/j)).

For numerical aspects, as the interesting similarity of this perturbation series
with the one of the quartic anharmonic oscillator, see reference [8].

In Section 2 we discuss the operators for β at the boundaries of the complex
cut plane. In Section 3 we consider the stability, analyticity and asymptotics
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of the eigenvalues and the nodes of the eigenfunctions for small jβj. In Sec-
tion 4 we confine the nodes on the lower complex half plane and we extends
the results of Section 2. In Section 5 we prove the stability of the nodes
for small parameter. In Section 6 we prove the stability of the nodes for
large parameter. In Section 7 we prove the boundedness of an eigenvalue for
bounded parameters. In Section 8 we prove the absence of non-perturbative
eigenvalues. In Section 9 we prove the power law behavior at infinite param-
eter. In Section 10 we prove the Padé summability of the perturbation series.

2 The imaginary part of the eigenvalues on

the cut: a preliminary study

Let β = b exp(iθ), b > 0, the family of operators H1(β) is an analytic family
of type A on the cut plane Cc = fβ 2 C; β 6= 0, j arg(β)j < πg, and we have
the spectral equivalence (see [2])

H1(β) = PH∗

1 (β̄)P » α−1/2Hα(b), (5)

where α = exp(¡i2θ/5) and Pψ(x) = ψ(¡x). The identity of the sets of
eigenvalues,

fEn,1(β)gn∈N = α−1/2fEn,α(b)gn∈N, (6)

defines the global analytic continuation from Cc to all the Riemann surface
of β1/5, of the set of the eigenvalues, fEn,1(β))gn∈N.
In particular, we are interested here in the eigenvalues fEn,1(β)gn∈N for β
on the closed cut plane C̄c = fβ 2 C; β6= 0, j arg(β)j · πg.
The operators H1(β) on the borders of the cut, arg(β) = θ = §π, are un-
complete, and they are defined by the choice of the fundamental behavior at
§1 respectively [2]. This choice is fixed by the spectral equivalence (3).
In the case of θ = ¡π, i

p
β positive, the Hamiltonian is real, but both the

classical problem and the quantum one, are uncomplete. In the quantum
case, all the solutions are L2 at ¡1. The choice of the Gamow behavior
(corresponding to negative current density) at ¡1, gives eigenvalues with
the meaning of resonances and eigenstates with the meaning of metastable
states.
In the other case, for θ = π, i

p
β negative, with the choice of the anti-Gamow

behavior at +1, we have the correct definition of the operator and we verify
the spectral equivalence, H1(β) »

p
αHα(b), α = exp(¡i2π/5).
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Actually, we have the following behavior of the eigenfunction ψn,1,β for x
large:

ψn,1,β(x) »
K

x3/4
exp(¡

p
i 4
√
βx5/2) =

K

x3/4
exp(¡i 4

p
bx5/2). (7)

The same behavior is defined by the scaled eigenfunction, satisfying the L2

condition,

ψn,α(b)(x) »
K1

x3/4
exp(¡

p
i
4
p
bx5/2)! 0, (8)

as x!1.
Now, let us consider the translated Hamiltonian

T−ǫH(1, β)T−1−ǫ = H−ǫ,1(β),

where the complex translation, is defined by T−ǫψ(x) = ψ−ǫ(x) = ψ(x¡ iǫ),
for ǫ > 0. Because of the translation analyticity of the Hamiltonian, we have
the spectral equivalence,

H−ǫ,1(β) » H1(β)

for β 2 Ċc. This equivalence can be extended to the case of θ = π, if the
operator H1(β) is defined, as above, by the correct condition at +1. Let
us consider an eigenfunction ψ−ǫ,n,1,β(x) = ψn,1,β(x ¡ iǫ) of H−ǫ,1(β), for
β = b exp(iπ)6= 0. We have the L2 behavior,

ψn,1,β(x¡ iǫ) » K2

x3/4
exp(¡i 4

p
bx5/2(1¡ 5iǫ/x))! 0, (9)

as x! +1, if ψn,1,β has the anti-Gamow behavior.
Let us consider the numerical range of the translated operator, for β =
b exp(iπ),

H−ǫ,1(β) = p2 + V1,β(x¡ iǫ),

for ǫ > 0, where V1,β(x¡ iǫ) = (x¡ iǫ)2 ¡
p
b(x¡ iǫ)3 and

=V (x¡ iǫ) = ¡ǫ(2x¡
p
b(3x2 ¡ ǫ2)) ¸ ¡ ǫ

3
p
b
(1 + 3bǫ2).

Thus, the intersection of the numerical ranges of the operators fH−ǫ,1(β)gǫ,
for all ǫ > 0, is contained on C+ = fz 2 C : =z ¸ 0g. Thus, we have “anti-
resonances” En(1, b exp(iπ)) = En(1,¡b+ i0+), with =En(1,¡b¡ i0+) ¸ 0,
as the usual anti-resonances [16].
In a similar way, we prove that =En,1(¡b¡ i0+) · 0. Thus, we have:
Lemma 1. An eigenvalue E(β) = En,1(β), n 2 N, β = b exp(iπ) = ¡b+i0+,
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b > 0, of H1(β) » α−1/2Hα(b), α = exp(¡2iπ/5), has a non-negative imag-
inary part: =E(b exp(iπ)) ¸ 0. On the other side, for β = b exp(¡iπ) =
¡b¡ i0+, b > 0, we have =E(b exp(¡iπ)) · 0.

3 Analyticity, symmetry and stability of the

nodes for small parameter

Let us consider the analytic family of type A of compact resolvent operators,

Hα(β), (10)

on the domain D = D(p2) \D(x3) for fixed α 2 C, β on the cut plane

Cc = fβ 2 C; b = jβj > 0, j arg(β) = θj < π, g

([2], Theorem 2.9).
We fix, for example, α = 1.
We remember thatH1(β), for β on the borders of Cc, for instance at arg(β) =
π (the other case, arg(β) = ¡π, is similar), is defined by the Gamow condition
at ¡1.
The eigenvalue En,1(β), for a fixed n = 0, 1, ..., of H1(β) is an eigenvalue also
of the operator α1/2Hα(b), En,1(β) = α1/2En,α(b), (the index n is related to
the number of nodes of the eigenfunction) where

α = (b/β)2/5 = exp(¡2iθ/5).

In particular En,1(b exp(§π)) =
p
αEn,α(b), where α = exp(¨2iπ/5).

Moreover, the eigenvalue En,1(β) of H1(β)(p, x), for β = b exp(§iπ), is also
an eigenvalue of the translated operator,

H1(β)(p, x§ iǫ) = p2 + (x§ iǫ)2 + i
√
β(x§ iǫ)3,

for ǫ > 0.
For β in the completed cut plane, Cc = fβ 2 C; β 6= 0, j arg(b)j · π, g we
have the spectral equivalence by scaling:

H(α, b) » (α)−1/2H(1, β), (11)

where α = (b/β)2/5 = exp(¡2iθ/5) with j arg(α)j < π/2.
In place of the limit of H1(β), as β ! 0, we consider the norm resolvent limit
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Hα(b)! Hα(0), for α = (b/β)2/5 fixed, as b! 0. Let us notice that H(α, 0),
for α6= 0, is defined on the domain D = D(p2) \D(x2) (see Theorem 2.13
on reference [2], and its extension on reference [3]).
We have the result of strong asymptotism of the eigenvalues:

Theorem 1.

For n = 0, 1, ..., let En,1(β) be an eigenvalue, and let ck, k 2 N, be its per-
turbation coefficients,

f(β) =
(En,1(β)¡ En,1(0))

β
.

Then, there exists bn > 0 such that f(β) is analytic on the bounded sector,

Ωn = fβ 2 C; 0 < jβj < bn, j arg(β)j · πg,

and there exist numbers A,C > 0, such that

jf(β)¡ΣN(β)j < ACNN !jβjN ,

where ΣN(β) =
∑N−1
k=0 ck+1(β)

k, uniformly for N ¡ 1 2
N and β 2 Ωn.
Proof See reference [2], Theorem 3.2.,(where β is our i

p
β), extended in

reference [3] (for k = 1).

Remark 1: the stability of the nodes.

Together with the stability of the eigenvalues, we have the stability of the
eigenfunctions. In particular, we are interested in the stability of their zeros,
or nodes.
We have the limit of the eigenvalue En(1, β)! En(1, 0) and the strong limit
of the eigenvector ψn,1,β ! ψn,1,0 as b = jβj ! 0+, for β 2 Ωn, arg(β) fixed,
j arg(β)j · π. Thus we have the limit ψn,1,β(z) ! ψn,1,0(z) as b = jβj ! 0+,
for β 2 Ωn, arg(β) fixed, j arg(β)j · π, uniformly for z on a compact of the
complex plane.
Since the perturbed eigenfunctions are entire, as the unperturbed ones, we
have the stability of the n zeros of ψn,1,0(z) for b = jβj small.
For any fixed regular closed curve γ = ∂Γ on the complex plane, oriented
in the positive sense, around the segment of extremes (x−, x+), where x± =

§
√
En(1, 0) = §

√
(2n+ 1), we have the constant number of zeros (nodes) in

Ωn:

n =
1

2iπ

∮

γ

ψ′n,1,β(z)

ψn,1,β(z)
dz =

1

2iπ

∮

γ

ψ′n,1,0(z)

ψn,1,0(z)
dz,
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for β 2 Ω′n, where

Ω′n = fβ 2 C; 0 < jβj · b′n, j arg(β)j · πg,

and 0 < b′n · bn.
Let us set ψβ = ψn,1,β and ψ0 = ψn,1,0 and apply the theorem of Rouché
[17]. Since the zeros of ψ0(z) are not on γ, there exists M > 0, such
that jψ0j ¸ M > 0 uniformly on γ. Moreover, jψβ(z) ¡ ψ0(z)j ! 0 uni-
formly for z on the compact γ, because of the analyticity. Thus, we have
jψ0(z)j > jψβ(z)¡ψ0(z)j for z on γ and for β 2 Ω′n

⋃f0g, so that the Rouché
theorem applies.
We shall see (Theorem 2) that, for β 2 Ω′n, the n zeros (nodes) are confined
on Γ

⋂
C−, where C− = fz 2 C;=(z) < 0g. The n nodes are the only zeros

of ψ(z) on C−.

4 Absence of zeros of the eigenfunctions on

the real axis, and above it

We consider the operator

H(a, β) = p2 + ax2 + i
√
βx3,

and the eigenvalue En,a(β), with eigenfunction ψn,a,β, where n = 0, 1, ...,
a ¸ 0, jβj = b > 0, θ = arg(β), jθj · π.
Let us fix jθj < π, a > 0.
We call z = x+iy the x variable extended to the complex plane. We consider
the eigenvalues E = En,a(β), and eigenfunctions ψE(z) = ψn,a,β(z), where the
label n is related to the number of zeros stable at β = 0.

On the strip

A(a, β) = fz 2 C; 0 · =(z) · y+ =
2a<pβ

3b
=

2a

3
p
b
cos(

θ

2
)g,

there are no zeros of the eigenfunction ψn,a,β(z).

Theorem 2. On the strip

A(a, β) = fz 2 C; 0 · =(z) · y+ =
2a<

p
β

3b
=

2a

3
p
b
cos(

θ

2
)g,
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there are no zeros of any eigenfunction ψE(z) of H(a, β), with eigenvalue E,
where a > 0, and b = jβj > 0, θ = arg(β), jθj · π.
Proof.

Let us, at first, set jθj < π, and consider the translated operator Ha,β,y =
p2 + Vy, where

Vy = Vy(x) = a(x+ iy)2 + i
√
β(x+ iy)3 =

= ax2 ¡ ay2 ¡ 3
√
βyx2 +

√
βy3 + 2aiyx¡ 3i

√
βy2x+ i

√
βx3.

Let ψy(x) = ψE(x+ iy). We have:

ψE(x+ iy) = ψy(x)6= 0

for every x 2 R, for 0 · y · y+ = 2a<(
p
β)/3b.

For 0 · y · y+,

¡=(ψy(r)
dψy(r)

dr
) =

∫
∞

r
=(Vy(x)¡ E)jψy(x)j2dx > 0, (12)

or

¡=(ψy(r)
dψy(r)

dr
) = ¡

∫ r

−∞

=(Vy(x)¡ E)jψy(x)j2dx > 0, (13)

for any r 2 R.
The proof is based on the monotonicity of

f(x) = =(Vy(x)¡ E) = R(x3 ¡ 3y2x) + 2axy ¡ 3Iyx2 + c,

where R = <(pβ), I = =(pβ) and c is a constant, that is, the non-negativity
of f ′(x),

f ′(x) = =(Vy(x)¡ E)′ = 3Rx2 ¡ 6Iyx¡ 3Ry2 + 2ay = Ax2 +Bx+ C ¸ 0,

where: A = 3R, B = ¡6Iy, C = ¡3Ry2+2ay.We impose the non-positivity
of the discriminant:

(B2 ¡ 4AC)/4 = 12y[3by ¡ 2Ra] · 0,

proved for

0 · y · y+ =
2Ra

3b
=

2a

3
p
b
cos(

θ

2
).
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We have absence of zeros for 0 · =z · y+.
In the case of j arg(β)j = π, we have the limits of the equations (12)(13), and
for any r 2 R,

¡=(ψ(r)dψ(r)
dr

) =
∫
∞

r
=(V (x)¡E)jψE(x)j2dx = ¡

∫
∞

r
=(E)jψE(x)j2dx > 0,

or
∫ r

−∞

=(E)jψE(x)j2dx > 0, (14)

if =(E)6= 0. Thus, the nodes have negative imaginary part, if the imaginary
part of the eigenvalue is different from zero.
Proof that the imaginary part of the eigenvalues is non zero.
For b = jβj, arg(β) = ¡π fixed and ¡r large, the normalized wave function
ψE, jψEk = 1, satisfies the Gamow condition. This means that the eigen-
function is proportional to the Gamow solution ψE = c−ψ−, with c− 6= 0,
if ψE 6= 0. The Gamow solution is defined by ψ′−(r)/ψ−(r) ! ¡i and a

normalization satisfying
√
¡V (r)jψ−(r)j2 ! 1, as r ! ¡1. Thus, we have,

¡=(E) = ¡ 1
∫
+∞

r jψE(x)j2dx
=(jψE(r)j2

ψ′E(r)

ψE(r)
) »

» 1
∫
+∞

r jψE(x)j2dx
√
¡V (r)jψE(r)j2 ! jc−j2 > 0, (15)

as r! ¡1, implying =(E) < 0.
In the general case, the nodes stay on the half plane: C− = fz 2 C;=(z) <
0g. Thus, we have:
Lemma 1’. An eigenvalue E(β) = En,1(β), n 2 N, β = b exp(iπ) =
¡b + i0+, b > 0, of H1(β) » α−1/2Hα(b), α = exp(¡2iπ/5), has a non-
negative imaginary part: =E(b exp(iπ)) > 0. On the other side, for β =
b exp(¡iπ) = ¡b¡ i0+, b > 0, we have =E(b exp(¡iπ)) < 0.

5 The semiclassical confinement of the nodes

for small parameter

We prove the absence, for jβj > 0 small, j arg(β)j · π, of any zero of the
eigenfunction ψβ(z) = ψn,1,β(z) of H1(β), with eigenvalue Eβ = En,1(β), for
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a fixed n = 0, 1, ..., on the lower half plane, z 2 C−, for large jzj.
Let us consider the semiclassical quantity,

pβ(z) =
√
Vβ(z)¡ Eβ, (16)

where Vβ(z) = z2 + i
p
βz3 and Eβ = En,1(β) is the eigenvalue of the Hamil-

tonian with eigenfunction ψβ(z). There are three zeros of pβ(x). Two zeros
z±(β), converge z±(β) ! z± = §

p
E0 as β ! 0, in the sector jarg(β)j < π.

The third one, z0(β) diverges, z0(β) » i/
p
β, as β ! 0, in the sector

jarg(β)j < π.
Let n = 0, 1, .. fixed, z 2 C−, jzj >> jz±j, and β 2 Ω′n, we define:

f(β, z) = f(n, 1, β, z) =
jψ′β(z)j

jpβ(z)ψβ(z)j
, (17)

where pβ(z) is defined above (16). We have,

f(β, z)! 1, (18)

for jzj ! 1, uniformly for z on the sector j arg(iz)j · π/2 ¡ ǫ, for any ǫ
0 < ǫ < π/2, 0 · jβj · b′n, for fixed arg β, j arg(β)j < π. This means that no
node of ψβ(z) goes to (or comes from) infinity on the sector j arg(iz)j · π/2,
for this set of parameters.

Theorem 3.

Let ψβ(z) = ψn,1,β(z) be an eigenfunction with n nodes and eigenvalue E =
En.
No one of its nodes goes to (or come from) infinity on the sector j arg(iz)j <
π/2, for jβj · b′n, j arg(β)j < π.

Remark 2.

We can extend the limit (18) uniformly for 0 · b = jβj · b′n fixed, and
j arg βj · π. Thus we extend the barrier for the zeros at infinity on the sector
j arg(iz)j · π/2, to the full β¡sector

Ω
′

n = fβ 2 C; 0 · jβj · b′n, j arg(β)j · πg,
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6 The semiclassical confinement of the nodes

for large parameter

Let the Hamiltonian be Ha = p2+Va = Ha(β) = p2+Va(β), and E = En,a(β)
for fixed n = 0, 1, .., be an eigenvalue with eigenfunction ψE(z) = ψn,a,β(z)
for fixed β, jβj ¸ b′n, j arg(β)j · π, and 0 · a · 1. We have E 6= 0,
j arg(E)j · π/2, because of the numerical range.
Now, we make the hypothesis of boundendness of an eigenvalue for the pa-
rameters restricted on a compact. This allows to prove the stability of the
nodes of its eigenfunction. We will prove later that the eigenvalue is bounded
if the number of nodes is stable.
Hypothesis I.

The eigenvalue E = En,a(β) for fixed n = 0, 1, .., β, jβj = b′n > 0, where b′n
is given in Theorem 1, is uniformly bounded for j arg(β)j · π, and 0 · a · 1.

Let us recall [13] the 5 Stokes angular sectors of the complex x plane, for
β6= 0,

Sk = Sk(arg(β)) = fz 2 C; j arg(iz) +
1

10
arg(β)¡ 2kπ

5
j < π

5
g,

¡2 · k · 2.
The eigenfunction ψE(z) is an entire function and,

(ψE(z), ψ
′

E(z))! 0

as jzj ! 1, for arg(z) in each one of the two Stokes angular sectors S±1.
On the other side, ψE(z) is purely divergent in the other three sectors S0, S±2,
and has no zeros [13] in the full angular sector of the complex plane

S = S(arg(β)) = S−2
⋃
S̄−1

⋃
S0
⋃
S̄1
⋃
S2 = fx 2 C; j arg(iz)+

1

10
arg(β)j < πg

for large jzj.
We have the following result.

Theorem 3’.

Let β be fixed, withjβj = b′n > 0, j arg(β)j · π, and 0 · a · 1, ψa(z) =
ψn,a,β(z) be an eigenfunction, with eigenvalue E = Ea = En,a(β), where the
index n = 0, 1, .., is the number of its nodes at a = 1.
Moreover, we assume the Hypothesis I.
Then, no one of its nodes goes to (or comes from) infinity on the sector

S− = fz 2 C; j arg(iz)j · π/2g.
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Remark 3.

Considering also Theorem 2, we have the invariance of the number of nodes.
Proof of the Theorem 3’.

Let us consider the function

fa(z) =
jψ′a(z)j

jpa(z)ψa(z)j
, (19)

where pa(z) =
√
Va(z)¡ En,a » 4

p
β(iz)3/2 for large jzj with a, E fixed.

Since ψa(z) is the analytic solution of the Schrödinger equation, with energy
En,a, the zeros of ψa(z) are simple and fa(z) has a pole where ψa(z) has a
zero. We have,

fa(z)! 1

as jzj ! 1, uniformly for j arg(iz)j · π/2, a 2 [0, 1], E on a compact set.
This means that no zero of ψa(z) goes to (or comes from) infinity on the
sector j arg(iz)j · π/2, for this set of parameters.

7 Boundedness of the eigenvalues

We prove the boundedness of the eigenvalues En,a(β) for bounded param-
eters (n, a, β). In particular, n = 0, 1, ... is fixed, a 2 [0, an], where an =
(1/b′n)

2/5 > 0, β 2 C, jβj = 1, j arg(β) = θj · π.
This results forbids the desappearence or appearence of eigenvalues at infinity
for β6= 0. It is better to use the following scaling:

En,α(1) = exp(¡iθ/5)En,a(β),

where α = a exp(¡i2θ/5).
Thus, we should prove the boundedness of En,α(1) for jαj 2 [0, an], and
j arg(α)j · 2π/5 for α6= 0.
For our non self-adjoint operators, we use an argument slightly different from
the one of the reference [1]. We directly use the semiclassical quantization
and the stability of the nodes.
Theorem 4.

For any n = 0, 1, .., α0 = 0, or α0 6= 0 with j arg(α0)j · 2π/5, En,α(1) is
bounded and continuous at α = α0.
Proof.
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Let us consider the three parameter operators,

H(h̄, α, β) = ¡h̄2p2 + αx2 + i
√
βx3,

and the eigenvalues En(h̄, α, β) for n = 0, 1, .... We have the spectral equiv-
alence for real scaling:

H(1, α, 1) » H(λ−2, λ2α, λ3),

so that
En(1, α, 1) = En(λ

−2, λ2α, λ3),

for n = 0, 1, .. λ6= 0.
Because of the analyticity of the family of operators Hα(1) = H(1, α, 1),
boundedness implies continuity.
We prove the boundedness by absurd.
Let us fix n = 0, 1, .., and α0, 0 · a0 = jα0j · an, j arg(α0)j · 2π/5 for
a0 < 0 , and suppose jEn(1, α, 1)j ! 1 as α ! α0. For α near α0, we scale
the Hamiltonian and use the identity:

λ6/5En(1, α, 1) = En(h̄, α
′, 1) := ǫ = exp(iθ),

where ǫ = ǫ(α), λ = h̄ = jEn(1, α, 1)j−5/6 > 0, α′ = λ2/5α and jθj · π/2. We
set ǫ0 = ǫ(α0)6= 0.
Thus, we study the semiclassical eigenvalue problem H(h̄, α′, 1)ψn = ǫψn, by
the Bohr-Sommerfeld quantization rule. For small h̄, we have,

n =
1

2iπ

∮

γ

ψ′n(z)

ψn(z)
dz = i

1

2πh̄

∮

γ

√
V (z)¡ ǫ dz ¡ 1

2
+O(jh̄j), (20)

where n is the number of nodes, is obtained by the WKB approximation,

ψ′n(z)

ψn(z)
= ¡1

h̄

√
V (z)¡ ǫ¡ 1

4

V (z)′

V (z)¡ ǫ
+ O(jh̄j).

Thus, the Bohr-Sommerfeld quantization reads,

J(α) = i
∮

γ

√
V (z)¡ ǫ dz = π(2n+ 1)h̄+O(jh̄j2), (21)

where the phase of
√
V (z)¡ ǫ is defined on the sector S1, such that it vanishes

as jzj ! 1, with arg(z) = ¡π/6.
Thus, the n nodes are confined on the fixed compact domain Ω bounded by
the regular curve ∂Ω = γ1 [ γ2, where γ1 is the arc of circle γ1 = fjzj =
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R; j arg(iz)j · (π/2)+θ′g, (see Theorems 3-4) and γ2 the segment of extrems
(¡R exp(iθ′), R exp(iθ′)), where θ′ = arg(α)/4 (see Theorem 2). The limit
α! α0 implies ǫ! ǫ0, α

′, h̄! 0, and, for the classical action,

J(α)! J(α0) = i
∫

γ

√
iz3 ¡ ǫ0 dz = ǫ

5/6
0 i

∫

γ

√
iy3 ¡ 1 dy =

= ǫ
5/6
0

∫

γ

√
1¡ iy3 dy = ǫ

5/6
0 2<(2 exp(¡iπ/6)

∫
1

0

p
1¡ x3 dx) =

= ǫ5/60 4 sin(
π

3
)
∫
1

0

p
1¡ x3 dx = ǫ5/60 2

p
π sin(

π

3
)

Γ(1 + (1/3))

Γ((1/3) + (3/2))
6= 0, (22)

where y = zǫ
−2/3
0 , and where the phase of

p
iz3 ¡ ǫ0 vanishes as jzj ! 1, for

arg(z) = ¡π/6, and where γ, in this semiclassical approximation, has been
distorted to a regular path encircling the origin and both the turning points
z±.
As a result, for the left hand of equation (21) we have,

J(α)! 0, (23)

as α! α0, h̄! 0, in contradiction with the limit of the left hand of equation
(21), as written in equation (22). The proof is similar for α0 = 0.
Let us notice that the same analysis gives the correct semiclassical behavior
of the eigenvalues [6], [5], for large n. From the equations (22) and (21), we
have,

ǫ
5/6
0 2

p
π sin(

π

3
)

Γ(1 + (1/3))

Γ((1/3) + (3/2))
» π(2n+ 1)h̄,

where,

ǫ0 = En(h̄, 0, 1)! (
Γ[(3/2) + (1/3)]

p
π A

sin(π/3)Γ[1 + (1/3)]
)6/5,

as n!1, nh̄! A > 0 [6].

8 The absence of non-perturbative eigenval-

ues

We prove here that all the eigenvalues of our problem are perturbative since
all the non-perturbative eigenvalues are non-modal.
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Let ¡π · arg(β) = θ · 0, jβj = b > 0, (the condition 0 · arg(β) = θ · π
is equivalent), λ−2 = h̄ = b, and let us consider the spectral equivalence by
scaling:

H(1, 1, β) » b−1H(b, 1, β/b) = h̄−1H(h̄, 1, h̄−1β) = h̄−1H(h̄, 1, β ′),

where β ′ = β/b = exp(iθ)

H(h̄, α, β) = h̄2p2 + αx2 + i
√
βx3, (24)

is the semiclassical three parameter Hamiltonian. We have the identity of
the eigenvalues:

En,1(β) = En(1, 1, β) = b−1En(b, 1, β/b) = h̄−1En(h̄, 1, h̄
−1β) = h̄−1En(h̄, 1, β

′).

We want to prove the non existence of non perturbative eigenvalues, i.e. that
all the eigenvalues are semiclassical and perturbative. Let us recall [13] the
5 Stokes angular sectors of the complex x plane, for β6= 0,

Sk = Sk(arg(β)) = fz 2 C; j arg(iz) +
1

10
arg(β)¡ 2kπ

5
j < π

5
g,

¡2 · k · 2.
We discuss in detail the case with real parameter β = b > 0, and the case at
the boundary β = b exp(¡iπ), the other cases follow easily. We consider, for
instance, the case β = b/i.

The case of positive parameter

Now, we fix arg(β) = 0, so that the semiclassical operator is,

H(h̄, 1, 1) = h̄2p2 + x2 + ix3 = h̄2p2 + V (x). (25)

The operator is defined by the L2 condition at 1 on the two sectors S±1(0).
From the numerical range and the Hiesenberg incertainty principle, we know
that the eigenvalues have positive real part <(E) > 0.
The semiclassical quantization is based on the definition of a pair of classical
turning points as functions of the energy z± = z±(E), V (z±) = E, defined
on the half plane <(E) > 0.
The z± classical turning points, stay on the half plane of conservation of the
nodes, =(z) < 2/3,

<(z±) = §
√
<(E) + y3
p
1¡ 3y

, ¡(<(E))1/3 < y = =(z±) <
1

3
< y+ =

2

3
.
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Let us recall that the nodes are on the lower half plane, but there are no
zeros on the strip 0 · =(z) · y+ = (2/3). We define the action as an
analytic function of the energy,

J(E) =
1

i

∮

γ

√
p2E(z) dz

where p2E(z) = E ¡ V (z), γ = ∂Γ, oriented in the positive sense, and where
Γ is a convex, regular region, containing the two turning points z±(E). The

function
√
p2E(z) has a cut on a arc of a curve joining the two branch points

z±, where p
2
E(z) > 0.

We have J(E) = 0 only at E = 0, where z+(0) = z−(0) = 0, V ′(0) = 0, and
arg(J(E))! 0 for E ! 0 on the half plane <(E) > 0.
Let us consider an eigenvalue, E = E(h̄) = En(h̄, 1, 1), n 2 N, of the semi-
classical Hamiltonian (25), and its eigenfunction ψE(x) with n nodes on the
lower complex half plane.
Lemma 2 All the eigenvalues of this problem are semiclassical. For any
fixed n 2 N, we have, En(h̄) = (2n + 1)h̄ + O(h̄2), as h̄ ! 0+, so that the
eigenvalues of the original problem are perturbative, En,1(b) ! (2n + 1) as
b! 0+.
The Bohr-Sommerfeld quantization rule.

In this case, the eigenfunction is proportional to the subdominant solution
in the sector S1(0), with the WKB decreasing behavior,

ψ′E(x)

ψE(x)
= u1E,h̄(x) +O(h̄), u1E,h̄(x) = ¡

1

h̄

√
¡p2E(x) +

1

4

V (x)′

p2E(x)
(26)

where p2E(x) = E ¡ V (x), for x >> jz+(E)j. This condition, and the analyt-
icity of the exact and the approximate solution (26), the Bohr-Sommerfeld
quantization rule for small h̄,

n =
1

2iπ

∮

γ

ψ′E(z)

ψE(z)
dz =

J(E)

2πh̄
¡ 1

2
+O(h̄) =

Jc(<(E))

2πh̄
¡ 1

2
+O(jIm(E)j, h̄),(27)

where we have introduced the action J and the classical action Jc,

J(E) =
1

i

∮

γ

√
¡p2E(z) dz = Jc(<(E))+O(jIm(E)j), Jc(E) = 2

∫ x+

x−
pE(x)dx

γ = ∂Γ, and where Γ is a convex, regular region, containing the two turning
points z±(E), with x± = z±(<(E)), and all the nodes of the exact eigenfunc-
tion. We have used the WKB approximation of the eigenfunction (29) at the
first order with the cut of pE(x) on the interval of classical motion. This con-
dition is sufficient to guarantee the perturbative nature of the eigenvalues.
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Remark 4

The stationary point z = 0 of the potential is associated also to antibound
states. This dependends on the possibility of the choice of another couple of
sectors of subdominant solution. If we chose the dominant solution in sector
S1(0)(26),

u1E,h̄(x) = +
1

h̄

√
¡p2E(x) +

1

4

V (x)′

p2E(x)
,

we get the opposite value of the action,

J(E) =
1

i

∮

γ

√
¡p2E(z) dz = ¡Jc(<(E)) +O(jIm(E)j).

In order to be more precise, we change variable z = §iy, and we get the
Hamiltonian

¡H(h̄, 1, exp(§iπ)),
so that the choice of the couple of sectors (S2, S0), (S0, S−2) gives almost
negative eigenvalues for small h̄. Analogously, the change of variable z =
(2/3)i¡ y

p
§i, gives the top resonances operator

¡ 4

27
¨ iH(h̄, 1,§i),

and non-perturbative eigenvalues, clearly non modal, defined on the sectors
(S−1, S2), and (S−2, S1) respectively.

A case at the boundary.
Now, we fix arg(β) = ¡π, so that the semiclassical Hamiltonian is real,

H(h̄, 1, exp(¡iπ)) = h̄2p2 + x2 + x3 = h̄2p2 + V (x). (28)

Let us notice that the potential has a local minimum at 0 and a local maxi-
mum at x = xm = ¡2/3, where Vm = V (xm) = 4/27 and V ′′(xm) = ¡2. The
operator is defined by the L2 condition at 1 on the two sectors S±1(¡π).
In this case, we have a standard problem of an unstable analytic single well,
a typical shape resonance problem. Actually our operator is not a usual res-
onance operator since the physical problem is not complete, but this point
does not matter now. We know that the eigenvalues are complex with nega-
tive imaginary part =(En) < 0.
Let =(E) < 0, the pair of classical turning points z± = z±(E), stay on the
lower half plane, where the other turning point z0 stays on the upper half
plane,

0 > =(z±) > ¡
√
¡=(E); =(z0) ¸

√
¡=(E) .
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We define the action as an analytic function of the energy,

J(E) =
1

i

∮

γ

√
p2E(z) dz

where p2E(z) = E ¡ V (z), γ = ∂Γ, oriented in the positive sense, and where
Γ is a convex, regular region, containing the two turning points z±(E). The

function
√
p2E(z) has a cut on a arc of a curve joining the two branch points

z±, where p
2
E(z) > 0.

We have J(E) = 0 only at E = 0, where z+(0) = z−(0) = 0, V ′(0) = 0, and
arg(J(E))! 0 as E ! 0 on the half plane =(E) < 0.
For h̄ > 0 small, we have a well defined semiclassical quantization problem.
Let us consider an eigenvalue, E = E(h̄) = En(h̄, 1, exp(¡iπ)) n 2 N, of the
semiclassical Hamiltonian (28), and its eigenfunction ψE(x) with n nodes on
the lower complex half plane.
Lemma 2’ All the eigenvalues of this problem are semiclassical. For any fixed
n 2 N, we have, En(h̄) = (2n+1)h̄+O(h̄2), as h̄! 0+, so that the eigenvalues
of the original problem are perturbative, En,1(b exp(¡iπ)) ! (2n + 1) as
b! 0+.
The quantization rule.

In this case, the eigenfunction is proportional to the subdominant solution
in sector S1(¡π), with the WKB decreasing behavior,

ψ′E(x)

ψE(x)
= u1E,h̄(x) +O(h̄), u1E,h̄(x) = ¡

1

h̄

√
¡p2E(x) +

1

4

V (x)′

p2E(x)
(29)

where p2E(x) = E ¡ V (x), for x >> jz+(E)j. This condition, and the analyt-
icity of the exact and the approximate solution (29), the Bohr-Sommerfeld
quantization rule for small h̄,

n =
1

2iπ

∮

γ

ψ′E(z)

ψE(z)
dz =

J(E)

2πh̄
¡ 1

2
+O(h̄) =

Jc(<(E))

2πh̄
¡ 1

2
+O(jIm(E)j, h̄),(30)

where we have introduced the action J and the classical action Jc,

J(E) =
1

i

∮

γ

√
¡p2E(z) dz = Jc(<(E))+O(jIm(E)j), Jc(E) = 2

∫ x+

x−
pE(x)dx

γ = ∂Γ, and where Γ is a convex, regular region, containing the two turning
points z±(E), with x± = z±(<(E)), and all the nodes of the exact eigenfunc-
tion. We have used the WKB approximation of the eigenfunction (29) at
the first order with the cut of pE(x) on the interval of classical motion. This
condition is sufficient to garantee the perturbative nature of the eigenval-
ues. We have: Jc(E) > 0 for (4/27) ¸ E > 0, analytic and monotonically
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growing, with J(0) = 0, J(4/27) = 32/15. The imaginary part of the turning
points is small, =(z±) = =(E)/V ′(x±), for fixed <(E), (4/27) > <(E) > 0,
j=(E)j small. Thus, at first order in h̄, the resonances are positive and are
given by the Bohr-Sommerfeld semiclassical quantization,

Jc(En) = 2
∫ x+

x−

√
En ¡ V (x)dx = 2πh̄(n+ (1/2)) +O(h̄2). (31)

Higher orders of semiclassical appoximation can give semiclassical approxi-
mations of the eigenvalues at any order of h̄.
The quantization is completely specified by the Gamow condition for x <<
¡jx0(0)j = ¡1:

ψ′E(x)

ψE(x)
= ¡i1

h̄
pE(x) +

1

4

V (x)′

p2E(x)
+O(h̄), (32)

equivalent to the L2 condition on the sector S−1(¡π).
This last condition discriminates our eigenvalues from the ones with L2 con-
dition on S−2(¡π) in place of S−1(¡π). For our purposes, it is sufficient to
prove that our J(E) 6= 0 for E 6= 0. Indeed, in this analytic potential case,
J(E) = 0 only when V ′(z±) = 0, and z+(E) = z−(E). The only stationary
points of this potential are at x = 0, x = ¡(2/3). In the case E = 0, we have
z±(E) = 0, and J(E) = 0, but, for <(E) = 4/27, we have only one turning
point z−(E) » ¡(2/3), for j=(E)j small, the other z+(E) has positive real
part, and jJ(E)j 6= 0.
Since the number of nodes n 2 N is fixed for h̄ ! 0+, it is clear that
E = En(h̄) = O(h̄) in the same limit, and the original eigenvalue is bounded
for small jβj, and

En(1, 1, β) = h̄−1En(h̄, 1, exp(¡iπ))! En(1, 1, 0) = 2n+ 1,

as jβj ! 0+, i.e. it is a perturbative eigenvalue.

Others eigenvalues, classified as anti-resonances, top resonances or antibound
states, are obtained by changing the Stokes sectors of L2 conditions at infin-
ity.
Let us recall [13] the 5 Stokes angular sectors of the complex z plane,

Sk(arg(β)) = fz 2 C, z6= 0; j arg(iz) + arg(β)

10
¡ 2kπ

5
j < π

5
g,

¡2 · k · 2, where, in our case arg(β) = ¡π. For instance,

S1(¡π) = fz 2 C, z6= 0;¡π
5
< arg(z) <

π

5
g.

21



Remark 5

The same operator with anti-Gamow condition at ¡1, is defined by L2 con-
ditions on the sectors (S−2(¡π), S1(¡π)), and the eigenvalues Ên (antireso-
nances) are related to the original ones: Ên(1, 1, exp(¡iπ)) = Ēn(1, 1, exp(¡iπ)) =
En(1, 1, exp(iπ)).
Redefining x ! ¡ix, we get the negative eigenvalues E′n(h̄, 1, exp(¡iπ)) =
¡En(h̄, 1, 1), of the operator with L2 conditions on the two sectors (S0(¡π), S2(¡π))
(antibound states). This eigenvalues are non perturbative, but are also non
modal.
We now define the top resonances.
It is clear that the top resonances are defined as eigenvalues of Hamiltoni-
ans with different boundary conditions, and have nothing to do with the
eigenvalues of our Hamiltonian. Actually, redefining x ! (¡2/3) ¡

p
ix,

we get the resonances En = (4/27) ¡ iEn(h̄, 1,¡i) of the operator defined
by the L2 conditions on the two sectors (S2(¡π), S−1(¡π)). Redefining
x! (¡2/3) +

p
¡ix, we get the resonances E ′n = (4/27) + iEn(h̄, 1, i) of the

operator defined by the L2 conditions on the two sectors (S−2(¡π), S0(¡π)).
It is clear that the top resonances are semiclassically connected with a dif-
ferent pair of inversion points ((z−, z0) in place of (z−, z+)).
We now go back to the general case, ¡π · arg(β) = θ · 0. The results are
similar, the operator is always defined by the L2 conditions on the sectors
(S−1(θ), S1(θ)), and J(E) = Jβ(E), for jEj is the analytic continuation of
the same function at β = b exp(¡iπ).

An intermediary case

Let us consider the case β = ¡2i, so that the potential reads V (x) =
x2 +

p
2ix3. In this case <(E) = <(

p
iE) > 0. We are mostly interested

on the confinement of the turning point z± on the half complex plane of
conservation of the nodes. We get the confinement of the turning points,

x§ = <(z±) = §
p
<E + y2 ¡ 2y3p

1¡ 6y
, 8y = =(z±) <

1

6
< y+ =

2

3
cos(π/4).

Such results can be extended using complex h̄, j arg(h̄)j < π/4. This means
that all the eigenvalues of our problem are perturbative.

Theorem 1’ All the eigenvalues of the semiclassical operator are semiclas-
sical, that is, are given by a Bohr-Sommerfeld condition for h̄ small. As a
consequence, all the eigenvalues are perturbative and are given by the unique
continuation of the eigenvalues of Theorem 1.

22



9 The power law behavior at infinity

We prove here the algebraic behavior of the eigenvalues for large parameter.
We use the scaling formula:

p
αEn,1(β) = En,α(1)

for n 2 N, where α = β−2/5. Let us recall that Theorem 4, in the special case
of α0 = 0, implies continuity and boundedness of each eigenvalue En,α(1) in
the limit α! 0.
The analyticity, of type A, of the family of operators Hα(1) (see [2] Theorem
2.10), with the control of the nodes, and the simplicity of the spectrum, imply
the stability at α = 0 and the α¡analyticity in a neighborhood of the origin
of each eigenvalue En,α(1).
Therefore, if α = β−2/5,

p
αEn,1(β) = En,α(1) ! En,0(1) for β ! 1. Thus,

for jβj = b large, En,α(β) grows as b
1/5, and has an algebraic singularity there:

En,1(β) = β1/5En,β−2/5(1) » β1/5En,0(1).

Let us notice that we have arg(En,1(b exp(§iπ)))! §π/5, and

§b−1/5=(En,1(b exp(§iπ)))! En,0(1) sin(π/5) > 0,

as b!1.

10 Global analyticity, symmetry, and Padé

summability on the cut plane

Let E(β) = En,1(β), n = 0, 1, 2, ...,

f(β) =
E(β)¡ E(0)

β
,

f(β) is bounded holomorphic on the completed cut complex plane C̄c =
fβ 2 C;β 6= 0, j arg(β) = θj · πg, (see Theorems 1-2-3’-4). Moreover, we
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have the symmetry of the eigenvalues: En,1(β) = Ēn,1(β̄), so that we have,
f(β) = f̄(β̄). For the Cauchy theorem, we have,

f(β) =
1

2iπ

∮

γ

f(z)

z ¡ β
=

1

2iπ

∮

γ

1

1¡ (β/z)

f(z)

z
dz =

∫
∞

0

1

(1 + βx)
ρ(x)dx,

where γ is any curve turning around β in the positive way, we have the
dispersion relation of a Stieltjes function, where

ρ(1/b) = ¡b(f(¡b+ i0+)¡ f(¡b¡ i0+))/2iπ =

= ¡b=f(¡b+ i0+)/π = =En(¡b+ i0+)/π ¸ 0,

for Lemma 1. We have the asymptotism to the formal power series:

f(β) » Σ(β) =
∞∑

j=0

aj(¡β)j

for jβj small, where the

aj = jcj+1j =
∫
∞

0

xjρ(x)dx, (33)

are the moments of the measure ρ(x)dx. Thus, the moment problem

aj = jcj+1j =
∫
∞

0

xjdµ(x), (34)

has the solution dµ(x) = ρ(x)dx. Because of the bound on the perturbation
coefficients jcjj < ACjj! (see Theorem 1 and references [2], [3]), the Carleman
theorem condition (see [20] page 330) is satisfied,

∑

n

(1/an)
1/2n =1,

and the unicity of the solution dµ(x) = ρ(x)dx.
Let us recall the definition of the diagonal Padé approximants Rnn(β) of
the formal power series Σ(β) =

∑
∞

j=0 aj(¡β)j, with partial sums ΣN(β) =
∑N−1
j=0 aj(¡β)j, β 2 C. The diagonal Padé approximants, Rnn(β), n ¸ 0, are

the rational fractions,

Rnn(β) =
Pn(β)

Qn(β)
,

where Pj(β), Qj(β), are polynomials of degree j, with the condition Qj(0) =
1, defined by the asymptotic condition, jRnn(β) ¡ Σ2n+1(β)j = O(β2n+1), for
jβj ! 0.
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As a general result, the Padé approximants Rnn(β) on Stieltjes asymptotic
expansions, don’t have poles or zeros on the complex cut plane, and there
converge

Rnn(β)! fµ(β) =
∫
∞

0

1

(1 + βx)
dµ(x),

where dµ is a measure solution of the moment problem (34). In this case,
necessarily we have dµ(x) = ρ(x)dx and fµ(β) = f(β).
Thus, we have the result:

Theorem 5.

The function

f(β) =
E(β)¡ E(0)

β
,

is a Stieltjes function,

f(β) =
∫
∞

0

1

(1 + βx)
ρ(x)dx, (35)

for β on the cut complex plane, where

ρ(1/b) = =(En(¡b+ i0+))/π > 0, (36)

and,

ln(ρ(x)) = ¡C−1x(1 +O(ln(x)/x)), (37)

where C−1 = 8/15 = 2B(2, 3/2) = 2
∫
1

0
x
p
1¡ xdx, [16] for large positive x.

The diagonal Padé approximants of the perturbation series, converge to f,

Rnn(β)! f(β),

as n!1, uniformly for β on compacts of the cut complex plane.

Proof.

The inequality (36) is proved by the PT symmetry of the eigenfunctions
and eigenvalues, En(¡b+ i0+)¡En(¡b¡ i0+) = 2i=(En(¡b+ i0+)) and by
Lemma 2. We only have to discuss the asymptotic behavior of the disconti-
nuity function.
For the semiclassical behavior of the discontinuity (37), we consider the semi-
classical scaling, where b > 0 plays the role of semiclassical parameter, with
the anti-Gamow condition at +1:

H(b, 1, exp(iπ)) » bH(1, 1, b exp(iπ)).
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In the case of the semiclassical operator H(b, 1, exp(iπ)), we have a “double
well problem”, with the barrier width C−1 = 8/15 = 2

∫
1

0
x
p
1¡ xdx, and

h̄ = b. This value of the barrier, implies the behavior of ρ(x), as x !
1, as given in (37), and the behavior of the perturbation coefficients cj =
(¡1)jaj−1, aj =

∫
∞

0
xjdρ(x), aj » DCjj!, as j ! 1, for some D > 0,

compatible with the behavior:

cj = (¡1)j−14
p
15Cj(2π)−3/2Γ(j + 1/2)(1 +O(1/j)),

for large j, obtained numerically [8] in the case n = 0.

Remark 4.

We have proved, in a new way, that the eigenvalue E(β) = En,1(β), n =
0, 1, 2, ..., is real and positive for positive β,

E(β) = E(0) + βf(β) = E(0) + β
∫
∞

0

1

(1 + βx)
ρ(x)dx ¸ E(0),

and En,1(β) » β1/5En,0(1) for large positive β.
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