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Abstract. For the last one and a half decades it has been known that the
exponential product formula holds also in norm in nontrivial cases. In this
note, we review the results on its convergence in norm as well as pointwise of
the integral kernels in the case for Schrödinger operators, with error bounds.
Optimality of the error bounds is elaborated.
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1. Introduction

The Trotter product formula, Trotter–Kato product formula or exponential prod-
uct formula is usually a product formula which in strong operator topology ap-
proximates the group/semigroup with generator being a sum of two operators. It is
often a useful tool to study Schrödinger evolution groups/semigroups in quantum
mechanics and to study Gibbs semigroups in statistical mechanics.

To think of a typical case, let A and B be selfadjoint operators in a Hilbert
space H with domains D[A] and D[B] and H := A + B their operator sum with
domain D[H] = D[A]∩D[B]. Assume that H is selfadjoint or essentially selfadjoint
on D[H] and denote its closure by the same H. Then Trotter [44] proved the
unitary product formula

[e−itB/2ne−itA/ne−itB/2n]n − e−itH → 0, strongly,

[e−itA/ne−itB/n]n − e−itH → 0, strongly, n →∞,
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and also, when A and B are nonnegative, the selfadjoint product formula

[e−tB/2ne−tA/ne−tB/2n]n − e−tH → 0, strongly,

[e−tA/ne−tB/n]n − e−tH → 0, strongly. n →∞,

The convergence is locally uniform, i.e. uniform on compact t-intervals, respectively
in the real line R and in the closed half line [0,∞). Kato [29] dicovered the latter
selfadjoint product formula to hold also for the form sum H := A+̇B with form
domain D[H1/2] = D[A1/2] ∩ D[B1/2], which we assume for simplicity is dense
in H. However, it remains to be an open problem whether the unitary product
formula for the form sum holds.

However, since around 1993 we have begun to know that selfadjoint product
formulas converge even in (operator) norm, though in some special cases, by the
following two first results. Rogava [37] proved, when B is A-bounded and H =
A + B is selfadjoint, among others, the abstract product formula that

‖[e−tA/ne−tB/n]n − e−tH‖ = O(n−1/2 log n), n →∞,

locally uniformly in [0,∞). Helffer [13] proved, when H := −∆ + V (x) is a
Schrödinger operator in L2(Rd) with nonnnegative potential V (x) satisfying |∂α

x V (x)|
≤ Cα (|α| ≥ 2) so that H is selfadjoint on the domain D[−∆]∩D[V ], the symmetric
product formula that

‖[e−tV/2ne−t(−∆)/ne−tV/2n]n − e−tH‖ = O(n−1), n →∞,

locally uniformly in [0,∞). Many works were done to extend these results before
2000, e.g. in [5, 20, 22, 32, 33, 35] for the abstract product formula, [9, 10, 17, 18, 19,
41] for the Schrödinger operators, and after that, e.g. in [23, 27, 16], [3, 4, 6, 7] for
the abstract product formula. In most of them, use was made of operator-theoretic
methods, though of a probabilistic method in [17, 18, 19, 41].

In this note, we want to describe more recent results on convergence in norm
for exponential product formulas and also pointwise of the corresponding integral
kernels, mainly based on our works since around 2000, [23, 27, 24, 25, 26]. As for the
error bounds, although it is easy to see by the Baker–Campbell–Hausdorff formula
(e.g. [45], [40]) that with both operators A and B being bounded, the nonsymmetric
product formula has an optimal error bound O(n−1) while the symmetric one does
O(n−2), it was shown in [27] that even the symmetric product formula has an
optimal error bound O(n−1) in general, if both A and B are unbounded. However,
in [25] (cf. [26]), a better upper sharp error bound O(n−2) has been obtained for
the symmetric product formula with the Schrödinger operator −∆ + V (x) having
nonnegative potentials V (x) growing polynomially at infinity, in spite that both
−∆ and V are unbounded operators. In this note we mention, with a sketch of
proof, a latest complementary result [2] which settles the sharp optimal error bound
is in fact O(n−2) with the symmetric product formula for the harmonic oscillator,
by estimating the error not only from above but also from below, in norm as well
as pointwise.
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Theorems are described in Section 2. Optimality of error bounds is discussed
separately in Section 3. The idea of proof is briefly mentioned in Section 4. In Sec-
tion 5 we give concluding remarks, and also refer to a connection of the exponential
product formula with the Feynman path integral.

It should be also noted that in almost the same context with the notion of
norm ideals (e.g. [12], [38]) we are able to deal with the trace norm convergence as
in [46, 30, 31, 34, 14, 21, 42]. For an extensive literature on this we refer to [47].

The content of this note is an expanded version of the lecture entitled “On
converegence pointwise of integral kernels and in norm for exponential product
formulas” given by T.I. at the International Conference “Modern Analysis and
Applications (MAA 2007)”, Odessa, Ukraine, April 9–14, 2007, which is a slightly
extended version of of the lecture (unpublished) given at the Conference on “Heat
Kernel in Mathematical Physics”, Blaubeuren, Germany, November 28–December
2, 2006.

2. Theorems

We begin with our result which extends ultimately Rogava and Helffer’s.

Theorem 2.1. (Ichinose-Tamura-Tamura-Zagrebnov 2001[23, 27]) Let A and B be
nonnegative selfadjoint operators, and assume H = A+B is selfadjoint on D[H] =
D[A] ∩D[B]. Then as n →∞,

‖[e−tB/2ne−tA/ne−tB/2n]n − e−tH‖ = O(n−1), (2.1)

‖[e−tA/ne−tB/n]n − e−tH‖ = O(n−1). (2.2)

The convergence is locally uniform in the closed half line [0,∞), while on the whole
half line [0,∞), if H is strictly positive, i.e. H ≥ ηI for some η > 0. The error
bound O(n−1) in (2.1) and (2.1) is optimal.

We can go beyond this result. First, focussing on the Schrödinger operator
−∆ + V (x), we ask whether norm convergence implies pointwise convergence of
integral kernels. The answer is yes, though strong convergence does not. This prob-
lem is discussed for Schrödinger operators with potentials of polynomial growth
(Theorem 2.2), with positive Coulomb potential (Theorem 2.3), and also for the
Dirichlet Laplacian (Theorem 2.4). Pointwise convergence of integral kernels for
Schrödinger semigroups is important, because it gives a time-sliced approximation
to the imaginary-time Feynman path integral.

Next, we ask, for the unitary exponential/Trotter product formula, whether
there are nontrivial cases where it converges in norm, though it does not in general
hold (see [15]). The answer is yes. In fact, it holds for the Dirac operator and
relativistic Schrödinger operator (Theorem 2.5).

Let H = H0 + V := −∆ + V (x) with V (x) a real-valued function. By
K(n)(t, x, y) we denote the integral kernel of [e−tH0/2ne−tV/ne−tH0/2n]n, and by
e−tH(x, y) that of e−tH .
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Theorem 2.2. (Ichinose-Tamura 2004 [25]) (positive potential of polynomial growth)
Assume that V (x) is in C∞(Rd), bounded below and satisfies |∂α

x V (x)| ≤ Cα〈x〉m−δ|α|

with some 0 < δ ≤ 1 (〈x〉 = (1 + x2)1/2).
(i) (In norm)

‖[e−tH0/2ne−tV/ne−tH0/2n]n − e−tH‖L2 = O(n−2), (2.3)

locally uniformly in the open half line (0,∞).

(ii) (Integral kernel)

[K(n)(t, x, y)− e−tH(x, y)] = O(n−2),

in C∞(Rd ×Rd)-topology, locally uniformly in (0,∞), (2.4)

i.e. together with all x, y-derivatives.

This theorem improves the result of Takanobu [41], who used a probabilistic
method with the Feynman–Kac formula (see Sect. 5) to show uniform pointwise
convergence of the integral kernels, roughly speaking, with error bound O(n−ρ/2),
if V (x) satisfies V (x) ≥ C(1 + |x|2)ρ/2 and |∂α

x V (x)| ≤ Cα(1 + |x|2)(ρ−δ|α|)+/2 for
some constants C, Cα ≥ 0 and ρ ≥ 0, 0 < δ ≤ 1. The claim of Theorem 2.2 is a
little bit sharpened in Theorems 3.1 and 3.2, in the next section, in the case of the
harmonic oscillator.

Theorem 2.3. (Ichinose-Tamura 2006 [26]) (positive Coulomb potential) Let H :=
−∆ + V (x) with V (x) ≥ 0. Assume that V (−∆ + 1)−α: L2(Rd) → L2(Rd) is
bounded for some 0 < α < 1, and that V ∈ C∞ near a neighbourhood U of both p
and q (after p, q ∈ Rd taken). Then

[K(t/n)n(x, y)− e−tH(x, y)] = O(n−1),
in C∞(U)-topology, locally uniformly in (0,∞). (2.5)

The condition is satisfied if V is in L2(R3)+L∞(R3), in particular, if V is the
positive Coulomb potential 1/|x|. We don’t know what happens at the singularities
of V (x).

Theorem 2.4. (Ichinose-Tamura 2006 [26]) (Dirichlet Laplacian) Let Ω ⊂ Rd be
a bounded domain with smooth boundary and χΩ the indicator function of Ω. Let
H0 := −∆ in L2(Rd), and H := −∆D the Dirichlet Laplacian in Ω with domain
D[H] = H2(Ω) ∩H1

0 (Ω). Then for 0 < σ < 1
6 ,

(
χΩ e−tH0/n χΩ

)n(x, y)− e−tH(x, y) = O(n−σ),
locally uniformly in (t, x, y) ∈ (0,∞)× Ω× Ω. (2.6)

We don’t know what happens when x or y approaches the boundary of Ω.

Corollary.
‖[χΩ e−tH0/n χΩ]nf − e−tHf‖L2 → 0, f ∈ L2(Ω).

Consequently, Theorem 2.4 is a stronger statement than this corollary, though
the latter is also obtained by Kato [29] as an abstract result: If A is a nonnegative
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selfadjoint operator and P an orthogonal projection in a Hilbert space H, then
(Pe−tA/nP )n → e−tAP , strongly, as n → ∞, where AP := (A1/2P )∗(A1/2P ). In
passing, however, it is an open question whether it holds that (Pe−itA/nP )n →
e−itAP P , strongly (Zeno product formula). A partial answer was given in [11].

All Theorems 2.2–2.4 hold with order of products exchanged, e.g. in Theo-
rem 2.2, [e−tV/2ne−tH0/ne−tV/2n]n instead of [e−tH0/2ne−tV/ne−tH0/2n]n.

Theorem 2.5. (Ichinose-Tamura 2004 [24])(Unitary Trotter in norm) Let A and
B be selfadjoint, and assume H := A + B to be essentially selfadjoint in a Hilbert
space H. Assume that there exists a dense subspace D of H with D ⊂ D[A]∩D[B]
such that e−itA, e−itB : D → D. Further assume that the commutators [A,B],
[A, [A,B]] and [B, [A,B]] are bounded on H. Then

‖(e−itB/2ne−itA/ne−itB/2n
)n − e−itH‖ = O(n−2), n →∞, (2.7)

locally uniformly in the real line R.

As important applications we have ones to the Dirac operator H = H0 +
V = (iα · ∇ + mβ) + V (x) in L2(R3)4, where α = (α1, α2, α3) and β are the 4
Dirac matrices, with ∂γV (x)(|γ| = 2) being bounded, as well as to the relativistic
Schrödinger operator H = H0 + V =

√−∆ + m2 + V (x) on L2(Rd) with ∂γ
xV (x)

being bounded for 1 ≤ |γ| ≤ 4 (0 ≤ |γ| ≤ 4, if m = 0). In these cases, H are
essentially selfadjoint, and satisfy the conditions in the theorem. So it holds that

‖[e−itV/2ne−itH0/ne−itV/2n]n − e−itH‖L2 = O(n−2), n →∞, (2.8)

locally uniformly in R.
However, this theorem does not apply to Schrödinger operators except for

the Stark Hamiltonian (−∆ + V (x)) + a · x in L2(Rd), where a is a constant real
vector in Rd.

Finally it should be noted that we have shown in Theorems 2.2–2.4 that the
convergence is unifrom only on compact t-intervals which are away from 0, though
in Theorems 2.1 and 2.5, on ones which are allowed to be not away from 0.

3. Optimalty of Error Bounds

In this section we discuss optimality of error bounds. The error bound O(1/n) in
Theorem 2.1 is optimal, because if both A and B are bounded operators, by the
Baker–Campbell–Hausdorff formula we know

[e−tA/ne−tB/n]n − e−tH = R′n · n−1,

[e−tB/2ne−tA/ne−tB/2n]n − e−tH = Rn · n−2,

for some R′n and Rn being uniformly bounded operators which in general are not
the zero operator. From this, optimality in the former non-symmetric case is evi-
dent. But even in the symmetric case it is optimal. Indeed, there exist unbounded
nonnegative selfadjoint operators A, B such that H = A + B is selfadjoint and

‖[e−tB/2ne−tA/ne−tB/2n]n − e−tH‖ ≥ c(t)n−1
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for some continuous function c(t) with c(t) > 0, t > 0 and c(0) = 0 ([27]).
However, further in some special symmetric case in Theorem 2.2 where−∆, V

are taken as A, B, we have seen the symmetric product formula hold with a sharp
error bound O(n−2). We can make more precise this result with the 1-dimensional
harmonic oscillator H := H0 + V := 1

2 (−∂2
x + x2) in L2(R).

Theorem 3.1. (Azuma-Ichinose 2007 [2]) There exists bounded continuous func-
tions C(t) ≥ 0 and c(t) ≥ 0 in t ≥ 0, which are positive except t = 0 with
C(0) = c(0) = 0, independent of n, such that for n = 1, 2, . . . ,

c(t)n−2 ≤ ‖[e− t
2n V e−

t
n H0e−

t
2n V ]n − e−tH‖ ≤ C(t)n−2, t ≥ 0 . (3.1)

This theorem mentions an error bound from below, extending the harmonic
oscillator case of Theorem 2.2 which treats only the right-half inequality with
C(t) = C being a positive constant depending on each compact t-interval in the
open half line (0,∞).

It is anticipated that the same is true for the Schrödinger operator H =
−∆ + V (x) with growing potentials like V (x) = |x|2m treated in Theorem 2.2.

Theorem 3.1 is obtained as a corollary from the following theorem of its inte-
gral kernel version. Here one calculates explicitly the integral kernel K(n)(t, x, y)
of [e−tV/2ne−tH0/ne−tV/2n]n to estimate its difference from the integral kernel
e−tH(x, y) of e−tH .

Theorem 3.2. (Azuma-Ichinose 2007 [2]) There exists a bounded operator R(t)
and uniformly bounded operators {Q(n)(t)}∞n=1 with integral kernels R(t, x, y) and
Q(n)(t, x, y) being uniformy bounded continuous functions in (0,∞)×R×R such
that

K(n)(t, x, y)− e−tH(x, y) =
[
R(t, x, y) + Q(n)(t, x, y)n−1

]
n−2; (3.2)

they satisfy

sup
x,y

|R(t, x, y)|, sup
n

sup
x,y

|Q(n)(t, x, y)| → 0, t → 0 ; sup
x,y

|R(t, x, y)| → 0, t →∞.

R(t, x, y) is explicitly given by

R(t, x, y) = e−tH(x, y)
t2

12

[
t
(1

4
et + e−t

et − e−t
+

(et + e−t)xy − (x2 + y2)
(et − e−t)2

)

+
1
16

(
1 +

4xy − (et + e−t)(x2 + y2)
et − e−t

)]
. (3.3)

If t > 0, R(t, x, y) can become positive and negative.
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Lemma 3.3. K(n)(t, x, y) =

1√
π

( √
1 + t2

4n2

(
1 + t

n

√
1 + t2

4n2 + t2

2n2

)n

−
(
1− t

n

√
1 + t2

4n2 + t2

2n2

)n

)1/2

× exp

[
2
√

1 + t2

4n2

(
1 + t

n

√
1 + t2

4n2 + t2

2n2

)n

−
(
1− t

n

√
1 + t2

4n2 + t2

2n2

)n xy

]

× exp

{[
− t

4n
− n

2t

(
1−

(
1 + t

n

√
1 + t2

4n2 + t2

2n2

)n−1

−
(
1− t

n

√
1 + t2

4n2 + t2

2n2

)n−1

(
1 + t

n

√
1 + t2

4n2 + t2

2n2

)n

−
(
1− t

n

√
1 + t2

4n2 + t2

2n2

)n

)]
(x2 + y2)

}
.

(3.4)

Proof. Calculate the Gaussian integral

K(n)(t, x, y)

≡
( n

2πt

)n
2

n− 1︷ ︸︸ ︷∫

R

· · ·
∫

R

n∏

j=1

[
e−

t
4n x2

j e−
(xj−xj−1)2

2t/n e−
t

4n x2
j−1

]
dx1 · · · dxn−1,

where x = xn, y = x0. We shall encounter with continued fraction to lead to the
final expression (3.4) of the lemma.

To show Theorem 3.2, we simply calculate the difference K(n)(t, x, y) −
e−tH(x, y), though it is not so simple.

Here we mention what the operator with R(t, x, y) as its integral kernel is. By
the Baker–Campbell–Hausdorff formula (e.g. [45], [40]), if A and B are bounded
operators, we have

[e−tB/2ne−tA/ne−tB/2n]n − e−t(A+B)

= exp
(− t(A + B)− n−2 t2

24
[2A + B, [A,B]]−Op(n−3)

)

= e−t(A+B) − n−2 t2

24

∫ t

0

e−(t−s)(A+B)[2A + B, [A,B]]e−s(A+B)ds + Op(n−3),

where Op(n−3) is an operator with norm of O(n−3). In our case where A =
− 1

2∂2
x, B = 1

2x2, we can show R(t, x, y) is just the integral kernel of the oper-
ator

− t2

24

∫ t

0

e−(t−s)H [2H0 + V, [H0, V ]]e−sHds,



8 Takashi Ichinose and Hideo Tamura

which does make sense, though H0 and V are unbounded operators. We have
[2H0 + V, [H0, V ]] = −4H0 + 2V = −4H + 6V .

4. Idea of Proof

Put K(τ) = e−τB/2e−τAe−τB/2. Note that 0 ≤ K(τ) ≤ 1. Then we need to
estimate the difference between K(t/n)n and e−tH . The general technique of proof
is: (i) to establish an appropriate version of Chernoff’s theorem ([8]):

[
(1 + τ−1(1−K(τ))−1 − (1 + H)−1

] → 0, τ ↓ 0

=⇒ [K(t/n)n − e−tH ] → 0, n →∞
and/or (ii) to do telescoping:

e−tH −K(t/n)n =
n∑

k=1

e−(k−1)tH/n(e−tH/n −K(t/n))K(t/n)n−k

to estimate each summand on the right. The former method (i) seems to be more
efficient than the latter (ii).

In fact, to prove Theorem 1, we use the former method, establishing the
following norm version of Chernoff’s theorem with error bounds. The case without
error bounds was noted by Neidhardt–Zagrebnov [33].

Lemma 4.1. (Ichinose-Tamura [23]) I. Let {F (t)}t≥0 be a family of selfadjoint
operators with 0 ≤ F (t) ≤ 1, and H ≥ 0 a selfadjoint operator in a Hilbert space
H. Define St := t−1(1− F (t)). Then
(a) For 0 < α ≤ 1, ‖(1 + St)−1 − (1 + H)−1‖ = O(tα), t ↓ 0
implies
(b) For every fixed δ > 0,

‖F (t/n)n − e−tH‖ = δ−2t−1+αeδtO(n−α), n →∞, t > 0.

Therefore for α = 1 this convergence is uniform on each compact interval
[0, L] in the closed half line [0,∞).
II. Moreover, in case H ≥ ηI for some constant η > 0, if for every ε > 0 there
exists δ(ε) > 0 such that F (t) ≤ 1− δ(ε) for all t ≥ ε, then

‖F (t/n)n − e−tH‖ = (1 + 2/η)2t−1+αO(n−α), n →∞, t > 0.

Therefore for α = 1 this convergence is uniform on the whole closed half line
[0,∞).

Condition II is satisfied, e.g. for F (τ) = e−τB/2e−τAe−τB/2. For the proof,
we refer to [23].

For the proof of Theorems 2.2–2.5 we employ the latter method (ii), and
further, for Theorems 2.2–2.4, make a crucial use of Agmon’s kernel theorem:
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Lemma 4.2. (Agmon’s kernel theorem [1])
Let T : L2(Rd) → L2(Rd) be a bounded operator with ranges of T and its

adjoint T ∗ satisfying R[T ], R[T ∗] ⊂ Hm(Rd), m > d. If T is an integral operator
with integral kernel T (x, y) being a bounded continuous function in Rd ×Rd such
that

(Tf)(x) =
∫

T (x, y)f(y) dy, f ∈ L2,

then
|T (x, y)| ≤ C(‖T‖m + ‖T ∗‖m)

d
m ‖T‖1− d

m ,

where ‖T‖m := ‖T‖L(L2→Hm) is the operator norm of T as a bounded operator of
L2(Rd) into the Sobolev space Hm(Rd).

Indeed, we estimate the L(L2 → Hm)-operator norm of the difference T =
[e−tV/2net∆/ne−tV/2n]n − et(−∆+V ).

5. Concluding Remarks

We have so far considered the case where the operator sum H = A + B of two
nonnegative selfadjoint operators A and B is selfadjoint. However, otherwise, the
exponential product formula in norm does not in general hold for the form sum
H = A + B of two selfadjoint operators A ≥ 0, B ≥ 0, even if it is essentially
selfadjoint on D[A] ∩ D[B] (see [43]). Nevertheless, there is some case where it
holds:

Theorem 5.1. (Ichinose-Neidhardt-Zagrebnov 2004 [16]) Let H = A+̇B be the
form sum of A and B. If D[Hα] ⊆ D[Aα] ∩ D[Bα] for some 1

2 < α < 1, and
D[A

1
2 ] ⊆ D[B

1
2 ], then

‖[e−tB/2ne−tA/ne−tB/2n]n − e−tH‖ = O(n−(2α−1)), (5.1)

‖[e−tA/ne−tB/n]n − e−tH‖ = O(n−(2α−1)), (5.2)

locally uniformly in [0,∞).

This error bound in (5.1)/(5.2) is also optimal. For this we refer to [43]. The
condition for the domains of A and B is not symmetric. It is an open question
whether one may improve it so as to become symmetric with respect to A and B.

Finally, as we should like to mention, there is a very nice Feynman path
integral formula which represents the Schrödinger semigroup, called the Feynman–
Kac formula

(e−tHf)(x) = (e−t(−∆+V )f)(x)

=
∫

B∈C([0,∞)→Rd),B(0)=x

exp[−
∫ t

0

V (B(s))ds]f(B(t))dµ(B),

where µ(·) is the Wiener measure on the path space C([0,∞) → Rd) (e.g. ([39]).
We may use this formula to get whatever results, in fact, a lot of them. This is
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a big advantage! But disadvantage is that it is only restricted to the Schrödinger
operator or Laplacian. For instance, if we think of the semigroup for the relativis-
tic Schrödinger operator H =

√−∆ + m2 + V (x), we have to establish another
Feynman–Kac formula (cf. [28]).

Indeed, the Feynman–Kac formula is one of the realizations of Feynman path
integral as a true integral on a path space. However, as Nelson [36] noted, the
exponential/Trotter product formula also can give a meaning to the Feynman
path integral as a time-sliced approximation by finite-dimensional integrals (cf.
[15]). What it has advantage at is that we may apply it to the sum H = A + B of
any two selfadjoint operators A, B bounded from below.

Acknowledgements. One of the authors (T.I.) would like to thank Professor Vadim
Adamyan for kind and warm hospitality during his stay in Odessa for the Mark
Krein Centenary Conference, April 2007. This work (of T.I. and H.T.) was partially
supported by Grant-in-Aid for Exploratory Research No. 17654030 and by Grant-
in-Aid for Scientific Research (B) No. 18340049, Japan Society for the Pomotion
of Sciences.

References

[1] S. Agmon, On kernels, eigenvalues, and eigenfunctions of operators related to elliptic
problems, Comm. Pure Appl. Math. 18 (1965), 627–663.

[2] Y. Azuma and T. Ichinose, Note on norm and pointwise convergence of exponential
products and their integral kernels for the harmonic oscillator, to appear in Integral
Equations Operator Theory (published on line first Nov. 12, 2007).

[3] V. Cachia, H. Neidhardt and V. A. Zagrebnov, Accretive perturbations and error
estimates for the Trotter product formula, Integral Equations Operator Theory 39
(2001), 396–412.

[4] V. Cachia, H. Neidhardt and V. A. Zagrebnov, Comments on the Trotter product for-
mula error-bound estimates for nonself-adjoint semigroups, Integral Equations Oper-
ator Theory 42 (2002), 425–448.

[5] V. Cachia and V. A. Zagrebnov, Operator-norm convergence of the Trotter product
formula for sectorial generators, Lett. Math. Phys. 50 (1999), 203–211.

[6] V. Cachia and V. A. Zagrebnov, Trotter product formula for nonself-adjoint Gibbs
semigroups, J. London Math. Soc. (2) 64 (2001), 436–444.

[7] V. Cachia and V. A. Zagrebnov, Operator-norm convergence of the Trotter product
formula for holomorphic semigroups, J. Operator Theory 46 (2001), 199–213.

[8] P.R. Chernoff, Product Formulas, Nonlinear Semigroups, and Addition of Unbounded
Operators, Memoirs Amer. Math. Soc., 140, 1974.

[9] B. O. Dia and M. Schatzman, An estimate on the Kac transfer operator, J. Functional
Analysis 145 (1997), 108–135.

[10] A. Doumeki, T. Ichinose and H. Tamura, Error bounds on exponential product for-
mulas for Schrödinger operators, J. Math. Soc. Japan 50 (1998), 359–377.



Exponential Product Formulas 11

[11] P. Exner and T. Ichinose, A product formula related to quantum Zeno dynamics,
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