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Abstract

A scalar quantum field model defined on a pseudo Riemann manifold is consid-
ered. The model is unitarily transformed to the one with a variable mass. By
means of a Feynman-Kac-type formula, it is shown that when the variable mass
is short range, the Hamiltonian has no ground state. Moreover the infrared di-
vergence of the expectation values of the number of bosons in the ground state
is discussed.
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1 Introduction

1.1 Preliminaries

Analysis of the infrared behavior in massless quantum field theory is an important

issue. The infrared divergence is seen to arise as follows: the emission probability of

massless boson becomes infinite with increasing wavelength. For some scalar quantum

field model, which is the so-called Nelson model [Nel64], a sharp result concerning the

relationship between the infrared behavior and the existence (or the absence) of ground

states is known. The Nelson model describes a scalar field coupled to a quantum

mechanical particle with external potential V in such a way that the interaction is

linear. Namely the Nelson model with mass m0 ≥ 0 is formally given by

HN =
1

2
p2 +V (q)+

1

2

∫ (
π(x)2 + (∇φ(x))2 + m2

0φ(x)2
)
dx+

∫
φ(x)χ(x− q)dx, (1.1)

where χ denotes a cutoff function, p and q are the position operator and momentum

operator of the particle, respectively, with bare mass 1, which satisfy [p, q] = −i, and

π(x) is the momentum field canonically conjugate to the scalar field φ(x), which satisfy

[φ(x), π(y)] = iδ(x− y). The dispersion relation for the Nelson model is given by

ω̂N =
√
−∆ + m2

0 (1.2)

in the position representation and the equation of motion is

(¤ + m2
0)φ(x, t) = −χ(x− qt), (1.3)

∂2
t qt = −∇qV (qt)−∇qφ(χ(x− qt)), (1.4)

where ¤ = ∂2
t −∆x. It is established that HN with positive mass m0 > 0 has a ground

state but no ground state for m0 = 0, and the expectation value of the number of

bosons in the ground state diverges as m0 → 0.

While the Nelson model defined on a static Riemann manifold is unitarily trans-

formed to a model with a variable mass

vm(x) = m(x)2 ≥ 0 (1.5)

and the dispersion relation (1.2) is changed to

ω̂ =
√
−∆ + vm. (1.6)
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By comparing (1.2) and (1.6), the variable mass is seen to intermediate between massive

cases and massless cases, and furthermore the infrared behavior, as mentioned below,

depends on the decay property of vm(x) as |x| → ∞.

We consider in this paper a version of the Nelson model with variable masses. The

Hamiltonian is formally given by

Hformal =
1

2
p2 + V (q) +

1

2

∫ (
π(x)2 + (∇φ(x))2 + vm(x)φ(x)2

)
dx + αφ(ρq), (1.7)

where p and q, and φ(x) and π(y) satisfy the same canonical commutation relations

as that of the Nelson model. The field operator φ(ρq) =
∫

φ(x)ρq(x)dx is, however, a

scalar field smeared by some function ρq defined through vm and a given cutoff function

χ, and α a real coupling constant. Thus the equation of motion is given by

(¤ + vm(x))φ(x, t) = −αρqt(x), (1.8)

∂2
t qt = −∇qV (qt)− α∇qφ(ρqt). (1.9)

Here ¤+vm(x) appears in (1.8) instead of ¤+m2
0. This is a unitary transformed version

of a Klein-Gordon equation defined on a pseudo Riemann manifold. See Section 2.5.

We are interested in investigating the infrared behavior of the Nelson model. In

Figure 1: Positive constant mass

the case of constant mass vm(x) = m2
0 in (1.6), it is established that if m0 > 0, the

Nelson model has the unique ground state up to multiple constants (Fig.1), but if

m0 = 0 no ground state exists unless the infrared regularization is imposed. See e.g.,

[BFS98, BHLMS02, Che01, Ger00, HH06, Hk06, LMS02, Spo98] for detail. Here the

infrared regular condition is defined by

∫

R3

χ(k)2

|k|3 dk < ∞. (1.10)

Conversely ∫

R3

χ(k)2

|k|3 dk = ∞ (1.11)
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is called the infrared singular condition. The singularity in (1.11) comes from a neigh-

borhood of k = 0 if χ has a compact support, since the dimension is three.

Our paper is motivated by extending constant mass cases to variable ones. Namely,

going beyond the case of constant masses, we consider the infrared behavior of the

Nelson model with variable masses. From the argument mentioned above it is expected

that the Nelson model may have ground states if the variable mass decays sufficiently

slowly in a neighborhood of origin (Fig. 2),

Figure 2: Long range variable mass

but no ground state exists if it decays sufficiently fast (Fig. 3). Taking into account of

Figure 3: Short range variable mass

this intuitive argument, as the first step, we consider two cases: (1) vm is long range

and (2) vm is short range. In this paper we focus on (2) and prove that for a short

range potential v ≥ 0 such that vm(x) = O(|x|−β) with β > 3, H has no ground state

in the Hilbert space unless the infrared regularization is imposed.

1.2 Strategy

It is proven that the functional integration is useful device to show the existence and

non-existence of the ground state of the Nelson model with constant masses. It can

be extended to the case of variable masses in this paper. The main tool used in this

paper is functional integral representations of the semigroup e−tH and an extension of

the strategy developed in [BHLMS02, LMS02] where the Nelson model with constant

mass is discussed.
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The Nelson model H can be defined as a self-adjoint operator on some probability

space. It is easily shown that

ϕT
g = ‖e−TH1‖−1e−TH1, T > 0, (1.12)

is a sequence approaching to a ground state of H if a ground state exists. Conversely

lim
T→∞

(1, ϕT
g )2 = a > 0, (1.13)

implies the existence of the ground state of H, but the absence of ground state follows

from

lim
T→∞

(1, ϕT
g )2 = 0. (1.14)

By making use of a modification of [LMS02] we show that (1.14) holds under the

infrared singularity condition (1.11).

Throughout this paper we use the notation Eµ[· · · ] for
∫ · · · dµ and Ex

ν [· · · ] for∫ · · · dνx, where νx denotes a probability measure starting at x on a path space. By

using the functional integration, we have the bound

(1, ϕT
g )2 ≤ EµT

[
e−α2

∫ 0
−T ds

∫ T
0 dtW (Xs,Xt,|s−t|)

]
(1.15)

with some probability measure µT on the product configuration space R3 × C(R;R3)

and the so-called double potential W = W (Xs, Xt, |s− t|) given by

W (X,Y, |t|) =

∫
χ(k)2

2|k| Ψ(k,X)Ψ(k, Y )e−|t||k|dk. (1.16)

Here Ψ(k, x) denotes the generalized eigenvector of −∆ + vm. By controlling the

behavior of measures µT and
∫ 0

−T
ds

∫ T

0
dtW (Xs, Xt, |s − t|) as T → ∞, we can show

(1.14) under the infrared singular condition.

Next we consider the expectation values of the number of bosons in the ground state

ϕg. Assume the infrared regular condition (1.10) and the existence of ground state.

Let N be the number operator. We can show that (ϕT
g , e−βNϕT

g ) can be analytically

continued from β ∈ [0,∞) to the whole complex plane β ∈ C. Then the moment

(ϕT
g , NnϕT

g ) is given by

(ϕT
g , NnϕT

g ) = (−1)n dn

dβn
(ϕT

g , e−βNϕT
g )

⌈

β=0

.

As an application we can show that the expectation value of the number of bosons in

the ground state, (ϕg, Nϕg), diverges as
∫
R3

χ(k)2

|k|3 dk tends to infinity.
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This paper is organized as follows: Section 2 is devoted to giving the definition of

the Nelson model with a variable mass. In Section 3 we discuss functional integration

in Euclidean quantum field theory. In Section 4 we prove the absence of ground state.

Finally in Section 5 we show the divergence of (ϕg, Nϕg) in infrared singularity.

2 The Nelson model on a pseudo Riemann manifold

2.1 Particle

We introduce the Schrödinger operator Hp by

Hp =
1

2
p2 + V, (2.1)

where pµ = −i∇µ, p2 = p · p, and V is an external potential. We say that V is

Kato-class if and only if

lim
r↓0

sup
x∈R3

∫

|x−y|<r

|V (y)|
|x− y|dy = 0

and V is local Kato-class if and only if 1KV is Kato-class for arbitrary compact set

K ⊂ R3. If V = V+ − V− satisfies that V+ is local Kato-class and V− Kato-class,

we say that V is Kato-decomposable. When V is Kato-class, V ∈ L1
loc(R3) and V is

infinitesimally small with respect to p2 in the sense of form, furthermore when V =

Lp(R3) + L∞(R3) with p > 3/2, V is Kato-class. In particular an arbitrary polynomial

is local Kato-class.

We introduce assumptions on external potential V :

Assumption 2.1 (Assumptions on V ) We assume (1)-(3) below:

(1) V = V+ − V− is Kato-decomposable with V− ∈ Lp
loc(R3) for some p > 3/2.

(2) V is bounded from below and V (x) > C|x|q with some q > 0 for x ∈ R3 \M with

some compact set M .

(3) The ground state of Hp is unique and strictly positive.

Hp is defined as a quadratic form sum. Since V is Kato-decomposable, Hp is closed on

Q(p2)∩Q(V+) and bounded from below, where Q(T ) denotes the form domain of T . See

[Sim82, Theorem A.2.7]. Moreover it follows that supx∈R3 EPW

[
e−

∫ t
0 V (Bs+x)ds

]
< ∞
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for arbitrary t ≥ 0, where (Bt)t≥0 denotes the 3-dimensional Brownian motion starting

at zero on a probability space (W,BW , PW ). By (2) of Assumption 2.1, V → ∞ as

|x| → ∞. Then Hp has a compact resolvent. This can be proven by showing that

{ψ ∈ Q(Hp)|‖ψ‖ ≤ 1, (ψ, Hpψ) ≤ 1} is compact in L2(R3). See e.g., [RS78, Theorem

XIII.67]. In particular the spectrum of Hp is purely discrete and the ground state ϕp

of Hp exists. By assumptions, V+ ∈ L1
loc(R3) and V− ∈ Lp(R3) with p > 3/2, and

V (x) > C|x|q for sufficiently large |x|, it is known that ϕp(x) exponentially decays. We

used this in Section 4.

Now let us define a unitary transformation. By (3) of Assumption 2.1 we can define

the ground state transformation

Up : L2(R3) → Hp = L2(R3, ϕ2
pdx)

by

Upf =
1

ϕp

f. (2.2)

Set

Lp = UpHpU
−1
p (2.3)

and the probability measure µp on R3 is defined by

dµp(x) = ϕ2
p(x)dx. (2.4)

Thus the operator Lp acts on the probability space L2(R3; dµp). Formally Lp is given

by

Lpf = −1

2
∆f +

∇ϕp

ϕp

∇f (2.5)

on L2(R3; dµp), it is of course not clear whether ϕp ∈ C1(R3) or not. However by

the Kolmogorov consistency theorem we can construct a continuous Markov process

X = (Xt)t∈R associated with the semigroup e−tLp . This process X is a formal solution

of the stochastic differential equation:

dXt = dBt +
∇ϕp

ϕp

(Xt)dt.

We will discuss the Markov process X in Section 3.
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2.2 Boson Fock space

The Boson Fock space over the one particle space L2(R3) is defined by

F =
∞⊕

n=0

L2
sym(R3n),

where L2
sym(R3n) is the set of L2 functions f(k1, ..., kn), kj ∈ R3, j = 1, ..., n, on R3n

such that it is symmetric with respect to k1, ..., kn with L2
sym(R0) = C. The Fock

vacuum 1 ⊕ 0 ⊕ 0 ⊕ · · · in F is denoted by ΩF . The annihilation operators a(f)

smeared by f ∈ L2(R3) and the creation operators a†(g) by g ∈ L2(R3) are defined in

F and satisfy canonical commutation relations:

[a(f), a†(g)] = (f̄ , g)L2(R3), (2.6)

[a(f), a(g)] = 0 = [a†(f), a†(g)]. (2.7)

Here (f, g)K denotes the scalar product on a Hilbert space K . We omit K unless

confusion arises. Note that (a(f))∗ = a†(f̄). We formally write a(f) =
∫

a(k)f(k)dk

and a†(f) =
∫

a†(k)f(k)dk. For a contraction operator T : L2(R3) → L2(R3), define

the contraction operator Γ(T ) : F → F by Γ(T )ΩF = ΩF and

Γ(T )a†(f1) · · · a†(fn)ΩF = a†(Tf1) · · · a†(Tfn)ΩF .

Note that Γ(TS) = Γ(T )Γ(S) and Γ(I) = I. Then for a self-adjoint operator h in

L2(R3) there exists a unique self-adjoint operator dΓ(h) in F such that

eitdΓ(h) = Γ(eith), t ∈ R.

2.3 The Nelson model with variable mass

Let us assume that −∆+vm is a self adjoint operator in L2(R3). Suppose that −∆+vm

has generalized eigenfunctions Ψ(k, x):

(−∆ + vm(x))Ψ(k, x) = |k|2Ψ(k, x), k ∈ R3. (2.8)

We introduce the following assumptions.

Assumption 2.2 (Assumptions on Ψ(k, x)) The generalized eigenvectors satisfy

that
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(1) supk,x |Ψ(k, x)| < ∞,

(2) Ψ(k, x) is continuous in k for almost every x,

(3) the generalized Fourier transformation:

(Ff)(k) = (2π)−3/2l.i.m.

∫
f(x)Ψ(k, x)dx (2.9)

is unitary on L2(R3).

By (3) above the inverse of F , F−1, is given by

(F−1g)(x) = (2π)−3/2l.i.m.

∫
g(k)Ψ(k, x)dk. (2.10)

Recall that ω̂ =
√−∆ + vm. Then we have

F ω̂F−1 = ω, (2.11)

where ω is the multiplication operator given by

ω(k) = |k|, k ∈ R3. (2.12)

Let χ be a cutoff function. We define the field operator with the variable mass vm and

the cutoff function χ by

Φ̂(x) =
1√
2

(
a†

(
ω̂−1/2ρx

)
+ a

(
ω̂−1/2ρx

))
, (2.13)

where

ρx(·) = (2π)−3/2

∫
Ψ(k, x)Ψ(k, ·)χ(k)dk. (2.14)

A physically reasonable choice of χ is

χ(k) =
χΛ(|k|)√

(2π)3
, Λ > 0, (2.15)

where χΛ is an ultraviolet cutoff defined by χΛ(s) =

{
0, s ≥ Λ

1, s < Λ
. If we take (2.15) as

χ, then ρx → δ(· − x) in S ′ as Λ →∞.

Let us define the free Hamiltonian Ĥf by

Ĥf = dΓ(ω̂). (2.16)

The total state space is defined by the tensor product of Hp and F :

H = Hp ⊗F . (2.17)
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Definition 2.3 (The Nelson model with variable mass) The Nelson Hamiltonian

with the variable mass vm is defined by

Ĥ = Lp ⊗ 1 + 1⊗ Ĥf + αΦ̂ (2.18)

on the Hilbert space H, where Φ̂ =
∫ ⊕
R3 Φ̂(x)dx under the identification H =

∫ ⊕
R3 Fds.

Now we derive the equation of motion associated with Ĥ. Let

ϕ(f) =
1√
2

(
a†

(
ω̂−1/2f

)
+ a

(
ω̂−1/2f

))
(2.19)

be the field operator smeared by f . Then Φ̂(x) = ϕ(ρx). The time evolution of ϕ(f) is

given by

ϕ(f, t) = eitĤϕ(f)e−itĤ (2.20)

and that of x by

qt = eitĤxe−itĤ . (2.21)

Since

[dΓ(ω̂), a(f)] = −a(ω̂f), [dΓ(ω̂), a†(f)] = a†(ω̂f),

ϕ(f, t) and qt satisfy that

∂2
t ϕ(f, t) + ϕ((−∆ + vm)f, t) = −α(ρqt , f), (2.22)

∂2
t qt = −∇V (qt)− αϕ(∇ρqt) (2.23)

on H. Compare with (1.8) and (1.9).

2.4 Unitary transformation

In this subsection we unitarily transform the Nelson Hamiltonian to some self-adjoint

operator H. Let Hf be defined by

Hf = dΓ(ω) (2.24)

and Φ(x) by

Φ(x) =
1√
2

∫ (
χ(k)√
ω(k)

Ψ(k, x)a†(k) +
χ(k)√
ω(k)

Ψ(k, x)a(k)

)
dk. (2.25)

Define H by

H = Lp ⊗ 1 + 1⊗Hf + αΦ, (2.26)

where Φ =
∫ ⊕
R3 Φ(x)dx. We introduce some assumption on cutoff function χ.
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Assumption 2.4 (Assumptions on χ) Assume that χ is real, χ̌ ≥ 0 ( 6= 0), χ/
√

ω ∈
L2(R3) and χ/ω ∈ L2(R3), where χ̌ denotes the inverse Fourier transform of χ.

Remark 2.5 Since the space dimension under consideration is three, from χ̌ ≥ 0 in

Assumption 2.4 it follows that χ(0) > 0 and then it follows that

∫
χ(k)2

ω(k)3
dk = ∞. (2.27)

The next proposition is standard.

Proposition 2.6 Suppose Assumption 2.4 and (1) of Assumption 2.2. Then the Nel-

son Hamiltonian H (resp. Ĥ) is self-adjoint on D(Lp)∩D(Hf) (resp. D(Lp)∩D(Ĥf) )

and bounded from below. Moreover H (resp. Ĥ) is essentially self-adjoint on any core

of Lp ⊗ 1 + 1⊗Hf (resp. Lp ⊗ 1 + 1⊗ Ĥf).

Proof: Since Φ (resp. Φ̂) is infinitesimally small with respect to Lp⊗1+1⊗Hf (rep.

Lp ⊗ 1 + 1⊗ Ĥf), the proposition follows from the Kato-Rellich theorem. 2

Let Fb = Γ(F) which is a unitary operator on F .

Proposition 2.7 Suppose Assumption 2.4 and (1) of Assumption 2.2. Then

H = (1⊗Fb)Ĥ(1⊗F−1
b ). (2.28)

Proof: Since F ω̂−1/2ρx(·)=ω−1/2(·)χ(·)Ψ(·, x), it follows that FbΦ̂(x)F−1
b = Φ(x) for

each x. By F ω̂F−1 = ω it also follows that FbĤfF−1
b = Hf . By a simple limiting

argument we can complete the proof. 2

We give a remark on the relationship between H and the standard Nelson model

HN introduced in [Nel64]. Namely

HN = Lp ⊗ 1 + 1⊗Hf + αΦN , (2.29)

where ΦN =

∫ ⊕

R3

ΦN(x)dx and

ΦN(x) =
1√
2

∫ (
χ(k)√
ω(k)

e−ikxa†(k) +
χ(k)√
ω(k)

e+ikxa(k)

)
dk.

Let vm(x) ≡ m2 be a nonnegative constant. Thus the generalized eigenfunction is

Ψ(k, x) = eikx and ρx = χ̌(· − x). Then H covers HN .
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2.5 Klein-Gordon equation on pseudo Riemann manifold

In this subsection we give an example of a Klein-Gordon equation defined on a pseudo

Riemann manifold M such that a short range potential vm(x) = O(〈x〉−β−2) appears.

See [FUL96] for details.

Let x = (t, x) = (x0, x) ∈ R × R3. Let M be the 4 dimensional pseudo Riemann

manifold equipped with the metric tensor:

g(x) = g(x) =




e−〈x〉
−β

0 0 0

0 −e−〈x〉
−β

0 0

0 0 −e−〈x〉
−β

0

0 0 0 −e−〈x〉
−β


 . (2.30)

Note that g depends on x but independent of t. The line element associated with g is

given by

ds2 = e−〈x〉
−β

dt⊗ dt− e−〈x〉
−β

∑
j

dxj ⊗ dxj.

The Klein-Gordon equation on M is

¤gφ + m2φ = 0, (2.31)

where the d’Alembertian operator is defined by

¤g = e〈x〉
−β

∂2
t − e2〈x〉−β

∑
j

∂je
−〈x〉−β

∂j.

Thus the Klein-Gordon equation (2.31) is reduced to the equation

∂2φ

∂t2
= K0φ, (2.32)

where

K0 = e〈x〉
−β

∑
j

∂je
−〈x〉−β

∂j − e−〈x〉
−β

m2.

The operator K0dC∞0 (R3) is symmetric on the weighted L2 space L2(R3; e−〈x〉
−β

dx). Now

we transform the operator K0 to the one on L2(R3). In order to do that, the unitary

map U0 : L2(R3; e−〈x〉
−β

dx) → L2(R3) is introduced by U0f(x) = e−(1/2)〈x〉−β
f(x).

Lemma 2.8 There exists a nonnegative function v such that U0K0U
−1
0 = ∆ − v and

v(x) = O(〈x〉−β−2).
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Hence the Klein-Gordon equation (2.32) is transformed to the equation

∂2φ

∂t2
= ∆φ− vφ (2.33)

on L2(R3). Although the proof of Lemma 2.8 is straightforward, we shall show this

statement through a more general scheme in what follows.

Suppose that g = (gµν), µ, ν = 0, 1, 2, 3, is a metric tensor on R4 such that

(1) gµν(x) = gµν(x), i.e., it is independent of time t,

(2) g0j(x) = gj0(x) = 0, j = 1, 2, 3,

(3) gij(x) = −γij(x), where γ = (γij) denotes a 3-dimensional Riemann metric.

Namely

g =

[
g00 0
0 −γ

]
.

Let M be a pseudo Riemann manifold equipped with the metric tensor g satisfying

(1)-(3) above. Then the line element on M is given by

ds2 = g00(x)dt⊗ dt−
∑
ij

γij(x)dxi ⊗ dxj.

Let g−1 = (gµν) denote the inverse of g. In particular 1/g00 = g00. We also denote the

inverse of γ by γ−1 = (γij). The Klein-Gordon equation on the static pseudo Riemann

manifold M is generally given by

¤gφ + (m2 + κR)φ = 0, (2.34)

where κ is a constant, R the scalar curvature of M , and ¤g is given by

¤g =
∑
µν

1√
|detg|∂µg

µν
√
|detg|∂ν . (2.35)

Let us assume that g00(x) > 0. Then (2.34) is rewritten as

∂2φ

∂t2
= Kφ, (2.36)

where

K = g00

(
1√
|detg|

∑
ij

∂j

√
|detg|γji∂i −m2 − κR

)
.
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The operator KdC∞0 (R3) is symmetric on L2(R3; ρ(x)dx), where

ρ =

√
|detg|
g00

= g
−1/2
00

√
|detγ|. (2.37)

Now let us transform the operator K on L2(R3; ρ(x)dx) to the one on L2(R3). Define

the unitary operator U : L2(R3; ρ(x)dx) → L2(R3) by

Uf = ρ1/2f.

Let ρi = ∂iρ and ∂i∂jρ = ρij for notational simplicity. Furthermore we set αij = g00γ
ij

and ∂kα
ij = αij

k . Since U−1∂jU = ∂j +
ρj

2ρ
, we have as an operator identity

U−1

(∑
ij

∂ig00γ
ij∂j

)
U = g00

∑
ij

γij∂i∂j + V1 + V2, (2.38)

where

V1 =
∑
ij

(
αij

i + αij ρi

ρ

)
∂j,

V2 =
1

4

∑
ij

(
2αij

i

ρj

ρ
+ 2αij ρij

ρ
− αij ρi

ρ

ρj

ρ

)
.

Set |detg| = G and ∂iG = Gi. Hence we have

V1 = g00

∑
ij

(
γij

i +
Gi

2G

)
∂j,

where γij
i = ∂iγ

ij, and directly we can see that

g00
1√
|detg|

∑
ij

∂i

√
|detg|γij∂j = V1 + g00

∑
ij

γij∂i∂j. (2.39)

Comparing (2.38) with (2.39) we obtain that

U−1

(∑
ij

∂ig00γ
ij∂j − V2

)
U = g00

1√
|detg|

∑
ij

∂i

√
|detg|γij∂j. (2.40)

Then we proved the lemma below.

Lemma 2.9 It follows that

UKU−1 =
∑
ij

∂ig00γ
ij∂j − v, (2.41)

where v = g00(m
2 + κR) + V2.
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By Lemma 2.9, (2.36) is transformed to the equation:

∂2φ

∂t2
=

(∑
ij

∂ig00γ
ij∂j − v

)
φ (2.42)

on L2(R3).

Proof of Lemma 2.8: Now we come back to the proof of Lemma 2.8. Set

gµν(x) =





eθ(x), µ = ν = 0,
−eθ(x), µ = ν = 1, 2, 3,
0, µ 6= ν,

with some θ(x). Then

ρ =

√
|detg|
g00

= eθ, αij = g00γ
ij = δij, (2.43)

and UKU−1 = ∆− v follows by (2.41), where, inserting (2.43) to v, we have

v = eθ(m2 + κR) +
∆θ

2
+
|∇θ|2

4
. (2.44)

Taking κ = 0 and θ(x) = −〈x〉−β, we obtain

v(x) = e−〈x〉
−β

m2 +
β2|x|2

4〈x〉2β+8
+

5β|x|2
〈x〉β+4

+
3β

2〈x〉β+4
= O(〈x〉−β−2). (2.45)

Thus the lemma holds. 2

3 Functional integrations

3.1 Path measures for particles

In order to construct a functional integral representation we introduce a probability

measure P x with reference measure µp such that (f, e−tLpg) can be expressed as

(f, e−tLpg) =

∫
dµp(x)Ex[f(X0)g(Xt)]. (3.1)

We already mention that formally Lp is given by

Lpf = −1

2
∆f +

∇ϕp

ϕp

∇f. (3.2)
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Thus X = (Xt)t∈R is the solution of the stochastic differential equation

dXt = dBt +∇ log ϕp(Xt)dt. (3.3)

The regularity of ground state ϕp is, however, unclear. So we construct the process X

through the Kolmogorov consistency theorem. Let us set L̄p = Lp − inf σ(Lp).

Proposition 3.1 Suppose that Assumption 2.1 holds. Then there exists a probability

space (Ω, B, P x) and an R3-valued continuous Markov process X = (Xt)t∈R starting at

x such that for t0 ≤ t1 ≤ · · · ≤ tn and f0, fn ∈ Hp and fj ∈ L∞(R3), j = 1, ..n− 1,

(f0, e
−(t1−t0)L̄pf1 · · · e−(tn−tn−1)L̄pfn)Hp =

∫
dµp(x)Ex

[
n∏

j=0

fj(Xtj)

]
. (3.4)

Proof: We show an outline of the proof. The proof is based on the Kolmogorov

consistency theorem. For t0 ≤ t1 ≤ · · · ≤ tn and Aj ∈ B(R3), j = 0, 1, ..., n, where

(R3) denotes the Borel σ-field, let

ν(A0 × · · · × An) = (1A0 , e
−(t1−t0)L̄p1A1 · · · e−(tn−tn−1)L̄p1An)Hp .

Thus ν satisfies the consistency condition

ν(A0 × · · · × An × R3 × · · · × R3

︸ ︷︷ ︸
m

) = ν(A0 × · · · × An).

By the Kolmogorov consistency theorem there exists a measure ν∞ on (R3)(−∞,∞) such

that

ν(A0 × · · · × An) = Eν∞

[
n∏

j=0

1Aj
(Xtj)

]
,

where Xt(ω) = ω(t) for ω ∈ (R3)(−∞,∞) the point evaluation. We note that by the

Feynman-Kac formula Eν∞ [|Xt−Xs|2n] can be expressed in terms of Brownian motion

(Bt)t≥0 on (W,BW , PW ) as

Eν∞ [|Xt−Xs|2n] =

∫
dxEx

PW

[
|Bt−s −B0|2nϕp(B0)ϕp(Bt−s)e

− ∫ t−s
0 V (Br)dr

]
e(t−s) inf σ(Lp).

By (1) of Assumption 2.1 we have

sup
x∈R3

Ex
PW

[
e−

∫ t−s
0 V (Br)dr

]
< ∞,
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and Ex
PW

[|Bt−s − B0|2n] = C2n|t − s|n with some constant C2n. Then it can be shown

that Eν∞ [|Xt−Xs|2n] ≤ C|t− s|n with some constant C independent of s and t. Then

X = (Xt)t∈R has a continuous version X̃ = (X̃t)t∈R. The image measure of ν∞ on

Ω = C(R;R3) with respect to X̃ is denoted by P and define1 the measure

P x(·) = P (·|X̃0 = x) (3.5)

for x ∈ R3 on Ω. Then

(1A0 , e
−(t1−t0)L̄p1A1 · · · e−(tn−tn−1)L̄p1An)Hp = Ex

[
n∏

j=0

1Aj
(X̃tj)

]
. (3.6)

Here Ex = EP x . By a simple limiting argument, (3.4) can be proven. Finally we shall

show the Markov property of X̃. Let

pt(x, A) =
(
e−tL̄p1A

)
(x). (3.7)

Then (3.6) is represented as

∫ n∏
j=0

1Aj
(xj)

n∏
j=1

ptj−tj−1
(xj−1, dxj)ϕ

2
p(x0)dx0.

Hence it is enough to show that pt(x,A) is a probability transition kernel. Note that

e−tL̄p is positivity preserving. Then 0 ≤ e−tL̄pf ≤ 1 for all function f such that

0 ≤ f ≤ 1, and e−tL̄p1 = 1 follow. Then it satisfies that

(a) pt(x, ·) is the probability measure on R3 with pt(x,R3) = 1,

(b) p0(x, A) = 1A(x),

(c)
∫

ps(y,A)pt(x, dy) = pt+s(x, A).

Hence pt(x,A) is a probability transition kernel. Then the process X̃ constructed above

is Markov under the measure P x. 2

By (3.4) it can be seen that X is invariant with respect to any time shift, namely

∫
dµp(x)Ex

[
n∏

j=0

fj(Xtj)

]
=

∫
dµp(x)Ex

[
n∏

j=0

fj(Xs+tj)

]

1Let σ(X̃0) denote the σ-filed generated by X̃0. For Z ⊂ Ω, let P (Z|σ(X̃0)) = EP [1Z |σ(X̃0)]. Then
P (Z|σ(X̃0)) is σ(X̃0)-measurable. Thus P (Z|σ(X̃0)) is a function of X̃0, i.e., P (Z|σ(X̃0)) = GZ(X̃0)
with some GZ . P (Z|X̃0 = x) is defined by GZ(X̃0) with X̃0 replaced by x, i.e., P (Z|X̃0 = x) = GZ(x).
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for any s ∈ R. The time reversal property also holds:

∫
dµp(x)Ex

[
n∏

j=0

fj(Xtj)

]
=

∫
dµp(x)Ex

[
n∏

j=0

fj(X−tj)

]
.

Moreover Xt and X−s for −s ≤ 0 ≤ t are independent, since

Ex[X−sXt] = Ex[X−sEx[Xt|B[−s,0]]] = Ex[X−sEX0 [Xt]] = Ex[X−s]Ex[Xt],

where B[a,b] = σ(Xr, a ≤ r ≤ b).

3.2 Building of quantum fields and semigroups

The free Hamiltonian Hf can be regarded as the infinite dimensional version of the

harmonic oscillator Hosc = 1
2
p2 + 1

2
x2 − 1

2
. The process associated with Hosc is the

Ornstein-Uhlenbeck process (qt)t∈R, and hence

∫
dxΨ(x)2Ex[qtqs] = (xΨ, e−(t−s)HoscxΨ) = e−|t−s|,

where Ψ(x) = π−1/4e−x2/2 is the ground state of Hosc. There exists an infinite dimen-

sional version of q = (qt)t∈R.

Let d = 1, 2, ... denote the dimension. Let Φd(f) be the Gaussian random process

indexed by real-valued f ∈ L2(Rd) on some probability space (Qd, µd) with mean zero

and the covariance given by

∫

Qd

Φd(f)Φd(g)dµd =
1

2
(f̂ , ĝ)L2(Rd).

The set of the linear hull of functions of the form : Φd(f1) · · ·Φd(fn) : is dense in L2(Qd),

where : Z : denotes the Wick product of Z inductively defined by : Φd(f) := Φd(f) and

: Φd(f)Φd(f1) · · ·Φd(fn) :

=: Φd(f1) · · ·Φd(fn) : −1

2

n∑
j=1

(f̄ , fj) : Φd(f1) · · · Φ̂d(fj) · · ·Φd(fn) :,

where Φ̂d(fj) denotes neglecting Φd(fj). Note that

(: Φd(f1) · · ·Φd(fn) :, : Φd(ρ1) · · ·Φd(ρm) :) = δnm
1

2n

∑
σ∈Gn

(f1, ρσ(1)) · · · (fn, ρσ(n)).
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For Hilbert spaces A and B, let

Hom(A,B) = {T : A → B|‖T‖A→B ≤ 1}

be the set of contarctions from A to B, and

Hom0(A,B) = {T ∈ Hom(A,B)|T is isometry}.

The second quantization Γ is a functor:

Γ : Hom(L2(Rd), L2(Rd′)) → Hom(L2(Qd), L
2(Qd′))

and

Γ : Hom0(L
2(Rd), L2(Rd′)) → Hom0(L

2(Qd), L
2(Qd′)),

and it is defined by Γ(T )1L2(Qd) = 1L2(Qd′ ) and

Γ(T ) : Φd(f1) · · ·Φd(fn) :=: Φd′(Tf1) · · ·Φd′(Tfn) : . (3.8)

It satisfies the semigroup property:

Γ(T )Γ(S) = Γ(TS), (3.9)

when S ∈ Hom(L2(Rd), L2(Rd′)) and T ∈ Hom(L2(Rd′), L2(Rd′′)). Contraction op-

erator Γ(T ) depends on d and d′, we do not, however, distinguish them, and simply

write Γ(T ). Γ(e−itK) for a self-adjoin operator K in L2(Rd) is one parameter unitary

group on L2(Qd). Then its generator is denoted by dΓ(K), namely Γ(e−itK) = e−itdΓ(K).

Let h ≥ 0 be a Borel measurable function on Rd. Define the family of isometries

jd,h(t) ∈ Hom0(L
2(Rd), L2(Rd+1)), t ∈ R, by

̂jd,h(t)f =
e−itkd+1

√
π

(
h(k)

h(k)2 + |kd+1|2
)1/2

f̂(k), k ∈ Rd, kd+1 ∈ R. (3.10)

It satisfies that

jd,h(s)
∗jd,h(t) = e−|t−s|h(−i∇). (3.11)

For a given Borel measurable nonnegative functions h1 on R3, h2 on R4, h3 on R5....,

we have a sequence

L2(R3)
j3,h1

(t)−→ L2(R4)
j4,h2

(t)−→ L2(R5)
j5,h3

(t)−→ · · · . (3.12)



20 IR divergence

Each isometry in (3.12) satisfies (3.11). Define Jd,h(t) ∈ Hom0(L
2(Qd), L

2(Qd+1))

by the second quantization of jd,h(t) ∈ Hom0(L
2(Rd), L2(Rd+1)), namely Jd,h(t) =

Γ(jd,h(t)). Hence it follows that

Jd,h(s)
∗Jd,h(t) = Γ(e−|t−s|h(−i∇)). (3.13)

Sequence (3.12) is inherited on L2(Qd) as

L2(Q3)
J3,h1

(t)−→ L2(Q4)
J4,h2

(t)−→ L2(Q5)
J5,h3

(t)−→ · · · . (3.14)

Let h and f be Borel measurable nonnegative functions on Rd. The crucial property

is the intertwining property given by

Γ(e−t(h(−i∇)⊗1))Jd,f (s) = Jd,f (s)Γ(e−th(−i∇)). (3.15)

Here h(−i∇)⊗1 = h(−i∇)⊗1L2(R) is an operator on L2(Rd+1) under the identification

L2(Rd+1) ∼= L2(Rd)⊗ L2(R).

Proposition 3.2 Let hj, j = 1, ..., N , be Borel measurable nonnegative functions on

R3. Let Hj = dΓ(hj(−i∇)). Then
(

Ψ,

N∏
i=1

e−tiHiΦ

)

L2(Q3)

=

(
1∏

i=N

Ji+2,hex
i

(0)Ψ,

1∏
i=N

Ji+2,hex
i

(ti)Φ

)

L2(QN+3)

. (3.16)

Here
∏N

i=1 Ti = T1 · · ·TN and
∏1

i=N Ti = TN · · ·T1 and hex
i is an extension of h to the

nonnegative function on L2(R2+i) defined by hex
i (k, k4, ..., k2+i) = hi(k) for k ∈ R3.

In order to construct a functional integral representation of the semigroup e−tH we

take the Schrödinger representation instead of the Fock representation. In addition we

need the Euclidean field. We set

Q = Q3, µ = µ3, jt = j3,ω(t),
QE = Q4, µE = µ4, ξt = j4,I(t),

(3.17)

where I denotes the identity operator on L2(R4). It is well know that there exists an

isomorphism between F and L2(Q). By this isomorphism we can identify as ΩF
∼= 1,

Hf
∼= dΓ(ω(−i∇)) and Φ(x) ∼= φ(χ̃(x)), where

χ̃(·, x) =

(
χ(·)√
ω(·)Ψ(·, x)

)∨

. (3.18)

Note that in the Schrödinger representation the test function is taken in the position

representation while the momentum representation is used in the Fock representation.
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Definition 3.3 (The Nelson model in Schrödinger representation)

In the Schrödinger representation the Nelson Hamiltonian is defined by

L̄p ⊗ 1 + 1⊗ dΓ(ω(−i∇)) + α

∫ ⊕

R3

φ(χ̃(x))dx (3.19)

on Hp ⊗ L2(Q). Here we identify Hp ⊗ L2(Q) as
∫ ⊕
R3 L2(Q)dµp.

In what follows we write (3.19) as H, dΓ(ω(−i∇)) as Hf and Hp ⊗ L2(Q) as H.

The operator dΓ(I) is called the number operator. The number operator on L2(Q)

(resp L2(QE)) is denoted by N (resp NE). We define the specific families of isometries

Jt ∈ Hom0(L
2(Q), L2(QE)) and Ξt ∈ Hom0(L

2(QE), L2(Q5)) by

Jt = Γ(jt) = J3,ω(t),
Ξt = Γ(ξt) = J4,I(t)

(3.20)

for t ∈ R. Thus it follows that

J∗s Jt = e−|t−s|Hf

Ξ∗sΞt = e−|t−s|NE .
(3.21)

Moreover we have

e−βNEJs = Jse
−βN , β ≥ 0, (3.22)

by the intertwining property (3.15).

Example 3.4 From Proposition 3.2 it follows that

(Ψ, e−βNe−tHfΦ)L2(Q) = (Ξ0J0Ψ, ΞβJtΦ)L2(Q5). (3.23)

3.3 Functional integral representations

Combining the functional integral representations of both e−tL̄p and e−tHf stated in the

previous sections, we can construct the functional integral representation of e−tH

Let

φs(f) = Φ4(jsf), s ∈ R.

It is the Gaussian random process indexed by real-valued functions f ∈ L2(R3) such

that the mean is zero and the covariance is given by
∫

Q

φs(f)φt(g)dµE =

∫

R3

f̂(k)ĝ(k)e−|t−s|ω(k)dk. (3.24)

Thus (φs(f))s∈R denotes the infinite dimensional version of the Ornstein-Uhlenbeck

process. We note that Js : φ(f1) · · ·φ(fn) :=: φs(f1) · · ·φs(fn) : and Js1L2(Q) = 1L2(QE).

Combining the process Xt in (3.4) and Jt in (3.20) we obtain the theorem below.
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Theorem 3.5 Suppose Assumptions 2.1, 2.2 and 2.4. Let F,G ∈ Hp ⊗ L2(Q). Then

(F, e−tHG) =

∫
dµp(x)Ex

[(
J0F (X0), e

−α
∫ t
0 φs(χ̃(Xs))dsJtG(Xt)

)
L2(QE)

]
(3.25)

Proof: By the Trotter product formula

e−tH = s− lim
n→∞

(
e−(t/n)L̄pe−(t/n)αφ(χ̃(x))e−(t/n)Hf

)n

,

the factorization formula (3.21), Markov property of Et = JtJ
∗
t and (3.4), we have

(F, e−tHG) = lim
n→∞

∫
dµp(x)Ex

[(
J0F (X0), e

−α
∑n

j=0
t
n

φtj/n(χ̃(Xtj/n))JtG(Xt)
)

L2(QE)

]
.

(3.26)

Note that s 7→ χ̃(·, Xs) is strongly continuous as the map R → L2(R3) almost surely.

Hence s 7→ φs(χ̃(Xs)) is strongly continuous as the map R → L2(QE). By a simple

limiting argument we complete the proof. 2

Next let

φs,t(f) = Φ5(ξtjsf), s, t ∈ R.

It is also the Gaussian random process indexed by real-valued functions f ∈ L2(R3)

with mean zero and the covariance given by
∫

QE

φs,t(f)φs′,t′(g)dµE =
1

2

∫
f̂(k)ĝ(k)e−|s−s′|ω(k)e−|t−t′|dk. (3.27)

We see that Ξt : φs1(f1) · · ·φsn(fn) := φs1,t(f1) · · ·φsn,t(fn) : and Ξt1L2(QE) = 1L2(Q5).

Then we have the theorem.

Theorem 3.6 Suppose Assumptions 2.1, 2.2 and 2.4. Let F,G ∈ H. Then

(
F, e−sHe−βNe−tHG

)

=

∫
dµp(x)Ex

[(
Ξ0J0F (X0), e

−α
∫ s
0 φr,0(χ̃(Xr))dre−α

∫ s+t
s φr,β(χ̃(Xr))drΞβJtG(Xt)

)
L2(Q5)

]

(3.28)

Proof: Throughout this proof we set
∏n

j=0 Tj = T0T1 · · ·Tn.

Simply we put αφ(χ̃(x)) = φ. By the Trotter product formula we have

(
F, e−sHe−βNe−tHG

)

= lim
n→∞

lim
m→∞

(
F,

(
e−

s
n

L̄pe−
s
n

φe−
s
n

Hf

)n

e−βN
(
e−

t
m

L̄pe−
t
m

φe−
t
m

Hf

)m

G
)

.
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Inserting e−|T−S|Hf = J∗T JS we have

=

(
F, J∗0

n−1∏
i=0

(
J si

n
e−

s
n

L̄pe−
s
n

φJ∗si
n

)
Jse

−βNJ∗s

m−1∏
i=0

(
Js+ ti

m
e−

t
m

L̄pe−
t
m

φJ∗
s+ ti

m

)
Js+tG

)
.

Let ET = JT J∗T . ET is the family of projection on L2(QE). Since J∗T eφJT = ET eφT ET

and by the intertwining property Jse
−βNJ∗s = J∗s Jse

−βNE = EsΞ
∗
0Ξβ, we have

=

(
F, J∗0

n−1∏
i=0

(
E si

n
e−

s
n

L̄pe
− s

n
φ si

n E si
n

)
EsΞ

∗
0Ξβ

m−1∏
i=0

(
Es+ ti

m
e−

t
m

L̄pe
− t

m
φ

s+ ti
m Es+ ti

m

)
Js+tG

)
,

where φT = αφT (χ̃(x)). By the Markov property of Es we can neglect all Es, then we

have

=

(
F, J∗0

n−1∏
i=0

(
e−

s
n

L̄pe
− s

n
φ si

n

)
Ξ∗0Ξβ

m−1∏
i=0

(
e−

t
m

L̄pe
− t

m
φ

s+ ti
m

)
Js+tG

)
.

Again we use the fact ΞβeφsΞ∗β = EΞ
β eφs,βEΞ

β , where EΞ
β = ΞβΞ∗β denotes the projection

on L2(Q5). Hence we have

=

(
Ξ0J0F, EΞ

0

n−1∏
i=0

(
e−

s
n

L̄pe
− s

n
φ si

n ,0

)
EΞ

0

EΞ
β

m−1∏
i=0

(
e−

t
m

L̄pe
− t

m
φ

s+ ti
m ,β

)
EΞ

β ΞβJs+tG

)
.

Since by the Markov property of EΞ
s we can neglect EΞ

0 and EΞ
β , we can obtain

=

(
Ξ0J0F,

n−1∏
i=0

(
e−

s
n

L̄pe
− s

n
φ si

n ,0

) m−1∏
i=0

(
e−

t
m

L̄pe
− t

m
φ

s+ ti
m ,β

)
ΞβJs+tG

)
,

where φS,T = φS,T (X̃(x)). By (3.4) and a limiting argument, we can prove the theorem.

2



24 IR divergence

4 Infrared divergence and absence of ground states

4.1 Abstract theory of the absence of ground states

In this section we assume Assumptions 2.1, 2.2 and 2.4. By the functional integral

representation obtained in Theorem 3.5, we can see that

(F, e−tHG) > 0

for any F ≥ 0 and G ≥ 0 but F 6= and G 6= 0. Thus e−tH is positivity improving.

Then whenever a ground state ϕg of H exits, ϕg > 0 by the Perron-Frobenius Theorem.

In particular the ground state is unique if it exists. Now we introduce a sequence

approaching to the ground state. Let 1 = 1Hp ⊗ 1L2(Q) and

ϕT
g = ‖e−TH1‖−1e−TH1, T > 0. (4.1)

Define

γ(T ) = (1, ϕT
g )2, T > 0. (4.2)

If H has a ground state, then ϕT
g converges to ϕg strongly as T →∞. We can have a

criteria on the existence and non-existence of the ground state.

Proposition 4.1 (1) When limT→∞ γ(T ) = a > 0, H has a ground state. (2) When

limT→∞ γ(T ) = 0, H has no ground state.

Note that

γ(T ) =
(1, e−TH1)

‖e−TH1‖2
.

Since φs(g) is a Gaussian random process, by means of the functional integral repre-

sentation (3.25), we can see that

(1, e−TH1) =

∫
dµp(x)Ex

[
e(α2/2)(

∫ T
0 φs(χ̃(Xs))ds,

∫ T
0 φt(χ̃(Xt))dt)

]

=

∫
dµp(x)Ex

[
e(α2/2)

∫ T
0 ds

∫ T
0 dtW (Xs,Xt,|s−t|)

]
,

where

W (X, Y, |t|) =

∫
χ(k)2

2ω(k)
Ψ(k, X)Ψ(k, Y )e−|t|ωdk. (4.3)

Note that ∫ T

0

ds

∫ T

0

dtW (Xs, Xt, |s− t|) > 0 (4.4)
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follows, since the left hand side is expressed as (
∫ T

0
φs(χ̃(Xs))ds,

∫ T

0
φt(χ̃(Xt))dt). While

‖e−TH1‖2 =

∫
dµp(x)Ex

[
e(α2/2)

∫ 2T
0 ds

∫ 2T
0 dtW (Xs,Xt,|s−t|)

]

=

∫
dµp(x)Ex

[
e(α2/2)

∫ T
−T ds

∫ T
−T dtW (Xs,Xt,|s−t|)

]

by the shift invariance of Xt. Then γ(T ) can be expressed as

γ(T ) =

(∫
dµp(x)Ex

[
e(α2/2)

∫ T
0 ds

∫ T
0 dtW (Xs,Xt,|s−t|)

])2

∫
dµp(x)Ex

[
e(α2/2)

∫ T
−T ds

∫ T
−T dtW (Xs,Xt,|s−t|)

] . (4.5)

Let µT be the probability measure on (R3 × Ω,B(R3) ×B) defined by for A × B ∈
B(R3)×B,

µT (A×B) =
1

ZT

∫
dµp(x)Ex

[
1A×Be(α2/2)

∫ T
−T ds

∫ T
−T dtW (Xs,Xt,|s−t|)

]
, (4.6)

where ZT denotes the normalizing constant such that µT becomes a probability mea-

sure.

Lemma 4.2 Integral
∫ 0

−T
ds

∫ T

0
dtW (Xs, Xt, |s− t|) is real and it follows that

γ(T ) ≤ EµT

[
e−α2

∫ 0
−T ds

∫ T
0 dtW (Xs,Xt,|s−t|)

]
(4.7)

Proof: The numerator of (4.5) can be estimated by the Schwartz inequality and the

time shift of X as
(∫

dµp(x)Ex
[
e(α2/2)

∫ T
0 ds

∫ T
0 dtW

])2

≤
∫

dµp(x)
(
Ex

[
e(α2/2)

∫ T
0 ds

∫ T
0 dtW

])(
Ex

[
e(α2/2)

∫ T
0 ds

∫ T
0 dtW

])

=

∫
dµp(x)

(
Ex

[
e(α2/2)

∫ T
0 ds

∫ T
0 dtW

])(
Ex

[
e(α2/2)

∫ 0
−T ds

∫ 0
−T dtW

])
.

Since Xt and Xs for s ≤ 0 ≤ t are independent, we have

=

∫
dµp(x)Ex

[
e(α2/2)(

∫ T
0 ds

∫ T
0 dtW+

∫ 0
−T ds

∫ 0
−T dtW)

]
.

Moreover from
∫ 0

−T

∫ 0

−T
+

∫ T

0

∫ T

0
=

∫ T

−T

∫ T

−T
−2

∫ 0

−T

∫ T

0
and (4.4), it follows that integral∫ 0

−T
ds

∫ T

0
dtW (Xs, Xt, |s− t|) is real and

=

∫
dµp(x)Ex

[
e−α2

∫ 0
−T ds

∫ T
0 dtW+(α2/2)

∫ T
−T ds

∫ T
−T dtW

]
.



26 IR divergence

Then the lemma follows. 2

We can compute W explicitly. Note that the operator e−|t|
√−∆+m2

has the integral

kernel

e−|t|
√−∆+m2

(X, Y ) = 2
( m

2π

)(d+1)/2 |t|
(|X − Y |2 + |t|2)(d+1)/4

K d+1
2

(m
√
|X − Y |2 + t2),

where Kν denotes the modified Bessel function of the third kind. In particular in the

case of d = 3 and m = 0 we have

e−|t|
√−∆(X,Y ) =

1

π2

|t|
(|X − Y |2 + |t|2)2

(d = 3).

Then

W (x, y, |T |) =
1

2

∫ ∞

T

d|t| (Ψxχ, e−|t|ωΨyχ
)

=
1

4π2

∫
dX

∫
dY

(Ψxχ)∨(X)(Ψyχ)∨(Y )

|X − Y |2 + |T |2 .

We are in the position to state the main theorem. This is an abstract version of

[LMS02].

Theorem 4.3 Let AT = R3 × {τ ∈ Ω||Xs(τ)| ≤ T λ, |s| ≤ T} for some λ such that

1

q + 1
< λ < 1, (4.8)

where q is the positive constant given in Assumption 2.1. Suppose that there exists

%(T ) independent of τ ∈ Ω such that

1AT

∫ 0

−T

ds

∫ T

0

dt

∫
dX

∫
dY

(ΨXsχ)∨(X)(ΨXtχ)∨(Y )

|X − Y |2 + |s− t|2 ≥ %(T ) (4.9)

and limT→∞ %(T ) = ∞. Then there is no ground states of H.

Proof: By Lemma 4.2 it is enough to show that

(1) lim
T→∞

EµT

[
1AT

e−α2
∫ 0
−T ds

∫ T
0 dtW (Xs,Xt,|s−t|)

]
= 0,

(2) lim
T→∞

EµT

[
1Ac

T
e−α2

∫ 0
−T ds

∫ T
0 dtW (Xs,Xt,|s−t|)

]
= 0.
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(1) follows from assumption (4.9). We shall prove (2). Note that

∫ 0

−T

ds

∫ T

0

dte−|t−s|ω =
1

ω2

(
e−Tω − 1

)2
(4.10)

and ∫ T

−T

ds

∫ T

−T

dte−|t−s|ω =
2

ω2

(
e−2Tω − 1 + 2Tω

)
. (4.11)

Then ∣∣∣∣
∫ 0

−T

ds

∫ T

0

dtW (Xs, Xt, |s− t|)
∣∣∣∣ ≤

T

2
‖χ/ω‖2

and

EµT

[
1Ac

T
e−α2

∫ 0
−T ds

∫ T
0 dtW (Xs,Xt,|s−t|)

]

≤ eα2(T/2)‖χ/ω‖2
∫

dµp(x)Ex
[
1Ac

T
e(α2/2)

∫ T
−T ds

∫ T
−T dtW

]

∫
dµp(x)Ex

[
e(α2/2)

∫ T
−T ds

∫ T
−T dtW

]

≤ eα2(T/2)‖χ/ω‖2

(∫
dµp(x)Ex

[
eα2

∫ T
−T ds

∫ T
−T dtW

])1/2

∫
dµp(x)Ex

[
e(α2/2)

∫ T
−T ds

∫ T
−T dtW

]
∫

dµp(x)Ex
[
1Ac

T

]
. (4.12)

Moreover by (4.11), there exists a constant δ > 0 such that

−Tδ‖χ/ω‖2 ≤
∫ T

−T

ds

∫ T

−T

dtW (Xs, Xt, |s− t|) ≤ Tδ‖χ/ω‖2. (4.13)

Then we have
(∫

dµp(x)Ex
[
eα2

∫ T
−T ds

∫ T
−T dtW (Xs,Xt,|s−t|)

])1/2

∫
dµp(x)Ex

[
e(α2/2)

∫ T
−T ds

∫ T
−T dtW (Xs,Xt,|s−t|)

] ≤ eα2δT‖χ/ω‖2 . (4.14)

The crucial part is to show that there exists an at most polynomially growth function

ξ(T ) such that ∫
dµp(x)Ex

[
1Ac

T

] ≤ ξ(T ) exp
(−cT λ(q+1)

)
. (4.15)

This is proven in Lemma 4.4 below. Combining (4.12), (4.14) and (4.15) we have

lim
T→∞

EµT
[1Ac

T
] ≤ lim

T→∞
ξ(T )e−cT λ(q+1)

eα2(δ+1/2)T‖χ/ω‖2 = 0, (4.16)

since 1
q+1

< λ < 1. Then (2) follows. 2

It remains to show (4.15).
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Lemma 4.4 (4.15) holds. Explicitly limT→∞ ξ(T )/T
1−2λ

2 < ∞.

Proof: Recall that the external potential is supposed to be V (x) > |x|2q for suffi-

ciently large |x|, and V+ ∈ L1
loc(R3) and V− ∈ Lp(R3) with p > 3/2. Then by [Car78],

the ground state ϕg of Hp exponentially decays. More explicitly there exist constants

C > 0 and δ > 0 such that

ϕp(x) ≤ Ce−δ|x|q+1

. (4.17)

We divide the left hand side of (4.15) as

∫

R3

Ex

[
sup
|s|<T λ

|Xs| > T λ

]
ϕp(x)2dx =

∫

|x|<T λ/2

+

∫

|x|≥T λ/2

= Q1 + Q2. (4.18)

Let Da(n) = {aj/2n|j = 0, 1, .., 2n} be the set of diadic points. By [KV86, Lemma 1.12]

it follows that

E0

[
sup

0≤s≤a,s∈Da(n)

|f(Xs)| > b

]
≤ 3

b

√
(f, f) + a(L̄

1/2
p f, L̄

1/2
p f) (4.19)

for f ∈ D(L̄
1/2
p ), where (f, g) = (f, g)L2(R3;ϕp(x)2dx). The right-hand side above is uni-

formly bounded with respect to n, and the indicator function 1{sup|s|<a,s∈Da(n) |f(|Xs|)|>b}
is monotonously increasing in n and Xt(ω) is continuous in t for each path ω. Thus by

the monotone convergence theorem, we have

lim
n→∞

E0

[
sup

0≤s≤a,s∈Da(n)

|f(Xs)| > b

]
= E0

[
lim

n→∞
sup

0≤s≤a,s∈Da(n)

|f(Xs)| > b

]

= E0

[
sup

0≤s≤a
|f(Xs)| > b

]
.

Hence

E0

[
sup
|s|<a

|f(Xs)| > b

]
≤ 2

3

b

√
(f, f) + a(L̄

1/2
p f, L̄

1/2
p f) (4.20)

follows. We apply (4.20) to (4.18). Suppose that f ∈ C∞(R3) and

f(x) =

{ |x|, |x| ≥ T λ,
0, |x| ≤ T λ − 1.

Moreover we assume that

e−(δ/2)|x|q+1

f 2, e−(δ/2)|x|q+1

∂µf · f, e−(δ/2)|x|q+1

∂2
µf · f ∈ L2(R3), µ = 1, 2, 3, (4.21)
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and the L2 norm of each terms in (4.21) has a upper bound independent of T . By

(4.20) for T λ + b > 0,

E0

[
sup
|s|<a

|f(Xs)| > T λ + b

]
= E0

[
sup
|s|<a

|Xs| > T λ + b

]

≤ 6

T λ + b

√
(f, f) + a(f, L̄pf). (4.22)

Let |x| < T λ/2. Thus we have

Ex

[
sup
|s|<T

|Xs| > T λ

]
= E0

[
sup
|s|<T

|Xs + x| > T λ

]

≤ E0

[
sup
|s|<T

|Xs| > T λ − |x|
]
≤ 6

T λ/2

√
(f, f) + T (f, L̄pf).

We estimate the right-hand side above. By (4.17) we have

(f, f) =

∫
f(x)2ϕp(x)2dx ≤ C2e−δT λ(q+1)

∫
f(x)2e−δ|x|q+1

dx := a1e
−δT λ(q+1)

. (4.23)

While

(f, L̄pf) = − inf σ(Lp)(f, f) +

∫
ϕp(x)2 · f(x)

1

ϕp(x)

(
−1

2
∆ + V (x)

)
ϕp(x)f(x)dx

= − inf σ(Lp)(f, f) +

∫
ϕp(x)2f(x)2V (x)dx− 1

2

∫
ϕp(x)f(x)∆(fϕp)(x).

Then the first term on the right-hand side above is
∫

ϕp(x)2f(x)2V (x)dx ≤ C2e−δT λ(q+1)

∫
e−δ|x|q+1

f(x)2|x|2qdx := a2e
−δT λ(q+1)

(4.24)

and the second term is
∫

ϕp(x)f(x)∆(fϕp)(x)dx

=

∫
ϕp(x) · (f(x)2∆ϕp(x) + 2f(x)∇ϕp(x) · ∇f(x) + ∆f(x) · f(x)ϕp(x)

)
︸ ︷︷ ︸

=G(x)

dx

≤ Ce−(δ/2)T λ(q+1)

∫
e−(δ/2)|x|q+1|G(x)|dx = a3e

−(δ/2)T λ(q+1)

. (4.25)

Hence

Q1 ≤ 12

T λ

√
|a1 − inf σ(Lp)|+ T (a2 + a3)e

−(δ/4)T λ(q+1)

. (4.26)
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Moreover

Q2 ≤ C2e−δT λ(q+1)

∫
e−δ|x|q+1

dx = a4e
−δT λ(q+1)

. (4.27)

(4.26) and (4.27) yield that

EµT

[
1Ac

T

] ≤ ξ(T )e−(δ/4)T λ(q+1)

, (4.28)

where ξ(T ) = 12
T λ

√|a1 − inf σ(Lp)|+ T (a2 + a3) + a4. This completes the proof. 2

4.2 Absence of ground state for short range potentials

In this subsection we give an example for a short range variable mass vm. We introduce

the assumption below:

Assumption 4.5 Let vm be of the form vm = κw with κ > 0, where w : R3 → [0,∞) is

bounded, locally Hölder continuous except at finite number of singularities. Moreover,

there exist positive constants C, R and β > 3 such that w(x) ≤ C〈x〉−β for |x| ≥ R,

where 〈x〉 =
√

1 + |x|2.

Assumption 4.5 yields that there exists a generalized eigenfunction Ψκ(k, x) satisfying

(−∆ + vm)Ψκ(k, x) = |k|2Ψκ(k, x) and the Lippman-Schwinger equation

Ψκ(k, x) = eikx − κ

4π

∫
ei|k||x−y|w(y)

|x− y| Ψκ(k, y)dy (4.29)

by [Ik60]. It can be proven that there exists no eigenvalue for −∆+κw. Thus, by [Ik60]

again, the generalized Fourier transformation F define by (2.9) with Ψκ is unitary on

L2(R3). Moreover, since w(x) = O(|x|−β) as |x| → ∞ by Assumption 4.5, we observe

that

sup
x,k
|Ψκ(k, x)| < ∞ (4.30)

uniformly for sufficiently small κ.

Lemma 4.6 Suppose Assumption 4.5. Then

(1) Ψκ(k, x) is continuous in k for each x;

(2) there exist positive constants κ0 > 0 and C0 > 0 such that, for any κ ≥ κ0,

sup
k∈R3

|eikx −Ψκ(k, x)| ≤ κC0〈x〉−1. (4.31)
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In particular vm satisfying Assumption 4.5 fulfills Assumption 2.2.

Proof: In general there exists a constant c such that
∫

Rn

1

|x− y|a〈y〉b dy ≤ c
1

〈x〉a ,

if 0 < a < n < b. Then by the assumption β > 3, we have
∫

R3

1

|x− y|〈y〉β dy ≤ c′
1

〈x〉
with some constant c′. Iterating (4.29), we have

eikx −Ψ(k, x) =
∞∑

n=1

( κ

4π

)n
∫
· · ·

∫
ei|k|∑n

j=1 |yj−yj−1| ∏n
j=1 w(yj)∏n

j=1 |yj − yj−1| dy1 · · · dyn (4.32)

with y0 = x. Note that
∫

w(y)

|x− y|dy ≤ sup
y∈R3

|w(y)〈y〉β|
∫

1

|x− y|〈y〉β dy ≤ C〈x〉−1

with some constant C. The right hand side of (4.32) absolutely converges for sufficiently

small κ > 0. Then for each x, Ψ(k, x) is continuous in k for sufficiently small κ. Then

(1) follows. By (4.32) it follows that

|Ψκ(k, x)− eikx| ≤
∞∑

n=1

(
κC

4π

)n

〈x〉−1 =
κC

4π − κC
〈x〉−1.

This completes (2). 2

Henceforth, we denote Ψκ simply by Ψ. We define WN by W with Ψ replaced by

eik·x, i.e.,

WN(x, y, |t|) =

∫
χ(k)2

2ω(k)
e−|t|ωe−ik·(x−y)dk. (4.33)

Then

WN(x, y, |t|) =
1

4π2

∫
dX

∫
dY

χ̌(X)χ̌(Y )

|(X − x)− (Y − y)|2 + |t|2 . (4.34)

Note that, if

∫
χ(k)2

ω(k)3
dk < ∞, then

0 ≤ sup
T

∫ 0

−T

ds

∫ T

0

dtWN(x, y, |s− t|) <
1

2

∫
χ(k)2

ω(k)3
dk

by (4.10). It is however not the case when

∫
χ(k)2

ω(k)3
dk = ∞. This proves the following:
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Theorem 4.7 Suppose Assumptions 2.1, 2.4 and 4.5. Assume κ ≤ κ0 and

1

q + 1
+ κC0(κC0 + 2) < 1, (4.35)

where κ0 and C0 are given in Lemma 4.6. Then H has no ground state.

Proof: Note that, by (4.35), one can take 0 < λ < 1 such that

1

q + 1
< λ < 1− κC0(κC0 + 2).

It is enough to show (4.9), namely there exists %(T ) such that

1AT

∫ 0

−T

ds

∫ T

0

dt

∫
dX

∫
dY

(ΨXsχ)∨(X)(ΨXtχ)∨(Y )

|X − Y |2 + |s− t|2 > %(T ) (4.36)

and %(T ) →∞ as T →∞. By (4.31) it follows that

sup
x,y,k

|Ψ(k, x)Ψ(k, u)− e−ikxeiky| ≤ κC0(κC0 + 2).

Then

W (Xs, Xt, |s− t|) ≥ WN − κC0(κC0 + 2)W0(|t− s|),
where

W0(|T |) =

∫
χ(k)2

2ω(k)
e−|T |ω(k)dk.

By [LMS02] on AT ,

∫ 0

−T

ds

∫ T

0

dtWN(Xs, Xt, |s− t|)

≥ 1

4π2

∫
dXdY χ̌(X)χ̌(Y ) log

(
8T 2λ + |X + Y |2 + T 2

8T 2λ + 2|X + Y |2
)

. (4.37)

Note that χ̌ ≥ 0. While
∫ 0

−T
ds

∫ T

0
dtW0(|t− s|) can be computed as

∫ 0

−T

ds

∫ T

0

dtW0(|t− s|)

=
1

4π2

∫
dX

∫
dY χ̌(X)χ̌(Y ) log

(
(|X − Y |2 + T 2)2

|X − Y |2(|X − Y |2 + 4T 2)

)

+
1

π2

∫
dX

∫
dY χ̌(X)χ̌(Y )

T

|X − Y |
(

arctan
2T

|X − Y | − arctan
T

|X − Y |
)

.
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The second term on the right hand side above is uniformly bounded by some constant

K with respect to T . Then

κC0(κC0 + 2)

∫ 0

T

ds

∫ T

0

dtW0(|t− s|)

≤ 1

4π2

∫
dX

∫
dY χ̌(X)χ̌(Y ) log

(
(|X − Y |2 + T 2)2

|X − Y |2(|X − Y |2 + 4T 2)

)κC0(κC0+2)

+ K.

(4.38)

By (4.37) and (4.38) we obtain

W ≥ 1

4π2

∫
dX

∫
dY χ̌(X)χ̌(Y ) log




8T 2λ+|X+Y |2+T 2

8T 2λ+2|X+Y |2(
(|X−Y |2+T 2)2

|X−Y |2(|X−Y |2+4T 2)

)κC0(κC0+2)


−κC0(κC0+2)K.

Then the right hand side above diverges, since λ+κC0(κC0+2) < 1. Then the theorem

follows. 2

5 The number of bosons in ground state

In this section we suppose Assumptions 2.1, 2.2 and 2.4, but we do not assume χ̌ ≥ 0.

Moreover we suppose the following assumption holds:

Assumption 5.1 Suppose that (1)
∫ χ(k)2

ω(k)3
dk < ∞ and (2) H has a ground state ϕg

such that ϕg > 0.

Under Assumption 5.1 it follows that ϕT
g → ϕg strongly as T → ∞. We have the

proposition below.

Proposition 5.2 It follows that

(ϕT
g , e−βNϕT

g ) = EµT

[
e−α2(1−e−β)

∫ 0
−T ds

∫ T
0 dtW (Xs,Xt,|s−t|)

]
. (5.1)

Proof: By Theorem 3.6 we have

(ϕT
g , e−βNϕT

g ) =
1

ZT

∫
dµp(x)Ex

[
e(α2/2)‖∫ 0

−T φr,0(χ̃(Xr))dr+
∫ T
0 φr,β(χ̃(Xr))dr‖2]

.

Since

(φs,0(f), φt,β(g)) =
1

2
e−β

∫
e−|t−s|ωf̂(k)ĝ(k)dk,
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we have
∥∥∥∥
∫ 0

−T

φr,0(χ̃(Xr))dr +

∫ T

0

φr,β(χ̃(Xr))dr

∥∥∥∥
2

=

∫ 0

−T

ds

∫ 0

−T

dtW +

∫ T

0

ds

∫ T

0

dtW + e−β

(∫ 0

−T

ds

∫ T

0

dtW +

∫ T

0

ds

∫ 0

−T

dtW

)

=

∫ T

−T

ds

∫ T

−T

dtW + 2(e−β − 1)

∫ 0

−T

ds

∫ T

0

dtW.

Then the proposition follows. 2

Note that
∫ 0

−T

ds

∫ T

0

dtW (Xs, Xt, |s− t|) ≤ 1

2

∫
χ(k)2

ω(k)3
dk < ∞. (5.2)

Let g(β) = (ϕT
g , e−βNϕT

g ). Thus we have a lemma below:

Lemma 5.3 For each 0 < T . (1) g can be analytically continued to the hole complex

plane C; (2) ϕT
g ∈ D(e+βN) for all β ∈ C; (3) (5.1) holds true for all β ∈ C.

Proof: The proof is parallel with [H03]. Let Π+ = {z ∈ C|<z > 0} and Π− = C\Π+.

Set

g(β) = EµT

[
e−α2(1−e−β)

∫ 0
−T ds

∫ T
0 dtW (Xs,Xt,|s−t|)

]
.

It is easily seen that g(β) can be analytically continued into the hole complex plane C
in β. We denote its analytic continuation by g̃. Let β0 ∈ Π+ be such that <β0 = ε

with some ε > 0. Fix an arbitrary R such that R > ε. We see that

g̃(β) =
∞∑

n=0

(β − β0)
nbn(β0) (5.3)

for β ∈ U := {z ∈ C | |β0 − z| < R}, and (5.3) absolutely converges. Let ν(dρ) denote

the spectral projection of N with respect to ϕT
g . Note that g(β) is analytic in the

interior of Π+. Then

g(β) =

∫ ∞

0

e−βρν(dρ) =
∞∑

n=0

(β − β0)
n 1

n!

∫ ∞

0

(−ρ)ne−β0ρν(dρ) (5.4)

for β so that |β − β0| < ε. Since g(β) = g̃(β) for β such that |β − β0| < ε, we see

together with (5.4) that

bn(β0) =
1

n!

∫ ∞

0

(−ρ)ne−β0ρν(dρ). (5.5)
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Substituting (5.5) into the expansion of g̃ in (5.3), we have

g̃(β) =
∞∑

n=0

(β0 − β)n 1

n!

∫ ∞

0

(−ρ)ne−β0ρν(dρ) (5.6)

for β ∈ U . In particular the right-hand side of (5.6) absolutely converges for β ∈ U ,

and U ∩Π− 6= ∅ by R > ε, and, for β ∈ R∩U ∩Π−, by Fatou’s lemma we have for any

M > 0,

∫ M

0

e−βρν(dρ) ≤
∞∑

n=0

|β0 − β|n 1

n!

∫ ∞

0

ρne−β0ρν(dρ) < ∞.

Thus
∫∞

0
e−βρν(dρ) < ∞ follows for β ∈ R∩U∩Π−. This implies that ϕg ∈ D(e−(β/2)N)

and (5.1) holds for β ∈ R∩U ∩Π−. Since R is an arbitrary large number, we get (5.1)

for all β ∈ C. 2

By this proposition the moment (ϕg, N
mϕg) can be derived by

(ϕT
g , NmϕT

g ) = (−1)m dm

dβm
(ϕT

g , e−βNϕT
g )dβ=0. (5.7)

Lemma 5.4 (Pull through formula) It follows that

(ϕg, Nϕg) =
α2

2

∫
dk

χ(k)2

ω(k)

(
Ψ(k, ·)ϕg, (H + ω(k))−2Ψ(k, ·)ϕg

)
, (5.8)

where H = H − inf σ(H).

Proof: From

(ϕT
g , NϕT

g ) = EµT

[
α2

∫ 0

−T

ds

∫ T

0

dtW (Xs, Xt, |s− t|)
]

(5.9)

it follows that

(ϕT
g , NϕT

g ) =
α2

2

∫
dk

χ(k)2

ω(k)

∫ 0

−T

ds

∫ T

0

dte−|t−s|ωEµT

[
Ψ(k, Xs)Ψ(k, Xt)

]
.

Generally it can be obtained that for bounded f and g,

EµT
[f(Xs)g(Xt)] = (e−sHϕT

g , fe−(t−s)Hge+tHϕT
g ), t ≥ s. (5.10)

This can be proven directly by the Trotter product formula. Then since

EµT

[
Ψ(k, Xs)Ψ(k, Xt)

]
=

(
Ψ(k, ·)e−sHϕT

g , e−(t−s)HΨ(k, ·)e+tHϕT
g

)
, (5.11)
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we have

(ϕT
g , NϕT

g )

=
α2

2

∫
χ(k)2

ω(k)

∫ 0

−T

ds

∫ T

0

dte−|t−s|ω (
Ψ(k, ·)e−sHϕT

g , e−(t−s)HΨ(k, ·)e+tHϕT
g

)
.

Since (5.9) yields that

‖N1/2ϕT
g ‖ ≤

α2

2

∫
χ(k)2

ω(k)3
dk < ∞,

there exists a subsequence T ′ such that

s− lim
T ′→∞

N1/2ϕT ′
g = N1/2ϕg. (5.12)

Let us reset T for T ′. By (5.11)

| (Ψ(k, ·)e−sHϕT
g , e−(t−s)HΨ(k, ·)e+tHϕT

g

) | ≤ sup
k,x
|Ψ(k, x)|2 < ∞

and

lim
T→∞

(
Ψ(k, ·)e−sHϕT

g , e−(t−s)HΨ(k, ·)e+tHϕT
g

)
=

(
Ψ(k, ·)ϕg, e

−(t−s)HΨ(k, ·)ϕg

)
.

By the dominated convergence theorem we have

lim
N→∞

∫
dk

χ(k)2

2ω(k)

∫ 0

−T

ds

∫ T

0

dte−|t−s|ω (
Ψ(k, ·)e−sHϕT

g , e−(t−s)HΨ(k, ·)e+tHϕT
g

)

=

∫
dk

χ(k)2

2ω(k)

∫ 0

−∞
ds

∫ ∞

0

dte−|t−s|ω
(
Ψ(k, ·)ϕg, e

−(t−s)HΨ(k, ·)ϕg

)
. (5.13)

The right hand side above is identical with

∫
dk

χ(k)2

2ω(k)

(
Ψ(k, ·)ϕg, (H + ω(k))−2Ψ(k, ·)ϕg

)
.

By (5.12) and (5.13) the lemma follows. 2

Theorem 5.5 Set R =
∫ χ(k)2

ω(k)3
dk. Suppose that (Ψ(0, ·)ϕg, ϕg) 6= 0. Then

lim
R→∞

(ϕg, Nϕg) = ∞. (5.14)
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Example 5.6 Assume that vm = κw satisfies Assumption 4.5. Then |1 − Ψ(0, x)| ≤
κC0 holds by Lemma 4.6. It yields that

|(Ψ(0, ·)ϕg, ϕg)− 1| ≤ κC0.

Thus (Ψ(0, ·)ϕg, ϕg) 6= 0 holds for sufficiently small κ.

Proof of Theorem 5.5

By Lemma 5.4 we have

(ϕg, Nϕg) =
α2

2

∫
dk

χ(k)2

ω(k)3

(
Ψ(k, ·)ϕg, ω(k)2(H + ω(k))−2Ψ(k, ·)ϕg

)
. (5.15)

We can see that

lim
|k|→0

∣∣(Ψ(k, ·)ϕg, ω(k)2(H + ω(k))−2Ψ(k, ·)ϕg)

− (Ψ(0, ·)ϕg, ω(k)2(H + ω(k))−2Ψ(0, ·)ϕg)
∣∣ = 0.

Let Pg (resp. P⊥
g ) denote the projection to the ground state ker H̄ (resp. the orthogonal

complement (ker H̄)⊥ of ker H̄). We have

(Ψ(0, ·)ϕg, ω(k)2(H + ω(k))−2Ψ(0, ·)ϕg)

= (Ψ(0, ·)ϕg, ω(k)2(H + ω(k))−2(Pg + P⊥
g )Ψ(0, ·)ϕg)

Then

lim
|k|→0

(Ψ(0, ·)ϕg, ω(k)2(H + ω(k))−2PgΨ(0, ·)ϕg) = |(ϕg, Ψ(0, ·)ϕg)|2

and

lim
|k|→0

(Ψ(0, ·)ϕg, ω(k)2(H + ω(k))−2P⊥
g Ψ(0, ·)ϕg) = 0.

Then we conclude that

lim
|k|→0

(Ψ(k, ·)ϕg, ω(k)2(H + ω(k))−2Ψ(k, ·)ϕg) = |(Ψ(0, ·)ϕg, ϕg)|2. (5.16)

Set A = |(Ψ(0, ·)ϕg, ϕg)|2 > 0. Then

A− δ < (Ψ(k, ·)ϕg, ω(k)2(H + ω(k))−2Ψ(k, ·)ϕg)

for |k| < ε with some sufficiently small ε > 0. Then we have the bound

(A− δ)
α2

2

∫

|k|<ε

χ(k)2

ω(k)3
dk +

α2

2

∫

|k|≥ε

χ(k)2

ω(k)3
dk ≤ (ϕg, Nϕg) (5.17)
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with some positive b. Thus as R → ∞, (ϕg, Nϕg) goes to infinity. Then the proof is

complete. 2
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[LMS02] J. Lőrinczi, R. A. Minlos and H. Spohn, The infrared behaviour in Nelson’s model of a
quantum particle coupled to a massless scalar field, Ann. Henri Poincaré 3 (2002), 1–28.
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