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ABSTRACT. We consider a Hamiltonian with cutoffs describing the weak decay
of spin 1 massive bosons into the full family of leptons. The Hamiltonian is
a self-adjoint operator in an appropriate Fock space with a unique ground
state. We prove a Mourre estimate and a limiting absorption principle above
the ground state energy and below the first threshold for a sufficiently small
coupling constant. As a corollary, we prove absence of eigenvalues and absolute
continuity of the energy spectrum in the same spectral interval.

1. INTRODUCTION

In this article, we consider a mathematical model of the weak interactions as
patterned according to the Standard Model in Quantum Field Theory (see [18, 31]).
We choose the example of the weak decay of the intermediate vector bosons W+
into the full family of leptons.

The mathematical framework involves fermionic Fock spaces for the leptons and
bosonic Fock spaces for the vector bosons. The interaction is described in terms
of annihilation and creation operators together with kernels which are square inte-
grable with respect to momenta. The total Hamiltonian, which is the sum of the
free energy of the particles and antiparticles and of the interaction, is a self-adjoint
operator in the Fock space for the leptons and the vector bosons and it has an
unique ground state in the Fock space for a sufficiently small coupling constant.

In this paper we establish a Mourre estimate and a limiting absorption principle
for any spectral interval above the energy of the ground state and below the mass
of the electron for a small coupling constant.

Our study of the spectral analysis of the total Hamiltonian is based on the
conjugate operator method with a self-adjoint conjugate operator. The methods
used in this article are taken largely from [13] and [4] and are based on [3] and [25].

For other applications of the conjugate operator method see [1, 5, 6, 8, 9, 10, 11,
14, 15, 17, 21, 26].

In a companion paper we will consider ultraviolet cutoffs that are not sharp
and we will study the spectrum of the total Hamiltonian between two consecutive
thresholds.

For related results about models in Quantum Field Theory see [7] and [28] in the
case of the Quantum Electrodynamics and [2] in the case of the weak interactions.

The paper is organized as follows. In section 2, we give a precise definition of
the model we consider. In section 3, we state our main results and in the following
sections, together with the appendix, detailed proofs of the results are given.
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2. THE MODEL

The weak decay of the intermediate bosons W and W™~ involves the full family
of leptons together with the bosons themselves, according to the Standard Model
(see [18, Formula (4.139)] and [31]).

The full family of leptons involves the electron e~ and the positron et, together
with the associated neutrino v, and antineutrino 7., the muons p~ and u+ together
with the associated neutrino v,, and antineutrino 7, and the tau leptons 7~ and
7T together with the associated neutrino v, and antineutrino 7.

It follows from the Standard Model that neutrinos and antineutrinos are mass-
less particles. Neutrinos are left-handed, i.e., neutrinos have helicity —1/2 and
antineutrinos are right handed, i.e., antineutrinos have helicity +1/2.

In what follows, the mathematical model for the weak decay of the vector bosons
W™ and W~ that we propose is based on the Standard Model, but we adopt a
slightly more general point of view because we suppose that neutrinos and an-
tineutrinos are both massless particles with helicity +1/2. We recover the physical
situation as a particular case. We could also consider a model with massive neutri-
nos and antineutrinos built upon the Standard Model with neutrino mixing [27].

Let us sketch how we define a mathematical model for the weak decay of the
vector bosons W¥ into the full family of leptons.

The energy of the free leptons and bosons is a self-adjoint operator in the cor-
responding Fock space (see below) and the main problem is associated with the
interaction between the bosons and the leptons. Let us consider only the inter-
action between the bosons and the electrons, the positrons and the corresponding
neutrinos and antineutrinos. Other cases are strictly similar. In the Schrédinger
representation the interaction is given by (see [18, p159, (4.139)] and [31, p308,
(21.3.20)))

(2.1)
= / BT, ()7 (1 — 75) Ty, (2)Wi(z) + / BT, (2)r (1 — ) Vo) Wi(2)* |

where y*, 1 = 0,1,2,3 and 75 are the Dirac matrices and ¥ (z) and ¥ (z) are the
Dirac fields for e_, e, v, and 7.
We have

\I/e(x) = (%)% Z /dsp (be,+(p, S)U(pas) etPT | b: 7(p’ S)Me—ip.w) 7
s::ﬁ:%

VPo ’ VPo
V() = Te(x)'” .

Here po = (|p|?> + m2)2 where m, > 0 is the mass of the electron and u(p, s) and
v(p, s) are the normalized solutions to the Dirac equation (see [18, Appendix]).

The operators be +(p, s) and b7 (p, s) (respectively be —(p,s) and b7 _(p, s)) are
the annihilation and creation operators for the electrons (respectively the positrons)
satisfying the anticommutation relations (see below).



MATHEMATICAL MODEL OF THE WEAK INTERACTIONS 3

Similarly we define ¥, (z) and ¥, _(x) by substituting the operators c,, +(p, s)
and ¢j_ 4 (p,s) for be +(p,s) and b} 4 (p,s) with po = |p|. The operators c,, +(p, s)
and cj_(p,s) (respectively ¢, _(p,s) and ¢ _(p,s)) are the annihilation and
creation operators for the neutrinos associated with the electrons (respectively the
antineutrinos).

For the W, fields we have (see [30, §5.3]).

3 d3k )
Wy(z) = ()2 Z / (€, Nay (k, e + e (k, Na™ (k, \)e ™) .
—1,0,1 2k

Here ko = (|k|*> + m%,v)f where myy > 0 is the mass of the bosons W*. W is the
antiparticule of W~. The operators a4 (k,\) and a’ (k,\) (respectively a_(k,\)
and a* (k,\)) are the annihilation and creation operators for the bosons W~ (re-
spectively W) satisfying the canonical commutation relations.

The interaction (2.1) is a formal operator and, in order to get a well defined
operator in the Fock space, one way is to adapt what Glimm and Jaffe have done in
the case of the Yukawa Hamiltonian (see [16]). For that sake, we have to introduce
a spatial cutoff g(z) such that g € L'(R?), together with momentum cutoffs x(p)
and p(k) for the Dirac fields and the W, fields respectively.

Thus when one develops the interaction I with respect to products of creation
and annihilation operators, one gets a finite sum of terms associated with kernels
of the form

x(p1) x(p2) p(k) §(p1 +p2 — k) ,

where § is the Fourier transform of g. These kernels are square integrable.

In what follows, we consider a model involving terms of the above form but with
more general square integrable kernels.

We follow the convention described in [30, section 4.1] that we quote: “The
state-vector will be taken to be symmetric under interchange of any bosons with
each other, or any bosons with any fermions, and antisymmetric with respect to
interchange of any two fermions with each other, in all cases, wether the parti-
cles are of the same species or not”. Thus, as it follows from section 4.2 of [30],
fermionic creation and annihilation operators of different species of leptons will
always anticommute.

Concerning our notations, from now on, ¢ € {1,2,3} denotes each species of
leptons. ¢ = 1 denotes the electron e~ the positron et and the neutrinos v, 7,.
¢ = 2 denotes the muons p~, pt and the neutrinos v, and 7, and ¢ = 3 denotes
the tau-leptons and the neutrinos v, and 7,.

Let & = (p1, s1) be the quantum variables of a massive lepton, where p; € R3
and s; € {—1/2, 1/2} is the spin polarization of particles and antiparticles. Let
& = (p2, s2) be the quantum variables of a massless lepton where p, € R3 and
so € {=1/2, 1/2} is the helicity of particles and antiparticles and, finally, let
& = (k, M) be the quantum variables of the spin 1 bosons WT and W~ where
k € R3 and A € {—1, 0, 1} is the polarization of the vector bosons (see [30,
section 5]). We set X1 = R®x {—1/2, 1/2} for the leptons and ¥o = R3x{—1, 0, 1}
for the bosons. Thus L?(X;) is the Hilbert space of each lepton and L?(X2) is the
Hilbert space of each boson. The scalar product in L?(X;), j = 1,2 is defined by

(22 (9= [ T@ateae, j=1.2.
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Here

/Zldf— Z /dp and /Eng_ Z /dk, (p,k € R?).

s=+3%,—% A=0,1,—

The Hilbert space for the weak decay of the vector bosons W+ and W~ is the
Fock space for leptons and bosons that we now describe.

Let & be any separable Hilbert space. Let @& (resp. ®76) denote the anti-
symmetric (resp. symmetric) n-th tensor power of &. The fermionic (resp. bosonic)
Fock space over &, denoted by F,(6) (resp. Fs(6)), is the direct sum

(2.3) 5.6) =P RS (resp. 5.(6) =P K S) .
n=0 a n=0 s
where ®6 = ®6 = C. The state Q = (1,0,0,...,0,...) denotes the vacuum
state in §,(6) and in F5(6).
For every /¢, §, is the fermionic Fock space for the corresponding species of
leptons including the massive particle and antiparticle together with the associated
neutrino and antineutrino, i.e.,

4
(24) §e=Q)Ba(L* (1) €=1,23.
‘We have

(2.5) 5= @ Sgn,tﬁﬂ‘zfz) 7

20>0,30>0,7¢>0,7 >0

with

(26) F" " = (@EIA(E) @ (S LA(51) ® (S L (1) @ (9 L (21) -
Here g¢ (resp. @¢) is the number of massive particle (resp. antiparticles) and 7,
(resp. 7¢) is the number of neutrinos (resp. antineutrinos). The vector €y is the

associated vacuum state. The fermionic Fock space denoted by § for the leptons
is then

(2.7) 3= @018,

and Qf = ®§’Zlﬂg is the vacuum state.
The bosonic Fock space for the vector bosons W+ and W™, denoted by Fw, is
then

(2.8) Fw =Fs(LP(22)) @ Fs(LP(S2)) = Fs(L*(X2) @ L*(22)) -
We have
sw= P 3.
t>0,t>0

where g%’ﬂ = (®LL%(22)) ® (®LL2(2)). Here t (vesp. t) is the number of bosons
W= (resp. WT). The vector Qy is the corresponding vacuum.

The Fock space for the weak decay of the vector bosons W and W~, denoted
by §, is thus

§=3L®%w

and Q = Qr ® Oy is the vacuum state.
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For every ¢ € {1,2,3} let D, denote the set of smooth vectors 1y € F, for which
wé‘“’q’f T has a compact support and wtf,‘“’qz TeoTe)

(qlv QZvrlvf£)~ Let

= 0 for all but finitely many

—3
2=, O

Here & is the algebraic tensor product.

Let Dy denote the set of smooth vectors ¢ € Fy for which ¢(-9) has a compact
support and ¢(t?) = 0 for all but finitely many (¢, 7).

Let

D=D.2Dw .

The set © is dense in §.

Let Ay be a self-adjoint operator in §, such that ®, is a core for Ay. Its extension
to § 1, is, by definition, the closure in §y, of the operator A; ® 15 ® 13 with domain
® 1, when £ = 1, of the operator 1; ® Ay ® 13 with domain ®; when ¢ = 2, and of
the operator 1; ® 15 ® A3 with domain ©;, when ¢ = 3. Here 1; is the operator
identity on §y.

The extension of A, to §r, is a self-adjoint operator for which @, is a core and
it can be extended to §. The extension of Ay to § is, by definition, the closure in
§ of the operator Ay @ 1y with domain ©, where A, is the extension of A, to .
The extension of Ay to § is a self-adjoint operator for which ® is a core.

Let B be a self-adjoint operator in §yw for which ®yy is a core. The extension
of the self-adjoint operator A; ® B is, by definition, the closure in § of the operator
A1 ® 15 ® 13 ® B with domain ® when ¢ = 1, of the operator 1; ® As ® 13 ® B
with domain ® when ¢ = 2, and of the operator 1; ® 15 ® A3 ® B with domain ©
when ¢ = 3. The extension of Ay ® B to § is a self-adjoint operator for which @ is
a core.

We now define the creation and annihilation operators. For each ¢ = 1,2, 3,
b,e(§1) (resp. by . (£1)) is the annihilation (resp. creation) operator for the corre-
sponding species of massive particle when ¢ = + and for the corresponding species
of massive antiparticle when ¢ = —. Similarly, for each ¢ = 1,2,3, ¢/ (£2) (resp.
cze(ég)) is the annihilation (resp. creation) operator for the corresponding species
of neutrino when ¢ = + and for the corresponding species of antineutrino when
e = —. The operator a.(£3) (resp. a}(&3)) is the annihilation (resp. creation)
operator for the boson W~ when e = + and for the boson W when € = —.

Let ¥ € © be such that

U= (p@ ,
(v9),
with Q = ((qea qe, 7’677:@)[:1,2737 (taa)a and

(@) — (@?:I\I;(qz,lie,rzﬂ)) ® (p(t,ﬂ ,

where (qe, Go, 70,70, t,t) € N°. Here, (\I!(q’f"ﬁ’”f’f))q@qu@oﬂzohzo € Dy, and
(e®)150.£50 € Dw.
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Let
Qe+ = ((QZU(?@',T%W) v<ts (@ +1,qe,me,70), (Qrs Qery ey Tor ) o>, (t,f)) )
Q- = ((Qe/,(je/,w,fz/)é 1<05 (qe, @e + 1,70, 70), (qers QorsTers Ter ) o>t (t,f)) )
Qe y = ((Q%C]zure',ﬂ')e 1<ty (e, Ges e + 1,70), (qors Gersmer Ter ) (t,f)) ;
Q- = ((qy,(ief,?"zu?’ef) o<ty (Qe, oo, Te + 1), (qers Goryror T ) o>, (t,f)) )
and
Qb+ = ((Qe,ée,re,fe)e:1,2,37 (t+ 1@) ;
Qp,— = ((Qe,(ie?w,fz)zsz,& (t,t+ 1)) .
We define

(b ()T D €D €D glan),
= Va1l (- q[/—HM\IlQ“r( 51751 ) 1 ,..., Ym;.)
bV 00

= @+ L(~1) "My (~1)2 @) (g eV e el®) )

(o ()W) DV e el )
= Ve 1y (1)l tretiog@e (g, D e el )
(co—(&)W) D (5 eV e, el )
Fo 1 (=1)"Mpq (— 1)t F @t tiog@uo)( gy o) ¢ g™y
and
(ay (&))@ (. €V fs§2>,...,§§”; )
= VE+10@0) (g, 680 ey ey
(a—(&) D) D (e, e, el )
= VI 10 @) (g eV 62y Dy

As usual, by (&) (resp. ¢ (€2)) is the formal adjoint of by (1) (vesp. cre(§2))-
For example, we have

(b7 (E0)W) @) (g D) glor) gty

1
_ H(—l)q""'q”'
vVae+1 .25
qe+1

ST (=) - €)@ (e e, el O gl )

i=1
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where 7 denotes that the i-th variable has to be omitted, and §(& — gi)) =
S, 0 0(p1— pgl)). The operator a*(€3) is the formal adjoint of a(¢3) and we have
1

* 1) (2 1
(0% (€8) W) @0 (el e el )
t+1

1 ; —
\/tTZ 53—5( )\1/(@)( ;%1),.__75;))...7§§t+1);.)

where §(&5 — £57) = 65,0 0(k — k).
The following canonical anticommutation and commutation relations hold.
{be,e(€1), b o (€1)} = duerdeerd(éa — €1)
{eee(€2), CZ’ (52)} = ppbeer 0 (€2 — fé) )
[ac(&3), % (€3)] = deer0 (&3 — &3)
{be,e(&1),ber,e (1 )} = {cee(§2) cre(€3)} =0,
[ac(&3), ae (€3)]
{be,c(&1), corer (52)} ={be,c(&1),cp e (€2)} =0,
[be,e(€1), aer(§3)] = [be,e(&1), agi (€3)] = [ee,e(§2), aer (&3)] = [cre(§2), ag (§3)] =

Here, {b,b'} = bb' +b'b, [a,d'] = aad’ — d'a.
We recall that the following operators, with ¢ € L?(3;),

bre() = / b (P(E)AE,  cr(i) = / 0. (E)p(E)dE |
b (0) = / by (E)p(©)de, ¢ (p) = / ¢t (E)p(€)de

are bounded operators in § such that

(2.9) 15 (o)l = lIch (@)l = eIz

where b¥ (resp. cf) is b (resp. ¢) or b* (resp. c*).
The operators bg (y) and cﬁ () satisfy similar anticommutaion relations (see

e.g. [29]).
The free Hamiltonian Hj is given by

Ho = HY + H® + HO

3
Z_Z / wi (€0)b5 (E1)bee(€1)dEr + > / P (&2)c (E2)ere(€2)dE

(=1 e=%

/ ®)(&3)ar(€3)ac(€s)dEs |

where
wV(E) = (Ipu2 + m2)E,  with 0 < my < my < my
wP (&) = |pal |
B (es) = (k|2 +mby)?

where myy is the mass of the bosons W+ and W~ such that my > ms.
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The spectrum of Hy is [0, co) and 0 is a simple eigenvalue with Q as eigenvector.
The set of thresholds of Hy, denoted by T, is given by

T={pmi+qgmo+rms+smw;(p ¢r s)ENandp+qg+r+s>1},

and each set [t,00), t € T, is a branch of absolutely continuous spectrum for Hy.
The interaction, denoted by Hj, is given by

2
(2.10) Hy =Y H",
where

H{Y ZZ / GYL) (61,62, €300 (61)€ o (€2)ac(£5)dE1dEadEs

(2.11) e
B / G (€1, 62, €3)a7 (€3)buc (E1)ct.0 (€)1 dEnds |
(=1 e#¢€’
Z o (61,60, )6 (61)¢] o (€2)at (€3)dE1déadEs
(2.12) -

- Z > / G (&1, €2, €3)bp.c(€1)cper (€2)ac (£3)AE1 AErdEs .
=1 e#e’
The kernels GE, 6)6 (4. .), @« =1,2 are supposed to be functions.

The total Hamiltonian is then
(213) H:HO +gHIa g>0a

where g is a coupling constant.

The operator H;l) describes the decay of the bosons W™ and W™ into leptons,
and HI(2) is the corresponding term for the vacuum polarization. Because of H}z)
the bare vacuum will not be an eigenvector of the total Hamiltonian for every g > 0
as we expect from the physics.

Every kernel Gy (&1,€2,&3), computed in theoretical physics, contains a J-
distribution because of the conservation of the momentum (see [18] [30, section 4.4]).
In what follows, we approximate the singular kernels by square integrable functions.

Thus, from now on, the kernels G\

Ve Are supposed to satisfy the following
hypothesis .

Hypothesis 2.1. Fora=1,2,{=1,2,3, ¢, =+, we assume

(214) Ze €’ (€1a€2,£3) € L (El X E1 X 22) .

Remark 2.2. A similar model can be written down for the weak decay of pions m~
and Tt (see [18, section 6.2]).

Remark 2.3. The total Hamiltonian is more general than the one involved in the
theory of weak interactions because, in the Standard Model, neutrinos have helicity
—1/2 and antineutrinos have helicity 1/2.
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In the physical case, the Fock space, denoted by §', is isomorphic to §; @ Fw,

with
3
3. =30,
/=1
and
31 = (®2L%(%1)) ® (92L*(R?)) .

The free Hamiltonian, now denoted by H{, is then given by

3
(I)ZZZ/wz (£1)07 (&1)be e (€1)dEr +ZZ/ p2lc; (p2)ce.e(p2)dp2
t=1e= (=1e=%
+ Z /w(S) (€3)ac(€s)ac(€s)dss
e=+

and the interaction, now denoted by Hf, is the one obtained from H by supposing

that G (&1, (pa, 52),&3) = 0 if 59 = e%. The total Hamiltonian, denoted by H', is

then given by H' = H{ + g H;. The results obtained in this paper for H hold true
for H' with obvious modifications.

Under Hypothesis 2.1 a well defined operator on ® corresponds to the formal
interaction Hy as it follows.
The formal operator

/ G (61, 60, 63)07 . (61)65 o (€2)ac(€3)dE1AExdEy

is defined as a quadratic form on (D, @ D) X (Dy @ Dw) as

/ (oo (E)bee(E0), G ae(E5)0)d6rdEades

where ¥, ¢ € Dy Q@ Dyy.
By mimicking the proof of [24, Theorem X.44], we get a closed operator, denoted

by Hj Z) c.cr» associated with the quadratic form such that it is the unique operator

in §¢ ® Fw such that D, @ Dy C D(H§e)e ) is a core for HI( 26 - and

e T /Gﬁee 517627g3)bze(£1)cze’(62)a6(€3)d€1d£2d£3

as quadratic forms on (D, @ Dw) X (D¢ ® Dw).
The formal operator

_/ eee (&1,62,83)a; (€3)br,c(§1)ce e (€2)dE1dEdEs

is similarly associated with (nglé)6 o) and

(H{) o) == / G (61,62, €3)a% (3)bre(€)ce.o (€2)dErdEndEs

as quadratic forms on (D, @Dy ) X (D@D ). Moreover, D, @Dy C D((H}}Z“/)*)

19 (1) *
is a core for (Hy ;. /)"
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Again, there exists two closed operators HI( tz)e - and (Hﬁ)6 ~)* such that D, ®
Dy C D(Hﬁ cer) De®@Dw C D((H}Q) )*) and Dy ® Dy is a core for H}Q)

£e,e’ L,e€
and (H 122 c.r)” and such that
H) o = / G (61,60, €067 (61)6f oo (€2)al (€5)AE1dExdEs

(H§2z eer) /Ge e (€1,62,83)be (1) ce,er (€2)ac(§3)dE1dE2dEs
as quadratic forms on (D; @ Dw) X (D @ D).
We shall still denote H§ z)e 6, and ( 1(025,4)* (e = 1,2) their extensions to F.
The set ®© is then a core for HM’E,G, and (Hﬂ)’“z)*

Thus
Hetrg YN S, (0, )

a=1,2 (=1 e£¢’
is a symmetric operator defined on ®.
We now want to prove that H is essentially self-adjoint on ® by showing that
HI(?Z)@E, and (H}%{e,e/)* are relatively Hy-bounded.
Once again, as above for almost every &3 € Yo, there exists closed operators in
51, denoted by B z e (53) and (BZE’O;?E, (&3))* such that

BY (&) = / G (1, 2, €a)br, (1)t (62)dErdEs

(B éle)s (&))" */ Zee (&15€2,83)b7 ((§1)cp o (€2)dErdEs
B (&) = / O (&1, 60, E3)b7.0(€1)¢F.o(€2)0E1dEs |
(B ()" = — / G (1,62, 63)b.c(E1)coe (€2)dE1dE

as quadratic forms on D, X @z
We have that D, C D( eee /(&3)) (resp. @, C D((B(O‘) (&3))*) is a core for
) an

le,e’
ng’;?e, (&3) (resp. for (Bg?e (£3))*). We still denote by B“E (&) (B}?E (&))"

their extensions to §r.
It then follows that the operator H; with domain ® is symmetric and can be
written in the following form

Z ZZ Ifee YME),E,E’)*)

a=1,2 (=1 e#¢€’

Z ZZ/ zeE (&) ®@al(&s d§3+z ZZ/BXE ) © ac()des .

a=1,2 {=1 e#¢€’ a=1,2 f=1 e#€’

Let N, denote the operator number of massive leptons ¢ in §y, i.e.,
(215) Ne= ¥ [ bt

The operator Ny is a positive self-adjoint operator in §,. We still denote by Ny its
extension to §r. The set Dy, is a core for Ny.
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‘We then have

Proposition 2.4. For a.e. & € D, D(B{",(&)), D(B{..(€))*) D D(Np),
and for ® € D(N}?) C §1, we have

1
(2.16) 1B (€)@ l5, < NG 0 (s €82, xm IN2 @5,
1
(2.17) I(BY (€))7 @lls, < NG (s €)lli2mixmn INZ D, -
Proof. The estimates (2.16) and (2.17) are examples of N, estimates (see [16]). We
give a proof for sake of completeness. We only consider B (1 ) . The other cases

are quite similar.
Let ® = (@(Q))Q and ¥ = (\I/(Q’))Q, be two vectors in © . Here Q = (qe, @e, ¢, 7¢) p—4 230
and Q" = (qy, @y, ), Ty)e=1,2,3- We have

(2.18)

1)
(‘I'(Q) B( (§3)¢(Q)) = _5q§ q1—16<§{ q15r{ r1 07 71 —1 H(sq qe qlqz(srﬁz(sfﬁe

/E . (T, b1 (&1)er, ()2 D)5, G (61,60, €5)d€1dEs -
1 X247
Here Q = (ql - 13 qlv T1, Fl - ]-7 q2, (12; T2, 7727 q3, (737 3, F3)~
For each Q,
(2.19) BE?—)&-,—(€3)(I)(Q) c 35‘11—1@1#1,?1—1) ® 3512@27%,7:2) ® S§q3’637T37F3)~
By the Fubini theorem we have

(@, B (&) ¥ @),

/Z (/E Gggr,(51752753)CT,—(£2)\I/(Q)d£2’blﬂ_(gl)(I)(Q)) dgl

SL

By (2.9), and the Cauchy-Schwarz inequality we get
N 2
(0@, B (e) ¥ @), |

1 2
s( / 1614 (€1)2@) ( / |G§%’+,_<shfz,sg>|2d§2) d&) @2
pR DI

By the definition of by ; (£,)®(®@) and the Cauchy-Schwarz inequality we get
(U, B (&) W)g,

(/E / GO 517527£3>2d£1d£2) TEUTATICIES

= (/E /E |G1,+,_(£1,fg,fg)lzd&dfz) [U@2 |NFO@2,

By (2.19) we have

(0B (0@, [P < [, INF @, [ 160 (610 &) Pdends

31 x¥q
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for every U € ®. Therefore we get

1
1B (&)@ @2, < ( / . [l <sl,52,53>|2d§1d52) IN? D@2
1 X2

and by (2.19) we finally obtain

1BY (e)3]2, < ( [ e <§1,52,53>|2delde2) INEa|2, |

for every ¢ € ©.

Since @y, is a core for N2 and B( 1.4,— with domain @, is closable, D( (§3))
D(Nf ), and (2.16) is satisfied for every ® € D(Nf). O
Let

1) = [ w(ea € &)ds

Then Hége) is a self-adjoint operator in §w, and Dw is a core for Hé
We get

3)
€7

Proposition 2.5.

|| / (B, (69)" © ac(£5)dés 02

(2.20) " 2
|G£,€,6,(€17£27§3)‘ % 3) ,
< ( XSy XS w(d)(fii) dfld£2d§3) ||(Ng —+ ]_) (H ) \I/H
and
(2.21)

|| / B (60) @ ol (€2)dcav

GED (61,0, 69)P L e
< (/21x21><22 w® (&) d§1dg2dss) [[(Ne +1)2 ® (HO )2 \I,HQ

o 1 1
(1668 )P iEdgE) (N + D e 1T+ )
DX x o n
for every W € D(Hy) and every n > 0.
Proof. Suppose that ¥ € D(N2)&D((H))?). Let

U (&) = w® (€3)2 (Ne + 1)% @ ac(Es))®
‘We have
/E 10 (E0)]PdEs = (Ve + 1)} @ () w2 |

We get
/ (B (€5))" © a.(€5)dEs¥

1 * -1
:/zz(w(?’)(éz))%(( 1 (€3))"(Ne + 1) 72 © 1)W(E3)dés .
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Therefore

I [ (B @adsn) vaeal

(222) < </2 w<>1<f> ”(Béi‘é?el (€))7 (Ne + 1) 3|5, 10 (&)l 56s)?

| €,€’ (§2a£2 g )| 1 3y 1
= (/21X21X22 L W) (&) d§;d&ed&s)[[(Ne +1)2 ® (Héi))Q\IJH% ,

as it follows from Proposition 2.4.
We now have

||/Bé(i)e (&) ® al (&) Wd&s||3
/ (B{Y(63) ® ac(€5)W, BIY,(€4) ® ac(€s) W)désdes + / I(BLY,, © 1)w|des

and

/E (B (69) ® ac(€) . B () © a6 V)dadss

= ! () . ,
- /22><22 (3)(&5) 3w (€)% ((Be,e,a (E3)(Ne +1)72 @ 1)W(&3),

(223) (B, <§3><N +1)7F 9 1)U (&) )deadds

< (/2 w(g)(€3)1 1B eee (&) (Ne+1)72 ||&L||‘I’e(€3)||d§3)2

‘G(a)(£17£2a§3)|2 % (3) %
S (‘/21 X1 X2 w(3) (63) dfldfgdg?))”(]\fg + 1) ® (H(Le) \I]||2 .

Furthermore

(2.24)
/2 1B (&) @ 1)¥] 2

/2 1B (E) (N, +1)F @ 1)((Ne +1)F © 1)0]2dés

1
< (/ G} bees ) (61,62,63)] d€1d§2d§3) (ll(Ne + 1)¥|* + Z||W||2) ;
Elleng n

for every n > 0.
By (2.22), (2.23), and (2. 24) we finally get (2.20) and (2.21) for every ¥ €

D(NZ)&D(HS). The set D(NZ)&D(HY) is a core for N ® HS?) and D(Ho) C
D(N; ® H(§3)). It then follows that (2.20) and (2.21) are verified for every ¥ €

,€

D(Hy). O
We now prove that H is a self-adjoint operator in § for g sufficiently small.

Theorem 2.6. Let g1 > 0 be such that

391 (@ 2
p— m% +1) Z ZZ 1Greellizs xsixs,) <1

a=1,2 (=1 e#¢€’
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Then for every g satisfying g < g1, H is a self-adjoint operator in § with domain
D(H) = D(H,), and ® is a core for H.

Proof. Let ¥ be in ©. We have

3
e <12 37 33" H/ (Bi2o (62))" © acl6s) Wty

(2.25) a=1,2 (=1 eze’
| [ o e v

2

2

}-

Note that
3 3

1HS || < | Y| < | Hov|
and

1 1 1

INo|| < | Ho ¥ < —|Ho V| < — || Ho¥l| ,

my mq mi

where

(2.26) Ho —Z/ (60005 (60)bec (& d£1+z/w2 (6267, (E2)crc(62)d6s

We further note that

(2.27)

3 GhLg2 o L1 2 B 2 1 2
Ny+1 H, U* < =(— +1)||Hy¥ —— || Hy ¥ -+ —)||P
N+ 1)} © (HE MO < (s 4 DIHOVIE + 5 5 |HOV I + (5 + gl v
for 8 > 0, and
(2.28)

ll((Ne+1D)@1) P[4~ II‘Ifll2 gllHo‘PII + HHO‘I’” +n(l+ 5 )II‘PII2 *II‘I’IIQ-

Combining (2.25) with (2.20), (2.21), (2.27) and (2.28) we get for n > 0, 3 > 0

(2.29)
1H ][> < 6( Z ZZHGM
=1,2 0=1 e£e’
(5 g DIHOVE + 5L 0 2+ (14 ) 9)
PP 531G o (1 I + (11 + ) + 1)),
R =t
by noting
(2.30) /E o 'G‘w(é)léj) 9 e aesae, < —HGZ 21

By (2.29) the theorem follows from the Kato-Rellich theorem. O
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3. MAIN RESULTS

7.

In the sequel, we shall make the following assumptions on the kernels Gl Cec

Hypothesis 3.1.
(i) Fora=1,2, £=1,2,3, ¢, ==+,

G e (61,82, 8)]?
/ Lo SU 2B e déydgs < oo,
DIFBS IS N |P2|

11) There exists C > 0 such that for a =1,2, £ =1,2,3, €, = +,
(i)

1

2

</ \Géi)e (51752753)|2df1d52d§3> < Co®.
31 x{|p2|<o} x s
(i) Fora=1,2, £=1,2,3, e, =+, and i,j = 1,2,3
(iiia) [ (02 V)G )60, 60.0)|[ drdades < o0 |
Y1 XY XXe

and

() 2

b (¢1,60,63)

_— d&1déadés < .
3172,1'8}?2,3' S1déadgs < oo

2 2
(4i7.b) / P2 D3
21 XEl XEQ

(iv) There exists A > my such, that fora =1,2,£=1,2,3, ¢,¢' =+,

zee (€1,60,63) =0 if |po| >A .
Remark 3.2. Hypothesis 3.1 (i) is nothing but an infrared regularization of the

kernels Géi)e,. In order to satisfy this hypothesis it is, for example, sufficient to
suppose

Zee (51752763) |p2|%é§i),e’(€17€27§3) )

where éﬁ)é, is a smooth function of (p1,p2,ps) in the Schwartz space.

Our first result is devoted to the existence of a ground state for H together with
the location of the spectrum of H and of its absolutely continuous spectrum when
g is sufficiently small.

Theorem 3.3. Suppose that the kernels GZ“, satisfy Hypothesis 3.1 (i). Then
there exists 0 < go < g1 such that H has a unique ground state for g < go. Moreover

o(H) = ope(H) = [inf o (H), 00) ,
with inf o(H) < 0.

According to Theorem 3.3 the ground state energy E = info(H) is a simple
eigenvalue of H and our main results are concerned with a careful study of the
spectrum of H above the ground state energy. The spectral theory developed in
this work is based on the conjugated operator method as described in [23], [3] and
[25]. Our choice of the conjugate operator denoted by A is the second quantized
dilation generator for the neutrinos.

Let a denote the following operator in L?(X)

1 ) .
a= §(p2 <1V, +1Vp, - D2) .
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The operator a is essentially self-adjoint on C§°(R3,C?). Its second quantized
version dI'(a) is a self-adjoint operator in §,(L?(X1)). From the definition (2.4) of
the space §/, the following operator in §,

A=1919dl(a)®1+191®1®dl(a)

is essentially self-adjoint on ® .
Let now A be the following operator in §,

A=401013+411 04913+ 1; 01, ® Az .

Then A is essentially self-adjoint on .

We shall denote again by A its extension to §. Thus A is essentially self-adjoint
on ® and we still denote by A its closure.

We also set

(A) = (1+ A7 .
We then have
Theorem 3.4. Suppose that the kernels G\, satisfy Hypothesis 2.1 and 3.1. For

L,e,€
any 6 > 0 satisfying 0 < § < my there exists 0 < gs < go such that, for 0 < g < gs,
(i) The spectrum of H in (inf o(H), my — d] is purely absolutely continuous.
(#4) Limiting absorption principle.
For every s > 1/2 and ¢, ¢ in §, the limits

lim (i, (4)7*(H = A i2)(4) "))

exist uniformly for X in any compact subset of (inf o(H), my — 4].
(#i1) Pointwise decay in time.
Suppose s € (3,1) and f € C§°(R) with suppf C (inf o(H), my — ). Then

I[{A) e~ F(H)A) ) = Ot )
ast — oo.

The proof of Theorem 3.4 is based on a positive commutator estimate, called the
Mourre estimate and on a regularity property of H with respect to A (see [23], [3]
and [25]). According to [13], the main ingredient of the proof are auxiliary operators
associated with infrared cutoff Hamiltonians with respect to the momenta of the
neutrinos that we now introduce.

Let x0(.); Xoo(-) € C™(R, [0, 1]) with xo =1 on (—00,1], Xoo = 1 on [2,00) and

2 2 _

For o > 0 we set

Xo(p) = xo(Ipl/0) ,
(3.1) X7 (p) = Xoo(lpl/0) ,
X7(p) =1-xo(p)

where p € R3.
The operator H , is the interaction given by (2.10), (2.11) and (2.12) and as-

sociated with the kernels )za(pg)Géi),e, (&1,&2,&3). We then set
H,:=Hy+gH;, .
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Let

Y10 =21 N{(p2,82); Ip2| <0},

21 =31 N{(p2,82); |p2| = o}

Fro.0 = Fa(L*(216)) @ Fa(L*(Z10))
S = Fa(L*(2)7) @ Fu(L*(Z17))
2 =320 8%,

Fea = Q) Ta(L*(31)) -

The space §¢,1 is the Fock space for the massive leptons ¢ and §; 2 is the Fock space
for the neutrinos and antineutrinos £.

Set
3@” = 3@,1 & 3@72 5
S0 =801 ®Fe2,0 -
We have
Se~38," ®Fto -
Set
3
S’LU = ®SZJ 9
=1
3
SL o= ®3€,0’ .
=1
We have
S ~387 8L, -
Set
§7=37 38w ,
go’ = SLJT & SW .
‘We have
S~F7®Fs -
Set

H§" = ZZ/ &) be,e(€1)be,e(€1)dér

=1e=%

ZZ /wi2) (§2) cp.c(€2)cr,e(€2)dEa

{=1e==%

H(g?)) - /w(g)(§3)a:(§3)ae(§3)d§3 )
e=+
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and

Héz) 7= / 52 i (§2)ce(§2)dEa
g 1 e=+ pz|>tT

a2 =Y / w® (€2) 6. (E2)ct e (E2)0s

(=1 e=+ 2|<o
We have on § 7 ® F»

HY =g 21, +1° 9 H? .

e

Here, 19 (resp. 1,) is the identity operator on §7 (resp. Fo).

Define
(3.2) H° = H,|go and H{ = Holgo .
We get
H = H" + HP " + HY + gH;, on§7,
and

H,=H°®1,+1°9H) ong’©3F, .
In order to implement the conjugate operator theory we have to show that H ? has

a gap in its spectrum above its ground state.
We now set, for 5> 0 and n > 0,

(3 1 38 129 :
(3.3) Con = (mw(1 + m12) + mymy? + my? 2(1 +B)) ’
and
3 1 1. 1.\
(3.4 Bay = (St )+ 12000+ )+ 1)
Let
_ (o)
(35) G= (Gﬁ € ( v .))O(:1,2;621,2,3;6,6/:i,6#€’
and set
3 3
(3'6) K(G) = Z ||GZ € 6’||L2 21 le XEz)
a=1,2 (=1 e#£¢’
Let
~ 91 K(G)Cp, )
3.7 Cs, =C 14 2T )
(37) = (1 2 K
~ g1 K(G)an glK(G)Bﬂann
3.8 Bg, =11 Bg, .
(38) o ( +1*91K(G)Oﬁn( lfglK(G)Cﬁn)) o
Let
~ 3 Gy (61,62,83) '
K(G) = >N / Ctioe - dé1dérdes
a= 12€ 1 e#e’ E1 X2 X 22 |p2|

Let € R be such that
0<d<m.
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We set
4\~ 1
2mi — 6’
where A > my has been introduced in Hypothesis 3.1(iv).
Let us define the sequence (0,,)n>0 by

(3.9) D = sup( )K(G) (21 Gy + By )

JOZA,
1

o1 =M1 — 5,

2
0'2:m1_5:'70'1 )
Ont1 =Y0n, N2 1,
where vy =1—46/(2my — 9).
Let gél) be such that

0< gV <inf(1, g1, L
s ( g1 3D

For0 <g< gél) we have

39D
0<y<(-22),
Y
and
3¢gD
(3.10) 0<an+1<(1—97)an, n>1.
Set
H"=H°;, Hjy=Hg~, n>0
E" =info(H"), n>0.
We then get

Proposition 3.5. Suppose that the kernels GE,O?&, satisfy Hypothesis 2.1, Hypoth-

esis 3.1(i) and 3.1(iv). Then there exists 0 < g5 < ggl) such that, for g < gs
and n > 1, E" is a simple eigenvalue of H™ and H™ does not have spectrum in

(En7 E, + (1 - %)Un )

The proof of Proposition 3.5 is given in Appendix A.

We now introduce the positive commutator estimates and the regularity property
of H with respect to A in order to prove Theorem 3.4

The operator A has to be split into two pieces depending on o.

Let

Mo (P2) = X20(P2)
1% (p2) = x*(p2)
Ao = ﬂa(Pz) a%(m) )
a” =17 (p2) an’ (p2

Note that
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The operators a, a, and a’ are essentially self-adjoint on C§°(R3, C?) (see [3,
Proposition 4.2.3]). We still denote by a, a, and a? their closures. If @ denotes any
of the operator a, a, and a?, we have

D(a)={ueL*X); auec L*(X;) } .
We have
a=a’+a, .

The operators dI'(a), d['(a®), d['(a,) are self-adjoint operators in F,(L%(%1))

and we have
dl'(a) = dI'(a”) + dI'(a,) -
By (2.4), the following operators in §, denoted by A7 and A,, respectively,
A =1910dlNe)®1+191®1@dl(a%),

Ase=1®12dTlNa,) ®1+1®1®1xdl(a,) ,
are essentially self-adjoint on .
Let A% and A, be the following two operators in §r,
AT=A7 01,013+, 047 @13 +1; @1, ® A7,
As=4,101013+11 04,013+ 11 ® 10 Ays.
The operators A” and A, are essentially self-adjoint on ©. Still denoting by A
and A, their extensions to §, A% and A, are essentially self-adjoint on ® and we
still denote by A% and A, their closures.

‘We have
A=A+ A, .

The operators a, a® and a, are associated to the following C°°-vector fields in
R3 respectively,

v(p2) =p2 ,
(3.11) v (p2) =07 (p2)°p2
Vo (p2) = 15 (p2)?p2 -
Let V(p) be any of these vector fields. We have
V() <Tlpl,
for some I' > 0 and we also have
(3.12) V(p) = o(lpl)p .

where the ¢’s are defined by (3.11) and (3.12), and fulfil |p\aﬁf1(|p|) bounded for
a=0,1,2
Let ¥4(.) : R* — R3 be the corresponding flow generated by V:

d
a%(p) =V((p)) ,
Yo(p) =p -

Yi(p) is a C>-flow and we have

(3.13) e " [p| < [y (p)| < e [p] .

¢ (p) induces a one-parameter group of unitary operators U(t) in L?(3) ~ L*(R3, C?)
defined by

U F)(p) = f(¥u(p))(det Vi, (p))?
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Let ¢+(.), @7 (.) and ¢o+(.) be the flows associated with the vector fields v(.), v7(.)
and v, (.) respectively.

Let U(t), U°(t) and U, (t) be the corresponding one-parameter groups of unitary
operators in L?(X1). The operators a, a®, and a, are the generators of U (t), U7 (t)
and U, (t) respectively, i.e.,

Let
w® (&) = (W (€2))e1,2,3
and

3
MW%:ZZ/W%Wﬁmme
/=1

€

Let V() be any of the one-parameter groups U (t), U?(t) and U, (t). We set
Vw@V () = (V(OwP V() )i
and we have
V(O wPV () =w® () .
Here 1 is the flow associated to V (t).
This yields, for any ¢ € D, (see [8, Lemma 2.8])

efiAtHOeiAtcp _ H[)CP _ (dF(efiatw(Q)eiat) o dF(w(2)))QD

3.14

. = (AL (w® o ¢y —w®))gp

(3 15) e—iA”tHOeiA“t<p _ Ho(ﬁ — (dr(e—ia“tw@)eia“t) _ dF(w(Q)))go
= (Al (w® 0 g7 —w®))e

(3 16) efiAatHOeiAgtcp _H o= (dr(efiaatw@)eiaat) - dF(w(z)))cp
= (A0 (w® 0 ¢gr —w?))p .

a)

’
€€

Proposition 3.6. Suppose that the kernels Gg
For every t € R we have, for g < g1,

(i) e"D(Hy) = " D(H) Cc D(Hy) = D(H) ,
(ii) e D(Hy) = " D(H) Cc D(Hy) = D(H) ,
(i17) "4 D(Hy) = " D(H) C D(Hy) = D(H) .

satisfy Hypothesis 2.1.

o

Proof. We only prove i), since #i) and i) can be proved similarly. By (3.14) we
have, for ¢ € D,

(3.17) e A Hoe! = (HSY + HP 4 a0 (w® o ¢,)) .
It follows from (3.13) and (3.17) that

[ Hoe" 4| < e[| Hogl|
This yields 7) because ® is a core for Hy. Moreover we get

HHOeitA(HO +1)71H < eF|t\ )
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In view of ©(Hy) = D(H), the operators Ho(H +i)~! and H(Hg+1i) ! are bounded
and there exists a constant C' > 0 such that

|He™ A (H + i)~ < et
Similarly, we also get

[Hoe™ " (Ho + 1)1 < ™1

| Hoe 4= (Ho + 1) 71| < 1T,

|He™ A (H + i)~ < cet

|HetAe (H + )71 < Ceblt

O

Let H;(G) be the interaction associated with the kernels G = (G§i))€/)a=172; 0=1,2.3; ete' =+,

where the kernels Gﬁ)e/) satisfy Hypothesis 2.1
We set
V(G = (VDG o tm125 cro—t
We have for ¢ € D (see [8, Lemma 2.7]),
e—iAtHI(G)eiAt(p _ H[(e_th)QO ,
(3.18) eTH (G o = Hi(e TG
efiAgtHI(G)eiAotgp — H](eiia"tG)(p )
According to [3] and [25], in order to prove Theorem 3.4 we must prove that H
is locally of class C2(A7), C?(A,) and C2?(A) in (—oo,ms — §) and that A and A,
are locally strictly conjugate to H in (E,m; — %)
Recall that H is locally of class C%(A) in (—oo, m1—3) if, for any ¢ € C§°((—o0, mq—
%)), p(H) is of class C?(A), i.e., t — e~ “Alp(H)e™ 1) is twice continuously differ-
entiable for all p € C§°((—00,my — §) and all ¥ € §.
Thus, one of our main results is the following one

Theorem 3.7. Suppose that the kernels Gﬁ)’e, satisfy Hypothesis 2.1 and 3.1.

(a) H is locally of class C%(A), C*(A%) and C*(A,) in (—oo,mi — §/2).
(b) H? is locally of class C*(A%) in (—oo,mq — 6/2).

It follows from Theorem 3.7 that [H, iA|, [H, iA,], [H, iA°] and [H?, iA°] are
defined as sesquilinear forms on Ug Fx (H)§, where the union is taken over all the
compact subsets K of (—oo,my; — §/2).

Furthermore, by Proposition 3.6, Theorem 3.7 and [13, Lemma 29], we get for
all p € C°((E,m1 —6/2)) and all ¢ € F,

itA
o (H) [H, iA] o(H) ¥ = lim o(H) [H, “— =] p(H) v
itAs _
qrgy P il = imetaD) [ ey,
3.19 e
P (H) [H, iA%) p(H) b = lim () [H, ©— ] o(H)
QitA” _

P(H) [H°, A7) o(H) v = fim o(H7) [H*, ] o(H*) v
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The following proposition allows us to compute [H, i4], [H, iA°], [H, iA,] and
[H?, iA°] as sesquilinear forms. By Hypothesis 2.1 and 3.1 (iii.a), the kernels

Gl (&1, .,&3) belong to the domains of a, a?, and a,.

0,e,€’
Proposition 3.8.  Suppose that the kernels Ge“, satisfy Hypothesis 2.1 and
3.1 (iti.a). Then
(a) For ally € D(H) we have
(i) lim¢—o [H, C”A 1}1& (dT'(w™®) + gH(— iaG))¢;

(i1) lime—o [H, ==L]p = (dT((n%) w<2>)+gHz G))e,

(4i7) hmtﬂg[ e”Aa 1]1/} ( T'((n )2 )+9H1 —ia,G ) )

(iv) limg—o [H7, ==Ly = (dD((n7)*w®) + gH 1 (=ia” (¥ (p2) D)) )
(5) ) suppcien | [H Z22) + )] < o,

(#4) SUPo<|¢|<1 H[H, e”A 1] (H +1) 1H < 00,

(i11) supg<|i<i H [H, e”Aa_ (H +1) ’1H < 00,

(iv) SUPo<|¢|<1 H [HU, eLM ](H+ 1|| < 00.

Proof. Part (b) follows from part (a) by the uniform boundedness principle. For
part (a), we only prove (a)(i), since other statements can be proved similarly.
By (3.13), we obtain

1t ’w@ (6e(p2)) — wy” (p2)] < %(e“” — 1w (p2) ,

for ¢ =1,2,3.
By (3.14)-(3.16) and the Lebesgue’s Theorem we then get for all ¢ € D(H)
itA

: € 1 L i ita 2
Jim [Ho, ———]0 = lim & [e7" Hoe™™ — HoJ = AT (w®)o,
: e —1 L it itac o\2, (2)

lim [HO,TM: hm;[e Hoe™™ — Holy = dT((n7)*w'®)y

t—0
. eZtA 1 _itA itA 2,(2)
}E}% [Ho, ]1/1 = t [e ° Hpe'"e — H()}’(/J =dI'((ny)“w' )y .

y (3.18), we obtain for all ¢» € D(H),

lim [H1(G), A[ Ty = lim % [e™ ™ H (G)e"™ — H1(G)]$ = Hi(~i(aG))¥,

limy [H1(G), Sy lim 5 o HI ()™ — HY(G)] = Hi(=ila”G))o,
tim [#1,(6). s = tim Lo 40 1, (@)e 7 — HI (G = Hi(—i(a,C)e
tim 1,27 (p2) ). &

— lim 7" H (77 (p2) G)e™” — Hi(X7 (p2) G)] 0 = Hi(—i(a (X7 (p2) G)))e

t—0 t

This concludes the proof of Proposition 3.8. (]
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Combining (3.19) with Proposition 3.8, we finally get for every ¢ € C§°((—o0, m1—
0/2)) and every ¥ € §

(3.20) Q(H)[H, iA]lp(H)p = o(H)[dD(w®) + gH (=i(a G))|p(H)1
(3.21)  @(H)[H, iA7|o(H ) = o(H)[dT((n°)*w®) + gH(—i(a’G))]o(H)

(322)  @(H)[H, iAJp(H)¥ = o(H)[AL((ne)*w®) + gH1(=i(a,G))] (H)¥ ,
and
(3.23)
P(HO)[H, iA7|p(H" )i = p(H)[dT((n7)*w®) + gH (~i(a” (°G))]e(H ) .
We now introduce the Mourre inequality.
Let N be the smallest integer such that

N~ > 1.
We have, forg§g§1)7
v<7+%(1—¥—) 1—%,
(3.24) ) L wb
NSV—N(1—7—7)<7
Let .
6 = g1- 22 ).
We choose f € C§°(R) such that 1 > f > 0 and
1 oifael(v—e)rtel,
(3.25) F = 0 iASy+ - D gy
0 A< (y—E0-20 )2 (y_2e )2,

Note that v + 2, < 1 —3gD/ for g < g and v — €, > 7/N.
We set, for n > 1,

Let
Hn = Han P
E, =info(H,) ,
W =

Let P™ denotes the ground state projection of H™. It follows from proposition 3.5
that, forn > 1 and g < g5 < ggl),

(3.26) falHo = Bo) = P ® fu(H)) .
Note that
(3.27) E, =E"=info(H") .
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Set
a” =a’" ,
ap, = ag,
A" = A%,
A, =A4,,
F =5,
Sn = To, -
We have
T=5"@Fn,
A=A"+ A, .

We further note that
(3.28) a"x7" (p2) = a"
By (3.21), (3.23) and (3.28), we obtain
[H,iA"| = [H",iA"]|®1 ,

as sesquilinear forms with respect to § = §" ® $n.

Furthermore, it follows from the virial Theorem (see [25, Proposition 3.2]) that
(3.29) P"[H" iA"|P" =0 .
By (3.26) and (3.29) we get, for g < g5 < g((gl)7

fu(Hy — Ep)[H,iA™ fr(Hy, — Ey) =0
We then have

Proposition 3.9. Suppose that the kernels GZQE, satisfy Hypothesis 2.1 and 3.1.

Then there exists Cs > 0 and g((;l) > 0 such that g((;l) < gs and

= B i) fa(H — B2) 2 Cs ol — B

formn>1and g < ggl).

Let Ea(H — E) be the spectral projection for the operator H — F associated
with the interval A, and let

(3.30) Ay =7 —€)20n, (Y+e)on], n>1.
Note that
(3.31) [0nt2:0n11] C (7= €)20n, (Y+6€y)0n), n>1.

Theorem 3.10. Suppose that the kernels G\, satisfy Hypothesis 2.1 and 3.1.

£,€,e
Then there ezists Cs > 0 and §§2) > 0 such that !7((;2) < gfsl) and

2
. g
EAn (H — E)[H, ZA]EAn (H — E) Z C5WJHEA71 (H — E) 5

forn>1and g < §((52).

With a weaker infrared regularization, we can still get some result about the
point spectrum of H above the ground state energy.



26 J.-M. BARBAROUX AND J.-C. GUILLOT

Hypothesis 3.11. We suppose that for n > 3

, G (61,60, 65) 2
(i) / ¢ dé1déndes < oo .
51 x{|p2|<1}xSa |p2|"

(i) /21x{pz|<1}x22 ‘((m = |epe26|n> (517&’53)‘ d€1d&adgs < oo .

(i) /Z N (02 V)G 1,0, 63)|| dErdadey < oo
1 X |p2|>1FX2s

Here, « =1,2,£=1,2,3, and e 2 = &
We thus get

Theorem 3.12. Suppose that the kernels G\, satisfy Hypothesis 3.1 and 3.11.

Then for any 0 satisfying 0 < § < ma, there exists 55 satisfying 0 < 55 < g2 and
such that, for g < gs, the operator H has no point spectrum in (E, my — ¢].

Zee

Proof. The result of Theorem 3.12 follows from Propositions 3.8 and 6.1 and from
the virial theorem, by adapting the proof given in [12]. We omit the details. 0

4. EXISTENCE OF A GROUND STATE AND LOCATION OF THE ABSOLUTELY
CONTINUOUS SPECTRUM

We now prove Theorem 3.3. The scheme of the proof is quite well known (see [5],
[20]). Tt follows from Proposition 3.5 that H™ has an unique ground state, denoted

by ¢™, in §",
H"¢" = E"¢", ¢" € D(H"), [|¢"]|=1, n=>1.

Therefore H,, has an unique normalized ground state in §, given by ¢, = ¢" @ Q,,
where €2, is the vacuum state in §,,

Hodp=E"$n, ¢ €D(H,), |l¢nll=1, n>1.

Since ||¢n|| = 1, there exists a subsequence (ny)x>1, converging to oo such that
(¢nk)k>1 converges weakly to a state ¢ € §. We have to prove that ¢ # 0. By
adapting the proof of Theorem 4.1 in [2] (see also [7]), the key point is to estimate
llce.c(€2)@, |5 in order to show that

3
(4.1) ZZ/W&MW@:wﬁ,
/=1 €

uniformly with respect to n.

The estimate (4.1) is a consequence of the so-called “pull-through” formula as it
follows.

Let Hy ,, denote the interaction Hj associated with the kernels Lipsi>on} (pg)Géi),6
We thus have

HOCK,E(£2)Q;n = 6276(52)H0§2)n - ’LUé2) (52)62,6(52)§Zn
gHI,nC€7e<§2)én = 08,6(52)9H17n(£n + gw,e,e’ (62)&71 )

7.
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with
‘/Z €,€’ 52 /GE ee 527 §2a 63)1);75’ (Sl)ae(ffi)dgl d£3
+9 [ 626680 (€)ar €06 a6
This yields

(4:2) (Hn = En + 0(€2)) coc(62)n = Vi (€2)n
By adapting the proof of Propositions 2.4 and 2.5 we easily get

1
(Z 16 52,.>||L2<21Xz2>> |Hg

a=1,2

+ 911G (& Mz 0]

where ¢ € D(Hy). )
Let us estimate || Ho¢n||- By (2.29), (2.30), (3.3), (3.4) and (3.6) we have

9l H1ntnll < 9K (G)(Cayl|Hodnl| + Bgay)

and
[Hopnll < |En| + gllHrndnll -
Therefore
7 |En| gK(G)BBW
4.4 Hyo, || < .
(4 1Hotnll < 7= g R(@)Cay T T iR (@I Ci

By (3.27), (A.3) and (4.4), there exists C' > 0 such that
(4.5) | Hodnll < C,

uniformly in n and g < g1.
By (4.2), (4.3) and (4.5) we get

2
bt g 1 a
||Cﬁ,e¢n|| < @ <C2 (Z HGE,e),E’("fQ’ ‘)HL2(21><22 > + HGZG € ( 527‘)L2(21><22)>
a=1

By Hypothesis 3.1(i), there exists a constant C(G) > 0 depending on the kernels
G= (Ggﬁge,)[:172,3;(1:172;5;&6/::‘: and such that

Zz/nm £)0uldes < C(G)%g

=1 €

The existence of a ground state ¢ for H follows by choosing ¢ sufficiently small,
ie. g < ga, as in [2] and [7]. By adapting the method developed in [19] (see [19,
Corollary 3.4]), one proves that the ground state of H is unique. We omit here the
details.

Statements about o(H) are consequences of the existence of a ground state
and follows from the existence of asymptotic Fock representations for the CAR
associated with the c%)e(fg)’s. For f € L?(R3, C?), we define on D(Hy) the operators

cgi(f) — eitHe—itHocg’e(f)eitng,;tH )
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By mimicking the proof given in [20] one proves, under the hypothesis of Theo-
rem 3.3 and for f € C§°(R3C?), that the strong limits of cgi(f) when ¢t — 400
exist for ¢ € D(Hy),

(4.6) lim ' (f)p:=ciT(f)v .

t—Foo
The operators cgf (f) satisfy the CAR and we have
(4.7) ¢ (Ne=0, feCFRC),

where ¢ is the ground state of H.
It then follows from (4.6) and (4.7) that the absolutely continuous spectrum of
H equals to [inf o(H), co). We omit the details (see [20]).

5. PROOF OF THE MOURRE INEQUALITY

We first prove Proposition 3.9. In view of Proposition 3.8(a) (iii) and (3.22), we
have, as sesquilinear forms,

(5.1)  [H,iA,] = (1 = g)dT((n,)*w®) + g(dT((ne)*w) + gH;(=i(a,G)) .

Let Sél) (respectively Sf)) be the Fock space for the massive leptons ¢ (respectively
the neutrinos and antineutrinos ).

‘We have
S~ o 3152)
Let
5V = 3w ® (¥}, 321)) and §F? = ®§’:13§2) '
‘We have

F is the Fock space for the massive leptons and the bosons W=, and §® is the
Fock space for the neutrinos and antineutrinos.
We have, as sesquilinear forms and with respect to (5.2),

A0((10)(p2)wi™) + Hi(~i(a,G))

ZZ/"U p2)?Ip2lci (€2)ce.e(€2)dEs
3 (a)*
+> ) / |p2| <11 ® 00 (p2)c) (E2) + D Micero(&2) ® 12)

(5.3) (=1 e£e’ a=1,2 2]

Mo 0 (E)
1, ® 0o (p2)ce,e(§2) + Z ———® 1y | d&

a=1,2 |p2|

@ee/ (52) l,e,€’ 0(52)
- E E 2 E 2 d 2,
/<a 1,2 Ipa|* ot ) <a=1,2 Ip2? ! ) ¢

{=1 e#¢€’

where

M, (&) =i / ( > <ana<p2>G§sz,<§2,52,53») b o (€1)ac (€5)d€1des

a=1,2
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and where 1; is the identity operator in F\/)
By mimicking the proofs of Proposition 2.4 and 2.5, we get, for every ¢ € D,

3 () =
ZZ(@ /(Z “67‘7(52)@12)(2 Z“U(&)@lz)lbdfz)
0=1 e#¢€’ a=1,2 |p2| 2 a=1,2 |p2| 2
2
M
—ZZ / Z “570(62)@)12)#}(152
(=1 e#€’ a=1,2 ‘p2|2

| Za:l,Q |(a na(pz) e €€ )(52752,53”
: (/ WO (E)Ipa

Noting that |(an,)(p2)| < C uniformly with respect to o, it follows from hypothe-
sis 2.1 and 3.1 that there exists a constant C(G) > 0 such that

/ 1> a=1.2( ana(pz)Gﬁe )(&1,&2,&3) 2
w®) (&3)[ps]

dadsgd&,) I(H 2

d&1dédés < C(G)o

This yields

(@)
(5.4) 7/ Z [” 0(52) ® 19)( Z 7/\/1&576/’1(52) ® 19)dé > —C(G)o

a=1,2 ‘p2‘2 a=1,2 ‘p2‘2

Combining (5.1), (5.3) with (5.4), we obtain

(5.5) [H, iAy] > (1 - g)dT((1s,,)?w(”) — gC(G)ay,
‘We have
(5.6) d0((10,)*wi?) > HE)

By (3.24), (3.26) and (5.6) we get
fn(Hn - En)dr(na,szf))fn(Hn - En) > Pn ® fn(Hézrz) H(an) fn(Héer)

2
g
Unfn( n En)2 )

> N2
for g < g(gl).

This, together with (5.5), yields for g < g(gl)
fn<Hn_E )[ ZAn]fn(Hn_En)

> (1— g”)” O fu(Hn — Ep)? — gC(G) onfu(Hn — Ep)? .

N2
Setting
@ _ ing(g® 1— g5 7 ).
=in —
Js % 50(G) N2
we get
1 g(l) ’y

for g < g(gz)‘

S0 _ (@) 5 _ 1-gg”
Proposition 3.9 is proved by setting g; ' = g5 and Cs = —*—.

The proof of Theorem 3.10 is the consequence of the following two lemmata.
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Lemma 5.1. Assume that the kernels Gﬁ)e, satisfy Hypothesis 2.1 and 3.1(ii).
Then there exists a constant D > 0 such that
|E—E,| <gDa,?,
forn>1and g < g®?.

Proof. Let ¢ (respectively ggn) be the unique normalized ground state of H (respec-
tively H,). We have

E— En < (Q;na (H - Hn)g)n)

(5.7) -
En - F S (¢7(Hn 7H)¢) ’
with
(5.8) H-H, = gHI(XUn (p2)G) .
Combining (2.29) and (2.30) with (3.3)-(3.6) and (5.8), we get
(5.9) I(H — Hy)énll < 9 K (Xo, (p2)G) (Canl|Hodn || + Bay)
and
(5.10) [(H — Hn)dll < 9 K(Xo, (p2)G) (CpnlHodll + Bpy)

It follows from Hypothesis 3.1(ii), (4.5), (5.9) and (5.10) that there exists a constant
D > 0 such that

max(||(H — Ha)onll, [|(H — Ha)éll < g Doy
forn >1and g < g®.

By (5.7), this proves Lemma 5.1. O
Lemma 5.2. Suppose that the kernels G’XQS, satisfy Hypothesis 2.1 and 3.1(ii).
Then there exists a constant C > 0 such that

forn>1 and g < g.
Proof. Let f(.) be an almost analytic extension of f(.) given by (3.25) satisfying

(5.12) D= f(x + z‘y)) < Cy?.

Note that f(z +iy) € C5°(R?). We thus have
(5.13) )= [ L8

Using the functional calculus based on this representation of f(s), we get
(5.14)

1 1 -
fn(H=E)=fo(Hn—Ey) = oy / m(H*HmLEn*E)mdf(z) :
Combining (2.29) and (2.30) with (3.3)-(3.6) and Hypothesis 3.1(ii), we get, for
every 1) € D(H®) and for g < g,

(5.15)  gllH1 (X0, G)¥|| < 29 C 00”K(G) (Cpyll(Ho + )¢l + (Can + Bay)l¥]l) -
This yields
(5.16) 9IlH1 (Xo, (p2)G)(Ho +1) 71| < g Cro,?

afzy =121

z—s’ ™0z

dxdy .
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for some constant C; > 0 and for g < g(?).
By mimicking the proof of (A.12) we show that there exists a constant Cy > 0
such that

(5.17) |(Ho + 1)(H,, — Ey — z00) Y| < Ca(1 +

o
[Imz|o,”’
for g < gV,

Combining Lemma 5.1 and (5.14) with (5.15)-(5.17) we obtain

VfulH — B) — fu(H, — E))| < gCo /'x“y)'dxdy,

for some constant C' > 0 and for g < g,
Using (5.12) and f(x+1iy) € C5°(R?) one concludes the proof of Lemma 5.2. O

We now prove Theorem 3.10.

Proof. 1t follows from Proposition 3.9 that
- A2

= fo(Hy, — EW)[H, iAn) fr(Hy — Ep) > C ~50n fu(Hy — By )2,

forn>1and g < gg”.

This yields

FuH = E)HLiA (= E) > Coyo, f,(H — B

o0 = BV, A1 B~ )~ £ - )

— Un (B = Bn) = folH = B)IH, iA}fo (H, — Fy)
4 Co Tl — Bo) — f( — B

4 Cs oSl — B)(fa(H  By) — fu(H — )

4 Co s U (H— Bu) — FulH — E)f(H ~ )

Combining Proposition 3.8 (i) and (5.13) with (5.16) and (5.17) we show that
[H, iA]f(H, — E,) and f,(H — E)[H, iA] are bounded operators uniformly with
respect to n. This, together with Lemma 5.2, yields
~ 2 ~
(5'18) fn(H_E)[Ha ZA]fn(H_E) C Unfn(H E) -Cgon,
for some constant C' > 0 and for g < inf(g(®, ggl)).
Multiplying both sides of (5.18) with Ea, (H — E) we then get
~ 2 ~
En,(H—E)[H, tAlEA,(H—-FE) > C O’nEA (H-—E)-Cgon,Ea,(H—-EFE).

Setting
~(2 . C~’5 ’)/2 ~(1
g((s ) < inf <C’ 7]\72 (2)7 g§ )> )

Theorem 3.10 is proved with Cs = Cs — C;\*]—gff) 0. O
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6. PROOF OF THEOREM 3.7

We set

eitA -1
At = L )
a‘dAt' = [Ah ] 5

itA7 —1

A=
t t )
eitA(7 -1

Ao’t = n

The fact that H is of class C*(A), C*(A%) and C'(A,) in (—oo, my — $) is the
consequence of the following proposition
Proposition 6.1. Suppose that the kernels Gﬁ)ﬁ, satisfy Hypothesis 2.1 and 3.1(iii.a).
For every ¢ € C§°((—o0, my — %)) and g < g1, we then have
sup |[[p(H), Ad]|| < o0,
0<|t|<1
sup |[[p(H), A7]|| < o0,
0<|t|<1
sup ||[@(H)a Aat]“ <00,
0<|t|<1

sup ||[p(H?), A7]|l < oo .
0<|t|<1

Proof. Let ¢ € C§°((—o0,m1 — %)) be such that G(\) = 1 if A € suppy. We have

(6.1) e(H) = ¢(H)p(H)

and

(6.2) ada,p(H) = (ada, (H))p(H) + ¢(H)(ada, p(H)) .
Note that

l(ada, o(H))p(H)|| = llp(H) ada_,o(H)| .
By (6.1) and (6.2) it suffices to prove that

sup [|@(H)ada,p(H)|| < oo,
0<|t|<1
for all ¢, ¢ € Cg°((—o0,m1 — 2)).
We now use the representation

() = / do(z)(z — H)™,

where ¢(z) is an almost analytic extension of ¢ with

10:6(x + iy)| < Cly2 and de(z) = —~ 9

- £¢(z)dxdy .

Note that ¢(z + iy) € C5°(R?).
We get

¢(H)ada, p(H) = /d¢(2)(z — H)7'p(H)[Ay, H)(= — H)™" .
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This yields
|p(H)ada,p(H)|

Sojﬁlril I[Ae, H](i — H)~H | e(H)] /\d¢(z)|II(Z—H)”HII(i—H)(Z—H)’lll-

It is easy to prove that

(6.3) /Id¢(z)l 1z = H)THIIG — H)(z = H)7H < C/
By Proposition 3.8(b)(¢) and (6.3) we finally get, for g < g1

sup |[¢(H) ada, p(H)|| < oo .
0<|t|<1

|[do(2)|

Tmz|?

< 0

In a similar way we obtain, for g < g;
sup ||[A7, o(H)]|| < oo,

0<|t|<1
sup |HAG't7 SO(H)” <00,
0<t|<1
sup [|[A7, p(H)]|| < oo .
0<|t|<1

The proof of Theorem 3.7 is the consequence of the following proposition
Proposition 6.2. Suppose that the kernels Gﬁ)g, satisfy Hypothesis 2.1 and 3.1.
We then have, for g < g1,

sup ||[Ay, [As, H]J(H +i)7 Y < o0,
0<|t|<1

sup [[A7, [A7, H](H +1)7!|| < o0,
0<|t|<1

sup ||[Agt, [Aot, H(H +i)7| < o0,
0<|t|<1

sup [|[A7,[A7, H7J(H? +i)7"|| < o0,
0<|t|<1

Proof. We have, for every 1 € D(H),

6.4 Ay [A, H)Y = _le%tA e 2UA P2 _ 9o —itA itA | Yy
t2

By (3.14) we get

(6.5) [A¢, [Ar, HollY = —t%e%m(dl"(w(z) o o — 2w 0 ¢y + W)y |

where, for £ = 1,2, 3,
(6.6) (ws™ 0 da)(p2) — 2w © ¢r)(p2) + wi> (p2) = b2 (p2)| — 2/be(p2)| + [p2] -
We further note that

1 92
(6.7) LTQ, gt (p2)| — 2|e(p2)| + p2| | < |Su£)|t\ ‘882|¢s(p2)|

s]<

)

2
(6.9 o 10p2)] = 6:p2)] < 1 o]
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Combining (6.4) with (6.5)-(6.8) we get
I[As, [Ar, Hol](Ho +1)71| < 2T

and
sup ||[A¢, [As, Holl(Ho+ 1) <€ .

0<|t|<1

In a similar way we obtain

sup [|[A7, [A7, Holl(Ho +1)71|| < Ce?",
0<|t|<1

sup ||[Aot, [Ag s, Hol](Ho + 1)1 < ce?l .
0<|t|<1
Here C is a positive constant.
Let us now prove that

sup [|[A¢, [Ar, Hi(G))J(H + i)' < o0

0<|t|<1
By (3.18) and (6.4) we get, for every ¥ € D(H),
[Ata [Ata HI(G)]]¢
62“ —21 « ) —1 @ 7
_ Z Z Z > ( 2itA b, (G§ €)6 )e2i tA _ 9 tAHI(G§,€)7€,)e tA

a=1,2/¢=1,2,3 e#£e’

(6.9) +H1(Géa€)e ))¢

Y Ty

a=1,2/¢=1,2,3 e£e’

(G ) = 2HGEY 0 ) + G ) )

where
G (€1,62,63) = (Dr(p2) FGL2 (615 Bu(p2). 525 &)
= (719G ) (€1, 60, 68) -
Combining (2.29) and (2.30) with (3.3)-(3.6) and (6.9) we get
(6.10)  [|[Ay, [Ar, Hi(GEI| < g K(G)(Cayll(Ho + Do | + (Cy + Ban) 0] -
Here K(G¢) > 0 and
(6.11) = 3 X 3 16K = 26+ Gl P emem -

a=1,2/¢=1,2,3 e#¢’

We further note that, for 0 < |t| <1,

(6.12)  K(Gy) < sup (Z > Z

0<|s[<2 * 12 9=1,2,3 cte’

Nl

Zee ;8

LQ(El XEl XZQ)

We get
0 (a
<at G§ e)e t>
(6.13) 5
= 7(eiltaGéi’2€/) + (eilta(pQ vpz GZ €,e’ )) ’

2
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and
(6.14)
0 (o)
(atz GE €€’ t)
9 —ita (@) 7 —ita —ita (o)
= Z( Glee) 5(6 <p2 VP2G556)) Z € (lePQ,japz zpszfee)

i,7=1,2,3
Recall that e % is an one parameter group of unitary operators in L?(3; x X1 x X3).
Combining Hypothesis 3.1(iii.a) and (iii.b), with (6.10)-(6.14) we finally get
sup ||[ Ay, [As, H(G)]](Ho+ 1) < o0 .
0<|t|<1

In view of D(H) = D(Hy) the operators Ho(H +i)~! and H(Hp—1)"! are bounded
and we obtain
sup [|[Ae, [Ar, Ho]J(H +9)7'|| < o0,

0<|t|<1
(6.15) sup |[|[As, [As, HI(G)]](H—i—i)_lH <00 .
0<|t|<1
This yields
(6.16) sup ||[ Ay, [Ay, HJ(H +49)7Y < o0,
o<|t|<1

for g < g1.
Let V(p2) denote any of the two C'*°-vector fields v7(p2) and v, (p2) and let a
denote the corresponding a” and a, operators. We get

2
<§t2(emt ﬁ)e )> (&1,62,&3)

= i ( At ((divV (p))*G X)e )) (€1,82,€3)
* % (eiidt((diVV(pQ))V(p2) Gé s)e )) (51752753)
3
£5 [THO Vi)@R, ViG] (616206
1,j=1
1 7zat 8 (@)
+ 5 Z V p2 )8]? Gé,e,e’) (§1a§2553)
3,j=1
1 32 o
+ 5 7“” 1]21‘/ p2 WG§,€),E’) (5175%63) .

Combining the properties of the C™ fields v7(p2) and v, (p2) together with Hy-
pothesis 2.1 and 3.1 we get, from (6.15) and by mimicking the proof of (6.16),

(6.17) sup || [A7, [A7, H]J(H +14)7'| < o0,
0<|t|<1

sup || [Ag s, [Age, HJ(H +0) 7 < o0,
0<|t|<1

for g < g1.



36 J.-M. BARBAROUX AND J.-C. GUILLOT

Similarly, by mimicking the proof of (6.17), we easily get, for g < g1,

sup | [A7, [A7, H?)J(H? +i) 7| < o0 .
o<|t|<1

This concludes the proof of Proposition 6.1 O

We now prove Theorem 3.7.

Proof of Theorem 3.7. In view of [3, Lemma 6.2.3] (see also [13, Proposition 2.8]),
the proof of Theorem 3.7 will follow from the following estimates

(6.18) 0<%:<1 1A, [A, p(H)]] || < o0,
(6.19) 0%;1 ITA7, [A7, (H)]] || < o0,
(6.20) 0%;1 1A s, [Aos, p(H)J] || < o0,
(6.21) 0<%|:<1 ITA7, [A7, w(H)] ]| < o0,

for every ¢ € C§°((—o0,m1 — §/2)) and for g < g;.
Let us prove (6.18). The inequalities (6.19)-(6.21) can be proved similarly.
Let ¢ € C§°(—00,m1 — 6/2)) be such that ¢(A) =1 if A € suppp. We get
p(H) = ¢(H)p(H)
and
(6.22)
[ A, [Ae, p(H)]] = [As, [Ar, ¢(H)p(H)] ]
= [Av, [Ar, G(H)] ] p(H) + G(H)[ Ay, [Ar, o(H)]] + 2[Ar, ¢(H)][Ar, o(H)].

It follows from proposition 6.1 that

(6.23) sup | [As, p(H)]|| < o0
0<|t|<1

and

(6.24) sup | [A, p(H)]| < o0
0<[t<1

We further note that
(6.25) [Ar, [Ar, (H)]Jp(H) = ¢(H)"[A—t, [A—s, $(H)"]]
By (6.22)-(6.25) it suffices to prove

oS [(H)[Ar [Ar, o(H)]] || < o0,

for all ¢, ¢ € C§°((—o00,m1 —&/2)) and for g < ¢g1. To this end, let ¢ be an almost
analytic extension of ¢ satisfying

|0:0(x + iy)| < Clyl*,

and
_ 10
Pl = [ = )7Ma0(z) . o) = —1 SL(a)dady
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It follows that
(A Aey o)) = [ (= B) A A H)) (e~ )
2z — H) YA, H(z — H)"[A,, H](= — H)_1>d¢(z)
This yields
SUDA s, o)) = [ (= H) () (A, B2 - 1)
+2(2 = H) " GUH)[Ar, H)(z — H)"[Ay, H)(z ~ H)™*)do(2).
We note that

(6.26) I|(H +i)(H —2)7Y < T for z € supp¢ .
‘We have
sup | [z~ H) () (A A, H))(: - )Mo (2)|
0<|t|<1
| 1 ld(2)]
(6.27 —0:‘2&1/” (A (Ar, HYJCH +0)7 I + ) = )2

< C sup | [As [As, H]] (H +14) -1 ||/|

o<|t|<1 |Imz|2 .

Combining Proposition 3.6 (b)(i) and (6.26) we obtain

sup || /ddﬁ(Z)(H* 2) T G(H)[ Ay, H(H — 2)7'[Ay, H)(H — 2)7|

o<t|<1
— sup || [ (# 2 G Ar, H(H +0) 7 (H 4 0) (0~ 2)
(6.28) 0<ltl<1
(s, H)(H + 1) (H + i) (H — )" do(2)

<cC ( d¢(z)|> sup || [Ar, HJ(H +4)7|? < o0 .
ly[? 0<[t|<1

Inequality (6.28) together with (6.27) yields (6.18), and H is locally of class C%(A)

on (—oo, my —6/2) for g < ¢1.

In a similar way it follows from Proposition 3.8(b), Proposition 6.1 and Proposi-
tion 6.2 that H is locally of class C?(A%) and C?(A,) in (—oo,my — §/2) and that
H? is locally of class C?(A%) in (—oo,m; — §/2), for g < g1. This ends the proof
of Theorem 3.7. O

7. PROOF OF THEOREM 3.4

By (3.31), Up>1 (7 — €9)%0m, (¥ + €4)0n)) is a covering by open sets of any
compact subset of (E, mj —d] and of the interval (E, my — 4] itself. Theorem 3.4 (i)

and (ii) follow from Theorems 0.1 and 0.2 in [25] and Theorems 3.7 and 3.10 above

with gs = g((s ), where g( )

Theorem 25 in [23].

is given in Theorem 3.10. Theorem 3.4 (iii) follows from



38 J.-M. BARBAROUX AND J.-C. GUILLOT

APPENDIX A

In this appendix, we will prove Proposition 3.5. We apply the method developed
in [4] because every infrared cutoff Hamiltonian that one considers has a ground
state energy which is a simple eigenvalue.

Let, for n > 0,

g7 =3",
S0 =810 {pa; ongr < Ipel <on},
ool = Bu(LX(Z,0H) @ Ful(L3(Z, 1),
3@,:“ =381 ® szﬂ )
St =0,
F =F, " e Fw
Here o1 = ®2Fo(L2(X1)).
We have
FH ~Fr et
Let Q" (respectively Q7"*1) be the vacuum state in " (respectively in F7+1). We
now set

3
IR D 9 M W (€6} (€2)er(E2)d6a
(=1 e==% Y ont1<|p2|<on

The operator H,""" is a self-adjoint operator in Fr+!.
Let us denote by Hy and H,;"*' the interaction H; given by (2.10)-(2.12) but
associated with the following kernels

X (p2)GYY (61, 62,63)
and
(X7 (p2) — X7 (p2))GY) L (61, €2, 63)

respectively, where x7»+1 is defined by (3.1).
Let for n > 0,
H! =H" - E",
HY =H?' 1" +1, @ Hymtt .

n

The operators H'} and ﬁﬁ are self-adjoint operators in " and F" 1! respectively.
Here 1" and 171 are the identity operators in §" and F! respectively.
Combining (2.29) and (2.30) with (3.3)-(3.6) we obtain for n > 0,

(A.1) IIHT Y|l < gK(G)(Cpyl| How || + Banll¥[l)
for every ¢ € D(HY) C ™.
It follows from [22, §V, Theorem 4.11] that

gr>__ 9K(G)Bgy g1K(G)Bg,
T =g K@)y T 1= g1K(G)Cpy

and
gK(G)BBn

E>—— 2 =7
~ 1-g1K(G)Cpy
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We have
(A.2) Qr, H*'Q™") =0
Therefore

E" <0,
and
9K (G)Bgy

A3 E' < — =
(4.3) A (e

Let
(A.4) KZLLJFI(G) = K(10n+1S|P2|§20n G) .

Combining (2.29) and (2.30) with (3.3), (3.4) and (A.4) we obtain for n > 0
(A.5) glH Wl < g K16 (Ol Hg 0l + Beyllvll)

for ¢ € D(HJ') C "+, where we remind that HJ"" = Hp|zons1 as defined in
(3%27.6 have for every v € D(HJt),
(A-6) Hy ™l = Hip + E") — g(H} @ 1770,
and by (A.1)
(A7) gl (H} @ 170 < g K(G) (Cpy | Hy 1| + Bayllv ) -
In view of (A.3) and (A.6) it follows from (A.7) that

(A.8)
gll(H7 @ 177y
9 K(G) Cgy g K(G) Bg, ( g K(G) Bgy
T 1-91K(G)Cy 1 — g1 K(G)Cgy, 1— g1 K(G)Cpy
By (3.7), (3.8), (A.5), (A.6), (A.8) we finally get

1| +

-

(A.9) gl H ol < 9K G (Co |l HEW || + Boyllvl) -
For n > 0, a straightforward computation yields
N 4A~ ~ Ont1
Al K"N(G) < 0,K(G) < 1) K(G)-=2L
(4.10) () < 0uK(G) < sup(g s DRGTE

Recall that for n > 0,
(A11) Ont1 <My .
By (A.9), (A.10) and (A.11), we get, for ¢ € D(Hy),
g IH, 7)) < g KIHG) (Conll (7 + sl + (Coma + B[]
and for ¢ € §,
(A.12)

GIHHHE + 0nrn) 7ol < g KHHG) (Cay + )¢l

mléﬂn + Bﬁn
o

4A
< 7 sup( i

9 sup(5 S 1) K(G)(2maCiy + Bay) 0]
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Thus, by (A.12), the operator H, ZH(ﬁ_ﬁ + 0,41) 7! is bounded and

n rrn — D
QHHInH(H+ +onp1) M < 9; )

where D is given by (see (3.9)
. 4\~
D= T
Sup(2m1 —5

This yields, for ¢ € D(H?),

1) R(G) (Zmléﬁn + Bﬂn)~

n D rrmn
glH || < 9;||(H+ +ons1)¥ -

Hence it follows from [22, §V, Theorems 4.11 and 4.12] that

™)

(A.13) gl(H 2, )| < g;( (H + 0pp1)0, )

Let ggz) > 0 be such that

(2D
2P
oy

By (A.13) we get, for g < g§2)7

2 1
<1 and gg)ggg).
) D D -
(A14)  H" = {7 4 E" 4 gH, ™! ZE"—gTan+1+(1— %)Hz.

Because (1 — gD/)H} > 0 we get from (A.14)

(A.15) E"tl > pn - % Opi1, n>0.
Suppose that ™ € F" satisfies ||¢"]| = 1 and for € > 0,
(A.16) (", H'Y") < E" + €.
Let
(A.17) Pt =y @ Qe L
We obtain
(A.18) E"TL < (M B < BN e g(9n Y, H gt
By (A.13), (A.16), (A.17) and (A.18) we get, for every € > 0,
gD, gD

B <E"+e(1+25)+ "= 0,11,
v g
where g < g§2).
This yields

D
(A.19) EMl < Em 4 97 Tnt s

and by (A.15), we obtain

D
|En 7En+1| < gTUTH-l )
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For n = 0, since o9 = A, remind that HY = H}=" = HJ° = Ho|za. Thus, the
ground state energy of HY is 0 and it is a simple isolated eigenvalue of H with
00, the vacuum in F°, as eigenvector. Moreover, since A > my,

inf (o(Hg) \ {0}) = my ,
thus (0,m;) belongs to the resolvent set of HY.
By Hypothesis 3.1(iv) we have H® = HY. Hence E° = {0} is a simple isolated
eigenvalue of H? and H° = H}. We finally get

)
(A.20) inf (o(HY) —{0}) = mq >my — 3 =01
We now prove Proposition 3.5 by induction in n € N*. Suppose that E™ is a

simple isolated eigenvalue of H™ such that

39D
inf (c(H")\ {0}) > (1 - "), n>1.
Y

Since (3.10) gives opt1 < (1 — @)on for g < g§2), 0 is also a simple isolated
eigenvalue of fﬁf such that
(A.21) inf (U(ﬁfﬁ) \ {o}) > Gngt -
We must now prove that E"*! is a simple isolated eigenvalue of H"*! such that

, " 3gD

inf (o(HMH)\ {0}) > (1 — 97)%“ .
Let

At — sup inf o, H" o) .

pegntis g0 (6a0)=0; ED(H™H1); ||¢||:1( o)

By (A.14) and (A.19), we obtain, in §"*!
) D
H1+1 > E" — Entl g1 + (1 — L)Hﬁ
(A.22) ~ T i
gD, ~. 29D
>(1- 7) Y= ——0nt1

By (A.17), ¢™*! is the unique ground state of H? and by (A.21) and (A.22), we
have, for g < ggz),
A > inf (¢, H ™ ¢)
(¢, +1)=0; pED(H"+1); ||p[|=1
gl~) 29[) 3gb
>(1l——)ops1— —opr1=1——)ops1 >0.

( - )Tt Ot ( 5 )ont
This concludes the proof of Proposition 3.5 by choosing g5 = géz), if one proves
that H ! satisfies Proposition 3.5. By noting that 0 is a simple isolated eigenvalue
of H{ such that inf(c(HY) \ {0}) = o1, we prove that E' is indeed an isolated

simple eigenvalue of H' such that inf(c(HY) \ {0}) > (1 — @)01 by mimicking

the proof given above for Hf_H.
O
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