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Ever since introduced, the topological properties of the Spin-Chern (Cs) have been discussed
and re-discussed in a fairly large number of works. On one hand the original paper by Sheng and
collaborators revealed robust properties of Cs against disorder and certain deformations of the model
and, on the other hand, other people pointed out that Cs can change sign under special deformations
that keep the insulating gap open. This makes one wonder how far does the robustness observed in
the original paper extend? In this paper we give an analytic result that allows us to state in extremely
simple terms the origin of the robustness against disorder and continuous local deformations of the
models. It also allows us to give several generalizations of the topological invariant.

PACS numbers: 73.43.-f, 72.25.Hg, 73.61.Wp, 85.75.-d

Quantum Spin-Hall insulators represent a new state of
matter. They were predicted theoretically in Ref. [1] and
soon after that they were found experimentally [2, 3].
Samples made of such materials display dissipationless
spin currents at the edges, that are robust against con-
tinuous deformations and disorder [4].

The presence of the edge channels is due to the non-
trivial topology of the bulk energy bands and two non-
trivial topological invariants were proposed, virtually in
the same time: the Z2 invariant proposed by Kane and
Mele [5] and the Spin-Chern number proposed by Sheng
and collaborators [6] (first mentioned in Ref. [4]). In this
paper we focus on the later invariant, which came under
sustained scrutiny because it promised a finer classifica-
tion of the Spin-Hall insulators. This was later argued
[7, 8] not to be the case.

The Spin-Chern number is obtained by integrating the
Berry curvature of a fiber bundle obtained by impos-
ing twisted boundary conditions on a finite sample [6].
In general, such procedure does not necessarily lead to
smooth fiber bundles. However, the numerical evidence
given in Ref. [6] implied that, for their case, the structure
is a smooth fiber bundle and that Cs is a robust topolog-
ical invariant. It was later observed, however, that one
can continuously deform the model using spin rotations
that keep the insulating gap unchanged but switch the
sign of the Spin-Chern number [7, 8]. This argument
shows that sometime the structure proposed in Ref. [6]
fails to be a smooth fiber bundle and that Cs may not be
well defined over the entire Spin-Hall zone of the phase di-
agram. The current understanding is that, whenever one
crosses certain zones of the parameter space, Cs jumps,
but these jumps are always by an even number. There-
fore, one can still use Cs to formulate a Z2 classification of
the Spin-Hall insulators and to efficiently compute the Z2
invariant. For this reason, the interest in the Spin-Chern
number continues to be strong. An efficient algorithm
for numerical evaluations of Cs was proposed by Fukui
and Hatsugai [9]. Later, the algorithm was used to map
Cs for aperiodic systems [10].

In this paper we give an analytic result that tells when
Cs can be defined and how to define Cs in a manner that
allows extensions to the disordered case. Once we com-
plete this step, we show that the topological invariance of
Cs can be established using the non-commutative theory
of the Chern number [11]. Let us start our discussion
from the concrete model of electrons in graphene [1]:

H0 = −t
∑
〈ij〉,σ

|i, σ〉〈j, σ|

+iλSO
∑

〈〈ij〉〉,σσ′
[s · (dkj × dik)]σ,σ′ |i, σ〉〈j, σ′|

+iλR
∑

〈ij〉,σσ′
[ẑ · (s× dij)]σ,σ′ |i, σ〉〈j, σ′|.

(1)

Here, i and j denote the sites of the honeycomb lattice
and σ and σ′ the electron spin degrees of freedom, taking
the values±1. The Hamiltonian acts on the Hilbert space
H spanned by the orthonormal basis |i, σ〉. The simple
kets denote the nearest neighbors and double kets denote
the second nearest neighbours. The electrons are consid-
ered non-interacting. The three terms in Eq. 1 are the
usual nearest neighbor hopping term, the intrinsic spin-
orbit coupling preserving the lattice symmetries and the
Rashba potential induced by the substrate supporting the
graphene sheet. We assume that the parameters in the
Hamiltonian are chosen so that we are in the Spin-Hall
zone of the phase diagram [5].

The model is time reversal invariant and it displays
two upper and two lower bands separated by an insu-
lating gap. The total Chern number of the lower (and
for that matter also of the upper) bands is zero, as it will
generically be for any time reversal invariant band model.
When λR=0, sz, defined by sz|i, σ〉 = 1

2σ|i, σ〉, commutes
with the Hamiltonian and the model Eq. 1 reduces to a
spin up and a spin down decoupled Haldane models [12].
Thus, we can define two Chern numbers, for the spin up
and for the spin down electrons, which are non-trivial in
the Spin-Hall part of the phase diagram. We choose λSO
so that C↑=1 and C↓=−1. The sign of these numbers
will change if λSO changes sign, due to the closing of the
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insulating gap at λSO = 0. When the Rashba term is
turned on, sz is no longer conserved. The question is,
without such conserved quantity, how can one smoothly
split the fiber bundle of the occupied states into two fiber
bundles with non-trivial Chern numbers? Also, how can
one tackle the disorder case, when the Brillouin torus is
no longer there?

The splitting in up/down spin sectors is, of course,
given by the spectral decomposition of sz. When sz is
no longer conserved, we should look for another operator
that does the same job. Let us start with the strictly
periodic Hamiltonian Eq 1. We also defer certain ab-
stractions and generalizations till later in the paper and
we start with a concrete choice for this operator, which
is PszP , P being the projector onto the occupied states.
PszP changes sign after the conjugation with the time
reversal operation θ:

θPszPθ = −PszP. (2)

For λR = 0, sz commutes with the projector P , thus the
spectrum of PszP consists of just two points: ± 1

2 . Of
course, PszP is zero on the un-occupied states, but here
we restrict the discussion to the space K = PH of occu-
pied states only. When λR is turned on, the spectrum of
PszP spreads but is still contained between − 1

2 and + 1
2

(see Fig. 1). Moreover, for small λR, we can be sure that
the spectrum does not cross the origin [see the technical
discussion near the end of the paper]. Due to property 2,
we can also be sure that the spectrum of PszP is sym-
metric relative to the origin. If we denote by K± and by
P± the invariant spectral spaces and the spectral projec-
tors corresponding to the positive/negative spectrum of
PszP , then:

K = K− ⊕K+, P = P− ⊕ P+, θK± = K∓. (3)

In other words, the spectral spaces of PszP can provide
a splitting of PH. To have a valid splitting, however, we
need to demonstrate that the kernels 〈i, σ|P±|j, σ′〉 decay
exponentially fast with the separation |i − j|. The proof
that this is indeed the case is at the core of our paper,
but for the sake of exposition we defer the proof till the
end of the paper.

A few clarifications are in place. The above splitting is
not associated with slashing the Brillouin torus in half.
The two spaces K± remain fibrations over the whole Bril-
louin torus. Their Whitney sum gives the original fiber
bundle of the occupied states. The fact that the pro-
jectors P± are exponentially localized assures that the
splitting P (k) = P−(k) ⊕ P+(k) can be done smoothly
over the entire Brillouin torus. Of course, at this point
one can go ahead and compute the Chern numbers for
each sectors, by integrating the corresponding Berry cur-
vature over the Brillouin torus:

C± =
∫
T

d2k
2πi

Tr{P±(k)[∂k1P±(k), ∂k2P±(k)]}. (4)

This, however, is not satisfactory because the computa-
tion will depend on the existence of the Brillouin torus,
which is lost when disorder is added.

A key observation is that our construction does not
involve the Bloch fibration and for that reason it can be
extended to the disordered system. To be specific, let us
consider the addition of a random potential

Vω =
∑
i,σ

λi(ω)|i, σ〉〈i, σ|, (5)

where λi(ω) is a random variable with ω ∈ Ω. We assume
the existence of a probability measure dµ(ω) on Ω and
of an ergodic flow tn : Ω → Ω, tntn′ = tn+n′ , such that
unVωu

−1
n = Vtnω, where un refers to the lattice transla-

tion by a vector n of the Bravais lattice. The probability
measure is assumed invariant to this flow. At all times,
we assume that the insulating gap of Hω=H0 + Vω re-
mains open and consider the Fermi level inside this gap.
We denote by Pω the projector onto the occupied states.
As we shall see, at least for small λR, PωszPω continues
to display a spectral gap around the origin, in which case
the splitting Pω = P−(ω)⊕ P+(ω) is still possible.

The idea is then to apply the non-commutative the-
ory of the Chern number [11] to the projectors P±, in-
dividually. Of course, this theory cannot be applied to
any projectors. It works for the present case because P±
are exponentially localized and because they have the
covariance property: unP±(ω)u−1

n = P±(tnω). The non-
commutative version of the Chern numbers is

C±(ω) = 2πitr{P±(ω)[[n1, P±(ω)], [n2, P±(ω)]]}, (6)

where tr is the trace over the states in the first unit cell
and n denotes the position operator of the unit cells in
the Bravais lattice. For the periodic case, this expression
is equivalent to Eq. 4. The main result is∫

dµ(ω) C±(ω) = ±1, (7)

which follows from the equality:

2πi
∫
dµ(ω) tr{P±(ω)[[n1, P±(ω)][n2, P±(ω)]]}

= Index{P±(ω)UP±(ω)}
(8)

with U being the unitary transformation given by mul-
tiplication with (n1 + in2)/

√
n2

1 + n2
2. The index is well

defined if P± are exponentially localized. If this is the
case, the index is an integer by definition and is inde-
pendent of ω. The index cannot change under various
deformations of the Hamiltonian, as long as P±(ω) re-
main exponentially localized. The proof of Eq. 8 can be
achieved by following step by step the analysis given in
Ref. 11 for the full Chern number.

What did we learn? The robustness of the Spin-Chern
number Cs= 1

2 (C+ − C−) against deformations of the
Hamiltonian and disorder is due to the existence of two
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spectral gaps: the insulating gap of the Hamiltonian and
the spectral gap of the operator PszP . Is sz special?
No. In fact, Cs is invariant to deformations of H and sz,
as long as the spectral gaps of the two operators remain
open. Closing any of the two gaps can result in jumps
for the the Spin-Chern number. The jumps are always
by an even number.

How does our analysis complete the previous discus-
sions? The argument in Refs. [7, 8] was that, using rota-
tions in the spin sector, one can connect the Hamiltonians
with +λSO and with −λSO without changing the insu-
lating gap. But at the end of such rotation, Cs changes
sign. The change of sign was attributed to the closing of
the gap of the Hamiltonian with the twisted boundary
conditions. Various physical interpretations have been
given to this finding, the most prevalent one being that
Spin-Chern number describes the edge where the twisted
boundary conditions were imposed rather than the bulk.

We now can give an alternative explanation: during
the rotation in the spin sector, the gap of PszP closes and
then opens again. Can this problem be fixed? Yes. The
solution is to deform not only the Hamiltonian but also
the operator PszP . For the case of spin rotations, this
can be easily accomplished by applying the spin rotations
to sz inside PszP . If there is such easy fix, then the old
question resurfaces: does the Spin-Chern number contain
more information than the Z2 invariant? The answer is
no. After the continuous rotation, PszP → −PszP and
K± → K∓. Thus, there is no canonical way to chose the
spaces K± and, since this choice determines the sign of
Cs, the sign contains no additional information.

Can the construction be generalized? Yes. For other
models, we can find operators PAP that have n islands
of isolated spectrum with exponentially localized projec-
tors. If A commutes with the translations of the unit cell,
we can define a Chern number for each spectral island of
PAP . A simple example is the model of Eq. 1 with spin
3
2 particles. For λ0 = 0, sz commutes with the Hamil-
tonian and PH splits into four sectors, corresponding to
sz = − 3

2 , − 1
2 , 1

2 and 3
2 . For each sector we can define a

Cern number, which take the values: C− 3
2

= C− 1
2

= −1
and C 1

2
= C 3

2
= 1. When the Rashba interaction and

disorder are turned on, the spectrum of PszP spreads,
but is still contained into four isolated spectral islands.
Thus, we can still split PH into four sectors and our anal-
ysis shows that the Chern numbers for each sectors will
be conserved as long as the the insulating gap remains
open and the spectral islands of PszP remain isolated.
The spin-Chern number can be defined in various ways,
depending how we group the sectors. If we repeat the
construction for spin 1

2 and put the negative sz sectors
into K− and the positive sz sectors into K+, Cs becomes
2. Other possible groupings gives Cs = 0 and Cs = −2.

It is interesting to remark that time-reversal invari-
ance did not play a crucial role in our construction. If
we consider more complex insulators, that is insulators

with many atoms in the unit cell, it is very probable
that one can build non-trivial operators A by combin-
ing spin and/or point group symmetry operators. Using
such operators one might discover nontrivial topological
structures in seemingly trivial insulators. For example, it
was recently pointed out [13] that certain surface states
in ordinary semiconductors can have topological origins.
This is a remarkable observation since the presence of
surface or interface states is paramount for the function-
ing of photovoltaic devices. Thus, in principle we can
use topology to design better photovoltaic devices. In
fact this drives our interest for this problem.

How about the edge currents? The existence of the
nontrivial Chern numbers for different sectors does not
automatically imply the existence of chiral edge modes.
Generically, only the insulators with odd Cs display such
edge modes [7].

The discussion given here hardly touches the problem
of classification and of the edge modes. For this two
problems one has to explore how the occupied states re-
late to the un-occupied states. This has to be done on
solvable models. It is at this point where our analysis be-
comes relevant because now we have a guiding principle
which tells when the realistic models, which should in-
clude disorder and will generally not be solvable, can be
deformed into smooth solvable models without changing
the topological invariants.

The robustness of the edge modes was also recently in-
vestigated in Ref. [14], which introduced a quantized edge
index. Although this edge index was also constructed via
a splitting, the connection between the edge index and Cs
is not clear to us at this moment. We want to make a final
remark about the edge modes. The existence of nontriv-
ial topological sectors can indicate reach edge and surface
physics. For example, for the model of spin 3

2 particles,
when cutting an edge we can be sure that four [which be-
come 2] edge bands shoot out of the bulk spectrum. The
bands hybridize and return back into the same part of the
bulk spectrum were they originated. Nevertheless, these
bands lead to edge states which can still be useful for
practical applications. In the presence of disorder, these
edge bands will localize, but if the localization length is
large, these edge states, for example, can efficiently trap
light and thus be useful in photovoltaic devices.

We now start the proof of the exponential localization
of the projectors P±(ω). To ease the notation we drop
ω. First, let us show that the gap of the operator PszP ,
viewed as an operator onK, remains open and clean when
the Rashba term is turned on, as opposed to immediately
closing or filling with additional spectrum due to some
instability. For this, we notice that the projector in the
occupied space is analytic in λR. This property is pro-
tected by the insulating gap of the Hamiltonian Hω. We
will show that, at least for small λR, PszP − ζIK is in-
vertible for ζ in the vicinity of 0. One could try to work
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FIG. 1: The figure illustrates the spectrum of Pσ3P for small
Rashba coupling and the contours of integrations used in the
main text.

with the expression

(PszP − ζIK)−1 = P (PszP − ζI)−1 (9)

and use the continuity of P , but this expression has a
problem when z = 0, since even if PszP−ζIK is invertible
at z = 0, (PszP − ζI)−1 diverges because we include the
un-occupied states where PszP is zero.

Here is an alternative approach inspired from Ref. [15].
Let R(ζ) = P (sz − ζ)−1P , with ζ in a neighborhood of
zero. We have successively:

R(ζ)(PszP − ζIK) =

P (sz − ζ)−1{(sz − ζ)P + [P, sz]}P

= P + P (sz − ζ)−1[P, sz]P ≡ IK +Q.

(10)

Q is small, at least for small λR, since

Q = P (sz − ζ)−1[P − P0, sz]P, (11)

where P0 is the projector onto the occupied states for
λR = 0. The small factor comes from P − P0, which
is proportional to λR. Above, we used the fact that sz
commutes with P0, even in the presence of disorder. In
this case, the operator IK +Q is invertible and we find:

(IK +Q)−1R(ζ)(PszP − ζIK) = IK, or (12)

(PszP − ζIK)−1 = (IK +Q)−1P (sz − ζ)−1P. (13)

We now show that, as long as the gap ∆ of PszP (or
any deformation of it) remains opened, the spectral pro-
jectors P± are exponentially localized. By exponential
localization of an operator T we mean the existence of a
strictly positive α such that

|〈i, σ|T |j, σ′〉| ≤ ct. e−α|i−j|. (14)

We will use the following simple observation [16]. If
Uq denotes the non-unitary transformation Uq|i, σ〉 =
eq·i|i, σ〉, then: if T is exponentially localized, then
Tq ≡ UqTU−q is a bounded operator for all orientations
of q, provided |q| is smaller than α, and conversely: if

Tq is bounded for any orientation of q and |q| < α, then
T is exponentially localized with a localization exponent
equal or larger than α. Also, it is a fact that if T is
exponentially localized, then [‖ ‖ denotes the operator
norm]

‖T − Tq‖ → 0 as q → 0, (15)

i.e. the difference between T and Tq is small for q small.
Since

P± =
i

2π

∫
C±
P (PszP − ζI)−1dζ, (16)

it is enough to show the exponential localization of
P (PszP − ζI)−1. The contours C± are shown in Fig. 1.
The projector P itself is exponentially localized. For a
general proof see Ref. [17]. We have:

UqP (PszP − ζI)−1Uq = Pq(PqszPq − ζI)−1, (17)

and

PqszPq − ζI = PszP − ζI + PqszPq − PszP (18)

thus

‖PqszPq − ζI‖ ≥
∆
2
− ‖PqszPq − PszP‖ (19)

which is strictly positive for small q due to Eq. 15. In
other words, PqszPq − ζI is invertible, at least for small
q, which shows that all operators appearing in the right
hand side of Eq. 17 are bounded. Consequently, P±(ω)
are exponentially localized.

In conclusion, for the graphene model we have shown
that the space of the occupied states can be robustly split
into two sectors by using the spectral properties of PszP .
We also found that the well established non-commutative
theory of the Chern number can be applied to define in-
variants for the two sectors and to demonstrate their ro-
bustness against deformations and disorder. We showed
that the construction can be generalized in several ways,
some with potential for practical applications.
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