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ABSTRACT. In this paper, we determine the exact expression for the hydrogen
ground state energy in the Pauli-Fierz model up to the order O(a®loga™1),
where a denotes the finestructure constant, and prove rigorous bounds on
the remainder term of the order o(a®loga™!). As a consequence, we prove
that the ground state energy is not a real analytic function of «, and verify
the existence of logarithmic corrections to the expansion of the ground state
energy in powers of «, as conjectured in the recent literature.

1. INTRODUCTION

For a hydrogen-like atom consisting of an electron interacting with a static nu-

cleus of charge eZ, described by the Schrodinger Hamiltonian —A — C“—Zl,

info(—A) —info(—A — %) _ (ZZ)

|z|
corresponds to the binding energy necessary to remove the electron to spatial in-
finity.

The interaction of the electron with the quantized electromagnetic field is ac-
counted for by adding to —A — % the photon field energy operator Hy, and an
operator I(a)) which describes the coupling of the electron to the quantized electro-
magnetic field; the small parameter « is the fine structure constant. Thereby, one
obtains the Pauli-Fierz Hamiltonian described in detail in Section 2. In this case,

determining the binding energy

ol

(1) info( —A+Hf+1I(a)) —info( — A - +Hy+1(a))

|z|
is a very hard problem. A main obstacle emerges from the fact that the ground state
energy is not an isolated eigenvalue of the Hamiltonian, and can not be determined
with ordinary perturbation theory. Furthermore, the photon form factor in the
quantized electromagnetic vector potential occurring in the interaction term I(«)
contains a critical frequency space singularity that is responsible for the infamous
infrared problem in quantum electrodynamics. As a consequence, quantities such
as the ground state energy do not exist as a convergent power series in the fine
structure constant o with coefficients independent of «.

In recent years, several rigorous results addressing the computation of the binding
energy have been obtained, [14, 13, 8]. In particular, the coupling to the photon
field has been shown to increase the binding energy of the electron to the nucleus,
and that up to normal ordering, the leading term is % [12, 14, 8].

Moreover, for a model with scalar bosons, the binding energy is determined
in [13], in the first subleading order in powers of a, up to o, with error term
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a?loga~!. This result has inspired the question of a possible emergence of loga-
rithmic terms in the expansion of the binding energy; however, this question has so
far remained open.

In [2], a sophisticated rigorous renormalization group analysis is developed in
order to determine the ground state energy (and the renormalized electron mass)
up to any arbitrary precision in powers of a, with an expansion of the form

2N
(2) co+ Y en(@)ar? +o(a),
k=1

(for any given N) where the coefficients e (o) diverge as o — 0, but are smaller
in magnitude than any positive power of a~'. The recursive algorithms developed
in [2] are highly complex, and explicitly computing the ground state energy to any
subleading order in powers of « is an extensive task. While it is expected that the
rate of divergence of these coefficient functions is proportional to a power of log a1,
this is not explicitly exhibited in the current literature; for instance, it can a priori
not be ruled out that terms involving logarithmic corrections cancel mutually.

The goal of the current paper is to develop an alternative method (as a contin-
uation of [4]) that determines the binding energy up to several subleading orders
in powers of a, with rigorous error bounds, and proving the presence of terms
logarithmic in «.

The main result established in the present paper (for Z = 1) states that the
binding energy can be estimated as

2
(3) % +eWad +ePat +e®alloga™ 4 o(a’loga™)

where e (i = 1,2,3) are independent of a, e > 0, and e(®) # 0. Their explicit
values are given in Theorem 2.1.

As a consequence, we conclude that the binding energy is not analytic in a. In
addition, our proof clarifies how the logarithmic factor in a® log ™! is linked to the
infrared singularity of the photon form factor in the interaction term I(«). We note
that for some models with a mild infrared behavior, [10], the ground state energy
is proven to be analytic in a.

Organization of the proof. Our proof of the expression (3) for the hydrogen
binding energy involves the following main steps:

Since the binding energy (1) involves the ground state energy of the self-energy
operator T = —A + Hy + I(«), it is necessary to determine the value of inf o(T).
This was achieved in [4] (see also Lemma A.7), using in particular the fact that
inf o(T) = inf o(T(0)) [9, 6], where T'(0) is the restriction of T to total momentum
P =0 (see details in Section 2, (7)).

The derivation of (3) requires both a lower and an upper bound for the binding
energy. This is accomplished in three steps.

The first term in the expansion for the binding energy is the Coulomb term %2;
it can be recovered with an approximate ground state containing no photon, and
with an electronic part given by the ground state u, of the Schrédinger-Coulomb
operator —A— I%I The first step, described in Section 4, thus consists of estimating
the contribution to the binding energy stemming from states orthogonal to u, with
respect to the quadratic form for —A — 1% + Hy + I(w).
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The next two steps consist of estimating the binding energy up to the order o
(Theorem 5.2, Section 5), and subsequently to the order a®loga~! (Theorem 6.1,
Section 6).

One of the key ingredient to control some of the error terms occurring in both
the upper and lower bounds, is an estimate on the expected photon number for the
ground state W of the total hamiltonian —A — ?Tzl + Hy + I(®). Such a bound is
derived in Section 3 and yields (¥, N;¥) = O(a?loga~1), where Ny is the photon
number operator.

In Section 2, we give a detailed introduction of the model and state the main
results. In the Appendix, we provide some technical lemmata used in the derivation
of the binding energy.

2. THE MODEL

We study a scalar electron interacting with the quantized electromagnetic field
in the Coulomb gauge, and with the electrostatic potential generated by a fixed
nucleus. The Hilbert space accounting for the Schrodinger electron is given by
$er = L*(R3). The Fock space of photon states is given by

S = @Sna
neN
where the n-photon space §, = Q. (L2 (R?) ® (Cz) is the symmetric tensor prod-
uct of n copies of one-photon Hilbert spaces L?(R3) @ C2. The factor C? accounts
for the two independent transversal polarizations of the photon. On §, we intro-
duce creation- and annihilation operators a}(k), ax(k) satisfying the distributional
commutation relations

laa(k), ay (k)] = Sano(k—K) , [ai(k), a}, (K)] = 0,

where aﬁ/\ denotes either ay or a}. There exists a unique unit ray Qf € §, the Fock
vacuum, which satisfies ay (k) Q¢ = 0 for all k € R and X € {1,2}.

The Hilbert space of states of the system consisting of both the electron and the
radiation field is given by

H = Ha ¥ F.

We use units such that # = ¢ = 1, and where the mass of the electron equals
m = 1/2. The electron charge is then given by e = y/a, where the fine structure
constant « will here be considered as a small parameter.

Let 2 € R3 be the position vector of the electron and let y; € R3 be the position
vector of the i-th photon.

We consider the normal ordered Pauli-Fierz Hamiltonian on $ for Hydrogen,

(4) iV @ Iy — VaA@))*: +V(z) @ Iy + I, @ Hy.
where : - - - : denotes normal ordering, corresponding to the subtraction of a normal
ordering constant ¢, ., With ¢y.0.If := [AT(2), A~ ()] is independent of .

The electrostatic potential V'(z) is the Coulomb potential for a static point nu-
cleus of charge e = y/a (i.e., Z =1)

V(z)=——.
||
We will describe the quantized electromagnetic field by use of the Coulomb gauge
condition.



4 J.-M. BARBAROUX, T. CHEN, V. VOUGALTER, AND S. VUGALTER

The operator that couples an electron to the quantized vector potential is given
by

A(z) = Z /]R3 mg)\(k) [e””“’ @ ax(k) + e ** @ a} (k) |dk

A=1,2

where by the Coulomb gauge condition, divA = 0.
The vectors €y (k) € R? are the two orthonormal polarization vectors perpendic-
ular to k,

(ko, —k1,0) k
61(k') \/m and 52(]€) |k| /\El(k).
The function y implements an ultraviolet cutoff on the wavenumbers k. We assume
XA to be of class C!, with compact support in {|k| < A}, xpo <1 and x5 = 1 for
|k] < A — 1. For convenience, we shall write

Alx) = A7 (z) + AT (),
where
_ xa (k) ik
A (2) = A;Z/RS ma,\(k‘)ek ® ax(k)dk

is the part of A(x) containing the annihilation operators, and A*(x) = (A~ (z))*.
The photon field energy operator H is given by

= 3 [ klas(basijat.

A=1,2
We will, with exception of our discussion in Section 3, study the unitarily equiv-
alent Hamiltonian
(5) H=U(: (Ve ® Iy = VaA())": +V(2) @ Iy + La @ Hy )U”
where the unitary transform U is defined by
U= ein.aC’
and
Pr= > /kaj(k)ax(k)dk
A=1,2
is the photon momentum operator. We have
UiV ,U*=iVy+ Py and UA(z)U* = A(0) .

In addition, the Coulomb operator V, the photon field energy Hy, and the photon
momentum Py remain unchanged under the action of U. Therefore, in this new
system of variables, the Hamiltonian reads as follows

(6) H=:((iV, &I — 4@ P;) — VaA(0))” : +Hy — |%| ,

where : ... : denotes again the normal ordering. Notice that the operator H can
be rewritten, taking into account the normal ordering and omitting, by abuse of
notations, the operators I.; and Iy,
@ .
H=(-A, — m) + (Hy + Pf) — 2Re (iV,.Py)

—2/a(iV, — Py).A(0) + 22AT(0).A™(0) + 2aRe (A7 (0))* .
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For a free spinless electron coupled to the quantized electromagnetic field, the
self-energy operator T is given by

T=:(iVe @ I; —VaA(z))": +1, ® Hy.

We note that this system is translationally invariant; that is, T' commutes with the
operator of total momentum

Piot = pet @ Iy + I @ Py,

where p.; and Py denote respectively the electron and the photon momentum op-
erators.

Let Hp = C® § denote the fibre Hilbert space corresponding to conserved total
momentum P.

For fixed value P of the total momentum, the restriction of T to the fibre space
$Hp is given by (see e.g. [6])

(7) T(P)= :(P— P;—aA(0))?: +H;

where by abuse of notation, we again dropped all tensor products involving the
identity operators I and I.;. Henceforth, we will write

AT = A*(0) .
Moreover, we denote
Yo=info(T) and XY =info(H)=info(T +V).

It is proven in [1, 6] that Xy = inf o(7°(0)) is an eigenvalue of the operator T'(0).
Our main result is the following theorem.

Theorem 2.1. The binding energy fulfills
1
(8) Yo -2 :1042 +eWa? +e@at +ea’loga™ + o(a’loga™?),

where

SN
(1) — 2/ Xa(t) dt,

3
2 X )
e = 3 Re > ((A7)/(Hy + P7) ' AT ATQy, (Hy + P7) 71 (AT)'Qy)
i=1

3
1 o
+§Z|\(Hf+Pf)*%(2A+.Pf(Hf+P§)*1(A+yfp;(Hf+PJ%)*1A+.A+)QfH2
=1
2 - - 2\—1/ A+\i 2 2L 1 1 -1 2
=3 2 A7y + PR HAN QP + adlQE (-8 - )R Au
i=1

E2+k2 2
" / 12 k8 e iy <A KD dhadiadhs,
1 1

6(3) - —

Ao

and Qi is the projection onto the orthogonal complement to the ground state u; of
the Schrédinger operator —A — |71‘ (for a =1).

1
+Z)%vu1\|2,
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3. BOUNDS ON THE EXPECTED PHOTON NUMBER

Lemma 3.1. Let

K = (iV—aA(z)? + Hy — ﬁ = v2+Hf—|i‘|,
x x
be the Pauli-Fierz operator defined without normal ordering, where v = iV —
VaA(x). Let W € H denote the ground state of K,
KV = EV,

normalized by

Let

denote the photon number operator. Then, there exists a constant ¢ independent of
a, such that for any sufficiently small o > 0, the estimate

(I, N;U) < ca?loga™!
is satisfied.

Proof. Using

lax(k), Hy] = K|, and [a,\(k;),v}:Q;i];féx/\(k)eik.x

and the pull-through formula,
ax(k)EV = a)(k)K¥
1
= (o HDax(®) = Troa(k) + [o,an(B)lo + el ax(W] v

we get

@awy = 0 et (W -vaa@) awe) v

From (9), we obtain

o Femerd N I

[ axye H2 iV~ Vad(x) ) H2

< W[(m,m) + (U, %\Iﬂ :

since K — E >0, and (iV — \/aA(ac))2 < (K + 137)- We have

(10) <\If, K\I/> <ca.
Moreover, for the normal ordered hamiltonian defined in (4), we have
1K =—-A, —4yaRe (iV, A" (z)) +a: A(z)? : +Hy — %
«
(11) > (1—cva)(—Ay) +a: A@)? : +(1 —cy/a)H; — B
1
> —ca® — A, @
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where in the last inequality we used (see e.g. [11])
a: A(x) ? +(1 —cey/a)Hy > —ca®
Inequalities (10), (11) and

[0

—fA |33| > —4a0?
imply
1AL, < co? ]
Thus,
(12) (0. 200) < (-0 9) + 103 ¥]° < e+ )o? 9]
Collecting (10), (12) and (9) we find
(13) |arye] < C“fj:'("“')

This a priori bound exhibits the L2-critical singularity in frequency space. It does
not take into consideration the exponential localization of the ground state due to
the confining Coulomb potential, and appears in a similar form for the free electron.
To account for the latter, we use the following two results from the work of
Griesemer, Lieb, and Loss, [11]. Equation (58) in [11] provides the bound

k|)
Josow] < <EEE e
k|7
Moreover, Lemma 6.2 in [11] states that
2 1 )
| exvtptafe | < e [1+ g 1w 1?,

for any

B < Y- E = 0(a?).
For the 1-electron case, Y is the electron self-energy, and E is the ground state of
: K :. Choosing 8 = O(a),

Ll

Lo o~ )
@ < fllalell7 ¥ <

explfal) | o)

B
c 3
< —[1+ } |w
3 S | W]
< clof%.

Notably, this bound only depends on the binding energy of the potential.
Thus,

(14) Ha,\(k:)\ll H <
We see that binding to the Coulomb potential weakens the infrared singularity by a

factor |k|, but at the expense of a large constant factor a«=2. For the free electron,
this estimate does not exist.
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Using (13) and (14), we find

(U, Ny W) = /dkHaA(k)\IIHQ
2

_3
Cxx 2 Cl
dk —— +/ dk —
/m B s<ik<a  TkP

1
ca”? 6% + a? logg

IA

IN

9 _
< cat + "a?loga?t .

15
8

for § = s . This proves the lemma. O

4. ESTIMATES ON THE QUADRATIC FORM FOR STATES ORTHOGONAL TO THE
GROUND STATE OF THE SCHRODINGER OPERATOR

Throughout this paper, we will denote by I'" the projection onto the n-th photon
sector (without distinction for the n-photon sector of § and the n-photon sector of
$). We also define I'Z" =1 — Z;L:_J I,

Starting with this section, we study the Hamiltonian H defined in (6), written
in relative coordinates. In particular, iV, now stands for the operator unitarily
equivalent to the operator of total momentum, which, by abuse of notation, will be
denoted by P.

Let
1
15 Uo () = ——=a/2e—0l2l/2

(15) @)= =
be the normalized ground state of the Schrédinger operator

ho i = —A, — ey

|z|

We will also denote by —eqg = —0‘72 and —e; = —‘i‘—; the two lowest eigenvalues of

this operator.

Theorem 4.1. Assume that ® € $ fulfils (Fk¢,ua>Lz(Rs7dw) =0, for all k > 0.
Then there exists v > 0 and ag > 0 such that for all 0 < a < ag

1
(16) (H®, ) > (To — eo) [ @]* + 8[| @]* + v H @|%,

where § = (eg — €1)/2 = 33—2042.

Remark 4.1. All photons with momenta larger than the ultraviolet cutoff do not
contribute to lower the energy. More precisely, due to the cutoff function xa(|k|)
in the definition of A(x), and since we have

H = (iV, — P;)? — 2y/aRe (iV, — P;).A(0) + o : A(0)2 : +H — %
it follows that for any given normalized state ® € 9, there exists a normalized state
Dy such thatVo € R, foralln € {1,2,...), for all (k1, A1), (k2,X2),.--, (kn,An)) €
(R3\ {k, |k] < A+1})x {1,2})", we have

(17) Fn(I)SA($7(]€1,)\1), (k27>\2),..., (kn,)\n)) =0

and
(Pcn, HP<p) < (D, H®) and (P<p,TP<p) <(2,T9).
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A key consequence of this remark is that throughout the paper, all states will be
implicitly assumed to fulfill condition (17). This is crucial for the proof of Corol-
lary 4.2.

To prove Theorem 4.1, we first need the following Lemma.
Lemma 4.1. There exists cg > 0 such that for all a small enough we have
H - %(P — Pp)? — %Hf > —coa’.
A straightforward consequence of this lemma is the following result.
Corollary 4.1. Let U¢° be the normalized ground state of H. Then
(18) (HPwos, W) < 20002 5|2
Proof. This follows from (HWSS WES) < (X5 — eq)||PE5|12 < 0. O
Moreover, from Theorem 4.1 and Lemma 4.1, we obtain

Corollary 4.2. Assume that ® € § is such that (I'"®,uq)12®s,dz) = 0 holds for
alln > 0. Then, for v and § defined in Theorem 4.1, there exists ¢ > 0, and cg > 0
such that for all 0 < o < g we have

(19) (HD, @) > (S — eo)||®|* + M[®],
where

) v, 1 n
(20) M[®] = §||<I’H2 + §HH}"<I’H2 + <P = Pp)d|? + ¢|T"= P,

Proof. According to Remark 4.1, there exists ¢ > 1 such that the operator inequality
P]?l"”S4 < ¢H;T=* holds on the set of states for which (17) is satisfied. The value
of ¢ only depends on the ultraviolet cutoff A. Thus,

[P"<UPBI < 2] (P = Py)®|* + 2T 1P| < 2] (P — Py)g|* + 2] Hf T"<a,
which yields
(P~ P®|? > LTS Pa|? — 2| i} T"<4a |
Therefore, it suffices to prove Corollary 4.2 with M[®] replaced by
(21) M(@] = S| + Sul} 8| + 2 (P - P2

and ¢ small enough so that c¢ < 7.
Now we consider two cases. Let ¢; := max{8cg,85/a?}.
If ||(P — Pf)®||? < ¢1a?||®||?, Theorem 4.1 and the above remark imply (19).
If |(P — P§)®||? > c10?||®||?, Lemma 4.1 implies that

1 1
(HE,®) > (P~ P)*®, @) + _(H;®,8) — cgo?] 8|

1 1 1

> (P - Pp)?wt, wt) + 3 (Hy @, @) + ZlI(P - Pp)®|?
1 1 cro?

> (P Pp)*®, @) + 5 (Hp®, @) + — R

which concludes the proof since ¥y — eg < 0. [



10 J.-M. BARBAROUX, T. CHEN, V. VOUGALTER, AND S. VUGALTER
Proof of Lemma 4.1. Recall the notation A* = A*(0). The following holds.

1 1
H—--(P-P;))?—--H
5( )" = 5Hs

1 1
= (P =Py’ — ‘%' —2v/aRe (P = Py).A(0)) + 2aRe (A7)’ + 204" A" + SHy,
(22) Ypopr— 2 s a2
4 || ~
and

(23)  2Val((P — Pp).A(0),9)| < 2va|(P = Pyl + 2v/al[ A=y .
By the Schwarz inequality, there exists ¢; independent of « such that

1
(24) [A=9[1? < erl|HF ol

Inequalities (23)-(24) imply that for small a,

(25) 2/al{(P — Py). A0, 6)| < 7Il(P ~ Pr)ll> +  (Hyo, )

Moreover using (24) and

(26) A2 < callbll? + esll HF I

we arrive at

(A7), ) = A, AT) < | A|? + 2o A |
< cer | HEIP + e a®(eoll o) + es | HF w)1?).

Collecting the inequalities (22), (25) and (27) with € < 1/(8¢1) and « small enough,
completes the proof. O

(27)

Proof of Theorem 4.1: Let ® := &, 4+ &, := x(|P| < &)@ + x(|P| > %),
where P = iV, is the total momentum operator (due to the transformation (5))
and p. = % is a lower bound on the norm of the total momentum for which [6,
Theorem 3.2] holds.

Since P commutes with the translation invariant operator H + ﬁ, we have for
all e € (0,1),

(07
<H<I>, <I)> = <H<I>1,<I>1> + <H<I)2, <I>2> — 2Re <m<1>1, q)g>
(28) N L
> (H®y, @) + (HDg, a) — 6<m¢1,‘1’1> —€ (m%@ﬁ

e First, we have the following estimate
D (P — Py — VaA(0))* : +Hy
= (P — Py)? —2Re (P — Py)./aA(0) + a : A(0)*: +Hy
> (1= Va)(P — Pp)? + (a—va) : A(0)*: +Hy — enov/a
> (1= Va)(P = Pp)* + (1= O0(a)H — O(Va)
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where in the last inequality we used (24) and (26). Therefore

1-va
2

1@

((H—e |m|)<1’2’<1’2> > (( (P=Pp)? = (14 €)77) P2, B2)

(29)
+ <12\/5(p — Pp)* + (1 - O(a) Hy — O(v/a) ) @, 3)

The lowest eigenvalue of the Schrodinger operator —(1 — O(y/a))

larger than —c.a?. Thus, using (29) and denoting

I 1—2\/5

(P = Pp)? + (1= O(Va)Hy — O(Va) - ca?

we get

(67

(30) (HDy, ®g) — € H{—Bg, D3) > (LDo, o).

|z
Now we have the following alternative: Either |Py| < Z¢, in which case we have
(L®s, Bo) > (2 — O(y/@))||B2||2, or |Pf| > B, in which case, using 5 = x(|P| >
Be)®, and Hy > |Py|, we have L > (B — O(y/a))||®2]|*. In both cases, this yields
the bound

2
‘ 7
(31) (L®y, ®y) > %H‘I’zﬂz > (X0 —eo + g(eo —e1))]| @2

since, for a small enough, the right hand side tends to zero, whereas p. is a constant
independent of a.. Inequalities (30) and (31) yield
e

7
(32) <H‘I)2,(I)2> — 6_1< (I)Q,(I)Q> Z (20 — €0 + g(eo — 61))”@2”2.

||

e For T'(P) being the self-energy operator with fixed total momentum P defined
in (7), we have from [6, Theorem3.2 (B)]

inf o(T(P)) — P; ~info(T(0)] < COO;P o
Therefore
(33) (T(P)®1,®1) > (1 = 04(1))(P?®1, ®1) + 5o @1 .

If [|®2|% > 8||P1|?, using (33) yields

(H®,, &) — d%éhqm
(34) > (1= 0a(1))(P*®q,®1) — (1 + 6)%@17‘1)1> + o[ @1

> (3o = (1+0(a) + O(e))eo) | @1 I*.

Therefore, together with ||®2]|? > 8||®1]|? and (32), for o and € small enough this
implies

(35) (H®,®) > (Eo*6o)||<1>||2+%(60*61)\@”2-
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If |®2]% < 8||®1]|%, we have, from (33)

<H<I)17(I)1>—6< (1)1, >

>(1 = 04 (1))(P*®1, 1) — ((1 +e>%

Z(1+0a(1)+0(e)) ( —eo) [[{T*®1, ) 2 w3 ax) | +e1 (|91

Py, 1) + To| D1

(36)

k=0

k=0

o0
> {1, ua) 29 s |2)> + o[ @4 7.

Now, by orthogonality of ® and u,, in the sense that for all k, (I'*®, Ua) 12(R3,dz) = 0,
we get

Pc
ZII (U, TF @) = ZII (U, TH@o)[* < | @] Juax (1P| = )17
(37) k=0 k=0

< 8[|21[*fluax(|P| = )||2 —a—00
Thus, for o and e small enough, (36), (37) and (32) imply also (35) in that case.
e Let ¢ = max{4, |co|a?}.
If (Hy®, ®) < 8¢]|®||?, (16) follows from (35) with v = §/(16¢).
If (Hy®, ®) > 8¢||®||?, using Lemma 4.1, we obtain

(H, B) > 2<Hf<1> @)~ co? gl >  (Hy, @) + |

> Z<Hf‘1)7¢’> +38[2]% + (Zo — eo) 2],

(38)

since ¥y — eg < 0, which yields (16) with v = 1.
)

i
This concludes the proof of (16

5. ESTIMATE OF THE BINDING ENERGY UP TO a® TERM

Definition 5.1. Let u, be the normalized ground state of

he = A2
]

We define the projection W'> € § of the normalized ground state W5 of H, onto
Uq as follows
U = g Ut 4 U
where for all k > 0,
(39) (ta, DU 2 (s dq) = 0.

Definition 5.2. Let

2 = —(Hp+ P 'AT-ATQ;
2 = —(H;+Pj) 'Pp-AT®2
O, = —(Hp+P})7'Pp A7

where evidently, the state % contains i photons.
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Definition 5.3. On §, we define the positive bilinear form
(40) (v, w)s = (v,(Hf—i—PJ%)w),

and its associated semi-norm ||vl|. = (v,v)i/2.

We will also use the same notation for this bilinear forms on §p, H and $H,.
Similarly, we define the bilinear form (., .); on $ as
(u,v)y:=(u, (Hy —|—P§ + ha +e0)v)

and its associated semi-norm ||v||y = <v,v>;/2.

Definition 5.4. Let

(41) QU = 203 Vu,.(Hy + PF)TLATQ;
and
(42) Oy =207 Vg (Hy + P} + ho + €0) PATQ;

Remark 5.1. The function ®¥= is not a vector in the Fock space § because of the
infrared singularity of the photon form factor. However, H}“I)ﬁf“ belongs to $, for
any v > 0.

Theorem 5.1 (A priori estimate on the binding energy). We have
(43) S < 8o —eo — |47 + O(a”)
Proof. Using the trial function in $
U=y (Qf + 207 DL + ad? + 207 9%) + BL
and from [4, Theorem 3.1],
Do = —a?|| @Y + o’ (2 AT DY — 4] 8|2 — 4l|@2]1) + O(a?) |

the result follows straightforwardly. O

We decompose the function "> defined in Definition 5.1 as follows.
Definition 5.5. Let

e = TOWY e 4 2,02 DL + 1p0®? + 2302 3 4+ Al

where TOAte = 0, (®L T Ab), =0 (i=1,2,3), and ®L, ®2, 2 are given in Defi-
nition 5.2.

We further decompose ¥+ into two parts.

Definition 5.6. Let
ot = k1P + Af,
with (@;a,rlAM =0.

To establish the estimate of the binding energy up to the o term, we will
compute (HWUSS WES) according to the decomposition of W5 introduced in Defi-
nitions 5.1 to 5.6. Using

H=(P?— ﬁ) + T(0) — 2Re P - (Ps + VaA(0)),
X
and due to the orthogonality of u, and U+ | we obtain
(44)
(HUCS WOS) = (Huy Wb uy U )+ (HU W) —4Re (P.(Pr++y/aA(0))u, U, Tt),
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We will estimate separately each term in (44).

5.1. Estimate of the term (Hu,U% u, W),

Lemma 5.1.

(Hug U= ug o) > = eof 0 |2 — a2 @22 [P0 | + a2, — TOWe 2|02
+a’|naf? (21 A7 @27 — 4|17 — 4] 23)I2)
+4a® (Im = m 2| 9L12 + |03 — mof*||D3|2)

— u 1 u
+catloga™ (jm |+ |l + ng|* + [ITO0"[[?) + Sl Ae 2.

Proof. The proof is a trivial modification of the one given for the lower bound in
[4, Theorem 3.1]. The only modification is that we have a slightly weaker estimate

in Lemma 3.1 on the photon number for the ground state. This is accounted for by

replacing the term of order a* in [4, Theorem 3.1] by a term of order a*loga~!.

In addition, we need to use the equality (P.(Py+ /aA(0))uq¥", ua U4 ) = 0, due
to the symmetry of ug. O

5.2. Estimates for the cross term —4Re (P.(Py + /aA(0))uy ¥te, ¥t).
Lemma 5.2 (—4Re (P.Pju, V¥, UL) term).

1 1
— 4Re (P.Pruq 0", W) > —ca(jy > + |n2|* + |ns|?) — el Hf Ay ||> — cal| Hf AY= |,
Proof. e For n =1 photon,

3 e

(45) (PP T ug U, W) = (P.Pp(maz L + TH AL Jug, 51 Py +THA).
Obviously
(46)

: 1 1
(PPy(ma? @) + T AL ua, TTAF)| < | HFT' AL + ca®lm|* + ca® [ HFT AL
Due to Lemma A.4 holds ||Hf% (@) — ®ua)||2 = O(a®), which implies
(47)

(P.Py(ma? @)+ TT AL Jug, k1®))| < |51]%ca® + el |*a® + ca®| [ HF T ALe |
+ [(PPy(mat @) + DAL Juq, my @17)).

. . . JoLTP
For the last term on the right hand side of (47), due to the orthogonality of i«

and ‘gf;‘;, 1 # j, and the equality || %1;‘: =1l ‘rg;j I, holds
(48)
2 ou
3 w w o 3 u % )
‘<pr(7]1a2 @i +F1A*Q)ua7nl®*a>| p— Z H e ||2|<7]1a2©i +F1A*“7K/1Pf(A+Qf) >|
i=1 ¢

= c[(mal @l 4+ TTAY K AT PiQ)| = 0.

e For n = 2 photons,
(PP ?uo Ut Uh)| = [(P.Py(n2a®? + T2 AL Jug, T2A7)]
< ca'lmpl? + el HF T2AL | + af HT2AL 2.
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e For n = 3 photons, a similar estimate yields
[(P.PT3uq Wi Uh)| = [(P.Pp(n3a3 @2 + T3 A% u,, T3AL)]
1 . 1
< calns? + e HF DA ||? + o HP TP AL |12
e For n > 4 photons,

1 1
(PP Ute )| < €| HFT"ZHAF||* 4 af[HFT =4 AL |12,

Lemma 5.3 (—4Re(\/aP.A(0)u,¥¥, ¥t) term).

— 4Re (VaP.A(0))ua U"s, Ut) > —2Re RiTOW e ||y« ||F — e||15r§Aul||2 —ea”®||AF|P
— call HF A |2 = cat(In” + Inol? + Ins[> + |1 [?) + O(a® log a™).

Proof. We first estimate the term

Rea? (P.A ua 0", UF) = aRe Y (P.A u IO T 1ot

n=0

e For n = 0 photon, using the orthogonality (®;, FlAﬂL)ﬁ =0, yields
(49)

1 u Ug 1 Uq Uy U
— Read (PATTOu, " 110} + I'Af) = —SRe ((FO\II )@l k1 B} +F1AM)

1 _— u u u
= —5Re (mroxp a(q»ﬁa,@ﬁa)ﬁ) .
e For n > 1 photons,
1 1

1Y Rea? (PATT ug Al T AL < co®|| A% ||? + | HF Af |

(50)  n>2
1
< elHF AL + ca®(Im? + [n2l* + ns]?) + O(a® loga™h),

where we used from Lemma 3.1 that A% |2 < O(a?loga™t) +ca®(|m|? +[n3|?) +
ca?|ma|?. We also have

| [Rea? (P(2mafdl 4+ nad? + 230 8%)uq, AAL)|
(51 N
< e HE AP + c(a®[m]? + o[ +a®|ns[?).

We next estimate the term 2Re a2 (P.A uqUte, Ut), We first get
(52) | Re (P.A™ A% uq, ALY < e |AF|? + cal|[HZ A%
Then we write
(53)
la?Re ((2ma? A7 ®! + 2302 A~0%)Vua, ALY < ea®|AF | + ca (Im[* + [n3]?).
We also have

(54) laZRe (nya A~ 92 Vu,, k1D )|
_1 1
= |a®Re (paH; ? A= 02 Vua, H 10| < ca’(Inaf* + |1 [?),
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since Hf_%AWI)E € L*(R?) and ||H%<I>ti““\| = O(a?). Finally we get
55) |a%Re1> (ngaA_cbf.qua,FlAﬁLﬂ 1 1

= |a?Re (npaH; * A=®2.Vua, HFT'Ap)| < e[ HFT AF|]* + ca®|na|*.
Collecting (49) to (55) concludes the proof. O
5.3. Estimate for the term (H¥+, ¥t).

Lemma 5.4.

(56)  (HEL Y > (S0 - )| AF I — ca'lml? + S MAF] + | 25 7
where M| . | is defined in Corollary 4.2

Proof. Recall that

«
H=(P? - m) + (Hy + P}) — 2Re (P.Py)

—2y/a(P — P;).A(0) + 2aAT. A + 2aRe (A7)?
Due to the orthogonality (®,, AﬁL}ﬁ =0 we get
(57)
(HU+, o)
= (Hr,r) + |k @} || — eolrr[*[ @} [|* — eomr (g, @y) + 2] [*|| A~ @y |
— 2Re (P.Py®}*, &) + 2aRe (A7 A7 AF, 1)) — 4v/aRe (P.ATAY, k1 9))
— 4v/aRe (P.ATAY, k1®)*) + 4Re Va(Py. A(0)Af, k1®y) + 4aRe (AT ATAY, k1 D))
— 4Re (P.Pp®}~, Ay ).
For the first term on the right hand side of (57), we have, from Corollary 4.2

(58) (HAF, AF) = (S0 — ) [AF [ + M[AF]-
According to Lemma A.3, we obtain
(59) —eom(AL,@ga) - eo|m\2||<l>ﬁ““\|2 > —eoz2||Aﬁl||2 —c|k1 P’ loga™t.

The next term, namely 204|f<;1|2HA_<I>§“’ |2, is positive.
Due to the symmetry in z-variable,

(60) (P.P;®}, dy) = 0.

The term 2aRe (A*.A*Ag-, k1 ®y*) is estimated as
(61)

1 1 1 1
2aRe (A7 ATAY, k1 PY) > —ca2||n1q>g“||2—il/HHf2 Ag‘H2 = —ZV”H]? Aj‘||2—c|/<;1|2a5 loga™!.

Due to Lemma A.3 and [11, Lemma A4],

(62) 0 (A A}, Pry =) < §||HJ§A¢|\2 + |1 [2al log a1
The next term we have to estimate fulfils
(63)

\a%<P_A+AL,/§1‘I)§“‘>| < e||PFOAul||2+ca|/@1|2||A_<I>;‘C‘H2 < €||(P—Pf)AﬁlH2—C‘K1|2044.
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We have

(64)

Re a(P;.A(0)A7, r19;") = Re Va(Pr ATT2AF, k19}) + Re Va(Pp ATTOAS, 1 ®Y)
= Reva(Pr. ATT?Af, 519)*) + ReVa(AT.PITOAy, k1 @)

Obviously, (AT.PTOAL, k1®/*) = 0, and the first term is bounded by

1

(65) Reva(Pr. AT?AL, k1®y)| < e[ HET2AL|? + calr || Prdye ||
1

<el|H} A% + k1 Pa.

For the term aRe <A+.A_Aﬁl, f<;1<I>§“*> we obtain

(66)

T 1 1
aRe (AT ATAL s ®)*) > —ca?||HF s @) |1 P—€|[ HE AF ||? = —ca®|m|*—el [ HF A ||
According to (214) of Lemma A.3, the last term we have to estimate fulfils
(67)

1 1 1

Re (P.Ppry @, Af) < e[ HETT AL |? + || P|Pr|2 1@y ||> < e[HFTT AL |? + co®|ka |,
Collecting the estimates (57) to (67) yields (56). O
5.4. Upper bound on the binding energy up to the order 3.
Theorem 5.2. 1) Let ¥ = inf o(H). Then
(68) 2 =% —eo — [|@1 2 + O(a),

Bo = —a®|| @2 + o’ (2] A7 2| — 4l|@L]fZ — 4] 23[2) + O(a?),
and ®¥ defined by (41).

2) For the components Aﬁl, Yua  Ale of the ground state WE5, and the coeffi-
cients m1, N2, N3 and k1 defined in Definitions 5.1-5.5, holds

(69) IAF ]2 = O(a '), ||H]%A11L”2 = 0(a"), (P = Pp)Af|? = O(a?),
(70) [TUe]|? > 1 —ca?, |[TOT%||? > 1 — ca?,

(T1) A2 = 0@t Ak = O,

(72) Imas—1° <ca, [n2— 1> <ca?, |k —1* <ca.

Proof. e Step 1: We first show that (68) holds with an error estimate of the order
a*logat.

Collecting Lemmata 5.1, 5.2, 5.3 and Lemma 5.4 yields
(73)

<H\I/GS7 \IIGS>

> —eo|[ UM ||* — || DTV + oo (2] AT @I — 4] @12 — 4| BT
+ o[ = TOU P22 + 40° (jny — 12| @517 + [ns — m2 | @2I[2)
_ 1
—callog ™ (jm* + [na|* + s + [ITOW"~[|) + ]| AL~ 2
“ 1
+ [ PlIDF I + (B0 — o) |7 17 + M[A;] = cal|?
— 2Re (mFO\I'““)HfD;‘C‘ 7 + O(a’loga™).
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We first estimate
- |1 2| @5 |[7 — 2Re (RTO )| @5 [ — ca’[ka|”
4 Ry — [OWua |2
> _ (I)ua 2 FO\I/UO‘ 2 1
> g 20w 4 DD
Moreover, since |T0W¥%| < 1, we replace in (73) —a?||®2||2|T0W% |2 by —a?||®?||?
and in (74) —|| @y« [F[TOw ]2 by —|| @y I7. In addition, using the inequalities

127 + O(a™).

1
(75) [no—=mjl* = Sl =TOW 2= [y =T |2 and  |n[* < 2Jn; ~TOT"[*+2
for 7 = 1,2, 3 yields that for some ¢ > 0,

(76)
<H\IJGS, lI/GS>

> —eo|| U [* — o®[| @Y + o[ *(2| AT @217 — 4| @11 — 4[| RT[) — |2y |1
ol — DOU 2922 + ca® (i — TOU? 4 [y — T [2) + caly — DOW"
1A% + (S0 — o) |AF I + T MIAF] + O(a* log o).

Comparing this expression with (43) of Theorem 5.1 gives

(77) % =% —eo — |®[f + O(aloga™).

Finally, by Lemma A.4, we can replace [[®,* ||y by [[®=|. in (77).
e Step 2: We now show that the error term does not contain any log a~! term, by
deriving improved estimates on the photon number for Aﬁ- and Ale,

From (76) we obtain

(78) |A% ]2 = O(a*loga™) and [|H?AL|? = O(a*loga™).

This last two relations enable us to improve the estimates on the expected photon
number as follows

(79) INEA% |2 = O(a i)
(80) INPAL2 = O(a )
To see this, we note that from Definition 5.1, we have
_3
fax ()%= 2 < lax (k) ¥SS” < ‘“ﬁiﬁ"”

where in the last inequality, we used (14). Taking into account that
Ale = P — 203 — ad2 — 202 P,
where

exa (k)
K|

exa (kD (L + llog [k [)
K]

Jax (k)] < lax(k)e?)? <
Jos(hja2)? < Xl

we arrive at .
ca”2xa(k))(A + [log|k[[)
||

lax(R) A= |* <
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For the expected photon number of A%« thus holds
HWMW:Z/MWMWM

2 1
. Z/ ca” 2 (1 + [log |k I)dk _|_/ o EITE] lax (k)AL= |2 dk
[k|>a8

|<a% |k|

<ca’® + ca’?HHJ?AZ“||2 < cats.

The relation (80) can be proved similarly using
a1
lax(k)@}= |2 < e
: |k
We are now in position to finish the proof of Theorem 5.2. First we see that
according to (79) and (80), we have

L2

[N @t = O(a?),
which implies that in Lemma 5.1 we can replace the term ca® log o™t (|n1]2 + |n2|> +
3|2+ [TOW¥=|2) with ca(|n1|* + [n2]? + |n3]? + [T°W¥=|?) and consequently in (76)
and (77), the term O(a*loga™!) can be replaced by O(a?). This proves (68). The
estimates (69)-(72) follow from (68) and (76) with O(a*loga™!) replaced with
O(a?). O

6. ESTIMATE OF THE BINDING ENERGY UP TO o’ loga~! TERM

Theorem 6.1 (Upper bound up to the order a®loga~! for the binding energy).
For a small enough, we have

1
(81) Yo -2 Zzaz +eMa? +e@at +ePa’loga™ + o(a’ loga™),
where eV, e?) and e®) are defined in Theorem 2.1.
Definition 6.1. 1) Pick

_ vt 2rowt . 3
ko =4 @ ' (@éFO\IJL,QEFD\IZﬁLN if [ITOTH] >
if P00 <t .

2) We split U+ into Ui and ¥y as follows: Vn > 0, ["U+ = T"W{ + U5 and
forn=0,

v =1°vt  and 10y =0,
forn=1,
'y = k@ and (0'05,®)); =0,
forn =2,

3
ou
I?0 = arp @O0 + ;a@ i(Hy+ PRI “
with W; = Pp®2 — 2A" Pr(Hy + P7) ™' (AT)'Qy,
Oug
83:1

20y =T20t —T204, with (Mg, (Hp 4+ PF) ' W)y =0 (i = 1,2,3),

and (T%W5, ®21°W),; =0,
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forn =3,

[P0 = arg(Hyp + PF) AT AT ®),
[P0y = TPW -T2y, (M°Wy, (Hy + P§)~' AT AT ®), =0,
and forn >4,
¥y =0 and MUy =IO,
Lemma 6.1. The following a priori estimates hold
k1 =14 (O(Cﬁ)7
[fe2] D005 ]| = O(a),
KJQJ' = O(l), (Z = 172,3),
LW ]| = O(a),
IPTO% || = O(a®).

Proof. To derive these estimates, we use Theorem 5.2.
The first equality is a consequence of (72).
To derive the next two estimates, we first notice that (69) yields

IPP2AZ|? < 2)(P = Pr)Ay | + 2| P2 A |2
1
< 2P — PpAF|? + 2¢| HF DA |* = O(a?),
therefore, using again (69), we obtain
1
[(ha + o) ST2AL | < [ PR2AL | + coT2AL 2 = O(a?),
1
and thus, using from (69) that | H? FQAﬂLH2 = O(a?), we get
(82) IT*Ag |7 = [T*w+]F = O(ah).
We then write, using (82) and the (-, - )z-orthogonality of W3- and T2V,
(83) IT*W |l < [P207 = O(a).
Since |[T2Wi ||y < |T2¥{ ||, and using (206) of Lemma A.1, we obtain

Oug
O(a") = I2WH 2 = amo®2TOW |2 4 lla ro(Hy + PP~ W, 2
(84) ”

2
« —
= o?|[ @321 P [TOUT 12 + = [ Vua* D I, PII(Hy + PF) WAL
i

which gives
ko =0(1) and |ko |TO¥T || = O(a).
The last two estimates are consequences of (69). g
To derive the lower bound on the quadratic form of (H (uqU%e +g), uq U +WL),

we will follow the same strategy as in Section 5, the only difference being that now
we have better a priori estimates on U* and ¥+,
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Proposition 6.1. We have

3
1 ,
2Re (HU*, u, W) > —§a4Re > Faa((Hy + P77 PO, W)
i=1

— 4aRe (Vg Pp®2, T?Wy) — 2Re R TOW" e || @)~ |7

(85) 3
2 —1 —\i 1 i
- gO/*Re > ((Hy+ PF)=2(A7)'@%, (Hy + P7) "7 (AT)'Qy)
i=1
—ed?|(TH))? — §M[\I/2l] —ea’loga™ — ea®|ns]? — |k — 1]ca’ + O(aP).

8
The proof of this Proposition is detailed in Subsection 6.2

Proposition 6.2.
(HUS, 0h) > (3 — )| W — dal|(ha + €0) "7 Qy PA™ @ |

4 3
Uey — FHUa @ —
P8 [+ 200 A7 @ |+ 5 S P (Hy + PR W2
=1

(86) ,
2 .
+30'Re Y wa (P AT (Hp + P7)' Wi, (Hy + PR~ (AT)'Qy)
=1
+ 40 Re (T2W5, AT Ppdte) + My [T,
where

1 . 12
(87) My [¥] =(1—coa) || (ha + €0) 2T (T1)** + %
87
3
— [#1 = 1]ea® + ZM[‘I’QL] +o(a’loga™t)

o?[| @222y

and Q% is the projection onto the orthogonal complement to the ground state u, of
the Schrédinger operator hy = —A — &

T
The proof of this Proposition is detailed in Subsection 6.3.

6.1. Proof of Theorem 6.1 on the upper bound up to the order o’ loga~".

We have
(88)  (HWUCS, W) = (54 — eo)||T"||> 4+ 2Re (HUL, 1, Uhe) 4 (HUL Th).

The estimates for the last two terms are given in Propositions 6.1 and 6.2. We will
minimize this expression with respect to the parameters x1, k2, and xs.

e We first estimate the second term on the right hand side of (85) together with
the seventh term on the right hand side of (86). We have

— 4aRe (Vuy.Pp®2, T204) + 402 Re (204, AT PydUe)

3
. ) ou
= —4daRe (T?05 () Pid? — 24T .P;(H; + P31 (AT)'Q =
(89) (w3 (; i (Hy + Pf) (A7) f)axi>
3 ou
1 — (e
=—4a Y Re(I*Wy, (H; + P7)"'W; 8%_)*.

i=1
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Using the (-, - )s-orthogonality of W5 and (Hy+P7)~'W; ‘Z,“” the last expression
can be estimated as
3
(90) —4a ) "Re(I°Vy, (ha + o) (Hy + P7)'W;
i=1

Oug
T,

By the Schwarz inequality, this term is bounded below by

Oy, ”2

91 — ea?||T%W5 || - (he
(91) ea| [ CZII +eo)(9

=1

—ed?||T?T5 |2 — O(ab).

e Next, we collect all the terms involving x1 in (85) and (86). This yields
— 2Re RO Wte [| @y ||§ + |/€1\2||<I>§“’ ||§ — |k — 1]cat

(92) 0 2 2 0 2 2 4
> =[PP [y [+ [m = TR0 [Ty [ — /1 = 1ea

Notice that from Theorem 5.2 we have [[°W%|? = 1 + O(a?); moreover, we have
[TOWue | =1+ O(a?). This yields

— 2Re R OW || @y |F + |k [*[| @5 |7 — |11 — 1]ea’

> —||<I>§L“||§ + k1 — 12 a® — |ky — 1]ea® + O(c®) = —H<I>g“||§ + O(a®).

e We now collect and estimates the terms in (85) and (86) involving ko ,;. We
get

(94)
3

3
1y 2\ —1 i 62 o 2
— ga Re izg - H27i<(H‘f + Pf) Wi,PfcI)*> + E i:E 1 |fi27i

(Hy + P7)~'Wi||?

3
2 .
+ ga4Re § Koi((Hy + PF)~ "Wy, Pp. AT (Hy + P7) ™' (AT)'Qy)

i=1
1 3 at 3
= —§a4Re > kol (Hy + PP W12 + D > lroPlI(Hy + PF) W2
i=1 i=1
at

3
> I(Hp + PR W2

=1

>
-3
e Collecting in (85) and (86) the terms containing k3 yields
(95)
|ks + 1|2
2

where ¢; and co are positive constants.
e The fifth term on the right hand side of (85) and the first term on the right
hand side of (87) are estimated, for o small enough, as

a2||<1>i||f||¢>;f“ 2 _ea®|k3* > cra’loga ks + 112 — ea®|r3]? > —coa®,

1 a a 5 a
(96) (1= coa)ll(ha + €0)*T(W1)"* = ea®[|(®1)°|* = (5 — ea®)[(¥7)"]* 2 0,

with § = a2, and where we used that (¥1)? is orthogonal to uq.
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e Substituting the above estimates in (88)

(97)
<H\I/GS7\I/GS>
3
> (2o — )0 |I* + (Zo — eo) | WHI[* — @17 — o* Y [I(Hy + PF) "' Wil
i=1

3
2 1 ) 1 )
— §a4Re Z< (Hyp+ P})~2(A7)'®2, (Hy + PF)~2 (AT)'y)
1=1
—4a/(ha + €0) 2QLPAT® |2 + 20 Ad |2 + o(a®loga™t) |

where Q% is the projection onto the orthogonal complement to the ground state
Uq of the Schrédinger operator h, = —A — f;—'

To complete the proof of Theorem 6.1 we first note that

(98) [ + [t ]2 = [l
Moreover, according to Lemma A.4

1 1.1 _ _
99)  — @} [ = — @2 + [ (hs + 1)F Vuu P loga~! + o(a® loga ™),
and

a® [ xa(t)
100 Puaf2 = & gt — eWys.
(100) R e A e e

In addition, we have the following identities (i = 1,2, 3)
I(Hy + PP~ W2 =
|(Hy + PR)F (247 Py(Hy + PR~ (A%)' = Pp(Hy + P AT AT) Oy,

and
2 i 1 L i
- §a4Re Z( (Hy + PJ%)_EA_‘I’iv (Hy+ P]%)_é(fﬁ)zﬂﬁ
(102) =,
= —2aRe Y (A" (Hy + P) AT ATy, (Hy + PN AT)9y)
=1

We also have

1 - 11
(103) = dall(ha +e0) 3 QuPA™® | = —da'af|(-A — T + D)7THQ  Aui
with
kI +k3 2
= k|) dky dkodk:
0= [ et e kD dks ko,
and
2 e .
(104) 20| A”dUa |2 = ga4 S NAT(Hy + P7 TN AT Q|

i=1

Substituting (98)-(104) into (97) finishes the proof of Theorem 6.1.
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6.2. Proof of Proposition 6.1.
Lemma 6.2. The following holds
(105)
4 2 .
— 4Re (P.Pju, Ut Wty > —§a2Re > Rz IVual? (Hy + PF)~ P2, W5)
i=1

— 4aRe (Vi Pr®2, T205) — | HE U4 |* — ea|rg]2 + O(a”)

Proof. For n # 2,3, with the estimates from the proof of Lemma 5.2 and using that
due to Theorem 5.2 we have

[H7 AL ? = O(a?), [m| = O(1), and |#:1] = O(1),
and since T'Aj- = T' W5 and T"2*Ag- = I"2*Ty, we obtain
(106) S —4Re (P.Ppu Lm0t T0Y) > —e|[HF Uy |* 4+ O(®).
n#2,3
For n =2,
(107)

— 4Re (V. (ang Pp®2 + PyT2A%) T20+) > —4Re (Vugy.an Prd2, T207)
1 1
— 4Re (Vug.any Pp®7, T?W5) — cal|HFT? AL ||* — cal|[HF T2 U2,

Using Theorem 5.2, the last two terms on the right hand side of (107) can be
estimated by O(a®). For the first term on the right hand side of (107), using from
Lemma A.1 that (P;®3, ®7) = 0, from Theorem 5.2 that 7 = 1 4+ O(«), and from
Lemma 6.1 that k2 ; = O(1), holds

— 4aRe (Vg m2 Pr®2, T20)

= —4Re a(Vug. e Py®%, aky®2I00)

0

—4Rea<Vua.n2Pf¢>f,Zaﬂg7i(Hf +Pf2)_1Wi$>
(108) A i |

- —gRea2||Vua||2 > Fai((Hy + P7)~ PO, Wi)

Ly S 2\—1 pi 2
=—3a'Re > Faa((Hy + P7)~'Piol,Wy).
i=1

We also used that (%1;“ , ‘g%:*) =0 for i # j and ||887;a | = ||‘Z“T<;|| for all 7 and j.

Finally, the second term on the right hand side of (107) gives the second term
on the right hand side of (105) plus O(a®), using from Theorem 5.2 that |y — 1|2 =

1
O(a?) and |H7T?W5 || = O(a?).
To complete the proof, we shall estimate now the term for n = 3,
4Re (P.Pju T30t T3W) = 4Re a2 293 (P.Pjua @3, T30

(109)
+ 4Re a2 23 (P.Pjua®3 , T3U4) 4 4Re (P.Pru T3 A% T30),

1 1
The inequalities || H 7 AY~|| < ca? and HHJ?F3\IIJ-|| < ca? (see Theorem 5.2) imply
that the last term on the right hand side of (109) is O(a®). For the second term
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on the right hand side of (109) holds
(110) Re adrg(P.Pru®®, T30) > —e| HFT*W4|* + O(a”),

since from Theorem 5.2 we have n3 = O(1).
Finally to estimate the first term on the right hand side of (109), we note that

[ler| = k| =% |Jes| =8 @3 (e, ka, k) € LA(R,C9)
and from Lemma A.5,
x| [Fea] 6 [kes 6 (L + PRt AT AT D=2 = O(a).
This implies, using again |n3| = O(1), and the explicit expression of W1
(111)  |a?2n3(P.Prua®?, T301)| < ca |ksla® ns| | Pual| < ea®|rs]* + O(a®).
Collecting (106)-(111) concludes the proof. O

Lemma 6.3. The following estimate holds

—4y/aRe (P.ATu, ¥ Tt)
(112) —1 0\ u Uq [|2 1 1 5 2 5

Proof. Obviously

(113) —4Rea%<1P.A+uaszua,fol>
= —4Rea? (P.A T u, (TOW 4 2771a%<1>1 + noa®? + 2n3a%<13‘2 + Ate) @),
o Step 1 From (113), let us first estimate the term

(114)  —4Rea?(P.ATu Al ¥) = —4a2Re Y (P AT u Al T"H1ot).

n=0
For n = 0, the corresponding term vanishes since T° A%« = 0.
For n > 2, we can use (50) where the term O(a®loga~!) can be replaced with
O(a®) because we know from Theorem 5.2 that [|A% |2 = O(aT6).
For n = 1, we have
[atRe (PATT ug A T2W) 4 T205)| < ca®|[TM A% |? 4 ¢ HF D0 |
(115) ) 3 ou
+ 402 (Vua DT AL A7 | akp®@ITO0T +a Y kg (Hy + PF)T'Wi 2= |)].
i—1 Oz
_1
To estimate the last term on the right hand side we note that H; > A~ ®7 € L? and
H;%A_ (Hy + Pf)_lWi € L? which thus gives for this term the bound

(116) cal HF AL

2t ea [k PITOUT 2 + €a® > Jrasf* = O(a®),
7

using Theorem 5.2 and Lemma 6.1. The inequalities (115) and (116) imply

1
(117) [Rea® (PAT ug Al T201 + T203)| < | H D205 |2 + O(a).
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To complete the estimate of the term 4a2Re (P.ATua A% UL) we have to esti-
mate the term for n = 2 in (114), namely 4Re a2 (P.ATu T2 A% D30 4 T3,
Obviously,

(118) Rea® (P.ATu T2A% T304 < | HZ U5 + O(a?).
For the term involving W3- we have

[Rea? (PuaT?Ale argA™(Hy + P}~ AT A D))
o) < a0 [T2AL |2 + elrg [P0 15 @) |7 = |i57” + O(a),
using Theorem 5.2 and Lemma A.5. Collecting (114)-(119) yields

(120) Rea? (PA U, A, g)| < €| HF W5 || + o ks> + O(a”).

o Step 2 We next estimate in (113) the term —4Re a2 (P. A" ug (TOWe +a 3 2, ®L+
ana®2 + a3 2n3®3), L), First using (50) yields

(121) —4Re a? (P.ATu 00" W) = —2Re (RITOW )

e 2
We also have, using Theorem 5.2

) |a%<Pua(a%2m<I>1 + a%2773<13‘3),A_\IJL>|
(122 1 1
< ol HIT?UL? + o[ HITYOL? + 0(a%) = O(a?),

and
(123)

la2 (Puqan®?, A~ (T30L + T301)|

1

< | HF T3 | + |af (Puanalkr| 5 ko ~3 02, [kr |3 ko] F AP0 | + O(a”)

< | HF T30S |* + elraa® + O(a).
Here we used |ky|~ 7 |ko| ~T®2 € L? and |||k |7 |ko|T A~ (Hj + P})"1AT AT ®p~ |2 =
O(a?) (see Lemma A.5).

Collecting (120)-(123) yields
(124)

1
—4Rea? (PATu U Uh) > —2Re L0 || @}~ |2~ H? W5 || —ea® |3+ O(?).
O

Lemma 6.4.

(125)
— 4y/aRe (P.A"u,U¥  Ut) >
2 3 1 - 1 .
- §a4Re > ((Hy+ P})"2(A7)'®2, (Hy + P7) "2 (AT)'Qy)
=1
1
- ZM[\I’%] — e®||(U7)"]]* — ea®log o (alrsl* + 1) = |k1 — e’ + O(a®) ,

where (U1)%(x) := (T°W{ (z) — TOW{ (—x))/2 is the odd part of TOU{.



HYDROGEN GROUND STATE ENERGY IN QED 27

Proof. Since from Lemma A.1 we have Vu,.A~®L = 0, we have

(126) ARe o% (P. A ug U U) = da?Reny (A~ ®2. Pugy, TMOL)
+ 40°Re 2n3(A™®% Puy, T2Uh) + 402 (A~ A Pu,, UH).

For the first term on the right hand side of (126) we have

403 Re o (A~ D2 Pug, D' U5 + 1y OU)
(127) . " L .
= 4da2Reny(H; * A= @7 Puy, HfT'W5) + 402 Remp (A~ @2 Pug, k1 B}").

The first term on the right hand side of (127) is bounded from below by —eHHf%Fl\Ile 2+
O(a®).

Applying Lemma A.4, we can replace <I>g‘1 in the second term of the right hand
side of (127) by ®%=, at the expense of O(a®). More precisely

% (12 A” B2 Pug, i1 () — @)
< co®maf?|(Hy + P "E A7 0|2 + [ [2]| @) — @t |2 = O(a).
Moreover
Ao’ Re ok (A~ ®2. Pug, &)
3
= 07 VualPRemAr 3 (A7), (Hy + PR (A7)
=1
(128) )

3
— §a4Ren2TZ<(A_)i<I)z, (Hy + P7)~ ' (A%)'Qy)

3
> Za'Re S (A7) @2, (Hy + PP (AF)'y) — [my — Lfear,

[SLI )

where we used k1 = O(1) (Lemma 6.1) and 72 = 1 + O(«) (Theorem 5.2). Note
that the right hand side of (128) is well defined since (Hy + P]%)_%A“‘Qf € § and
(Hy+P?)"2A" 32 €.

Collecting the estimates for the first and the second term in the right hand side
of (127), we arrive at

(129)
— 403 Reny (A~ ®2 Pu,, T'0L)

8 —\i - 3
> 20 Vo | PRe (A7) B2, (Hy + P AYQy) — | HT'E 2 4 O(a),

Here we used also 13 = 1+ O(a).
As the next step, we return to (126) and estimate the second term on the right
hand side as

(130)
40°Re 2n3(A~ 03 . Pu,, I201) = 8a’Rens(H

PAT O3 Pug, HIT?U) = 0(a”),
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where we used H;%A_q)‘rj € L? and ||I’2Hf%AﬁL||2 = HI’QH%\IIHP = O(a?) from
Theorem 5.2. For the last term on the right hand side of (126), we have

407 Re (A”AY - Vg, Uh)

= 4a?Re (ATA - Vi, IOU) + 4o ReRp(ATAY - Vug, By«)
+4a2Re (A” A - Vu,, T'WF) 4+ 4a2Re (A A¥ - Vg, T2UL)

+ 407 Re (A~ A% - Vg, T3UL) + 407 Re (A~ Al Vug, 2401,

We write the function T°U = (U1)® + (¥1)® where (V1) (respectively (V1 )?)
denotes the even (respectively odd) part of T°U3i-. Obviously, we have
(132)

@2 Re (A AL -Vuo, TOUS)| < cal Hf R|*+ea® | (W1)°]* = ea® || (11)°]+O(a®).

(131)

The constant € can be chosen small for large c.
For the second term on the right hand side of (131), we have
(133)

\a%m(A*AZ%VuQ, )| < ea’ loga*1|/<;1|2+caHHf%Af:“||2 = ea’loga ' +0O(a%).
For the third term on the right hand side of (131), we have, since § = 33—2042

(134)

[0 (A7 A% - Vo, T < ST 2 + cal B AL 2 = 0052 4+ O(0%),

Similarly

(135) ok (A~ Ao . Vu,, T"240L)| < gHF”Z“\D;HZ + 0@,

To complete the estimate of the last term in (131), we have to estimate two
terms: —4Rea? (A~ A Pu,, T201) and —4Rea? (A~ A Pu,, T3¥+). For the
first one we have

Rea (A AL Pug, T2WH)| < cal| HF A% |? 4 || T4 | + ea o D002
3
+ea® " |rail® = e®[T?T5 |* + O(a®).
=1
Similarly,
(136)
IRea? (A~ A% Pu,, [3Wh)| < caHHf%Afj“HQ + |13 05|12 + eaBlog at|r3]? + O(a®).
Collecting the estimates (131)-(136) yields
(137)
5 L

[4Read (A7 AL Puq, w5)| < 2052 + el HZWE| +ea® loga' (1 + alrs|?) + O(a?).
Collecting (120), (124), (129), (130) and (137) concludes the proof. O

We can now prove the estimate of Re (Hg, u,¥%>) of Proposition 6.1.
Proof of the Proposition 6.1. Using the orthogonality (39) of u, and ¥+ | yields

2Re (HU+, U"e) = —4Re (P.Pju, U, U+) — 4y/aRe (P.A(0)u, U¥e, Uh).
Together with Lemmata 6.2-6.4, this concludes the proof of Proposition 6.1. (]
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6.3. Proof of Proposition 6.2. We have the estimate

Proposition 6.3. We have

(HU+, ot)

> (HVE W) + (UE, ) + 20 (| AW = |AWE 2 = 495 )
— 4Re (P.P; U5, Ui) — 4a?Re (P.A(0)¥3, UT) + 4Re (P;. A(0)Ua-, U1
— eM[U3] — callog ot |ks]? — o[ (ha + €0) 2 TOUT |2 + O(a®).

(138)

Proof. Recall that

(139) H=p?- ;‘—‘ +T(0) — 2Re P. (Pf + a%A(O)) :
and
(140) T(0) =: (Py + a? A(0))? : +Hj.

Due to the orthogonality
T, "5 )y =0, n=0,1,...,
and (139), (140), we obtain

(141)
((H +eq) ™, ¥)

= ((H +e0)Vy, Uy) + (H + eo) U1, i) + i: 20Re (A~ AT 205 ")
n=0
+2aRe (A7 A3 T3 + 20| A" 0|2 — A~ TL |12 — [|[A- 05 |?)
— 4Re (P.P;Vs, 1) — 4a?Re (P.A(0)Vs, Ui) + 4a?Re (P;.A(0) Wy, Uih).
We have
o 20Re (A~ ATTOWE, T30L) > —| H2TOW5 |2 — ca|| T30} |2
. > —e||H%F5\I/§‘H2 —ca’loga™ k3|2

Similarly,

2aRe (A~ ATy T207)

3
1
> —el|Hf T3 ||* — ca || T [|* = ) ca®lrof?
i=1

> —e||Hf§I‘4\II§‘||2 + 0(a®).
To estimate the term 2aRe (A~. A~ T34, T Wi) we rewrite it as 2aRe ([P W5, AT ATk, )
and use that (T3Wy, (Hy 4 P§)~'AT.AT®{); = 0. This yields, using Lemma A.5
(143)

aRe (A7 ATTW5 , T'0) = —aRe [0y, (ha + €o)(Hy + P§) T AT ATk B)°)

> —ea?| 130512 + ca” logat.
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Similarly, if |[TOUL] > a3,
(144)
20Re (A7 . ATT?Wy , I901) = —2aRe (I°Uy, (ha + €o)(Hy + P7) " AT . ATTOU )

> —cal|(ha + o) T2W5 |2 - cal|(ha + e0) (Hy + P}~ 1A ATTOUL |2
—ca|| PT2U5 |2 + cal||z|~2T2W5 |2 — caeo||T2 W4 |12 — coar||(ha + €0) TTOWT |2
—ca|| PT2W3 |2 — e?||T2W5 |2 — coar||(ha + €0) ETOWL |2 .

V

\%

If |TOUL || < a2, we have instead
s 2aRe (A™.A"T2WF, TOU) > —|| H2T2W5 |2 — |70 |2
) > —e| HE TS |? + O(a”).
Finally, using Lemma A.6 yields
(146) 20Re (A~ A T30, TM0S) > —e| HE U4 |? + O(a®).
Collecting (141)-(146) concludes the proof of the proposition. O
In the rest of this subsection, we estimate further terms in (138).

6.3.1. Estimate of crossed terms involving Wi and ¥y .

Lemma 6.5.

(147) 20(|ATUHP — ATUL|? — AT Ty |P) > —eM[T3] + O(a).
Proof. Obviously, the left hand side of (147) is equal to
(148)

daRe (AU A™UF) > —ca Y | HFT"UL|| | H T 05 |

Y

1 1 1 1
el H} TN |2 = cal P H @y |2 = S co (3 HFT"0F 2 + 2 BT w0 12)
n#l

Y

1
—e|Hf w5 |* + O(a”),

where in the last inequality we used (210) of Lemma A.3, and (69) of Theorem 5.2.
O

Lemma 6.6.

|(P.PyUy, W) < eM[W3] + ca”loga™ |r3|> + O(a®)
Proof. We have
(149)

(P.PpUy, Ut) = (P;T Wy, PTYUE) + (PrT2Wy, PT2UT) + (P T30y, PT3UL).
Obviously, using Lemma A.3 and the equality k1 = O(1) from Lemma 6.1, yields
(150)

1 L

(PTY Uy, PTMOL)| < el | HP Wy || + |1 || P Pp|2 4= > < e H7 W3 |* + O(a”).
We also have, by definition of I'?¥{ and using the estimates ks; = O(1) from
Lemma 6.1,

1
(151) (PyT2 Wy, PU?W)| < el|[H7 Wy || + clra[*a® | PTOW; | + O(a®).
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We next bound the second term on the right hand side of (151). Notice that by
definition of ks, this term is nonzero only if |[[°W{||? > o, which implies, with
Lemma 6.1, that [[PTO0||? < ca|l°U{|%. The inequality (151) can thus be
rewritten as

(152)

1 1
(PP T2U1)| < el|[Hp Wy |*+emo*a®[TOUL[P+0(a®) < e HF Uy |*+0(a”),

using in the last inequality that |kz| |[T°¥1| = O(a) (see Lemma 6.1).
For the second term on the right hand side of (149), using (212) from Lemma A.3
yields

(153) (T3 Py, T3PUL) < e|TPHZ W5 |2 + ca” loga™ g 2.
The inequalities (149), (152) and (153) prove the lemma. O
Lemma 6.7.
—40?Re (PATUL W) > —eM[UE] 4+ O(a).
Proof. Since T">3W{ =0, T3 = 0 and
1 1 1
[T |2 < 2 HF D0 2 4 2 BT | < MW ] + O(a),
(see (69) of Theorem 5.2) we obtain

407 Re (P.ATUF UH) < €T <2 PO ||? + ca||r"22foIff||2 < eM[Us] + O(a®) .

O
Lemma 6.8.
—407Re (P.A™ U5, 1) > —eM[¥5] + O(a%).

Proof.

—4aRe (PA™US, Ul) > —e| H W] = ca| PUL |2

> —elllﬁff‘lféll2 —ca (Tm=023APYL |2 4 P02 P ||?) — calw [*] PO}

> —c|HF U5 |? — | TSP P + O(afloga™) > —eM[¥3] + O(a®loga™),
using (212) of Lemma A.3. O

Lemma 6.9.
402 Re (Pp.A(0)TL, TL) > 402 Re (1205, Pp. AT M) — eM[TL] + O(a°).
Proof. We have
4a7Re (P A~ W5, Ut)
> —e|H} Uy ||* — cal|T"2? Pyt |* + da?Re (Py. AT W5, 5y )

v

—e|H? W |2 — cal T"=2P HF UL |? + 4a¥ Re (Pr. A T2 W4, 5y )
> —eM[U5] + 4a?Re (Pr. AT?U5, 51 0~) + O(a”).
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We estimate the second term on the right hand side as follows,
1 _ Uy
dazRe (Pr. AT Wy, 5y &)
1
> 4a?Re (P A" T?05 D)) — €| HFT? Wy ||” — cals — 117 Pp@y~ |2
1
> daRe (Pp.ATT2Wy @) — | HZT2W5 || + O(a®),
where we used |1 —1|* = O(a) from Lemma 6.1, @} [|7 = O(a?) from Lemma A.3,

and || Pr(®y — ®u)||2 = O(at) from Lemma A.4.
We also have, using Py.AT = AT. Py,

4a7Re (Pp. AT W5, Ut) = 4a2Re (T2 Pp Uy, A" T"2201)
1 1
> —el|Hf Uy ||* — cal|HFT"2201 || > —eM[U5] + O(a®),

where ||Hf% I=2¥1 || has been estimated as || P¥{ | in the proof of Lemma 6.8.
O

6.3.2. Estimates of the term ((H + eo)Vi, ¥i).
Due to (139) and (140), one finds

((H + o) Ui, Ut) = (U1, W), — 2Re (P.(Py + a2 A(0)) 1, ¥1)

(154)
+2a2Re (P;.A0)UL, U + 2af| A~ U ||? + 20Re (A~ A™ U, U
We estimate the terms in (154) below.

Lemma 6.10. We have

— 2Re (P.(P; + % A(0)) U1, Up)

> —4a?Re (A~ ®}, PIO(U1)*) — eM[U3] — |51 — 1ca’ + O(a),
where TO(U1)® = TOW{ — TO(W)2 is the even part of TOWL.

Proof. Using (2, P}@E) = 0 (see Lemma A.1), the symmetry of us, and (P.Pr @/, &) =
0, we obtain

3
1ygr OUa
2(P.PpU, W) = [2(Prarg®TO0L, Pay ko i(Hy + PF) 1Wi%>|
(155) , =t
< ca®|ro?ITOWL |2 + ca® Z ko i|? = O(a),
=1

where in the last inequality we used Lemma 6.1.
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We also have, using again the symmetry of u,,
—2a2Re (P.A0)UL, Ul) = —4a2Re (P.A™ UL UT)
= —da?Re (A™ kB, PTO(U1)*) — 402 Re (A” r20®?TO0T, Priy &}« )
— 407 Re (A T30, Pary®2T00L)
s —4a#Re (A~ kB, PTO(W1)*) — cal[HZ T3 ||® — ca|| PTOWL |2 s 2
156
— 402 Re (k|5 A kpa®2TO0T, [k 5y POY")
> —4a?Re (A~ k By, PTO(W1)*) — cal|[H T3WH | — ca|| H2 T304 |2
— ca® — ca? |ra| [[TOWT | | [k]5 PR} |
> —daRe (A” k1@, PTO(T1)*) — eM[U3] — ca®,
where we used Theorem 5.2 and Lemma A.3.
Moreover, because ||A~®U || = O(a?) and |PTOWL|| = O(a?), we obtain
(157)
1 — Ug, 0/q,L\s 1 — FUa 0/q,Ly\s 4
—4Rea?Re (A7 k1 @y, PT7(V1)*) > —4a?Re (A7 ), PIV(¥1)%) — k1 — 1feca™
This estimate, together with (155) and (156), proves the lemma. O
Lemma 6.11. We have
207 Re (P;.A(0) W, UT)
2 )
> §a4Re > kei(Pr.AT(Hp + P§)~'Wi, (Hy + P7)" (AY)'Qy)
[

— |k1 — 1|ea® + O(a®).
Proof. The following holds

(158)
2a7Re (Pr.A(0)¥7, Ui) = 4a2Re (Pr. AT?W5, I?U1) + daRe (Pr. ATV, 1 By°)
3
Jug,
= 4a¥Re Y Fai(hn|b kel EATTOW, Pk 8 kal =8 (Hy + PR Wi T2
=1 i

+ 402 Re ki ([ky |8 k|5 A3, |y |75 |ko| ~8 Pp@2TOWT)
1 _ e
+4azRe (Pp.ATT?Uq, k1 B)).

Applying the Schwarz inequality and the estimates |||k |8 |ko|s A" D3UL|2 =
O(a®) (Lemma A.5), ko ; = O(1) (Lemma 6.1), and ||Vu,|* = O(a?), we see that
the first term on the right hand side of (158) is O(«®). Applying also the estimate
k2| |T°¥L| = O(a) (Lemma 6.1), we obtain that the second term on the right

hand side of (158) is also O(a®).
Finally, we estimate 42 Re (Pp. A—T20, Ky @;‘“} The following inequality holds,

(159) 4a®Re (Pr.A"D2U{, k1 ®})| > da?Re (P A"D2U{, @) — [ry — L]ca,
whose proof is similar to the one of (157). Next we get
[da®Re (P A"T2W{, @) — dad Re (Pp. ATT2U, ole)|

(160) 1 1ol u u 6 1
< a2 |HpT2U | || Pr (@ — @L) || = O(a”|log o] %),
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1
using || Py(®y~ — @Ye)|| = O(az|loga|2) (sce Lemma A.4) and ||H;F2Wf||
O(a?). Moreover,

4aRe (P;. A T?2U, le)

— 407 Re (P;.A™ (k2 ®2T00T + § Koi(Hy + P7)~'W; ‘?9““) Ple)
(161) Lers Oy,
=4 RPAEj J(Hp + P3H7IW, —2 gl
a2 Re (Py Ko, Ft f) oz, >

— §a4Re Z Koi(Pr.A” (Hy + P7)'Wi, (Hy + P7) "' (AT)'Qy)

where we used (207) of Lemma A.1 in the third equality.
Collecting (158)-(181) concludes the proof. O

Lemma 6.12. We have

(Wi, Wi )y + 20Re (A7 A7U, U) > 5 (D001 + D0y |?)
ol B
1117 112 2 2112112 1] e [|2
+ 13 ZI@ZI I(Hy + P7) " Will2 + o?|rs + 17| @212 @y |
+ |t l/f||ﬁ + ||FO\111LH§ +o(a’loga™t).

Proof. Obviously we have

3
(162) (U, W)y = Y (T, TP )y,
i=0
and using Lemma A.1
5 ou
(163) (T, T2Wi )y = o |ko | 2TOU|F+0” Y [kl *||(Hp+PF) W, 70‘”115

i=1
Moreover, from the inequality [[®ZT0W[|7 > [[@2[|2[|TOW5||* we obtain,

o[k || BITOWT |7 + 20Re (A7 A T?W5, T007)
> ?[ro?[| @22 [TOWT [|* + 2aRe (A~ A" T?0y, 10U )
= ®[ro | @[ ZITOW7 [|* — 207 Re ro|| 7|2 T |2

& — - ov—171, Qla
+ 2aRe ;a<A ATk i(Hy + Pp) ™ Wim— or.
> Yo [TOUL | + ke — 12ca?||TOUL % 4+ O(a®) > Zo||T0¥L |2 + O(a®).

(164)
,TOw)

where we used ¥y = —a?||®?||2 + O(a®) and (A~ A" (H; + Pf)_lwi,Fo\I/ﬁ =
~TOWL(W;, ®2) = 0.
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Similarly [|[T3W5 )y > T30, yields
(165)
T35 |12 + 2aRe (A7 AT, TM0T) > o[ws|?||(Hf + P7)~ AT AT o) |2
+2Rea’r3(A™ A7 (Hy + Pf) T AT AT Yo 5, @)
> —a?|(Hy + Pﬁ)_1A+.A+/{1<I>§“’ 12 + |k + 12| (Hy + P?)_1A+.A+<I>§‘“ [
> Bo|[ M5 |12 + ok + 12 @22y [|* + o(a®loga ™),
where in the last inequality, we used (222) from Lemma A.5, k1 = 1+ (’)(a%)
from Lemma 6.1, [|®y*|* = O(a’loga™") from Lemma A.3 and —o?||®7[? =

ZO —|— C’)(Oz?’).
The second term on the right hand side of (163) is estimated as

(166)

Oua

3
o |kl (Hy + P7)~'W; B,

i=1

3 3
1 - o'
= 0?2 Vual* Y w2 Pl (Hy + PR WillZ = 75 D la
i=1

=1

3
Z1rgr Ol
12 0% 3 b 2l + PR W |2

i=1

*|I(Hy + PF) W12

Collecting (162)-(166) conclude the proof. O
Proposition 6.4. We have
((H + o)Wy, Uy)
> —4a|(ha + €0) "2 Qq PAT®Y |* 4 || (ha + €0) 2T (W1
+ coa|(ha + €0) T (W1)*||* + So(ITOLF 1> + T w1 |?)
(167) ot 3 )
+ 15 S k2PN (Hy + P32 + daRe (D201, AY. Py dye)
i=1
+ 1@y [ + 20 A7 @ |17 + o[ ms + 12| @F[Z]| 2y |1
— eM[Uy] — |w1 — 1]ea + o(a®loga™),

where QL is the orthogonal projection onto Span(ug)®, (V1)® is the odd part of
Fo‘l'f, and cq is the same positive constant as in Proposition 6.5.

Proof. Collecting Lemmata 6.10, 6.11, and 6.12 yields

(168)
((H + eq) Ui, Ui) > —4aiRe (A=}, PTO(¥7)*) + 4aRe (P20, A+ Py 0})
+ So(|TOWF |2 + ITM T [1?) + | ks + 17|07 )12]| Dy~ |1?
+ [[(ha + €0) TTOUL|? + [P0 [7 + 20| A5y By ||* — 61 — 1]ca’

4 3
a - p—
* 12 Z || (Hp + PJ%) Wil|2 — eM W3] + o(a® loga™t).
i=1

Obviously,
(169) || (ha + €0)2TOUL(2 = [[(ha + €0) TTO(WL)* |1 + [|(ha + €0) L0 (T1)% 2.



36 J.-M. BARBAROUX, T. CHEN, V. VOUGALTER, AND S. VUGALTER

As before, we write T°U{ as the sum of its odd part (U1)® and its even part (U1 )*.
Since I'YW7 is orthogonal to u, by definition of U+ | and (W) is orthogonal to
o by symmetry of u,, we also have (V1 )® orthogonal to u,. Therefore, one can
replace T0(U1)® by QLTO(¥i)® in (168) and (169). Thus, as the next step, given
a constant ¢y > 0, we minimize

(1 - coa)||(ha + €0)2QETO(T1)*|? — 4a2Re (QE P.A™®}, QLTO(W1)%)
(17()) S %Y

1(ha + €0) ™2 Qx P.A= @2,

— 1-co
Obviously,
da h “3OLP A" PU|2
1—Coa||( o+e) 2Q,P. i I
4(1
(171) > _MHUM+€0)_%QiP.A—<I>7:a||2
1— ¢
4(1-1—04_1)@ . o .
_ W||(ha+€0) 2Qi-PA (q))ja _q)*a)”Q.

There exist 7; and o positive, independent of «, such that
Qa (ha +€0)7'Qx < (MP? +720°) 71,

and thus PQZ (ho+e9) "1Q2 P is a bounded operator. In addition, since || A~ (y—
du)||2 = O(a’loga!) (Lemma A.3), this shows that

414 o Ha

172
(172) 1 — ¢y

(ho + €0) "2 QE P.A™(B) — B2e)|2 = O(alloga™).
In addition, using [|[A™ @ || < A7 (DY — @)|| + A=y < ca? (Lemma A.3
and Lemma A.4), and the fact that PQZ (ha + €0) "tQZ P is bounded, yields
(1+a) ~1olp - 2
— ——||(ha +€0) 2Q, P.A” DY
- T2y + o) ||
= —4||(ha + €0) 2 QL P.ATDU |2 + O(a”).

Collecting (171)-(173), one gets

(174)
4o I
1— ¢y

(ha + €0) " ZQEP.A®L | > —4|/(ha + 0) "2 Qa P.AT®L |2 + O(a®).

Finally, using ||A~®% |2 = O(a?), we obtain
(175) 20|k |?[|AT DU ||? > 2a)|A” % |2 — ¢|ry — 1|a’.
Substituting (169), (170), (174) and (175) into (168) concludes the proof. O

We can now write the proof of Proposition 6.2
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Proof of Proposition 6.2 Collecting the results of Proposition 6.3, Lemmata 6.5-
6.9 and Proposition 6.4 yields directly the following bound,

(176)
(HUH, Wh) > (HUy, Vy) — eM[Uy] — clra?a* D00 |* — callog o™ ks]* — eol| U7 |12
— 40/|(ha + €0) T2 QEP.AT®Y |2 + (1 — ) || (ha + €0) 7T (U1)"||?
4 3

E FO\I,L 2 Fl‘IIL 2 & i

+ o ([T (|7 + || 1||)+12;|n2,
1 Ue 1 U U —Ppla

+4a?Re (I Wy, AT Ppdte) + dazRe (T2, AT Prdy=) + [k |*]| 4 || + 20| A~ 0L
+ a?|rg + 12|92 @y — |K1 — 1]’ 4 o(@”loga™?).

*||(Hy + PF) W1

Comparing this expression with the statement of the Proposition we see that it
suffices to show that

(1rr)
— eM[U5] — clraf*a* |TOUT||* — ca®log a3 — eol T ||* + (H Py, U)
+ So(ITOT |2 + TN |17) + 0|5 + 17| @212 @5 ||
kg + 17
2
Using from Corollary 4.2 that (HWy, W) > (X — e)|| ¥y ||? + M[V5], we first
estimate the following terms in (177),
So (ITOCT (2 + (I |*) — eol W1 |I* + (H Yy, ¥y) — eM[P3]
> (1— ) M[¥3]+ (So — eo) (W1 |* + [|Wz ||*) — o T"=2 ||
> (1= e)M[¥3] + (S0 — eo) [ ¥
— (B0 — e) (1017 = 1031 — |2 ||*) — Bo[T"=2 21 ||,
We have obviously
(179)
2 = w32 = W2 |* = 2Re (MW, DMy ) + (T2, D20y ) + (T2 05, TPy )).
Since |Xg — eg| < ca?, by definition of I'*W¥{ and Lemma A.5, we obtain
(180)
(S0 — e0)2Re (T304, T20H)] < ca?[PWE( + callng 2| (Hy + P2)~1 A A 0%

< ed? D305 ||? 4 c|rs?a” loga?.

> (0 — o) [ U7 + (1 — )M [Ty ] + ?+0(a”).

a?)| @212 @y

(178)

Similarly, for the two-photon sector, we find
(181)

6

3
(B0 — e0) (P20, T2W3)| < ea® D205 |1° + ca o[0T 2 + ¢ ) o

i=1

= ea? D203 |* + O(a”),
where we used Lemma 6.1. For the term (I'' Wi T''W4), one gets
(S0 — eo) (T 03, m @) = [(So — eo) (k|*TM 05, K]~ 1 24|

(182) 1 1
< €| HF Ty |* + co i1 ]| K] 72 04| < e HF TM g ||* + O(a®),
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since || [k 72} |2 = O(a) (Lemma A.3) and £ = O(1) (Lemma 6.1).
Collecting (179), (180), (181) and (182) yields
(183) [So—col | [WH2 — W12 — [W4%] < eM[W]+clngPa” loga™! + O(a®),
Therefore, together with (178), one finds
(184)
o (L5 |2 + 0107 [1?) — eo| U5 |1* + (H Y5, Uy) — eM[¥3]
> (1= 20 M[¥3] + (S — eo) [¥|* = clws[*a” log a™" — So|[T" =T [|* + O(a”),

By definition of U1 and using 3o = O(a?), |ka||T°¥{ || = O(a) (Lemma 6.1) and
Inequality (223) of Lemma A.5, we straightforwardly obtain

Yo |T"22T1 12 < ca + ¢|rs)?a”loga™t.
Substituting this in (184) yields
S (ITOUE2 + [T1WE[2) — eo| Wi |2 + (HOE, wh) — eM[04]
> (1= 2e)M[W5] + (X0 — o) || U2 — 2¢|rs|>a loga™ + O(a?).

(185)

To conclude the proof of (177), and thus of the Proposition, we first note that
according to Lemma 6.1,

(186) —c|f$2|2a4|\1"0\11f||2 = O(a6).

Similarly, taking into account that || @, |2 = ca®loga™! (see (209) in Lemma A.3),
we get for some ¢y > 0,
(187)

ks + 1)2 a
GQTH‘PEHfH‘Pg [ !

—callogaks|? — 2ca”logatks|? > —caallogal.

Collecting (185), (186) and (187) yields the bound (177), and thus concludes the
proof of the Proposition 6.2. (]

6.4. Lower bound up to the order o’loga~! for the binding energy. To
get a lower bound for ¥y — ¥ in Theorem 2.1 which coincides with the upper bound
given in (97), it suffices to compute

<(H _ ZO + eo)%trial7 &;trial>
||[I§trial||2

)

with the following trial function
(AI')trial _ ua\I]O + \A:[}é_,

where W is ground state of the operator T(0) with the normalization "W, = Q fs
Ug is the normalized ground state of h, = —A — ﬁ, and U3 is defined by

D003 = 202 (hy + €0) ' Qy P.A” Y, T10F = @},

Oug,
(9331‘ ’

3
(188) 05 = a®T0g + Y 2a(Hy + P7)'W;
i=1
[305 = —a(Hy + P} 1AT Aoy

Where ®Ue, @é‘”, ®2 and W; are defined as in Sections 5 and 6.
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‘We compute
(189)  (H®™2 &aly — (HuaWo, uqWo) + 2Re (Huo Vo, U3 ) + (HUF, U,
and we recall

(190)
H = ho+ (Hj + P?) —2Re P.P; —2a% P.A(0) +2a% P;.A(0) +2a AT . A™ +2a(A7)%

o For the first term in (189), a straightforward computation shows
(191) (HuaWo,uaVo) = (£0 — eo)[[uall®[[Tol*.

e We estimate the second term on the right hand side of (189) by computing

each term that occurs in the decomposition (190).
¢ Using the symmetry of u,, the only non zero terms in 2Re (Hu, Vo, \T!(J;> are

given by

(192)

2Re (Huo Vo, U3) = —4Re (P.Prug Vo, Ui)—4Re (P.A 1o Wy, Ut)—4Re (P.A uo Vo, U3 ).
¢ The first term on the right hand side of (192) is estimated with similar argu-

ments as in Lemma 5.2, and using [|A%||? = O(a?®) (Lemma A.7) and [|A% |2 =

O(a*) ([4, Theorem 3.2]). We obtain

(193) —4Re (P.PyuoWo, U3 ) ——fa4z Pj®2, (Hy +P7)W;) +0(a”/loga™t).

o The second and third terms on the right hand side of (192) are estimated as
in Lemma 5.3, and using again ||A% |2 = O(a?) and ||A%||2 = O(a?). This yields
(194) —4Re (P. A% ua Vo, Vi) = =2[|®) [|f + o(a®loga™™),
and

— 4Re (P. A uaWo, UF)

3
(195) :72 42 2 (Hy + P31 (A%);) + O(a®/loga1).

e Next, we estimate the third term on the right hand side of (189). For that
sake, we also use the decomposition (190) for H.

o For the term involving A, using ||(ha+eo)[O¥5 || = O(a?) (since | P.A~®U || =
O(a?)), and ||(ha + eo)%‘;?; | = O(a?), we directly obtain
(196)

(ha ¥, U5 ) = ((ha + e0) T, U ) — eol| ||

= da|(ha + €0) 2 Qa PA™ Y |* 4 {(ha + €0) B}, ®}=) — 0| U5 ||* + O(a).

o For the term with Hy + PJ?, we use the estimate (222) of Lemma A.5, and

the (-, - ),-orthogonality (see (206) of Lemma A.1) of the two vectors a®2T%g and
Zg’zl 2a(Hy + P]?)_IWZ-%‘T‘: that occur in I?W3. We therefore obtain

(Hy + PPy, Vy) = ((Hy + P2y, &) + o || 2Ty ||2

(197) 3 _ Qg
1D 2a(Hy + PF)TW; ox,

i=1

12+ I RZIZ @5 [* + o(a” log a™").
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o Using the symmetry of g, all terms in Re (P.P;Ugd, U) are zero, except the
expression Re (P.P;I'2g, W), which is estimated as follows
3
Re (P.P;T?03 T*05) = 2Re (P.P;a®’T0g, Y " 2a(Hy + P})~'W;

i=1

Oug,

871‘1> = O(as)v

where we used Lemma A.1 in the third equality to prove that only the crossed term
remains. Therefore, we obtain
(198) —2Re (PP, Ud) = 0(a°).

o The terms involving —2c2Re (P.A(0)¥#, U) is estimated as in the proof of
Lemma 6.10. This yields

— 202 (P.A0)UE, Ud) = —4Rea? (P.ATUE, UF)
(199) = —4Re (P.ATTOUE T1UE) 4+ O(a®V/loga~1)
= —80al|(ha + €0) 2QLP.A=®" |2 + O(a®/loga~1).

o For 2a2Re (P;.A(0)¥g, Ug), we proceed as in the proof of Lemma 6.11, and
obtain
202 (Py.A(0)¥y, Uy) = 4Rea? (Pr. AUy, Ug)

200 . 3
(200) 4o (Pyp.A™ az2 Hf—i—Pf) Wgua Pl + O(a®y/loga—1).

i=1

¢ Using the symmetry of u, and I'’g, the term 2aRe (A*.A’\Tld-, \Tl(ﬂ is esti-
mated as follows,

2aRe (A~ A~ UF, UF)
3
=20Re (A~ A" (a®TUg + > 2a(Hy + P7)~'W;

(201) =l
+2aRe (A A7 (—a(Hf + P})TAY AT D)), dye)

= =207 |TOUg ||*| 3|12 — 2% || (Hy + P7)~ AT AT @) |
= —2%| 10T |*)| 312 - 27| @313 )| B}

Oug,
Oz;

), 0%

2+ o(a’loga™),

where in the last inequality we used (222) of Lemma A.5.
¢ Finally, a straightforward computation yields

(202) 20Re(A™.AYUF, Ug) =20 A0 |2 + O(a”) = 20]| A~ @2 ||> + O(a?),

where in the last equality, we used Lemma A 4.

e Before collecting (192)-(202), we show that gathering some terms yields simpler
expressions. Namely, we have
(203)

Oug

3 3
4 J(Hy + PHW,;) + 4a2 (P;.A™ 2H; + P2) W,
az (Hy + PHW;) + 4a? (Py oéz:(,urf)wa

i=1 i=1
2 o171, Wa (2 1y s 2\ —1 2
1130 20y + PTG = —gat SO + PR TIWIE.

i=1 i=1

)



HYDROGEN GROUND STATE ENERGY IN QED 41

We also have, using —a?||®2]|2 = So + O(a?) (see e.g. [4])
(S0 — eo)[[Wol* — eo|Tg [I> = o®| B2 [TOTG |[* — || @212]|@p~ |
= (%0 — eo) (IWoll? + W5 [*) + O(”).

Therefore, collecting (192)-(202), and using the two equalities (203)-(204), we ob-
tain

(204)

3

= 1
(H(aWo + ), ua¥o + Vg) = (S0 — e0) (| Vol + [1¥5 ) = za* Y |(Hy + P7) " Wil|?
i=1
- *044 Z 2, (Hy + P7)7HAT)Qp) — [|@F |} — da|(he + €0) 2 Q4 P-A Y|

+2a|\A <I>§f‘*||2+0(a loga™t).

With the definition eV, e® | and e, of Theorem 2.1 this expression can be
rewritten as

(205)
<(H - +€0)§trial (I)trnl> (1) 3 + 6(2)a4 + 6(3)a5 loga—l +0(a5 loga_l).

Using Lemma A.7 yields ||¥]|? = 1+O(a?), which implies, due to the orthogonality
of ¥g and u, in L*(R3,dx),

1212 = Jlua || [[Wo |* + 1T [|* = 1 4 O(a?).
Therefore, together with (205), this gives

<(H_20+60)E)trial, ZIv)trial> (.3
| ptrial ||2 - °

which concludes the proof of the lower bound in Theorem 2.1.

+e@at +e®alloga +o(a’logat).

APPENDIX A

Lemma A.1. We have

P.A u,®L =0,
and
(206) (@2, C(Hy, P{)P;@%) = 0, and (®2,((Hy, Pf)W:) = 0.,
for any function ¢ for which the scalar products are defined. Similarly, we have
(207) (®IT0WT, AT PpdUe) = 0.
Proof. Straightforward computations using the symmetries of A~®. and ®2. 0O

Lemma A.2. We have
P.A™®% = aayAug,

where

(k4K 2
%_/M%MW+WMWWMM%&

Proof. Straightforward computations using the symmetries of A~ @Y, O
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Lemma A.3.

(208) Vo €3, (P.PT pu,, Pyo) =0,
(209) @[ = O(a’loga™) ,

(210) [} [F = O(a?) ,

(211) k"2 ) > = O(a)

(212) PP}~ ||* = O(a’loga™) ,
(213) [Po}~? = O(a”) ,

(214) | %]5 POy |2 = O(a®) .

Proof. The proof of (208) is as follows
(215)
(P.PT puq, DY)

8ua e k)xa |k:\ e
B —d dk
D mzz T

=1X=1,2

Oug 1 Ol kel (k)xa(lk|) B
_Z/dk </dxa TR By — axl> > ST o(k)dk = 0,

A=1,2

using that the integral over  is independent of the value of 4, and since k. (k) = 0.
To prove (211), we note that
2

_1 kl)
k|3 U2 < / xa(] Vua| dkd
[kl 252" < ca ‘|k: (k[ + K2 + ha+e0) ’
xa (k)2
<ca sdk = O(a).
/Ikl (Ik] + i5a?)?

The proofs of (209) and (210) are similar, but simpler.
We next prove (212).

k) Oou
216 PoY=||? = ca / XAl @2, o dk.
i16)  |Pap Z P e ey e

The function du,/dz; is odd. On the subspace of antisymmetric functions on
L?(R3), one has that —(1 — v9)A — {a] > —eo for some o > 0, which implies on
this subspace that hq + €9 > 7o P?, and thus,

(217) P? < q5 H(he + eo).
The relation (217) yields, for all &
k|2 (|k| + k2 + ho + e) OTi
_ k) 10u
< 1 XA(‘ h 1en)? 12
(218) o | k|2 (k| + k2 + R —l—eo)( o el o

2
_ XA k
<ileat [ alH)
k|2 (|| + k2 + {502)
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Substituting (218) into (216) and integrating over k proves (212).
The proof of (214) is similar. O

Lemma A.4. We have

u u 1 1
193 I1E = N1 @g 1y = 5l +

4
fore — 0 = 0
| 47(@f — @) = O(aTloga ™).

—)z Vu1||2a5 loga™t +o(a’loga™) ,

Proof. We have
[k e L g
(219) b 4

T (2n)23

Since (hy + i)Vul € L?, it implies that for sufficiently large ¢ > 0 independent of
a,

XA(|k|)
k|2 (k] + k2)2 (k| + k2 4+ a®(h1 + 1))2

(h1+ ) Vuq

lIx(h1 > ¢)(h1 + ) Vu1|| <€,

and

xa (k)
k|2 (k] + k2)% (k] + k2 + a2(hy + i))%

0o 2
Xa(t) _ —1
§e/0 t—|—co¢2dt7€10ga +0(1).

(hl > C)(h1 + ) Vu1

(220)

For the contribution of x(h1 < ¢)(hy + %)%Vul in (219), the following inequalities
hold,

(221)
(L1oga +001)) (s < )t + 2)Evu?
:<271T>2§ |k|%<|k|+k2>%<|>liﬁkz|:2+<c+paz»; i < )+ AV

.
SQ}W% |k|5(|k|+k2)%(|1>:|A+(|Z2)+(h1+i)a2))5 (i <)+ )V
_(271f)2é |k|5(|k|+k2)§az(c|kl+)k2 ) z))% Xk < e)(h + )Wl

< (%logof1 +0(1) )fo(hl <c)(h+ ) F V||

The inequalities (220) and (221) prove the first equality of the Lemma.
The proofs of the last two equalities are similar but simpler. ([l



44 J.-M. BARBAROUX, T. CHEN, V. VOUGALTER, AND S. VUGALTER

Lemma A.5.

(222) I(Hy + P7)~t AT AT D= |2 — || 0F|2[| @y |* = o(a’loga™),
(223) |(Hf + PJ?)‘lA+ A+<I>“a > = O(a®loga™")

(224) I ey |® [kea ¥ ks |6 (Hp + P§)~ PAT AT DY |2 = O(a®)

(225) [(ho + €0)(Hf + P7) " AT AT®|* = O(a loga™").

Proof. Denoting by o, the set of all permutations of {1,2,...,n}, we have
II(Hf +P7) I AT A e
ZA:l 2 Ex(ki). Zy=1,2 ev(k;)

aylz :
7Ive 2., (S0 ol + (3 k,?)

y > on=1.2 Exlkn)xa (k1) xa(k2])xa(lks|)
kil 2112 |2 (K| + k2 + (ha + €0))
If we pick two triples (i, j,n) and (¢, j',n’), such that n # n’, then we get a product
which is integrable at k1 = ko = k3 = 0, even without the term (h, + eg). The

contribution of such terms is ca||Vu,|* = O(a?). Moreover, using the symmetry
in k1, ko, k3, the twelve remaining terms give the same contribution. This yields

(226)
ity + PR AT Aty 2

2

(o3

2

H 2oaen(ks).- 2, € (kz)z e (k) xa (k1)) xa (k2])xa([ks)) Y,
P il (2 102) sl ka5 s+ 82 + (e + €0)
+0(a®).
On the other hand, we have
[k
_ S Sl By ulle) 8y bl hialsbualis) g, 1

([ka| + [ks| + (ko + k3)2)? [ka| ¥ kol k1 |* (k1| + k2 + (ha + €0))

Therefore, we obtain

(227)
I(Hy + P AT AT @7 — |27 2|2y~ |12
__ Ba / ( (k1]? + 2[k1 | |ks| + 2|1 | [k2])
(2m)3 ] \lko| ksl ([k1] + k2| + |ks| + [k1 + k2 + k3|?) (k2| + |ks| + [k2 + ks|?)

x> ealks). Y en(ka)xa(lkal)xa(lkal)xa (ks])?fu(ks, l“)|2dk1dk2dk3dx> ;
A v

where
u(kl x)— Z Eﬁ(kl)XAﬂle% .
T R B (R 4 B+ (e + o)

For fixed d, we first compute the integral in (227) over the regions |ki| > 4. This
yields a term csa®, where ¢; is independent on .

o ¢
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Next, integrating (227) over the regions |k;1| < & yields a bound O(d)a®loga,
with O(0) independent of a.

This concludes the proof of (222).

The proof of (223) is a straightforward computation showing

II(Hf +Pf)TIAT AT

erx ks )2y €u(k2)Z,g€n(k1)XA(|k1\)XA(Ikzl)XA(|k3|) 2

H - Nug
U (ST il 4+ (00 k)2 [kl oo 3| (1| + 2 + (ha + o)
=0(?loga™!).
The proofs of (224) and (225) are similar to the above. O

Lemma A.6. For Ui and Uy given in Definition 6.1, we have
(228) 20Re (A A T*UE, T3] < ca® + | HF U5 | .
Proof. Using 2aRe (A= A"T3U{ T1W5) = 2aRe (I?W¥, AT.ATTIWS), we obtain

that 2aRe (A~.A"T3W{ T1W4) can be rewritten as a linear combination of the
following two integrals I; and I

/ dk dk’ dk” dz Zeﬂ (K).e, (k")
(K| [R!|+[B"] 4 (k4R R[22 k|5 k7|5

1 ex(k) ew(K)-eq(F) e
X 1 \% e T I FI\I}L ka )
(|k—|—|k2+(ha+eo)z)\: k|2 Y )Z K| F k|3 ( 2) (k@)

ol

11204

(229)

Kom

and I is defined as I, except that in the last sum, we reverse the role of k and k",
namely

é/dkdk’dk”dIXA(|/€|)XA(|/<?’\)XA(|’€"|) € (K').€v (k")

Iy =z Z 1 1
|/€‘+|k/|+|k”|+|k+/€/+k”|2 |k"5|]€”|§

(230)

1 ex(k) eﬁ(k) (k)—“x
' <Ik\+|k\2+(ha+eo) EA: k| vu“)g k|7 k|2 (o))

To bound I, we use the Schwarz inequality, |ab| < iaz + §b2. This yields

|| <a3</dkdk’d’f”dxxﬁ(kl)x%(lk’l)xi(lk”l) 2
: (|k|+|k’|+|k"|+|k+k' K22 [k k|
1

1 1 \3
v o k? ek /12—e
‘|k|+\k|2 ¥ (ha +60)\k| o] Il \kz”|)

dk dk’ dk” dz XA(RDXA (K DXA(E"]) 2
Grah Gh o Qb FI\I/J' k” Qk// A A A
< (2 [ e e ) MO T D)

1
< ca’ +e|lHp |,
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Similarly, we bound I; as follows,

|I|<a%(/ dk dk’ dk” dz 2
S NS QRHRTHRT+ Tk R T

x ’ ! 1 2|k,|276|k,,‘276xi(lkl)xi(lk’I)xi(lk”l))%
k| +|k[? + (ha+eo) k|2 k|

dk dk’ dk” dx XA URDXA R DA (F]) 2
) I‘\l‘llL 2 A A A
O R

Vg

1 xAdkD 2
5 V||

<ca5/dk’dk” K" |~ XA (K ) XA (K /dk—i
< KR XA (F Dxa (1K7]) K2 (k] + La?)

1 1
+ellHp Ty ||* < co® + el Hp Oy |1,

where we took into account that %‘T‘? is orthogonal to u,, and on the subspace of

such functions we have (h — a + eg) > {=a?.

O

Lemma A.7. Let Vg be the ground state of T(0), with [T°Wg| = 1. Then we have
Uy = Qy + 2mai B! +100®? + 2305 03 + AL,
with (A%, ®%), =0 (i =1,2,3),T°A% =0
and
1A2]7 = O(a?).

Proof. Tt follows from a similar argument as in [7, Proposition 5.1] that

cx

lax(R) A2 < 775
||

This yields

2 .2 0112
k|2 k
ki<a [K] kl>a k|

1
< ca® + c'a_1||HfQA2H2 =0(?),

where in the last equality we used the estimate [|AY||2 = ||(H/ +Pf)%A2||2 = O(a*)

*

proved in [4, Theorem 3.2]. O
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