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Abstract. We consider weakly nonlinear backward parabolic problem
with Dirichlet homogeneous boundary conditions and prove that this
problem has a solution. This solution is defined and bounded for all
t ≥ 0. The conditions of the uniqueness for such a solution are also
considered.

1. Main theorem

Let M ⊂ Rm = {(x1, . . . , xm)} be an open bounded domain with smooth
boundary ∂M = M\M . By R+ denote the set of nonnegative real numbers.
Introduce a scalar function

f(t, x, y, z) ∈ C(D), D = R+ ×M × R× Rm

and suppose this function to be bounded:

sup
(t,x,y,z)∈D

|f(t, x, y, z)| = K <∞

and locally Lipschitz in (y, z) i.e. if (t, x, y, z) and (t, x, y′, z′) belong to a
bounded set U ⊂ D then

|f(t, x, y, z)− f(t, x, y′, z′)| ≤ C(|y − y′|+ ‖z − z′‖) (1.1)

with some positive constant C depending only on U . Here ‖ · ‖ is a norm in
Rm.

Consider the following backward parabolic problem for the scalar function
u(t, x), x ∈M

ut = −∆u+ f(t, x, u,∇u), u(t, ∂M) = 0, t ≥ 0. (1.2)
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Theorem 1. Problem (1.2) has a solution u(t, x) ∈ C(R+, H
1
0 (M)) such

that
sup
t≥0
‖u(t, ·)‖H1(M) <∞. (1.3)

If the function f satisfies the monotonicity condition i.e. for any u, v ∈
H1

0 (M) and for any t ≥ 0 one has

(f(t, ·, u,∇u)− f(t, ·, v,∇v), u− v)L2(M) ≥ 0 (1.4)

then there is no more than one solution to problem (1.2) in C(R+, H
1
0 (M))

with feature (1.3).

If the function f does not depend on the last argument then formula (1.4)
follows from the standard monotonicity in y that is, formula

(f(t, x, y1)− f(t, x, y2))(y1 − y2) ≥ 0

is satisfied for all admissible t, x, y1, y2.
Note that the existence statement of Theorem 1 remains valid in case

when M is a smooth compact Riemannian manifold without boundary. This
statement is proved by the same means.

2. Proof of Theorem 1

In the sequel all the inessential positive constants we denote by the same
letter c.

2.1. Preliminaries on functional analysis. In this section we collect sev-
eral useful theorems.

Theorem 2 (Brouwer fixed point theorem). Let B be a closed ball in Rm.
Then any continuous mapping f : B → B has a fixed point x̂ ∈ B that is
f(x̂) = x̂.

Let (X, ‖ · ‖X) be a Banach space. Equip the space C(R+, X) with the
topology of compact convergence. That is, a sequence {wj(t)} ⊂ C(R+, X)
is convergent to an element w(t) ∈ C(R+, X) as j →∞ iff for any compact
set I ⊂ R+ we have

max
t∈I
‖wj(t)− w(t)‖X → 0.

Recall the Arzela-Ascoli theorem [4].

Theorem 3. Assume that a set H ⊂ C(R+, X) is closed, bounded, uni-
formly continuous and for every t ∈ R+ the set {u(t) ∈ X} is a compact set
in the space X. Then the set H is a compact set in the space C(R+, X).

Proposition 1. Let X,Y be Banach spaces. Suppose that Aa : X →
Y, a′ > a > 0 is a collection of bounded linear operators such that for
each x ∈ X we have

sup
a′>a>0

‖Aax‖Y <∞, ‖Aax‖Y → 0 as a→ 0.
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Then for any compact set B ⊂ X it follows that

sup
x∈B
‖Aax‖Y → 0 as a→ 0.

This result is a direct consequence of the Banach-Steinhaus theorem [4],
[2].

Denote by e∆tu the solution to the following parabolic problem

vt = ∆v, v(0, x) = u(x), v(t, ∂M) = 0, t ≥ 0.

Collecting the results from [6] formulate a proposition on the semigroup e∆t.

Proposition 2. Define a function η(t, δ) by the following rule: if 0 < t < 1
then

η(t, δ) =
c

tδ/2
,

if t ≥ 1 then
η(t, δ) = ce−λt.

Here c, λ are positive constants.
For any ν, δ ∈ [0, 2] one has

‖et∆u‖Hν+δ(M) ≤ η(t, δ)‖u‖Hν(M).

In L2(M) there exists an orthogonal basis

{ei(x)}i∈N ⊂ H1
0 (M), (ei, ej)L2(M) = δij

of the eigenfunctions of the Laplacian:

∆ei = −λiei, e∆tei = e−λitei, 0 < λ1 < λ2 < . . . .

Actually the functions ej belong to C∞(M) [5].

Proposition 3. The semigroup e∆t is a strongly continuous semigroup in
the space H1

0 (M).

Proof. Recall that H1
0 (M) is a separable Hilbert space with respect to the

scalar product (u, v)H1
0 (M) = (∇u,∇v)L2(M). From this formula one can see

that the functions
ψi =

ei
‖ei‖H1

0 (M)

, i ∈ N

form an orthogonal basis in H1
0 (M). Indeed, if a function u ∈ H1

0 (M) is
orthogonal to all the functions ψi:

0 = (∇ψi,∇u)L2(M) = −(∆ψi, u)L2(M) =
λi(ei, u)L2(M)

‖ei‖H1
0 (M)

, i ∈ N

then u = 0.
If u =

∑∞
k=1 ukψk then e∆tu =

∑∞
k=1 uke

−λktψk. Thus for each u ∈
H1

0 (M) we have

‖e∆tu− u‖2H1
0 (M) =

∞∑
k=1

u2
k(e
−λkt − 1)2 → 0, t↘ 0.

�
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2.2. The approximate system. Let the subspace L2
n(M) ⊂ L2(M) con-

sist of finite linear combinations of the form
∑n

k=1 ukek. The elements of
L2
n(M) we denote by un. Obviously the space L2

n(M) is isomorphic to Rn.
Take a function u(x) =

∑∞
k=1 ukek(x) ∈ L2(M) and define the projection

operation Sn : L2(M)→ L2
n(M) by the formula

Snu =
n∑
k=1

ukek, ‖Snu‖L2(M) ≤ ‖u‖L2(M), (Snu, v)L2(M) = (u, Snv)L2(M).

In this section we study the following system

unt = −∆un + Snf(t, x, un,∇un). (2.1)

This system approximates problem (1.2).
System (2.1) is an n−dimensional system of ordinary differential equa-

tions with respect to the vectors (un1 , . . . , u
n
n) from the expansion un =∑n

j=1 u
n
j ej ∈ L2

n(M).
Let us show that the right side of system (2.1) satisfies Lipschitz condi-

tions, so the Cauchy existence and uniqueness theorem and another standard
theorems on ODE are applied. Indeed, using formula (1.1) we have

‖Snf(t, ·, un,∇un)− Snf(t, ·, vn,∇vn)‖L2(M)

≤ ‖f(t, ·, un,∇un)− f(t, ·, vn,∇vn)‖L2(M)

≤ c‖f(t, ·, un,∇un)− f(t, ·, vn,∇vn)‖L∞(M)

≤ c(‖un − vn‖L∞(M) + ‖un − vn‖C1(M)).

To this end it remains to note that all the norms in a finite dimensional
space are equivalent and thus

‖un − vn‖L∞(M) + ‖un − vn‖C1(M) ≤ c‖u
n − vn‖L2(M).

Since the function f is bounded it is easy to show that all the solutions to
system (2.1) are defined for all t ≥ 0.

Denote by un(t, vn) the solution to system (2.1) with initial condition
un(0, vn) = vn.

For brevity sake we do not write x in the arguments of the functions.
Consider a mapping

F (vn) = −
∫ +∞

0
e∆sSnf(s, un(s, vn),∇un(s, vn)) ds.
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From Proposition 2 it follows that the mapping F : L2
n(M)→ L2

n(M) is well
defined. Indeed,

‖F (vn)‖L2(M) ≤
∫ +∞

0
η(s, 0)‖Snf(s, un(s, vn),∇un(s, vn))‖L2(M) ds

≤
∫ +∞

0
η(s, 0)‖f(s, un(s, vn),∇un(s, vn))‖L2(M) ds

≤ K|M |1/2
∫ +∞

0
η(s, 0) ds, |M | =

∫
M
dx.

Moreover, as a consequence from this estimate we see that the map F takes
the whole space L2

n(M) to the closed ball BR ⊂ L2
n(M) with center at the

origin and with the radius R = K|M |1/2
∫ +∞

0 η(s, 0) ds.

Lemma 1. The mapping F has a fixed point ûn ∈ BR.
Proof. By virtue of the Brouwer fixed point theorem and observations above,
it is sufficient to check that the mapping F is continuous.

Take a sequence {vnj }j∈N ⊂ L2
n(M) such that vnj → vn in L2(M) as

j → ∞. Since the solutions to system (2.1) continuously depend on initial
data [3] and due to the equivalence of the norms, for any s ≥ 0 we obtain
‖un(s, vnj )− un(s, vn)‖C1(M) → 0.

Consequently, for any s ≥ 0 it follows that

‖f(s, un(s, vnj ),∇un(s, vnj ))− f(s, un(s, vn),∇un(s, vn))‖L∞(M) → 0. (2.2)

Observe that

‖e∆sSn(f(s, un(s, vnj ),∇un(s, vnj ))− f(s, un(s, vn),∇un(s, vn)))‖L2(M)

≤ cη(s, 0)‖f(s, un(s, vnj ),∇un(s, vnj ))− f(s, un(s, vn),∇un(s, vn))‖L∞(M).

This inequality gives us two things. As a first, by (2.2) we conclude that the
sequence

‖e∆sSn(f(s, un(s, vnj ),∇un(s, vnj ))− f(s, un(s, vn),∇un(s, vn)))‖L2(M)

tends pointwise in s ≥ 0 to zero. And the second, this sequence is esti-
mated from above by the function cη(s, 0) ∈ L1(R+). By the Dominated
convergence theorem we deduce

‖F (vnj )− F (vn)‖L2(M) → 0.

�

Any solution un(t, vn) to system (2.1) satisfies the integral equation

un(t, vn) = e−∆t
(
vn +

∫ t

0
e∆sSnf(s, un(s, vn),∇un(s, vn)) ds

)
.

Consequently, the solution with initial condition vn = ûn (see Lemma 1)
satisfies the equation

un(t, ûn) =
∫ t

+∞
e∆(s−t)Snf(s, un(s, ûn),∇un(s, ûn)) ds. (2.3)
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Denote this solution by un(t), if it is needed we shall write un(t, x).

Lemma 2. For any 0 ≤ r < 2 the sequence {un(t)} is uniformly bounded
in Hr(M):

sup
t≥0, n∈N

‖un(t)‖Hr(M) = cr <∞.

Proof. By (2.3) we have

‖un(t)‖Hr(M) ≤
∫ +∞

t
‖e∆(s−t)Snf(s, un(s),∇un(s))‖Hr(M) ds

≤
∫ +∞

t
η(s− t, r)‖Snf(s, un(s),∇un(s))‖L2(M) ds

≤
∫ +∞

t
η(s− t, r)‖f(s, un(s),∇un(s))‖L2(M) ds

≤ K|M |1/2
∫ +∞

t
η(s− t, r) ds = K|M |1/2

∫ +∞

0
η(s, r) ds.

It is easy to check that the last term is not greater than c(2 − r)−1 with
some positive constant c independent on t and r. �

Lemma 3. The sequence {un(t)} is uniformly continuous in C(R+, H
1(M)):

sup
n∈N
‖un(t1)− un(t2)‖H1(M) → 0

as |t1 − t2| → 0, t1, t2 ≥ 0.

Proof. Assume for definiteness that t2 ≥ t1 and taking into account (2.3)
write down the identity

un(t2)− un(t1) =
∫ t2

t1

e∆(s−t1)Snf(s, un(s),∇un(s)) ds

+
(

idL2(M) − e(t2−t1)∆
)∫ t2

+∞
e∆(s−t2)Snf(s, un(s),∇un(s)) ds. (2.4)

Estimate the first term from the right side of this formula:∥∥∥∫ t2

t1

e∆(s−t1)Snf(s, un(s),∇un(s)) ds
∥∥∥
H1(M)

≤
∫ t2

t1

‖e∆(s−t1)Snf(s, un(s),∇un(s))‖H1(M) ds

≤
∫ t2

t1

η(s− t1, 1)‖Snf(s, un(s),∇un(s))‖L2(M) ds

≤ c
∫ t2

t1

η(s− t1, 1) ds = c

∫ t2−t1

0
η(ξ, 1) dξ. (2.5)

In this formula the constant c does not depend on anything.
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Now we proceed with the second term from the right side of (2.4). Observe
that the set

W =
{∫ t2

+∞
e∆(s−t2)Snf(s, un(s),∇un(s)) ds

∣∣∣n ∈ N, t2 ≥ 0
}
⊂ H1

0 (M)

is bounded in Hr(M), 1 < r < 2. Indeed, this follows from our usual
estimate ∥∥∥∫ t2

+∞
e∆(s−t2)Snf(s, un(s),∇un(s)) ds

∥∥∥
Hr(M)

≤

≤ c
∫ +∞

t2

η(s− t2, r) ds = c

∫ +∞

0
η(s, r) ds.

Since the embedding Hr(M) ⊂ H1(M) is completely continuous [1], it fol-
lows that the set W is relatively compact in H1(M), and since W ⊂ H1

0 (M)
it is equivalent to say that W is relatively compact in H1

0 (M). Consequently
by Propositions 1 and 3 we have

sup
ξ∈W
‖(idL2(M) − e(t2−t1)∆)ξ‖H1(M) → 0, t2 − t1 → 0.

Combining this formula and formula (2.5) with (2.4) we obtain the assertion
of the Lemma. �

From Lemmas 2 and 3 we obtain the following

Corollary 1. The set {un(t)}n∈N is relatively compact in C(R+, H
1
0 (M)).

Indeed, for every fixed t ≥ 0 the set {un(t)}n∈N is bounded inHr(M), r >
1 and thus it is relatively compact in H1(M). So Theorem 3 implies the
Corollary.

By Corollary 1 the sequence {un(t)}n∈N contains a subsequence that is
convergent in C(R+, H

1
0 (M)). For this subsequence we shall use the same

notation. So we have
un(t)→ u(t)

in C(R+, H
1
0 (M)) as n→∞.

In the next section we show that the function u(t) is a desired solution to
problem (1.2).

2.3. The solution to problem (1.2). Since the functions un solve system
(2.1), for any φ ∈ H1

0 (M) we have

(un(t), φ)L2(M) = (un(0), φ)L2(M) +
∫ t

0
(∇un(s),∇φ)L2(M) ds

+
∫ t

0
(Snf(s, un(s),∇un(s)), φ)L2(M) ds. (2.6)

Our goal is to pass in this formula to the limit as n → ∞. Evidently we
have (un(0), φ)L2(M) → (u(0), φ)L2(M) and (un(t), φ)L2(M) → (u(t), φ)L2(M).
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By Lemma 2 for all s ∈ [0, t] the sequence (∇un(s),∇φ)L2(M) is bounded:

|(∇un(s),∇φ)L2(M)| ≤ ‖un(s)‖H1(M)‖φ‖H1(M) ≤ c1‖φ‖H1(M).

Having the convergence (∇un(s),∇φ)L2(M) → (∇u(s),∇φ)L2(M) and due to
the Dominated convergence theorem we obtain∫ t

0
(∇un(s),∇φ)L2(M) ds→

∫ t

0
(∇u(s),∇φ)L2(M) ds.

Consider the last term from the right side of (2.6)

(Snf(s, un(s),∇un(s)), φ)L2(M) = (f(s, un(s),∇un(s)), φ)L2(M)

+ (f(s, un(s),∇un(s)), Snφ− φ)L2(M).
(2.7)

The last term of this formula is processed as follows

|(f(s, un(s),∇un(s)), Snφ− φ)L2(M)|
≤ ‖f(s, un(s),∇un(s))‖L2(M)‖Snφ− φ‖L2(M)

≤ K|M |1/2‖Snφ− φ‖L2(M) → 0

as n→∞.
Since for all s ∈ [0, t] it follows that un(s, x)→ u(s, x) in H1(M) then

un(s, x)→ u(s, x), ∇un(s, x)→ ∇u(s, x)

in L2(M). Consequently, the sequence {un(s, x)} contains a subsequence,
which we shall denote by the same manner, such that for almost all x ∈M
we have

un(s, x)→ u(s, x), ∇un(s, x)→ ∇u(s, x).
This implies that for almost all x ∈M

f(s, x, un(s, x),∇un(s, x))→ f(s, x, u(s, x),∇u(s, x)).

And by the Dominated convergence theorem for all s ∈ [0, t] we obtain

(f(s, un(s),∇un(s)), φ)L2(M) → (f(s, u(s),∇u(s)), φ)L2(M).

From this formula and by formula (2.7) for all s ∈ [0, t] we have

(Snf(s, un(s),∇un(s)), φ)L2(M) → (f(s, u(s),∇u(s)), φ)L2(M).

Applying the Dominated convergence theorem again we get∫ t

0
(Snf(s, un(s),∇un(s)), φ)L2(M) dx→

∫ t

0
(f(s, u(s),∇u(s)), φ)L2(M) dx.

Gathering all these observations and from formula (2.6) we finally have

(u(t), φ)L2(M) = (u(0), φ)L2(M) +
∫ t

0
(∇u(s),∇φ)L2(M) ds

+
∫ t

0
(f(s, u(s),∇u(s)), φ)L2(M) ds.

This proves Theorem 1 in the part of existence.
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2.4. Proof of the uniqueness. The proof of the second part of the theorem
is completely standard.

Indeed, assume the converse: there exist two solutions u(t, x), v(t, x) ∈
C(R+, H

1
0 (M)) such that for some t0 ≥ 0 we have u(t0, x) 6= v(t0, x). From

(1.2) it follows that

ut − vt = −∆(u− v) + f(t, x, u,∇u)− f(t, x, v,∇v).

(Sometimes, when it can not bring an ambiguity, we shall not write the
arguments of the functions. It is just for the brevity sake.)

Now we multiply in L2(M) both sides of this equality by u(t, x)− v(t, x)
and obtain:
1
2
d

dt
‖u− v‖2L2(M)

= (∇(u− v),∇(u− v))L2(M) + (f(t, ·, u,∇u)− f(t, ·, v,∇v), u− v)L2(M).

By the standard facts on Sobolev spaces [1] and inequality (1.4) the right
side of this equality is estimated from below by the following expression:

‖u(t, ·)− v(t, ·)‖2H1(M).

This expression in its part is estimated as

‖u(t, ·)− v(t, ·)‖2H1(M) ≥ c‖u(t, ·)− v(t, ·)‖2L2(M).

Finally we obtain
1
2
d

dt
‖u(t, ·)− v(t, ·)‖2L2(M) ≥ c‖u(t, ·)− v(t, ·)‖2L2(M),

and thus

‖u(t, ·)− v(t, ·)‖2L2(M) ≥ ‖u(t0, ·)− v(t0, ·)‖2L2(M)e
c(t−t0).

This inequality provides the contradiction with condition (1.3).
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