
An inverse resistivity problem: 1. Fréchet differentiability of the cost
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Abstract. Mathematical model of vertical electrical sounding (VES) over a medium with continuously changing con-

ductivity σ(z) is studied by using a resistivity method. The considered model leads to an inverse problem of identi-

fication of the unknown leading coefficient σ(z) of the elliptic equation ∂
∂z (σ(z) ∂u

∂z ) +
σ(z)

r
∂

∂r (r ∂u
∂r ) = 0 in the layer

Ω = {(r, z) ∈ R2 : 0 ≤ r < ∞, 0 < z < H}. The measured data ψ(r) := (∂u/∂r)z=0 is assumed to be given on the

upper boundary of the layer, in the form of the tangential derivative. The proposed approach is based on transformation of

the inverse problem, by introducing the reflection function p(z) = (lnσ(z))′ and then using the Bessel-Fourier transformation

with respect to the variable r ≥ 0. As a result the inverse problem is formulated in terms of the transformed potential V (λ, z)

and the reflection function p(z). It is proved that the transformed cost functional is Fréchet differentiable with respect to the

reflection function p(z). Moreover, an explicit formula for the Fréchet gradient of the cost functional is derived. Then Lipschitz

continuity of this gradient is proved in class of reflection functions p(z) with Hölder class of derivative p′(z).
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1. Introduction

We study the mathematical model of vertical electrical sounding by using a resistivity method.
In geophysical sciences this method is defined to be the problem of interpretation of surface or near-
surface measured data (see, [1,8-15] and references therein). Mathematical modeling of the vertical
electrical sounding leads to the following inverse problem of determination of the unknown leading
coefficient in a linear elliptic equation.

Find the function σ(z) via the solution of the boundary value problem

∂

∂z

(
σ(z)

∂u

∂z

)
+
σ(z)
r

∂

∂r

(
r
∂u

∂r

)
= 0, (r, z) ∈ Ω ⊂ R2, (1)


σ(0)∂u∂z |z=0 = δ(r), u(r, z)|z=H = 0,

lim
r→∞

u(r, z) = 0
(2)

from the measured data ψ(r) defined as follows:

∂u

∂r


z=0

= ψ(r). (3)

Here Ω = {(r, z) ∈ R2 : 0 ≤ r < ∞, 0 < z < H}, and the function σ(z) satisfies the following
conditions:

σ(z) ∈ S := {σ(z) ∈ C2[0,H], σ(0) = σ0, σ
′(0) = 0, 0 < σ1 ≤ σ(z) ≤ σ2 <∞}. (4)

Note that physically conditions (4) mean that the conductivity σ(z) is assumed to be known at the
Earth surface, and its near-surface behaviour needs to be constant (the condition σ′(0) = 0).
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The problem (1)-(3) will be defined as a coefficient inverse problem or VES-problem. In this
context, for a given σ(z) ∈ S from the set of admissible coefficients S the boundary value problem
(1)-(2) will be refered as a direct (or forward) problem. The functions ψ(r) and σ(z) are defined to be
the measured output data and the input data, accordingly [5-7].

In view of quasisolution (or least square) approach, this inverse problem can be formulated as
a minimization problem for the corresponding cost functional J(σ) ([3,17]). In most cases for the
numerical solution of this minimization problem gradient methods are used ([2]). For this aim, in
many applications various gradient formulas are either derived empirically, or computed numerically
([1],[9]). Note that the first attempt for the numerical solution of the inverse problem (1)-(3) by using
the gradient method was given in [1]. Although an empirical gradient formula has been employed with
regularization algorithm, there was no mathematical framework for this formula. At the same time,
it is well known that any gradient method requires an estimation of the iteration parameter αn > 0 in
the iteration process σ(n+1) = σ(n) − αnJ

′(σ(n)), n = 0, 1, 2, ..., where σ(0) is a given initial iteration.
Choice of the parameter αk defines various gradient methods, although in many situation estimations
of this parameter is a difficult problem. However, in the case of Lipschitz continuity of the gradient
J ′(σ) the parameter αn can be estimated via the Lipschitz constant, which subsequently improves
convergence properties of the iteration process (see, [7],[18] and references therein). In this paper
we propose a new approach for the solution of the inverse problem (1)-(3). This approach is based
on transformation of the inverse problem, by introducing the reflection function p(z) = (lnσ(z))′ and
then using the Bessel-Fourier transformation with respect to the variable r ≥ 0. As a result the inverse
problem is formulated in terms of the transformed potential V (λ, z) and the reflection function p(z).
This transformation allows to prove the Fréchet differentiability of the transformed cost functional
J(p) with respect to the reflection function p(z), and to obtain an explicit formula for the Fréchet
gradient. Then Lipschitz continuity of this gradient is proved in class of reflection functions p(z) with
Hölder class of derivative p′(z).

Let σ(z) ∈ S be a given coefficient. Denote by u = u(r, z;σ) the unique solution of the direct
problem (1)-(2), corresponding to the coefficient σ(z). Further, we introduce the trace operator

Λ[σ] :=
∂u(r, z;σ)

∂r
|z=0. (5)

Then the above inverse problem can be formulated in the following operator form [13, 14]:

(Λσ)(r) = ψ(r), r ∈ [0,∞). (6)

This operator form of the inverse problem (1)-(3) clearly shows that the problem of interpretation
of surface or near-surface measured data consists of recovering the conductivity σ(z) of the layer
0 < z < H from the knowledge of the measured output data ψ(r).

On the other hand, solution of the inverse problem (1)-(3) means inverting of the input-output
map Λ : S 7→ Ψ, where Ψ is the set of measured data. To analyze this input-output map we introduce
now the function

p(z) = (ln(σ(z)))′, (7)

which represents an analogue of the reflection coefficient in the medium with continuously changing
conductivity σ(z). Denote by Λ2 the right hand side operator in (7): Λ2σ(z) = p(z), and define the
operator Λ1 as follows

(Λ1p)(r) = ψ(r), r ∈ [0,∞). (8)

Then the input-output map Λ can be represented as follows: Λ = Λ1Λ2. Evidently, the operator Λ2

is invertible, and

σ(z) = Λ−1
2 p = σ(0) exp

 z∫
0

p(z)dz

 . (9)
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Therefore inverting of the input-output map Λ : S 7→ Ψ can be reduced to inverting of the operator
Λ1, or solving the operator equation (8). Due to measurement errors this problem may not have a
solution in any suitable class of admissible coefficients. For this reason we introduce the following
auxiliary (cost) functional [17]

J(p) =

∞∫
0

(Λ1(p)− ψ(r))2rdr, p ∈ P, (10)

and consider the minimization problem

J(p∗) = inf
p∈P

J(p), p ∈ P, (11)

in the class of admissible reflection coefficients

P = {p(z) ∈ C1[0,H], p(0) = 0, Λ−1
2 ∈ S}.

The function σ∗(z) = Λ−1
2 p∗ will be defined to be a quasisolution of the inverse problem (1)-(3).

Note that existing in literature numerical methods are usually based on to direct reconstruction
of the conductivity coefficient σ(z) ([1], [13]). Computational realization of these methods have well-
known difficulties related to ill-conditionedness of the considered inverse problem. In particular,
the numerical algorithm proposed in [1] requires a regularization at each step of iterations. In the
second part of this study we will show that the constructed here numerical algorithm, based on the
factorization Λ = Λ1Λ2 of the input-output map Λ, does not require any regularization.

The paper is organized as follows. Some preliminary results and estimations related to the trans-
formed by the Bessel-Fourier transformation potential V (λ, z) are given in Section 2. Fréchet dif-
ferentiability of the cost functional (10) is derived in Section 3. In the final Section 4 the Lipschitz
continuity of gradient of the cost functional (10) is proved in class of reflection functions p(z), when
the derivative p′(z) is of Hölder class.

2. Preliminary estimations

Let us use the following representtion of the direct problem solution u(r, z):

u(r, z) = − 1
σ(0)

√
r2 + z2

+ u(r, z), u(r, z) = O(r−1), r →∞, (12)

where u(r, z) is a bounded and regular function. Based on this representation and condition (3), we
define the set of measured output data Ψ as follows:

Ψ = {ψ(r)|ψ(r) =
1

σ(0)r2
+ ψ(r),

∞∫
0

|ψ(r)|
√
rdr <∞, 0 < r <∞}. (13)

Denote by V (λ, z) the Bessel-Fourier transformation of the function u(r, z) with respect to the
variable r ≥ 0:

V (λ, z) =

∞∫
0

u(r, z)J0(λr)rdr = − e−λz

σ(0)λ
+

∞∫
0

u(r, z)J0(λr)rdr.

Then we have

V (λ, z) = − e−λz

σ(0)λ
+ V (λ, z). (14)
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It was shown in [16], the above right hand side integral exists, converges uniformly, and the function
V (λ, z) satisfies the following parameter-dependent two-point boundary value problem

d
dz

[
σ(z)dVdz

]
− λ2σ(z)V = 0,

σ(0)dVdz


z=0

= 1, V |z=H = 0
(15)

for ordinary differential equation. Now we define the Bessel-Fourier transformation of the measured
output data ψ(r),

ϕ(λ) =

∞∫
0

ψ(r)J1(λr)rdr, (16)

by taking into account (13). Then the transformed the measured output data ϕ(r) has the form:

ϕ(λ) = − 1
σ(0)

+

∞∫
0

ψ(r)J1(λr)rdr. (17)

This, with the unitarity of the Bessel-Fourier transformation, imply that in view of the function
V (λ, z) the cost functional has the following form:

J(σ(p(z))) :=

∞∫
0

[ψ(r)− ∂u

∂r
(r, 0)]2rdr =

∞∫
0

[ϕ(λ)− λV (λ, 0)]2λdλ. (18)

Due to representation (12) and definition (13) the function ψ(r) has the singularity at r = 0. However
the difference of any two functions from the of measured output data Ψ is square integrable, which
means that the right hand side integral in (18) exists.

To analyze the transformed functional (18) with help of problem (15) let us use the following
transformation:

x(z) =

z∫
0

dξ

σ(ξ)
, x ∈ [0,H1], H1 =

H∫
0

dz

σ(z)
. (19)

Then equation (15) becomes

d2y

dx2
− λ2s2(x)y(x) = 0, x ∈ [0,H1]. (20)

Here s(x) = σ(z(x)), 0 ≤ σ1 < s(x) ≤ σ2, and σ1 = min[0,H] σ(z), σ2 = max[0,H] σ(z).

It is well-known that ([4],[19]) the transformed equation (20) has two fundamental solutions with
the following asymptotic representations{

y1,2(x, λ) = s−1/2 exp(±λz(x))(1 + ε1,2(x, λ)/λ),
y′1,2(x, λ) = ±λs1/2 exp(±λz(x))(1 + ε3,4(x, λ)/λ),

(21)

when λ→∞ uniformly with respect to x ∈ [0,H1]. Here

|εj(x, λ)| ≤ Cε, x ∈ [0,H1], λ ≥ λ0 > 0, j = 1, 4.

For convenience, in subsequent we will use another equivalent system of fundamental solutions, satis-
fying the following boundary conditions:

y1(0, λ) = 1, y1
′(0, λ) = 0; y2(0, λ) = 0, y2

′(0, λ) = 1, (22)
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with the following asymptotics:
y1(x, λ) = s0

1/2s−1/2 cosh(λz(x))(1 + ε1(x, λ)/λ),
y′1(x, λ) = λ−1s0

−1/2s1/2 sinh(λz(x))(1 + ε2(x, λ)/λ),

y2(x, λ) = s0
1/2s−1/2λ−1 sinh(λz(x))(1 + ε3(x, λ)/λ),

y′2(x, λ) = s0
−1/2s1/2 cosh(λz(x))(1 + ε4(x, λ)/λ),

(23)

where |εj(x, λ)| ≤ Cε, x ∈ [0,H1], λ ≥ λ0 > 0, j = 1, 4. The constant Cε here depends on the norm
‖σ‖C2 or, equivalently, on the norm ‖p‖C1 (see, [4],[19]). Hence for all functions p ∈ PD from the class
PD = {p : ‖p‖C1 ≤ D} the constant Cε as well as the parameter λ0 can be assumed to be the same.

Let us define now the conductivity ratio κ := σ2/σ1, which characterizes the contrastness of the
medium.

Applying the comparison theorem to the pairs of functions 〈y1(x, λ), y0(x) ≡ 1〉, 〈y1(x, λ), u(x, λ) =
cosh(λσ2x)〉 we conclude that

1 ≤ y1(x, λ) ≤ cosh(λσ2x) ≤ cosh(λκz), x ∈ [0,H1]. (24)

Further, it easily follows from the equation and boundary conditions that the function y1(x, λ) is a
monotone increasing one.

To establish the necessary properties of the cost functional we need the following estimates.

LEMMA 2.1 Let p(z), δp(z) ⊂ PD, and the functions V (λ, z) and V (λ, z) + δV (λ, z) be the corre-
sponding solutions of the boundary value problem (15). Then for z ∈ [0,H] (x ∈ [0,H1]), λ ≥ 0 the
following estimates, and for λ0 > 0 the asymptotic estimates hold:

e1) V (λ, z) ≤ 0, V ′(λ, z) ≥ 0;

e2) |V (λ, z)| ≤ (H−z)
σ1

;

∀δ ∈ (0, 1), ∃λ0 > 0, |V (λ, z)| ≤ 1+δ
σ1λ

exp(−λz), ∀λ ≥ λ0;

e3) |σ(z)V ′(λ, z)| ≤ 1, |V ′(λ, z)| ≤ 1
σ1
,

|dV (λ,z)
dz | ≤ 1+δ

σ1
exp(−λz), ∀λ ≥ λ0;

e4) |δV (λ, z)| ≤ C1(λ0,κ,H)
σ1

‖δp(z)‖C , 0 ≤ λ ≤ λ0,

|δV (λ, z)| ≤ C2κ
3

σ1λ3 ‖δp(z)‖C1 , ∀λ ≥ λ0;

e5) |δV (λ, z)| ≤ C2κ
3Γ(α)

σ1λ3+α ‖δp(z)‖C1+α , ∀δp ∈ C1+α[0,H], ∀λ ≥ λ0;

e6) |σ(z)δV ′(λ, z)| ≤ κC3‖δp(z)‖C1 , ∀λ ≥ 0,

|σ(z)δV ′(λ, z)| ≤ C4κ
4

λ ‖δp(z)‖C1 , ∀λ ≥ λ0,

where constants C1, C2, C3, C4 depend only on H, Cε, λ0.

Proof e1). Multiplying the equation (15) by the function V (λ, z), integrating on [z,H] and using the
boundary conditions we obtain the following energy identity:

H∫
z

σ(z)(V ′2(λ, z) + λ2V 2(λ, z))dz = −σ(z)V ′(λ, z)V (λ, z). (25)
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Substituting in (25) z = 0 and taking into account the boundary condition we conclude V (λ, 0) < 0.
To prove V (λ, 0) ≤ 0, ∀z ∈ [0,H],we assume that ∃z0 ∈ (0,H) such that V (λ, z0) > 0. Due continuity,
∃z1 ∈ (0, z0), V (λ, z1) = 0. By the boundary condition V (λ,H) = 0 and Rolle’s theorem the function
V (λ, z) has a positive maximum at z2 ∈ (z1,H), and V (λ, z2) > V (λ, z0) > 0. Then by the conditions
V ′(λ, z2) = 0, V ′′(λ, z2) ≤ 0 equation (25) at z = z2 yields

λ2V (λ, z2) = σ(z2)V ′′(λ, z2) + σ′(z2)V ′(λ, z2) = σ(z2)V ′′(λ, z2) ≤ 0.

This contradiction implies that V (λ, 0) ≤ 0, ∀z ∈ [0,H].

The second assertion of e1) follows from the positivity of the right hand side of (25).

e2). Let us apply transformation (19) to problem (15). Then the function y(x, λ) = V (λ, z(x)) will
be the solution of equation (20) and satisfies the boundary conditions

y′(0, λ) = 1, y(H1, λ) = 0. (26)

Consider the difference ∆y(x, λ) = y(x, λ)−(x−H1), x ∈ [0,H1]. Then equation (20) and the estimate
V (λ, 0) ≤ 0 imply

d2∆y
dx2

= λ2s2y ≤ 0.

Hence

d∆y
dx

(x, λ) ≤ d∆y
dx

(0, λ) = 0, ∀x ∈ [0,H1]. (27)

This, with the boundary condition, y(H1, λ) = 0 implies

∆y = −
H1∫
x

d∆y
dx

dx ≥ 0, ∀x ∈ [0,H1],

which is equivalent to the condition: V (λ, z) ≥ x(z)−H1. Taking into account the sign of the function
V (λ, z) we obtain the first part of the assertion e2):

|V (λ, z)| ≤ H1 − x(z) =

H∫
z

dz

σ(z)
≤ H − z

σ1
.

To prove the second part of the assertion e2) we introduce the function

y(x(z), λ) = y2(x(z), λ)− y2(H1, λ)
y1(H1, λ)

y1(x(z), λ),

i.e. the linear combination of the fundamental solutions. Evidently this function satisfies the boundary
condition (26). Then the function

V (λ, z) = y2(x(z), λ)− y2(H1, λ)
y1(H1, λ)

y1(x(z), λ), (28)

obtained from the function y(x(z), λ) by transformation (19) will be the solution of problem (15):
V (λ, z) = y(x(z), λ). Hence we may use the asymptotic formula (23) for the function V (λ, z), ∀λ > λ0,
λ0 > 0:

V (λ, z) = y(x(z), λ) =
1

λ
√
σ(0)σ(x)

sinhλ(z −H)
coshλH

[
1 +

ε(x, λ)
λ

]
, |ε(x, λ)| ≤ Cε.
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By the asymptotic behaviour of the hyperbolic functions we obtain the required second estimate of
e2):

|V (λ, z)| ≤ 1 + β

λ
√
σ(0)σ(x)

exp(−λz) ≤ 1 + β

λσ1
exp(−λz), ∀β ∈ (0, 1), ∀λ > λ0.

e3). From inequality (27) we may conclude (∆y(x, λ))′ = y′(x, λ)− 1 ≤ 0 which implies

y′(x, λ) = σ(z)V ′(λ, z) = |σ(z)V ′(λ, z)| ≤ 1.

In particular, |V ′(λ, z)| ≤ 1/σ1, σ1 > 0.

To prove the third assertion of e3) let us differentiate (28) and use the asymptotic representation
(23). Then we have:

y′(x(z), λ) = σ(z)
dV (λ, z)

dz
=

√
σ(z)√
σ(0)

coshλ(H − z)
coshλH

[1 +
ε(z, λ)
λ

], |ε(z, λ)| ≤ Cε (29)

Due to the asymptotic of hyperbolic cosine we conclude that ∃λ0 > 0 such that∣∣∣∣dV (λ, z)
dz

∣∣∣∣ ≤ 1 + β√
σ(z)

√
σ0

(exp(−λz) ≤ 1 + β

σ1
exp(−λz), ∀λ ≥ λ0, ∀β ∈ (0, 1). (30)

Evidently choice of the parameter λ0 > 0 depends on the constant Cε > 0, since λ0 > Cε/β. For this
reason in subsequence the dependency on the parameter λ0 > 0 will be replaced by the dependency
on the constant Cε > 0.

e4). Let us rewrite equation (15) taking into account transformation (7):

d2V

dz2
+ p(z)

dV

dz
− λ2V = 0.

Evidently the function δV (λ, z) satisfies the nonhomogeneous equation

d2δV

dz2
+ p(z)

dδV

dz
− λ2δV = −d(V + δV )

dz
δp(z). (31)

Using here transformation (19) we conclude that the function g(x, λ) := δV (λ, z(x)) satisfies the
following second order nonhomegeneous equation and the boundary conditions:

d2g
dx2 − λ2s2(x)g(x, λ) = f(x, λ), x ∈ [0,H1],

g′(0, λ) = 0, g(H1, λ) = 0,
(32)

where the source term is defined as follows:

f(x, λ) = −s2(x)z(x)δp(z(x))d(V + δV )
dz

. (33)

The solution

δV (λ, z(x)) := g(x, λ) = −y2(H1, λ)
y1(H1, λ)

y1(x, λ)

H1∫
0

y1(t, λ)f(t, λ)dt+

y1(x, λ)

H1∫
x

y2(t, λ)f(t, λ)dt+ y2(x, λ)

x∫
0

y1(t, λ)f(t, λ)dt
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of the two point problem (32) is obtained by the method of variation constans, which can be easily
verified. Using here formula (28) we get

δV (λ, z(x)) = y(x, λ)

x∫
0

f(t, λ)y1(t, λ)dt+ y1(x, λ)

H1∫
x

f(t, λ)y(t, λ)dt. (34)

Substituting in the right hand side formula (34) for the source term f(x, λ) we obtain the following
representation for the function δV (λ, z(x)):

δV (λ, z) = −V (λ, z)

z∫
0

σ(V ′ + δV ′)δp(z)y1(x(z))dz − y1(x(z))

H∫
z

σ(V ′ + δV ′)V (λ, z)δp(z)dz. (35)

By the estimates obtained in e1) we get

|δV (λ, z)| ≤ |V (λ, z)|
z∫

0

σ(V ′ + δV ′)|δp(z)|y1(x(z), λ)dz + y1(x(z), λ)

H∫
z

σ(V ′ + δV ′)|V (λ, z)||δp(z)|dz. (36)

Assume that 0 < λ ≤ λ0 for some λ0 > 0. Then using estimates e1), e2) and (24) we get:

|δV (λ, z(x))| ≤ σ2H

σ2
1

x∫
0

cosh(λσ2t)|δp|dt+
σ2H

σ2
1

cosh(λσ2x)

H∫
x

|δp|dt ≤ κH

σ1
cosh(λσ2x)

H∫
0

|δp|dt,

which implies the first estimate ofe4):

|δV (λ, z)| ≤ κH2

σ1
cosh(λ0κH)‖δp‖C ≤ κC1(Cε, κ,H)

σ1
‖δp‖C , ∀λ ∈ (0, λ0].

To obtain the second estimate of e4) we note that the function δp(z) satisfies the condition δp(0) = 0
in the class of functions PD. Hence

|δp(z)| ≤ z‖δp‖C1 , ∀z ∈ [0,H]. (37)

This estimate, with the monotonicity and the sign of the function V (λ, z(x)), established in e1), as well
as the monotonicity of the fundamental solution y1(x, λ), permits one to improve the above obtained
estimate (36):

|δV (λ, z)| ≤ |V (λ, z)|y1(x(z))
z∫

0

σ(ζ)(V ′ + δV ′)|δp|dζ

+|V (λ, z)|y1(x(z))
H∫
z

σ(ζ)(V ′ + δV ′)|δp|dζ

≤ |V (λ, z)|y1(x(z))σ2‖δp‖C1

H∫
0

ζ(V ′ + δV ′)dζ. (38)

On the other hand, it follows from asymptotics (23) that ∀β ∈ (0, 1), there exists λ0 > 0 such that
∀λ ≥ λ0

y1(x) ≤
√
s0√
s(x)

exp(λz)(1 + β) ≤
√
κ (1 + β) exp(λz).
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We use this estimate with the second estimate of e1), and estimate (30), applied to the function
V ′ + δV ′ on the rignt hand side of (38). Then we arrive to the second estimate of e4):

|δV | ≤ (1 + β)3

λσ1
exp(−λz)

√
κ exp(λz)‖δp(z)‖C1

σ2

σ1

H∫
0

z exp(−λz)dz ≤ C2κ
3/2

λ3σ1
‖δp(z)‖C1 , ∀λ ≥ λ0.

e5). Let now δp ∈ C1+α[0,H]. Then as in (37),

|δp(z)| ≤ z1+α‖δp‖C1+α .

Substitute this in (36), use the second estimates of e2) and e3) for the functions V (λ, z), V ′(λ, z) +
(δV (λ, z))′, correspondingly, and use also the above estimate for the fundamental solution y1(x, λ).
Then we obtain the required assertion of e5):

|δV (λ, z)| ≤ (1 + β)3

λσ1
exp(−λz)

√
κ‖δp(z)‖C1

σ2

σ1

H∫
0

z1+α exp(−λz)dz ≤ C2κ
3/2Γ(α)

λ3+ασ1
‖δp(z)‖C1+α .

e6). We rewrite the nonhomogeneous equation (31) for the function δV (λ, z):

(σδV ′)′ − λ2σδV = −σδp(V + δV )′.

Integrate this equation on [0,H] and use the boundary conditions (32):

σ(z)δV ′(z) =

z∫
0

λ2σ(ζ)δV (λ, ζ)dζ −
z∫

0

σ(ζ)δp(ζ)(V ′(λ, ζ) + δV ′(λ, ζ))dζ. (39)

Now we estimate the right hand side of (39) separately, for the cases λ ≤ λ0 and λ > λ0, using
estimate (37). Taking into account estimates of e2),e3) and e5) we get:

|σ(z)δV ′(z)| ≤ σ2C1

σ1
‖δp‖CHλ2

0 + σ2‖δp‖C
H

σ1
≤ κC3(Cε, κ,H)‖δp‖C1 , λ ≤ λ0;

|σ(z)δV ′(z)| ≤ σ2C2κ
3

σ1λ
‖δp‖C1 + σ2

(1 + δ)
σ1

‖δp‖C1

z∫
0

ζ exp(−λζ)dζ ≤

C2κ
4

λ
‖δp‖C1 + 2κ‖δp‖C1

1
λ2

≤ C4κ
4

λ
‖δp‖C1 , λ > λ0,

which are the assertions of e6).

The lemma is proved. 2

The right hand side of the functional (18) contains the difference λV (λ, 0) − ϕ(λ). To estimate
this difference we need the following

LEMMA 2.2 Let σ0(z) ⊂ S, z ∈ [0,H], be the conductivity coefficient corresponding to the measured
data ϕ(λ), and p0(z) = ln(σ′0(z)) ⊂ P . Assume that σ(z) ∈ S is an arbitrary coefficient from the
set of admissible coefficients S, p(z) = ln(σ′(z)) ∈ P and V (λ, z) is the corresponding solutions of
problem (15). Then the following estimates hold:{

|λV (λ, 0)− ϕ(λ)| ≤ C5
σ1
, ∀λ ∈ [0, λ0];

|λV (λ, 0)− ϕ(λ)| ≤ C6
σ1λ2 , ∀λ ∈ (λ0,∞),

(40)
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where the constants C5 and C6 depend only on the difference ‖p−p0‖C1 , and on the positive constants
Cε, H, κ.

Proof Consider the difference ∆V (λ, z) = V0(λ, z)− V (λ, z) satisfying the following equation

d2∆V
dz2

+ p0(z)
d∆V
dz

− λ2∆V = −dV
dz

(p(z)− p0(z)), (41)

similar to equation (31). Applied the transformation (19) to the function g(x, λ) = V0(λ, z)− V (λ, z)
we conclude that this function satisfies the boundary value problem (32) with the source function

f(x, λ) = −s20(x)[p(z(x)− p0(z(x)]
dV

dz
. (42)

The solution of the bounfary value problem (32) and (42) can also be represented in the form of (34),
assuming here the source function (42). For z = 0 this formula implies

∆V (λ, 0) = −
H∫

0

σ0(z)V (λ, z)V0
′(λ, z)(p(z)− p0(z))dz. (43)

Then from the estimate e4) for 0 ≤ λ ≤ λ0 we get

|λ∆V (λ, 0)| ≤ C1

σ1
‖p(z)− p0(z)‖C ≡ C5

σ1
,

which is the first assertion of the lemma. To derive the second assertion of the lemma for λ > λ0,
we use the second assertions of e2) and e3) for the functions V0(λ, z) and V (λ, z). Then ∀β ∈ (0, 1),
∃λ0 > 0 such that ∀λ ≥ λ0

|V0(λ, z)| ≤
(1 + β)
λσ1

exp(−λz), (44)

σ0(z)
dV

dz
≤ (1 + β)σ0(z)√

σ(z)σ(0)
exp(−λz) ≤ κ(1 + β) exp(−λz). (45)

Now we use estimate (37) for the function p − p0. Since p(0) = p0(0) = 0 from the definition of the
set P we get:

|p− p0| ≤ z‖p− p0‖C1 .

Applying estimates (44) and (45) in (43) we obtain:

|λ∆V (λ, 0)| ≤ (1 + β)2κ
σ1

‖p− p0‖C1

H∫
0

exp(−2λz)zdz

≤ (1 + β)2κ
4λ2σ1

‖p− p0‖C1 ≡ C6(κ,Cε, ‖p− p0‖C1)
σ1λ2

.

Since λ∆V (λ, 0) = λV (λ, 0) − ϕ(λ),the last estimate with (44) implies the second assertion of the
lemma. 2

3. The Fréchet differentiability of the cost functional

The following result shows that the transformed cost functional J(p) is of Fréchet differentiable.
Moreover, it permits to derive the Fréchet derivative explicitly, in the integral form.
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THEOREM 3.1 Let S be the set of admissible coefficients defined by (4), and P = {p(z) ∈
C1[0,H], p(0) = 0, Λ−1

2 ∈ S} be the set of reflection functions. Then the cost functional J(p), p(z) ∈ P
is a Fréchet differentiable one, and its Fréchet derivative is:

∇J(p) = −2σ0 exp

 z∫
0

p(ζ)dζ

 ∞∫
0

(λV (λ, 0)− ϕ(λ))V (λ, z)V ′(λ, z)λ2dλ. (46)

Proof Let δp(z) ∈ P be an admissible increment. We need to show that the increment of the cost
functional J(p), given by (18), has the form

∆J(p) := J(p+ δp)− J(p) =< ∇J, δp > +o(‖δp‖) =

H∫
0

q(z)δp(z)dz + o(‖δp‖C([0,H])), (47)

for some function q(z) ∈ L2[0,H]. Let us first rewrite the increment of the cost functional J(p) in the
following form:

∆J(p) = J(p+ δp)− J(p) = 2

∞∫
0

[λV (λ, 0)− ϕ(λ)]δV (λ, 0)λ2dλ+

∞∫
0

λ2 · δV 2(λ, 0)λdλ. (48)

We derive now the increment δV (λ, 0) via the increment δp(z). For this aim we use formula (35) at
z = 0 by taking into account the boundary condition (15)

δV (λ, 0) = −
H∫

0

σ(z)V (λ, z)(V ′ + δV ′)δp(z)dz ≡ −
H∫

0

σ(z)V (λ, z)V ′(λ, z)δp(z)dz + r3(λ), (49)

where the residual term r3(λ) is

r3(λ) = −
H∫

0

σ(z)V (λ, z)δV ′(λ, z)δp(z).

Formulas (48) and (49) imply that the increment of the cost functional J [p] has the following form:

∆J = −2

∞∫
0

(λV (λ, 0)− ϕ(λ))λ2

H∫
0

σ(z)V (λ, z)V ′(λ, z)δp(z)dzdλ+ r0(λ), (50)

with the residual function

r0(λ) = 2

∞∫
0

(λV (λ, 0)− ϕ(λ))λ2r3(λ)dλ+

∞∫
0

βV 2(λ, 0)λ3dλ. (51)

According to estimates e2), e3) and (37), for enough large λ > λ0 the interior integral in (50) can be
estimated as follows:∣∣∣∣∣∣

H∫
0

σ(z)V (λ, z)V ′(λ, z)βp(z)dz

∣∣∣∣∣∣ ≤ κ(1 + β)2

λσ1
‖δp‖C1

H∫
0

z exp(−2λz)dz = O(λ−3)‖δp‖C1 .

Hence the improper integral in (50) converges, due to the first estimate (40). Let us change the order
of integration in (50). By estimates e2), e3), (37) and (40), this integral, depending on the variable z,
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uniformly converges when z ∈ [0,H], since for enough large λ > λ0, the majorant integral converges
and does not depend on z ∈ [0,H]:∣∣∣∣∣∣

H∫
λ0

σ(z)V (λ, z)V ′(λ, z)δp(z)dz(λV (λ, 0)− ϕ(λ))λ2dλ

∣∣∣∣∣∣
≤ κ(1 + δ)2C6

σ2
1

‖δp‖C1

∞∫
λ0

z exp(−2λz)
λ

dλ ≤ 4κC6

σ2
1

‖δp‖C1

∞∫
λ0

exp(−1)dλ
2λ2

.

Therefore we may change the order of integration in (50), and rewrite the linear (with respect to δp)
part of the increment δJ(p) of the cost functional in the following form:

δJ = −2

H∫
0

σ(z)
( ∫ ∞

0

(λV (λ, 0)− ϕ(λ))λ2V (λ, z)V ′(λ, z)dλ
)
δp(z)dz. (52)

By the defintion of the Fréchet differential we need to prove that the residual function r0(λ) is of order
o(‖δp‖qC1), q ≥ 2. For this aim first we estimate the residual function r3(λ), using the estimates e2),
e6) and (37). We have

|r3(λ)| ≤

∣∣∣∣∣H∫0 σ(z)V (λ, z)δV ′(λ, z)δp(z)dz

∣∣∣∣∣
≤ C4κ

4

λ ‖δp‖2
C1

(1+β)
λσ1

H∫
0

z exp(−2λz)dz ≤ O(λ−4)‖δp‖2
C1 .

(53)

The second term in (51) can be estimated by using estimates e4):

|δV 2(λ, 0)λ3| = O(λ−3)‖δp‖2
C1 , ∀λ ≥ 0. (54)

Hence r0(λ) = o(‖δp‖qC1), and the lemma is proved. 2

4. Lipschitz continuity of gradient of the cost functional

To apply any gradient method for the numerical solution of the minimization problem (10)-(11),
one needs an estimation of the iteration parameter αn > 0 in the iteration process p(n+1) = p(n) −
αn∇J(p(n)), n = 0, 1, 2, ..., where p(0) is a given initial iteration. In the case of Lipschitz continuity of
the gradient ∇J(p) the parameter αn can be estimated via the Lipschitz constant, which subsequently
improves convergence properties of the iteration process ([18]). The following theorem shows that in
the subset P = {p(z) ∈ P : p(z) ∈ C1+α[0,H], ‖p(z)‖C1+α[0,H] ≤ D, D <∞} of reflection functions
the gradient ∇J(p) of the transformed cost functional is a Lipschitz continuous one.

THEOREM 4.1 Let P = {p(z) ∈ P : p(z) ∈ C1+α[0,H], ‖p(z)‖C1+α[0,H] ≤ D, D <∞} be the subset
of reflection functions in the set of admissible reflection coefficients P . Then gradient ∇J(p) of the
transformed cost functional, deefined by (18) is Lipschitz continuous in P ⊂ P , i.e.

‖∇J [p1]−∇J [p]‖C[0,H] ≤ L‖p1 − p‖C1+α[0,H], ∀p, p1 ∈ P,

where the Lipschitz constant L is increasing function of the conductivity ratio κ = σ2/σ1, inversely
proportional to σ2

1, and depends only on the positive constants H, Cε α.

Proof We rewrite the gradient formula (46) in the following convenient form:

∇J [p] = 2

∞∫
0

(λV (λ, 0)− ϕ(λ))I(λ, z)λ2dλ,
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where

I(λ, z) = −σ0V (λ, z)V ′(λ, z) exp

 z∫
0

p(t)dt

 = −σ(z)V (λ, z)V ′(λ, z),

by transformation (9). Assume that the pairs V (λ, z), I(λ, z) and V1(λ, z), I1(λ, z) correspond to the
above given functions p, p1 ∈ P. Denote by δV (λ, z) = V1(λ, z)−V (λ, z), δI(λ, z) = I1(λ, z)− I(λ, z).
Transforming the difference ∇J [p1]−∇J [p] as

∇J [p1]−∇J [p] = 2

∞∫
0

λ3δV (λ, 0)I1(λ, z)dλ+ 2

∞∫
0

(λV (λ, 0)− ϕ(λ))δI(λ, z)λ2dλ, ∀p, p1 ∈ P

we can estimate the right hand side as follows:

∇J [p1]−∇J [p] ≤ 2

∞∫
0

|δV (λ, 0)I1(λ, z)|λ3dλ+ 2

∞∫
0

|(λV (λ, 0)− ϕ(λ))δI(λ, z)|λ2dλ. (55)

To estimate the first right hand side integral we use Lemma 2.1:

|I1(λ, z)| ≤
H

σ1
, λ ≤ λ0,

|I1(λ, z)| ≤ |(σ + δσ)V1
′V1| ≤ 1 · (1 + β)

λσ1
exp(−λz), λ ≥ λ0.

Then we get

2

∞∫
0

|δV (λ, 0)I1(λ, z)|λ3dλ ≤ 2

λ0∫
0

|δV (λ, 0)I1(λ, z)|λ3dλ+ 2

∞∫
λ0

|δV (λ, 0)I1(λ, z)|λ3dλ ≤

2C1H

σ2
1

‖δp(z)‖C1

λ0∫
0

λ3dλ+
2C2κ

3Γ(α)
σ1

(1 + β)
σ1

‖δp‖C1+α

∞∫
λ0

exp(−λz)
λ1+α

dλ.

Hence

2

∞∫
0

|δV (λ, 0)I1(λ, z)|λ3dλ ≤ C7(Cε, κ,H, α)κ3

σ2
1

‖δp(z)‖C1+α (56)

To estimate the second right hand side integral of (55) we rewrite the increment δI(λ, z) in the
following form:

δI(λ, z) = −δσ(z)V ′V − δ(V ′V )σ(z) ≡ δA+ δB, (57)

and estimate the terms δA, δB separately. For this aim let first express the increment δσ(z) via the
increment δp(z), by using (9). We have:

δσ(z) = σ0 exp

 z∫
0

p(t)dt

 exp

 z∫
0

δp(t)dt

− 1

 = σ(z)

exp

 z∫
0

δp(t)dt

− 1

 . (58)

Introducing the auxiliary function

f(θ) = exp

θ z∫
0

δp(t)dt

 , θ ∈ R,
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for a given z ∈ [0,H], and using the Taylor’s formula

f(θ) = 1 + θ

z∫
0

δp(t)dt · exp

ξ z∫
0

δp(t)dt

 , ξ ∈ [0, θ],

we obtain that the right hand side of (58) is σ(z)[f(1)− 1]. Hence:

δσ(z) = σ(z) exp

ξ z∫
0

δp(t)dt

  z∫
0

δp(t)dt

 , ξ ∈ [0, θ].

Introducing here the new function

σξ(z) = σ(z) exp

ξ z∫
0

δp(t)dt

 , z ∈ [0,H], (59)

we conclude that the increment δσ(z) has the form:

δσξ(z) = σξ(z)

 z∫
0

δp(t)dt

 , ξ ∈ [0, 1]. (60)

Evidently, for p(z), p(z) + δp(z) ∈ P , the function σξ(z), given by (59), has the same properties, as
the function σ(z) ∈ S. Specifically, if∫ z

0

δp(t)dt < 0, ∀z ∈ [0,H],

then formulas (59)-(60) imply that σ1 ≤ σ(z)+ δσ(z) ≤ σξ(z) ≤ σ(z) ≤ σ2, and hence σξ(z) ∈ S. The
same conclusion is obtained in the converse case, if the above integral is positive.

Let us estimate now the terms δA, δB in (57). We use estimations e2), e3), and auxiliary formulas
(59-(60) to estimate the term δA for the cases λ ≤ λ0 and λ ≥ λ0, separately:

|δA| ≤ |δσ(z)V ′V | ≤ σ2H

σ2
1

z∫
0

|δp(t)|dt ≤ κH2

σ1
‖δp‖C , λ ≤ λ0; (61)

|δA| ≤ |δσ(z)V ′V | ≤ σ2

z∫
0

|δp(t)|dt · (1 + β)2

λσ2
1

exp(−2λz)

≤ κ(1 + β)2

λσ1
z exp(−2λz)‖δp‖C ≤ κ(1 + β)2

2λ2σ1
‖δp‖C , λ ≥ λ0. (62)

To estimate the term δB we rewrite it in the form δB = −(δV ′V + V ′1δV )σ(z). Then we have:
δB ≤ |σ(z)δV ′| |V1|+ |σ(z)V ′1 | |δV |. Applying the estimates e2), e3), e5), e6) we conclude

|δB| ≤ κC3‖δp‖C
H

σ1
+
σ2

σ1

C1

σ1
‖δp‖C ≤ κC8

σ1
‖δp‖C , λ ≤ λ0, (63)

|δB| ≤ κ4C4

λ
‖δp‖C1

(1 + β)
λσ1

+
σ2

σ1

C2κ
3

σ1λ3
‖δp‖C1 ≤ κ4C9

λ2σ1
‖δp‖C1 , λ ≥ λ0. (64)
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Having estimates (61)-(64), and using Lemma 2.2, we may now estimate the second right hand side
integral in (55):

2

∞∫
0

|λV (λ, 0)− ϕ(λ)||δI|λ2dλ ≤ 2

λ0∫
0

C5

σ1

[
κH2

σ1
‖δp(t)‖C +

κC8

σ1
‖δp‖C

]
λ2dλ

+2

∞∫
λ0

C6

σ1

[
κ(1 + β)2

2σ1λ2
‖δp(t)‖C +

C9κ
4

σ1λ2
‖δp‖C1

]
dλ ≤ κ4C10(Cε, κ,H, α)

σ2
1

‖δp‖C1+α .

This result, with (56), allows to estimate the difference ∇J [p1]−∇J [p], given by (55):

‖∇J [p1]−∇J [p]‖C[0,H] ≤
C7κ

3

σ2
1

‖δp(z)‖C1+α +
C10κ

4

σ2
1

‖δp‖C1+α ,

where C10 = C10(Cε, κ,H, α) > 0, C7 = C7(Cε, κ,H, α) > 0. Here we define the Lipschitz constant to
be L = C7κ

3/σ2
1 + C10κ

4/σ2
1 > 0. Then we have the proof. 2
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