BILIPSCHITZ EMBEDDING OF SELF-SIMILAR SETS
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ABSTRACT. This paper proves that the self-similar set satisfying the strong
separation condition can be bilipschitz embedded into self-similar set with
larger Hausdorff dimension, and it can be embedded into a self-similar set
with the same Hausdorff dimension if and only if these two self-similar sets are
bilipschitz equivalent.

1. INTRODUCTION

For metric spaces (A,d4) and (B, dg), a bijection f : (A,ds) — (B,dp) is said
to be bilipschitz, if there is a bilipschitz constant C' > 0 such that for all x,y € A,

C_ldA(xvy) < dB(f(x)nyJ)) < CdA(m7y)

We say that (A,d4) and (B,dp) are bilipschitz equivalent, if there is a bilipschitz
bijection from (A,d4) to (B,dp). We say that (A,d,) can be bilipschitz embed-
ded into (B,dg), if there is a subset By of B such that (A,d4) and (Bi,dp) are
bilipschitz equivalent.

As in [6], “topology” may be regarded as the study of equivalence classes of
sets under homeomorphism, and “fractal geometry” is sometimes thought of as
the study of equivalence classes of fractals under bilipschitz mappings. Another
interesting motivation of studying bilipschitz equivalence of fractals comes from
geometry group theory ([1], [7]).

Many works have been devoted to the related topics. For example, Cooper and
Pignataro [2], Falconer and Marsh [5, 6], David and Semmes [3] and Xi [19, 20]
studied the shape of Cantor set, nearly Lipschitz equivalence, BPI equivalence and
quasi-Lipschitz equivalence respectively. Xi et al. ([15]-[16], [21]-[25]) also discussed
the bilipschitz equivalence between self-similar sets.

Example 1. For two self-similar sets with the same dimension, they may be not
bilipschitz equivalent. For example, let 3r1°82/1°83 — 1 suppose a self-similar set
is generated by similitudes rz,rx + (1 —r)/2 and rz + 1 — r, then this self-similar
set and the Cantor ternary set have the same Hausdorff dimension log 2/ log 3, but
they are not bilipschitz equivalent ([6]).

On the bilipschitz equivalence of self-similar sets, the following results are known.

1) Self-similar sets satisfying the strong separation condition (SSC
in short). Falconer and Marsh [6] gave a necessary condition such that they are
bilipschitz equivalent. A necessary and sufficient condition was also obtained by
Xi [21].
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2) Self-similar sets satisfying open set condition (OSC in short).

Define two self-similar sets respectively by F; = F;/5U((i+1)/5+ F;/5)U(4/5+
F;/5)(1 = 1,2). Then both F; and F; satisfty OSC and have the same Hausdorff
dimension. David and Semmes [3] asked whether they are bilipschitz equivalence,
and the question is called “{1,3,5}-{1,4,5} problem.”

Rao, Ruan and Xi [15] gave an affirmative answer to the problem, then Xi et al
[16, 22, 23] studied some generalizations, recently Xi and Xiong [25] dealt with the
problem in high dimension.

3) Connected self-similar sets.

Wen and Xi [18] discussed the geometric condition for self-similar arcs to be
bilipschitz equivalent. They also constructed two self-similar arcs ;1,72 with the
same Hausdorff dimension but v; and 7, are not bilipschitz equivalent.

4) Bilipschitz embedding between regular set and self-similar set.

Mattila and Saaranen [12] discussed the bilipschitz embedding for Ahlfors regular
sets, and proved that for any t-regular set F' with ¢ > s that there exists a self-similar
set E, generated by similitudes of the same ratio, such that E can be bilipschitz
embedded into F.

Here we recall the notion of s-regular set.

Definition 1. Let £ C X and s > 0. We say that E is s-regular, if F is closed
and if there exists a Borel measure p on X and a constant C'r > 1 such that
wW(X\E) =0 and r* < p(B(z,r)) < Cgr® forallz € E, 0 < r < |E| and r < oo,
where B(z,r) is the closed ball centered at x with radius r.

Remark 1. A self-similar set with OSC of Hausdorff dimension ¢ is t-regular ([9]).
But if the self-similar set without OSC, the conclusion may be false. For example,
let Ej be self-similar set generalized by S1(z) = z/3, Sx(z) = 2/3+ X and S3(z) =
x/3 +2/3, then by [10], dimy E\ = 1 and H!'(E,) = 0 for some A, and E) is not
1-regular in this case.

Recall that a self-similar set E = U™, S;(F) satisfies the strong separation con-
dition (SSC), if S;(E) N S;(E) = @ for any i # j.
We will state our results as follows.

Theorem 1. Suppose E1 and Es5 are self-similar sets with dimy E; < dimyg Fs.
If B satisfies the strong separation condition, then there is a bilipschitz map g :
E1 — g(El) C EQ.

Remark 2. We stress that in this theorem, the condition OSC is not required for
Es.
Theorem 2. Suppose F' and F' are self-similar sets satisfying the strong separation

condition, and dimy F' = dimy F’ = s. Then there is a bilipschitz map h : F —
h(F) C F" if and only if F and F' are bilipschitz equivalent.

In fact, Theorem 2 is the consequence of the following stronger result.

Theorem 3. Preserve the assumption in Theorem 2. If there are K C F, K' C F’
such that K and K' are bilipschitz equivalent with H*(K), H*(K') > 0, then F and
F’ are bilipschitz equivalent.

Remark 3. David and Semmes introduced the BPI (big pieces of itself) equiva-
lence, which is a few weaker than bilipschitz equivalence, and discussed some prop-
erties [3]. In particular, they proved that self-similar sets F' and F’ with OSC are
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BPI equivalent, if and only if there are K C F, K’ C F’ such that K and K’ are
bilipschitz equivalent with H*(K), H*(K’) > 0 (Proposition 7.1 of [3]). Then The-
orem 3 shows that self-similar sets satisfying SSC are bilipschitz equivalent if and
only if they are BPI equivalent. Here is an open problem: under what condition,
BPI equivalence implies bilipschitz equivalence for self-similar sets.

Given a metric space (X, d), let |X;| denote the diameter of set X;(C X), and
d(X1,X>) is the distance between subsets X7 and X» of X.

Definition 2. Let C, 4, s be positive numbers. A sequence {®j}r>o consisting of
finite index is called controlled by (C, ¢, s) provided

(a) For any k > 1, & is a collection of words with length k, by convention,
@y = {00}, where ) is the empty word;

(b) If iy - -ip_q1ip € Py, then 47 -+ ip_1 € Pp_1;

(c) For any ko > k1 > 0 and any 414s - - ig, € P,

card{iliQ ce ikl - ikz c (I)kg) < C(é—ﬁ)l@—kl.

Definition 3. Let (X,d) be a metric space, C > 1,0 < § < 1,s > 0, and let
{®x}r>1 be a sequence controlled by (C,d,s). Suppose E C X and for any k € N,
there is a decomposition of E with respect to the sequence {®y}r>o0:

E= |J B
G192 1 EPg
We say that the set E has s-structure if for any i1is - - - i € @y, we have
1) Fiiecie — U Ei1i2"'ikj;

i]iz"'ikqu)k+1

2) |Ehtzic| < Ok,
3) d(Enizic piecic) > C~16kF whenever iy - ig # j1 - jke

The following proposition shows that many typical fractals, including self-similar
sets with SSC, have s-structure. Some self-similar sets with OSC (but without SSC)
can be regarded as graph-directed sets or homogeneous Moran sets, and thus also
have s-structure as shown below.

Proposition 1. Let s > 0, then the following sets have s-structure:
(1) Bounded s-regular set with s € (0, 1);
(2) C*T(a > 0) self-conformal set with dimension s (in particular self-similar
set satisfying SSC);
(3) Graph-directed sets (on a transitive graph) satisfying SSC with dimension s;
(4) Homogeneous Moran set in M(J,71,¢) (7€ < 1) with dimension s.

The fractal classes (2)-(4) will be introduced in Section 3.

Remark 4. In Section 6, we will prove that: let E C [0, 1], if F has positive Lebesgue
measure, then E has no s-structure for any s.

Proposition 2. If £ C X has s-structure and F' C Y is t-regular with s < ¢, then
there is a bilipschitz map f: E — f(E) C F.

The above proposition establishes the bilipschitz embedding from a set having
s-structure to a regular set. Notice that s-dimensional self-similar sets with SSC
have s-structure, this proposition is the complementarity of the result of Mattila
and Saaranen mentioned above [12]. It is also proved in [12] that any s-regular set
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with s € (0,1) can be embedded into any t-regular set F' with ¢ > s. This result is
exactly a consequence of Proposition 2 and Proposition 1.(1).

As shown in Remark 1, self-similar set of dimension ¢ maybe not t-regular, how-
ever the following proposition shows that it can contain a t'-regular subset with
t'(< t) close to t.

Proposition 3. If F is a self-similar set with dimy F' = t. For any € > 0, there
is a self-similar set F; satisfying the strong separation condition such that F. C F
and dimg F. € (t — €,t]. Here F; is t.-regular with t. € (t — ¢, t].

The paper is organized as follows. Sections 2, 3 and 4 are devoted mainly to
the proofs of Propositions 1, 2 and 3 respectively. Then Theorem 1 follows from
Proposition 1.(2), Proposition 2 and Proposition 3. In Section 5, we prove Theorem
3 on the technique of [21]. In the last section, we show that any subset of [0, 1] with
positive Lebesgue measure cannot be embedded into any self-similar set with SSC.

2. PROOF OF PROPOSITION 1

2.1. Finite Words.
Given integer n > 2, let ¥ be the collection of finite words composed of 1, --- | n,
that means

E;; = UkZO{L"' 7n}k
= {0yu{j1-jr: k>1and j, e NN [l,n]for 1 <t <k},

where ) is the empty word.
For word i = 41---4 and j = jy1---j;, set i%j = 41---4gxj1--- 7. For word
i=14y i, its length |i| is defined to be k.

2.2. Self-conformal Set.

We say that a mapping f : U(C R!) — R! is C** conformal with a > 0, if U is
open, Df(z) is a contracting similarity for any = € U, and there is a constant C
such that for all z,y € U,

[Df(z) = Df(y)| < Cle —y|*

We say that a set E is a C1* self-conformal set, if there are C*** contracting and
conformal mappings {f1,-- , fm} such that

E=Ul, fi(E)

is a disjoint union, that is f;(E) N f;(F) = @ whenever i # j.
Notice that for C1T self-conformal set E of Hausdorff dimension s,

0 < H*(F) < 0.

In [6], [19] and [20], it is proved that C'T@ self-conformal sets with the same Haus-
dorff dimension are both nearly Lipschitz equivalent and quasi-Lipschitz equivalent.
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2.3. Graph-directed Sets.

Suppose G is a directed graph, which contains n vertexes {1,--- ,n} and directed
edges {e : e € G} among these vertexes. For each edge e, there is a contracting
similitude S, : R — R Let & j be the set of all the edges from vertex i to vertex
j. By [14] there is a family {K,--- , K, } of compact sets in R’ such that

K,;:U ng S.(K;). (2.1)

We say {K;}; satisfies SSC, if the right hand of (2.1) is a disjoint union. The graph
is said to be transitive, if for any vertexes i, j, there is a path starting at ¢ and
ending at j. For graph-directed sets {K;}; satisfying SSC on a transitive graph,

0 < H°(K;) < oo with s = dimpy (K;) = -+ = dimpg (K,).
2.4. Homogeneous Moran Set.

Given integer 7 > 2 and ¢ > 0 with ¢ < 1, we recall some notions of homoge-
neous Moran class M(J, 7, ¢).

Definition 4. Suppose that J C R! is a closed interval. For a collection F =
{Jirie Zz‘ﬁ)} of closed subintervals of J = Jy, we say F has homogeneous Moran
structure (J,n, ¢), if for any word i, Ji.1, Jix2, -+ -, Jixn are subsets of J; such that
int Ji.; Nint Ji.; = & whenever ¢ # j,
and for each j,
|Jixsl /1 3] = €.
A homogeneous Moran set determined by F is defined by

E(F) = ﬂkz1 U|i\:k i

where any interval J; in F is called a basic element of E. Let M(J,7,¢) be the
collection of all the homogeneous Moran sets with structure (J, 7, ¢).

Remark 5. By the definition above, we see that two Moran sets having the same
Moran structure only differ from the relative positions of the basic elements of same
order. In particular, the basic elements Jj.;, Ji«; can share one endpoint.

Example 2. Let 7 = 3 and ¢ = 1/5. Suppose J = [0,1] and F = {J;: i € X%} is
given by
k k
Jivoiy = [thl 0(ir)/5',1/5" + thl 0(i;) /5,
where 6(1) = 0,0(2) = 3,6(3) = 4. Then the corresponding homogeneous Moran
set is called {1,4,5}-set. Here J;,...i,2 N iy .ip3 # 9.

In fact, for any F € M(J,7,¢), we have dimpy F = —log 7/ log ¢. For the results
on the dimensions of Moran sets, we refer to [8, 13, 17].

2.5. Proof of Proposition 1.

(1) Bounded s-regular set F' with s € (0,1) :

Since F(C X) is s-regular, there exists a Borel measure i, supported on F, such
that for x € F, 0 < r < |F| < o0,

r® < u(B(x,r)NF) < Cpr® (2.2)
where the constant Cr > 0. Let Dp = (SCF2S)1/(1’S) + 1.
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Lemma 1. [12] Let 0 < s < 1, R > 0, let E C X be closed and bounded and let
o be a Borel measure on X such that uo(X\E) = 0 and that uo(B(z,r)) < Cpre
for all x € E, r > 0, and po(B(x,r)) > r° for allx € E, 0 < r < R. For
every 0 < r < R/(2Dp) there exist disjoint closed balls B(x;,r), i = 1,---,m,
and positive numbers p;, v < p; < (Dp)r, such that m < Cg|E|*/r®, z; € E,
zj & B(xi, pi) fori<j,

Fix 2* € I' and take § small enough.
Without loss generality, we assume that |F| < 1 = 6%, then F' C B(x*,°). By
convention, zp = * and Cy = 1, then we get z;,...,, = 2* and C;,..;,, =1 for kK =0.
By induction on k, assume that we get closed balls
B(xil‘..ik,C’ilA..ikdk) with 1 S Ciy'-ik S DF (23)
and
F O [B(&i;is Ciy i 8" + 0°N\B(iy iy, Ciy iy 6")] = 2, (2.4)
where i, < [Cp2°D%]6° for all ¢t.
Let pio = plp(as, iy, Ciyipo®)s then po = plpe,, . ¢y iy ov+6%) by (2.4). Ap-
plying Lemma 1 to the case
E= B(xil"'ikvc’il'“ik(sk) NF, R=6" r=¢6""and uo = M|B(xi1...,;k, Ciynig 7))

inp—1 such that

SFHYNF], (2.5)

we get My, ...i,, closed balls {B(@,...ipip s Ciyevining 07 1)}

B(l‘il...i,“ci ”(Sk) NF = Umlllk [B(xi1-~ikik+1 ,C;

ipp1=1 10Tk Tk 1

. .
and for igy1 # i1,

d((B(as,. Ciyvigins: 0" ), Bl Ci

-
LR L Y

ey = 6 (2.6)

Tkl ~’L‘ki2"+1;

where
Mgy, < CF|E|S/TS < [OFQSD%](SiS and Ci1~ < Dpg.
Then the inductive assumptions (2.3) and (2.4) are true for every k.
Let Filmik = B(:clllk,C'zllka) N F, then

|Fiic| < (2Dp)d". (2.7)

For any F% "1 we are going to estimate the cardinality of its subset in the form

Fiviky ey Since
i klZUA ‘ iRy
iy iy kg

gtk

by (2.2), we have
P(FD ) < Cp(Ciy iy, 0)° < (CpD3)™,
and
,LL(F“”” ...ik2) 2 5}{)28.
Therefore, for i; - - - i, fixed, we have
card{iy - ipig, 11 ik} < (CpDy)(67%)kk, (2.8)
It follows from (2.5)-(2.8) that F' has s-structure.
(2) C**(a > 0) self-conformal set (in particular, self-similar set satisfying SSC):
Let E be the invariant of the contracting conformal mappings { f1, ..., f»} with
dimyg E = s. We will show that F has s-structure.
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Write fi,..i,, = fi, 0+ 0 fi, and Eiiy i, = fiyin (E), 1 < iy < (§ =
L ,m).
Fix a point = € E. By [4], it is known that there is constant A > 0 such that for
any i1ts--- i, and any y € E,
)‘_1 < |Ei1i2"‘im|/|fi,1i2~»i,,, (l‘)| < )‘7
A< M B/ g (@) SN
AU S i O i, (@) S A

Taking ¢ small enough, for any infinite sequence i1is - - - i, - - - and any k > 1, we can
choose the least integer I(k) such that |f],;,..; . (2)| < 5% then iy vy (2] = sk,
and

‘fillil»mi,(k) (x)|/‘filli2-~il(k>,1 (z)]
Pt @1 (It Ui @ iy, @)1)

: : / -1
(min inf |f(z))A™

Y%

Therefore,
Cmin inf [/ (DA < [fypymiy, (2)] < OF. (2.9)

1<i<n 2
Let II; be the colIecicion of all the words #1i...7;(x) defined above. Then
E =V . .ipen, By
The strong separation condition implies that there is a constant C; > 0 such that
d(Eiig...ip E\Eijiy...i,) > Cl\fi'm__,ip(xﬂ for all iy « - - ip.
Then for any i1i3 - - -4, € IIi, we have

Eilmip = Ui1-~~ip~--iq€1_[k+1Ei1~--ip---iq7

and
| Eiy iy | < )‘|fi11i2~--ip (z)] < AS". (2.10)
A(Bisis...ips E\Biis...i,) 2 [C1( min inf [ f{(2))A~"]6". (2.11)

Fix any i1is - - -4, € I, and k1 < k2, we estimate the cardinality of the set
{iv-ip--vigiip--ip---ig € Iy, }.

In fact,

H(Eipoiy) = Y. H(Biyiiy)s

i €lly,
where
H(Biy i) < Al g, ()] < A6M2,
and by (2.9),
Ho(Eiyiyeiy) 2 AT gy, (@)]°
> O min inf[f(z))A1] 5

1<i<n =z
Therefore, for any i1éa - - -4 € Iy, fixed,

card{is -y iy € Ty} < [N2FCmin inf ()] (5*)=h. (212)
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Let
Cy = max|\, Cfl(lgign inf | £ (2)))~*A, A2+S(121£n inf |£7())) "],

Then by (2.10)-(2.12), we have shown that E has s-structure with constants (Cs, 4, s).

(3) Directed-graph sets on a transitive graph satisfying SSC:

Let {K;}!_; be the graph-directed sets on a transitive graph G = (V, ), where
V ={1,---,n}. Let & ; denote the set of edges from vertex ¢ to vertex j, and Effj
the set of sequences of k edges (eq,...,er) which form a directed path from vertex
i to vertex j. Let & = U U; &k all the paths starting at vertex i.

4,57
By the symmetry, we only need to prove that K; has s-structure.

Write r. the contracting ratio of S, for e € £. Let r, = mingc¢g re and
D, = 1I<m£1 min{d(Sc(K;),Se (Kj)): e # € withe € & j and € € & }.
<i<n
Take § small enough such that § < r,.
For any infinite admissible path (e1,e9, -+ , €, ) starting at vertex 1, and

any k > 1, we can take the least integer [(k) satisfying 7, ey < 8%, In the
same way as above, we have

k k
) STey Teypy < o".

Let I1* be the collection of all the paths (eq,- - -, eyx))(€ &) defined above.
Then we have

Ki=  |J  Eee,
(€1, ,ep)€EIlF

where Ee, ..., = Se, 0--- 08, (K;) with edge e, ending at some vertex j.
By the strong separation condition, we have D, > 0 and for (e1,--- ,ep) € 1",

d(Eey.ccps K1\ Eey.e,) > Dyri6F and |Ee, ..., | < 6% - max. | K.

Fix a path (e1, - ,ep) € 1" and k; < k2, we estimate the cardinality of the set

{(617"' yEpy 76(1) EHkQ}'

In fact, let s be the Hausdorff dimension of K;, we have

HS(EEI...QP) == Z Hs(Eel.‘.ep...eq)v

(e1,,epy »eq)GHkQ

where
HY (Eeyoe,) < M0 [max HE(K),
s s ckos : s
H (Ee1-~-ep"-6q) > i '11%12.1%1”7_[ (K3).
Therefore, for (e1,--- ,e,) € IT* fixed,

card{(e1,...,ep, ... e,) € M2} < (§7%)k2h (r*s max H*(K;)/ min HS(Ki)> .

1<i<n 1<i<n

Let

_ —1,.—1 ) —s S(K. i S(K;
Cs3 =max(D_ r, ", 121%xn|K1|, T, 1I£1ia§XnH (K;)/ 1I§nl_1£nH (K;)),

then Kj has the s-structure with constants (Cs, 4, s).

(4) Homogeneous Moran set in M(J, 7, ¢)
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Suppose E € M(J, n,¢) with dimension s = —log#/logé. Since fic < 1, we can
take € > 0 small enough such that
ne+ (n+1)e < 1.

Given k > 1, Ul_, I; is called a e-block of order k, if
(1) I, I, - - - , I; are basic elements of order k, having length (¢)*;
(2) I, I, - -, I; are intervals arranged from left to right such that

d(I,, I,41) < (e)* for every p;
(3) d(Ui_y Li, B\ Ui, I;) > e(0)".
Since fi¢ + (n + 1)e < 1, for any e-block U!_, I;, we have
t < 2m. (2.13)

For each e-block Uﬁzlfi of order k1, the number of e-block of order ks contained in
Uﬁzlli is less than or equal to

E ()R < (20)[(0) )R, (2.14)
Notice that the diameter
|Uiy L < [t+ (¢ = De] (@ < (2t) - (&)F < (4n)(@)". (2.15)

On the other hand, for distinct e-blocks of order k, their distance is greater than
£(¢)¥. Then the decomposition with respect to e-blocks implies that this Moran set
has s-structure with constants (max (47,7 1), ¢, s), where s = —log 7/ logé.

3. PROOF OF PROPOSITION 2

Let s(C,d) be the collection of all the sets having s-structure with constants
(C,4,s) as in Definition 3.

Lemma 2. Suppose E € s(C, ). Then E € s(C, ") for any n > 1.

Proof. For any k,n > 1, given a word iy - - - iy, of length kn, construct a new word
by the following way
(i1 ~in)(ing1 - i) - (B(k1ynt1 -~ Gkn)s

where each segment (ij,41--i(j+1)n) (0 < j <k —1) is regarded as a new letter.
Then this new word has length k. It follows from the definition that E € s(C, ")
for any n > 1. ([

Now we are turn to the proof of Proposition 2. Without loss of generality, we
assume |F'| > 1. Suppose E € s(C,¢). Fixing C, by Lemma 2, we can choose §
small enough such that

C'™ < (20'Cp) 71,
where CF is the constant such that for any y € F and r < |F,
rt < u(B(y,r)) < Cpr'.

Without loss of generality, for each k > 0 and each iy - - - i, € Py, let 1y, (< CI™%)
be the integer such that

[].,TL“ZK] NN = {j ti1-e-tg] € (I)k+1}.
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Fix y* € F. As in Lemma 2.1 of [12], using 5r-covering theorem [11], we can find
myg disjoint balls B(y;,20) C B(y*,1/2) = B(y*,6°/2) with y; € F (i = 1,2,...,m)
such that

B(y",1/2) € UZ B(yi, 109).
Therefore,

mo - (100Cx)8" > 3 pulByi, 108)] > u[B(y*,1/2)] > (1/2)",

I

=1

which yields
mg > (QOtOF)il(Sit > Co°.

Since @1 = {1,--- ,ng} with ng = card(®;) < C6~*, from the family of balls
{B(y:,96)}2%, we may select balls {B(y;,,0)}i,ea, with y;, € F.

By induction on k, assume that we get a ball B(y;,...;,,0%) with iy ---i}, € ®},
and y;,...;, € F. Using br-covering theorem again, we have m;,..;, disjoint balls
B(Yiyrini, 268Y) C B(yiy .., 0%/2) with yi,.p; € F (5 = 1,2,...,m4,..;, ) such
that

mil.
J=1

B(yuzkaék/Q) cu

As in the discussion above, we have

i B(yil'“ikj7 105k+1).

My iy, > (20tCF)7157t >C6 % > Mgy v, -
Thus we can choose a family {B(yi, ... ip;,6 ™)}y ipjcdp,, of balls such that
B(yir“ikjv 5k+1) - B(yh K] 5k)a
and for any ig41 # i;chl with 41 - - ipigg1,01 - - ’L'ki;CJrl € Py,

d(B(yilig...ikikJrla6k+1)a B(yilig.“iki;wrlvék—i_l)) > gkt

Setting
o0
F = ﬂ U [B(yi1i2mik76k) N F]’
k=1iyig...i; €D
then F’ C F.
For any = € E, there is a unique infinite sequence i1 (z) - --ix(z) - - - satisfying

i1(z) - ig(x) € Py, for each k, and
{2} = mk21Ei1(r)-~ik(I)_
Then a bijection f from E to F' is defined by
{f(@)} = 21 [BWiy )-in (), 6°) O F,

where B(Ys,.ipips1:0°) C B(yiy... ir,, 6%) for every k.
It suffices to show f is a bilipschitz mapping. Suppose z,x’ are distinct points
of F and

o o,
x e Bttt and of € BNk eiwith i # i

Then

0716k+1 S d(Eil"'ikik-%—l’Eil"'iki;chl) § |£L’*CUI‘ S |E21’Lk| S C§k
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On the other hand,

5k+1 516—0—1))

d(B(yil N IRTARE 5k+1)7 B(yi1~
|f(x) — f(2')]

|B(Yi,...ir, 07)| < 26,

~~iki;c+1a

ININ IA

which concludes

C15 < [f(2) - f(@)|/|x — 2’| <2057,

4. PROOFS OF THEOREM 1 AND PROPOSITION 3

To prove Theorem 1, it suffices to prove Proposition 3. In fact, let t = dimy Fy >
dimpy Fy, since E; satisfies SSC, applying Proposition 2 and Proposition 1.(2),
we only need to show that for any ¢ > 0, Fy includes a t’-regular subset with
e (t—et.

Proof of Proposition 3:

Since F' is a self-similar set, we have

dlmHF = dimB F = t,
where dimpg(-) is the Box dimension.

Without loss of generality, we assume |F| =1 and F' C R™.
Let Qy be the collection of all 2-adic cubes with sidelength 27%, i.e.,

“rea; ap+1
o ={Q:Q=T]l5. ‘“;,: ] with a; € Z for all ).
=1

Let
Ni =card{Q € Qi : FNQ # o}.

By the definition of Box dimension, we have
log Ny,

koo log 2k

For any fixed k, we get a collection of cubes with sidelength 2~* which intersect
F. Therefore there is a constant C'(n) only depending on n such that we can select
a subset T, of {Q € Q) : FNQ # @} such that

card(Ty) > Ni/C(n)
and
QiNQ2=9 (4.1)
for any distinct elements Q1, Q2 in Tj. Then (4.1) implies
d(QlaQQ) Z 2_k'
For any @ € Ty, take a point zg € F'N(Q and an infinite sequence ji---j; - - -
satisfying
{zQ} = Niz155,, (F).
Find an index tg such that the ratio of Sjl...th belongs to
[r-27"/3,27"/3],
where r is the least ratio of similitudes with respect to F. Write S;, = 5j

and let rg denote the ratio of Sy, then r¢ € [r-27%/3,27%/3].

1Jtg
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We shall verify {Sj, }ger, can generate a self-similar set Fy satisfying SSC.
In fact, the corresponding invariant set F} is contained in F, since
Sjo (F') C F for any Q € Y.
That means the diameter |Fy| < 1, and thus
|Sjo (Fi)l < rqlFi| < 27%/3.
Therefore, for any distinct elements Q1, Q2 in T,
d(Siq, (F1), Sjq, (Fx)) > d(Q1,Q2) — |Sjo, (Fi)| — |Sjo, (Fr)|
> 27F —9(27%/3) = 27k/3.

Then F}, = Uger, Sj, (Fi) satisfies SSC, which implies that the Hausdorff dimen-
sion tj of Fj is determined by
Z (TQ)tk =1,

Qe
where rg € [r-27%/3,27%/3].
Therefore,
[Nk/C(n)](r27%/3)" < card(Ty)(r27"/3)" < Z (ro)™* = 1.
Qe
As a result,

log[2*(3/r)]
Take k large enough, we have
tpy >t —¢.
Now, we get a self-similar set F}, satisfying SSC such that Fy C F. Here F}, is
ti-regular with ¢ € (t —e,t].
The proof of Proposition 3 is finished.

5. PROOF OF THEOREM 3

5.1. Bilipschitz Equivalence of Self-similar Sets with SSC.
Let E, F' be self-similar sets satisfying SSC, with ratios sets {r;}j"; and {¢;}2,

respectively, satisfying
n m
Zizl 7S :ijltj =1.
Write p; =t for j=1,---,m.

Recall that X7, is the set of all finite words composed of 1,--- ,m. Let ¥, =
{1,---,m}> be a symbolic system equipped with the Bernoulli measure v =
(p1,-+ , pm)- The cylinder [iy ---4;] generated by the word 4y ---4; is defined by
[i1--4)={j1-Ji- - €Xm:J1--Ji =11 -i;}. Then for each cylinder [i1 - - -],

ollin i) = Wiy i, -
Given a word 77 - - - i and a subset B of 3,,, let
A=y ixB={iy--igjr--ji-:ji---ji--- € B}
and denote by A < B.
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Lemma 3. [21] Suppose E, F are self-similar sets satisfying SSC, with ratios
sets {ri}p_, and {t;}7-, respectively, where Y ;" r; = ZJ 15 =1. Let v be the
Bernoulh measure (tl, <, 12 ) on B,,. Then E and F are bilipschitz equivalent if
and only if there are 1, Qa, - -+, Qk, {Ai j i<i<k,1<j<n, which are unions of finitely
many cylinders in X,,, satisfying

Q = Ay UAgg - UA,,
Qy = Ag1 UAgs -+ UAg,,
Qr = Ap1 UAgo -+ UAg,,

where
(1) right side of every equality above is a disjoint union;
(2) for every (i,7), there exist B € ¥, and v € NN [1, k] such that A; j = 5Q;
(3) for every (i, ),

5.2. Proof of Theorem 3.
We assume that F, F’ are self-similar sets satisfying SSC and dimy F = dimy F’ =
s. Let {r;}{_y,{t;}L, be the corresponding ratio sets for I and I’ respectively.
Let K C F, K' C F' with H*(K), H*(K’) > 0 such that K and K’ are bilipschitz
equivalent with the corresponding bilipschitz bijection f : K — K’ satisfying

C Mo —y| <|f(z) = f(y)| < Clz—y| for all 7,y € K.

We will show that F' and F’ are bilipschitz equivalent.
Suppose H = U, S;(H) is a self-similar set satisfying SSC. For j* = j; ---ji €
¥, write Sj» = Sj, 0--- 08, and H;- = Sj«(H). Hj- is called a fine copy of H.

Lemma 4. Suppose I is generated by m similitudes with ratios {t;}jL,. Then

there is an integer N such that for any fine copy F of F, there exists a subset
Ac{L,---,m}"N so that

n / 4
f(FNK) = Uj*eA(Fjl,,_jkj* NK'),

where FJ1 jr 18 the smallest fine copy containing f(FNK).

Proof. Take N large enough such that

(max ;)™ < [min d(F;,, Fi,)/|F]] - [min d(Fy,, F,)/|F'|]/C*. (5.1)
j
We will show N is the integer desired.
Suppose on the contrary, there exist y1,y2 and a fine copy F .. i ([j*] = N)
containing ¥, y» such that y; € f(FNK), yo € K'\f(FNK). Thus
(mjaxt ) ‘ g1 ]k| > |Fj J1gkd* — v

> C—ld(F NK,K\F) > C Y(F,F\F)
> C” [Ir;;n d(Fiy, Fi,)/|F|]|F.
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Since F! is the smallest fine copy containing f(F N K), there are distinct j

JiJk _ _
and j’ such that f(FNK)NF! #9, f(FNK)NF] # . Therefore,

J1 kg
CHf(FNK)|
1. / /

C mlnjk+1¢j;;+1 d(Fjl ]k]k+1’FJ1 Jk]kJrl)

(| Ji Jk|/|F/|)mlnlﬁﬁlz d(ﬂlaﬂz)'

Ledig’

|F| > [FNK| >
>

Y

Therefore,
|/C?,

(mfxt) |Fj [min d(F;,, Fiy)/|F[)[min d(E,, ) /[F (|| F5

Ji Jk| - JiJk
which implies

(maxt;)" > [min d(Fy,, F, ) /| F][min d(F},, F,)/|F']]/C?,

119
J

which contradicts (5.1). O

Let N be the integer defined in Lemma 4.

For a fine copy F; with F; N K # &, we get a decomposition
F; = Unlei*u.

u

Then by Lemma 4, there is a subset A; C {1,--- ,m} such that
— / !/
f(FNK)= Uj*eAi( Yy NE') (5.2)
where F}’(i) is the smallest fine copy containing f(F; N K). Let

Qi = Ujeen 57, (5-3)

where [j*] is the cylinder.
Notice that

U, (B 0K = J(B 0 K) = Ui f(Fleu 0 K). (5.4)

Suppose that F( DB
B(i,u) € ¥¥,. Then by Lemma 4 and (5.2), we have

) is the smallest fine copy containing f(Fi., N K) with

n . n / /
U1/ (Fiu N K) = Uu:1[UU*EAM Fiyepaupeor N (5.5)
It follows from (5.4) and (5.5) that
/ /! !
Uj*eA (Fyej- NK') = Uiz 1[UU*€AM Fityeptiuyeo N (5.6)
Let Ajy = Uysen,,, [B(, u) * v*], then
Ai = B3, u)(Upsen,,, [0°]) = BE, u) Q- (5.7)

By (5.6), we have
U, i@+ 57 = Ui U, 560 =G =07,

ixu

U,.., b1 =uvia U, w) v,
j*GA v*EA;

ie.,

which implies
Qi =U"_ A (5.8)
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Notice that (5.8) is a disjoint union, and

A; 4y = Qi for all w. (5.9)

Let © be Borel measure defined by
0(A) =H*(f(A)) for all A C K.

Since f : K — K’ is bilipschitz, ¥ is an absolutely continuous measure with respect
to H?| k. Therefore, there exists Radon-Nikodym derivative

. H(f(K N B(x,7))
Df(x) = lim H*(K N B(z,r))

such that for any Borel set A C K,

(W) = [ D@ (o).
Let a > 0 be the essential supremum of Df, i.e.,
a:=inf{b: H*{x € K : Df(x) > b} = 0}.
Then for any Borel set A C K,
HE(f(A)) < aH*(A). (5.10)

Recall that C' is the bilipschitz constant of f, by the property of the Hausdorff
measure, H*(f(K N B(z,r)) < C*-H*(K N B(z,r)), so Df(z) < C*® for H*-almost
all z € K. It follows that a < C* < .

for H®-almost all x € K,

Lemma 5. Let ¢ > 0 and suppose D is a fine copy of F, satisfying
D c B(z,r) and |D| > c -,
where the ball B(x,r) satisfies

H(B(z,r) N K) HE(f(B(z,r) N K))
(1‘ HS(B@,r)mF)) =< and (a‘ Ho(B(z,r) N K) )SE'

Then there is a constant ¢* > 0 only depending on ¢ and F such that

(1 - W) <, (5.11)

Proof. The self-similar set F' with SSC, equipped with Hausdorff measure H?®|p, is
s-regular. That means for any x € F and r < |F|,

H*(B(z,r) N F) < Cpr®

for some constant C'r > 0. Suppose D = S(F'), where S is a similitude with ratio
rp. Then H*(D) = r$H(F), |D| = rp|F|, which implies
H (D) = [IDIPR(E)/IF]* = [H (F)/|F[*]r®
> [H(F)/(|FI°Cp)H*(B(z,r) N F).
Let ¢* = (|F|°Cr)/(c*H*(F)), where ¢* only depends on ¢ and F. Then

H*(D) > (") 'H*(B(z,r) N F), (5.13)
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Notice that

H(DNK)
- (D)
H*(D\K)
H((B(z,7) N F)\K)
= H'(B(z,r)NF)—H*(B(z,r)NK)

H(B(xz,r) N K)
~ H*(B(z,r)NF)
Then (5.11) follows from (5.13).

Notice that

HY(f(DNK)) +H (f[Bz,r) N (K\D)]) _ H*(f(B(z,r) N K))

1 |- H*(D)

IN

[1 |- H*(B(z,r)NF).

DN EK)+H B n(K\D)) ~ HBwnnk) = O
By (5.10), we have
H(f[B(z,r) N (K\D)]) < a-H°[B(z,r) N (K\D)]. (5.15)
From (5.11), we also have
H(DNK) > [1-c*H*(D) (5.16)
> [1—c](c") ' HE(B(x,r) N F)
> [1—c](e) T HE(B(x, ) NK)
It follows from (5.14) and (5.15) that

Hs(DNK) — H(B(z,m)NK) Hs(DNK)
< [l —c*] e, (using estimation (5.16))
which yields estimation (5.12). O

~ H(f(DNK)) < (a_Hs(f(B(x,r)ﬂK))) H(B(z,7) N K)

We can get an estimation similar to (5.11) for fine copy of F”.
Lemma 6. Let D’ be a fine copy of F', satisfying
D' c B(z',r") and |D'| > d - r" with d > 0.
Then there is a constant d* > 0 only depending on d and F' such that

I R O T ) R

As shown above, for a fine copy F; with F; N K # &, we have
— !/ !
f(FiNK) = ijeAi (Fliyej N K", (5.18)

n !

= lU, . cn Fieam e
Given ¢ > 0, let ¢* be the constant mentioned in Lemma 5. Recall that C' > 1

is the bilipschitz constant of f : K — K’. We denote ay < (¢, if there is a constant

k > 0 independent of ¢ such that for any index ¢,

KB < oy < KBy

NnK').

Keep the notations of (5.18) in the following lemma.
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Lemma 7. Suppose x € K, F; C B(x,r) with |Fi| > |Fiww| > cr for every u, and
HE(B(z,7) N K) 1
l—-———"F——=1] < 1-— 2)/2. d
(1- T BEa Tt ) < @0 - maxre) (5.19)

Then we have

|Fl| = |Fl ﬂK' = | ‘ - ‘F/ 1)*] ‘ ‘ J(l)*ﬁ(l w)kv* 1 (520)
As a consequence, there is a constant x > 0 independent of ¢ such that
| j@ )‘ = |F (1)*8(1,u)*v* 2 H(CT% (521)
where
Flayegamyee © Fay C B(f (@), (C+257r). (5.22)

Proof. We conclude that there are at least two distinct letters j; and js such that
Fjy NK # @ and Fij, N K # . (5.23)

On the contrary, suppose there exists only one letter j such that Fi,; N K # o,

that means
FFNnK C Fi*j.
Applying (5.19) to Lemma 5, we have
(1 —maxri)/2 > 1-H(FiNK)/H*(F)

1-— HS(Fi*j N K)/Hs(Fl)
1 —H*(Fisj) /R (F3)

1 — maxry,
7

AV

this is a contradiction. By (5.23), we have
Bl > R K| > d(Fe,. Fiei) > (mind(Fs Fo)/IFI) - R (5.24)
That means
|Fi| < |[F;N K.
On the other hand, since f is bilipschitz, we have
|Fi ﬂK| = |f(F‘l ﬂK)‘
Notice that FJ; is the smallest fine copy of F” such that Fj;) contains f(F} N K),
then there are distinct letters j; and j5 such that
Fiyejs N f(FENK) # @ and Fj;),, N f(ENK) # 2
by an analogue discussion to (5.24), we get
FROK)| = |Fgl.

Since [j*| = N,

‘F 1)| - | J(i)xg*
Here j(i) * B(i,u) = j(i* u) and \fu*| =N, by similar discussion as above, we have

|5 J@)*B(i,u)xv*
Therefore (5.20) is proved. Suppose & is the constant of (5.20), then

5t | iy 3,0y w0 | 2 EIFS] 2 Ri(er).
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Given f(y) € FJ( y N K’ with y € F; C B(x,7), we have
|f(y) = f(@)| < Cly — x| < Cr,
and thus
Fj;) € B(f(),Cr + | j/(' ) € B(f(x), (Cr+x"'E]) C B(f(x), (C+2x~1)r).

Therefore, F:](l)*ﬁ(l wysve C J(l) C B(f(z),(C + 2 Yr). .

Remark 6. By (5.20), we have \ﬂ(i)| = |F(1)*ﬁ (i) *U*| which implies that the length

of B(i,u) is uniformly bounded, i.e., there exists a constant ¥ independent of i,u
such that -
B, u)] < 9.

Given B(z,r) with € K, we can take a largest fine copy Fj such that
x € F; C B(z,r).
Then |F;| > ¢;r, where constant ¢; = min; r;. Let

)2(mN>

TTEN
c= cl(miinri = (miinri)Q( )'H, (5.25)

and
= [k/(C 42k Y)]c. (5.26)
Suppose ¢* and d* are the corresponding constants as in Lemmas 5 and 6.
Assume that {eg }x, {sk}r and {ry}r are sequences of positive numbers such that
li =1 =1 =0.
imey, = limq, = limry

Here we assume that supy ¢, < (¢*)~1(1 — max; 75) /2.

Let
a

Oy = —1.
k a—c*(1—crq) ey

Then limy §; = 0, and
|2’1/22 - 1‘ < 6/@’ (527)
for any 21,29 € [a — ¢*(1 — c*¢x) "Leg, al.
Since H*(K), H*(K') > 0, by Corollary 2.14 of [11], for H*-almost all z € K,

we have
lim H¥(B(z,r)NK) ~ lim H(B(f(z),r)N K')
M (B, r) N F) 1 e (B(f (@), 1) 1 F)
Furthermore, considering the point z such that D(f)(x) is close to a, we can take
points =y € K and zj, € K’ such that f(zy) = z}, and
H*(B(xk, k) N K)
He (B(x,re) N F)
H(B(z},, (C + 267 1)rp) N K')
Hs (B(x), (C+2:7L)r) N FY)
*(f(B(zg, m6) N K))

_ < .
T W Bk nK) - F

=1

IN

Sk

1_

IN

Sk

We can take a largest fine copy Fj, such that
TR € Fik C B(xk,rk).
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. . . . N
Then |F, | > c17p with ¢; = min; ;. Since {1,--- ,m}" contains (20™") — 1) non-
empty subsets, we have the following result.

Lemma 8. There is an integer My < 2(m™) 1 such that for any word uy - - - upr, 11
with length My, + 1, there exists word vy - - - vy with 0 <t < My, satisfying

Qik*(ulmuMkJrl) = Qik*(v1~~vt)a
Proof. Fix k. For any M > 1, we consider the set
2 = UM 1Q). U - 1..-- !
=M — l:l{ igx(u-ug) - uy u € { ’ ,71} }
—_ N
Then we have card(Z,) < 2(m™) _ 1 and
El C EQ c---C EM*l C EM c---C EQ('mN)71 C 52(7,LN).

If Epr = Epr41 for some M < o(m™) _ 1, then M is the integer desired.
Otherwise, for any M < o(m™) _ 1,

card(ZEpr41) — card(2p) > 1,

which implies

My _

o(m 1 > card(Z,.v))
2m™)_q
> card(Z1) + Zi:l [card(Epr4+1) — card(Za)]
> 1+ (20" — 1) = 2m™),
This is a contradiction. (]

Since M, < o(m™) _ 1, for any word uq -+ - us with 0 < s < M + 1(< Q(WN)), we
have

A

. (m™) .
|Fipetunun] 2 [y (minr)* ™ > r(mine,

Therefore, for any u; - - - us with s < My, + 1(< Q(mN)),
| Fips(ur )| = e and Fy, oy eouy) C B(2k, 7)), (5.28)

mN
where ¢ = (min; ri)2( '+1 defined as above. For any word j with length lil =

(My, + 1), there exists j’ with length |j’| < M}, such that

Qik*j = Qik*j’- (529)

By Lemma 4, Remark 6 and (5.7), the following sets are finite:
{Qik*(u1"'US): k>1, uy---us € {la T 7m}s with s < M, + 1}’
{B(ik*(ul---us),u): kE>1, up---us €{1,---,m}® with s < My, 1 <u Sn},

{Aik*(ulmus), wk>1 up-us € {1, ;m}° with s < My, 1 <u< n}
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Therefore, we can select a subsequence ki1 < ko < --- < k; < --- with lim;_, k; =
oo such that for all ¢,
Mkf, = Mkt+1 = M,
ig,*(urus) T iy g *(ur-us)

iy *(ur-us), u i,y *(urrus), us

Bk, * (ur---us),u) = Blig,, * (ur---us),u),

for any word u; - - ug with 0 < s < M and any u with 1 < u < n. Denote

QU1-~us = Qikt*(ul---us)7
Auy--us, u = Aikt*(ul..ius), ws
Blur - -us)yu) = Blik, * (ur - ug),u).
Then
Quyeone = U1 Ay vy, s (5.30)
Notice that
Ay, wsry = Qupouguay, for 0<s <M —1. (5.31)

For word u; - - - uprupr41, there exists vy -+ -vs with 0 < s < M such that

Aul-“uM, U1 ﬂ(ul T UM, uM“l'l)Q'Ul‘“'Us?
that is
Ay oung, unrer =< Qop oo, - (5.32)
According to Lemma 3, we shall verify that for all v and uy - - - ug with s < M,
U(Aul”'u' u) s
—_ s = 5.33
U(Qurws) K ( )

where v is defined in Subsection 5.1.
Let i =i, * (u1 - - - us). Then it follows from (5.28) and Lemma 5 that

H(f (B N K)) H(f(FENK))
He(Fuw NK) 7 H(BENK) —
By (5.27), we have

[

a—c*'[1—c*e,] e,

HS(f(Fi OK))]/[HS<f(FI*u OK))
H(FiNK) He (Fie N K)

= 1‘ < 61, (5.34)

That means

H (Fiww N K)  H(f (Fiw N K))

— 1| < 6, . 5.35
et nle s on RE LY (539
It follows from (5.28) and Lemma 5,
He(F; mK)’ H? (Fie N K) > 1 ey,
Hs(F) H5 (Fisu)
Therefore,
HS(Fi*u N K) Hs(Fi*u) 1
1< — —1. 5.36
[ Hs(FiN K) }/[ He(F) ] —1—c*¢, ( )
On the other hand,
LG (5.37)

77'{3(5) =r,.
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Suppose F}’(i) is the smallest fine copy containing f(F; N K), and

/ N _m r /
Uj*EAi(Ei(i)*j* N K ) - Uu:l[Uv*EAi*u Ej(i)*ﬂ(i,u)*v* N K ]
In fact, for i = iy, * (uy - - - us), we have

s !
V(A ) 2oren, Tt @(i)*ﬁ(i,u)*v*). (5.38)
0(Quy ) > jen M (Fy.j0)

Applying (5.21), (5.22), (5.26) to Lemmas 6, we obtain a constant d* such that for
j* € Ay and v* € Ay,

H* Fll**mK HS(F'/i*_i **mK)
max (1 _ ( J(i)=j ) 1 J(@)*B(1,u)*v (539)

Ho(Fyage) He(F

S B wer)
7‘[S(B(ac§€t7 (C+ 2k Y1, ) N K')
S

< d[1-
= B, O ) nF)
< ds,.
For i = iy, * (uy - - - us), by (5.38) and (5.39), we have
H(f (Fieu N K)) 11 0(Ay o )
suly_q _
e En R o) (5:40)
S ! s
_ ‘[Z”*GAM M Fyepu e VE) - 35eens B gy N K)] ~1
S / s /
Zv*él\i*u H (Ej(i)*B(i,u)*u*) Zj*EAi H (Ei(i)*j*)
o
1-— d*§kt

Letting ¢ — oo, we get (5.33) from (5.35), (5.36), (5.37) and (5.40).
Finally, Theorem 3 follows from (5.30)-(5.33) and Lemma 3.

6. BILIPSCHITZ EMBEDDING ABOUT 1-REGULAR SET

Given s-regular set E and t-regular set F with s < ¢, [12] proved that for any
s1 < s, there is a sj-regular subset of E, which can be bilipschitz embedded into
F. How about s; = s? Investigate the following question:

Can we find a subset of E with positive s-dimensional Hausdorff
measure, such that E can be bilipschitz embedded into F?

In fact, this is true for s < 1 ([12]), but this is false for s = 1 by Proposition 4.

Proposition 4. Suppose B is a subset of [0,1] with positive Lebesgue measure.
Then B can not be bilipschitz embedded into any self-similar set satisfying SSC.

Proof. Suppose there is a bilipschitz mapping f : B — f(B) C E, where F is a
self-similar set satisfying SSC. Let C' be the bilipschitz constant of f. Denote by £
the Lebesgue measure on R'.

Assume z € B is a Lebesgue point, i.e.,

L(x—e,x+e)NDB]/2e — 1, as e — 0,
which implies that
L[(z —e,x+¢€)\B]/2e — 0, as ¢ — 0.
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Suppose
Ll(x — e,z +¢)\B]/2e <.
Let E, ...;, be the smallest fine copy of E which contains f((x —¢,x+¢)NB). Hence
|Ei, i | |f((x —e,z4+¢)N B)|
CY(x—ex+e)NB]
C'2e(1 —%).

(AVAR VARV

There are two distinct points
f(x), f(y) € E with z,y € (x —e,x +¢)N B,
such that
flx) € fllx—c,x2+e)NB)|NE; iy
fly) € flle—ez+e)NB)NE; . i,
with dgy1 # 15, -
However, since z,y € (x — ¢,2 + €) N B, there is a sequence of points in B,
(v =)z0,21, " ,2k—1,2:(=y) € B
such that for every 1,
|2 — zig1| < 2ce.

Then there is a sequence of points in f(B),

(f(x) =)f(20), f(z1), - fze—1), f(2) (= f(y)) € B,
such that for every i,
|f(2i) = f(zit1)] < (2Ce)s . (6.1)
Since ipy1 # 4}, there is an index ¢* such that f(z), f(zi~41) belong to the
different pieces in {E;,...;, 5}
Let {r;}; be the ratios set of E. Then we have

|f(zix) = f(zie41)]

> mlI}d(E“ZH, Ei1---ikj’)
J#i
= (minr)|Ej, .., |
> (minr;)C7H(2e(1 — <)),
which contradicts (6.1) when ¢ is taken small enough. O

Example 3. Let E = [0,1] x {0} is a self-similar set of R? generated by
Ti(z,y) = (2,9)/3, Ta(x,y) = (z,9)/3 + (1/3,0), Ts(2,y) = (x,y)/3 + (2/3,0).
Let E’ be a self-similar set of R? generated by
Ti(z,y) = (2,9)/3,Ty(z,y) = (z,9)/3+ (2/3,0), Ty(,y) = (x,y)/3 + (0,2/3).

Then E’ satisfies SSC. By Proposition 4, any subset of E with positive H' measure
cannot be bilipschitz embedded into F.
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