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Abstract

We review the spectral and the scattering theory for the Aharonov-Bohm model on R2.
New formulae for the wave operators and for the scattering operator are presented. The
asymptotics at high and at low energy of the scattering operator are computed.

1 Introduction

The Aharonov-Bohm (A-B) model describing the motion of a charged particle in a magnetic
field concentrated at a single point is one of the few systems in mathematical physics for which
the spectral and the scattering properties can be completely computed. It has been introduced
in [3] and the first rigorous treatment appeared in [22]. A more general class of models involving
boundary conditions at the singularity point has then been developed in [2, 9] and further
extensions or refinements appeared since these simultaneous works. Being unable to list all
these subsequent papers, let us simply mention few of them : [24] in which it is proved that the
A-B models can be obtained as limits in a suitable sense of systems with less singular magnetic
fields, and [23] in which it is shown that the low energy behavior of the scattering amplitude for
two dimensional magnetic Schrödinger operators is similar to the scattering amplitude of the
A-B models. Concerning the extensions we mention the papers [11] which considers the A-B
operators with an additional uniform magnetic field and [17] which studies the A-B operators
on the hyperbolic plane.

The aim of the present paper is to provide the spectral and the scattering analysis of the
A-B operators on R2 for all possible values of the parameters (boundary conditions). The work
is motivated by the recent result of one of the authors [21] showing that the A-B wave operators
can be rewritten in terms of explicit functions of the generator of dilations and of the Laplacian.
However, this astonishing result was partially obscured by some too complicated expressions
for the scattering operator borrowed from [2] and by a certain function presented only in terms
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of its Fourier transform. For those reasons, we have decided to start again the analysis from
scratch using the modern operator-theoretical machinery. For example, our computations do
not involve an explicit parametrization of U(2) which leads in [2] or in [9] to some unnecessary
complications. Simultaneously, we recast this analysis in the up-to-date theory of self-adjoint
extensions [8] and derive rigorously the expressions for the wave operators and the scattering
operator from the stationary approach of scattering theory as presented in [26].

So let us now describe the content of this review paper. In Section 2 we introduce the
operator Hα which corresponds to a Schrödinger operator in R2 with a δ-type magnetic field at
the origin. The index α corresponds to the total flux of the magnetic field, and on a natural
domain this operator has deficiency indices (2, 2). The description of this natural domain is
recalled and some of its properties are exhibited.

Section 3 is devoted to the description of all self-adjoint extensions of the operator Hα. More
precisely, a boundary triple for the operator Hα is constructed in Proposition 2. It essentially
consists in the definition of two linear maps Γ1, Γ2 from the domain D(H∗

α) of the adjoint of
Hα to C2 which have some specific properties with respect to Hα, as recalled at the beginning
of this section. Once these maps are exhibited, all self-adjoint extensions of Hα can be labeled
by two 2 × 2-matrices C and D satisfying two simple conditions presented in (7). These self-
adjoint extensions are denoted by HCD

α . The γ-field and the Weyl function corresponding to the
boundary triple are then constructed. By taking advantage of some general results related to
the boundary triple’s approach, they allow us to explicit the spectral properties of HCD

α in very
simple terms. At the end of the section we add some comments about the role of the parameters
C and D and discuss some of their properties.

The short Section 4 contains formulae on the Fourier transform and on the dilation group that
are going to be used subsequently. Section 5 is the main section on scattering theory. It contains
the time dependent approach as well as the stationary approach of the scattering theory for the
A-B models. Some calculations involving Bessel functions or hypergeometric 2F1-functions look
rather tricky but they are necessary for a rigorous derivation of the stationary expressions.
Fortunately, the final expressions are much more easily understandable. For example, it is
proved in Proposition 9 that the channel wave operators for the original A-B operator HAB

α are
equal to very explicit functions of the generator of dilation. These functions are continuous on
[−∞,∞] and take values in the set of complex number of modulus 1. Theorem 10 contains a
similar explicit description of the wave operators for the general operator HCD

α .

In Section 6 we study the scattering operator and in particular its asymptotics at small and
large energies. These properties highly depend on the parameters C and D but also on the
flux α of the singular magnetic field. All the various possibilities are explicitly analysed. The
statement looks rather messy, but this simply reflects the richness of the model.

The parametrization of the self-adjoint extensions of Hα with the pair (C, D) is highly non
unique. For convenience, we introduce in the last section a one-to-one parametrization of all
self-adjoint extensions and explicit some of the previous results in this framework. For further
investigations in the structure of the set of all self-adjoint extensions, this unique parametrization
has many advantages.

Finally, let us mention that this paper is essentially self-contained. Furthermore, despite the
rather long and rich history of the Aharonov-Bohm model most of the our results are new or
exhibited in the present form for the first time.
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2 General setting

Let H denote the Hilbert space L2(R2) with its scalar product 〈·, ·〉 and its norm ‖ · ‖. For any
α ∈ R, we set Aα : R2 \ {0} → R2 by

Aα(x, y) = −α
( −y

x2 + y2
,

x

x2 + y2

)
,

corresponding formally to the magnetic field B = αδ (δ is the Dirac delta function), and consider
the operator

Hα := (−i∇−Aα)2, D(Hα) = C∞
c

(
R2 \ {0}) .

Here C∞
c (Ξ) denotes the set of smooth functions on Ξ with compact support. The closure of this

operator in H, which is denoted by the same symbol, is symmetric and has deficiency indices
(2, 2) [2, 9]. For further investigation we need some more information on this closure.

So let us first decompose the Hilbert space H with respect to polar coordinates: For any

m ∈ Z, let φm be the complex function defined by [0, 2π) 3 θ 7→ φm(θ) :=
eimθ

√
2π

. Then, by

taking the completeness of the family {φm}m∈Z in L2(S1) into account, one has the canonical
isomorphism

H ∼=
⊕

m∈Z
Hr ⊗ [φm] , (1)

where Hr := L2(R+, r dr) and [φm] denotes the one dimensional space spanned by φm. For
shortness, we write Hm for Hr ⊗ [φm], and often consider it as a subspace of H. Clearly, the
Hilbert space Hm is isomorphic to Hr, for any m

In this representation the operator Hα is equal to [9, Sec. 2]
⊕

m∈Z
Hα,m ⊗ 1, (2)

with

Hα,m = − d2

dr2
− 1

r

d
dr

+
(m + α2)

r2
,

and with a domain which depends on m + α. It clearly follows from this representation that
replacing α by α + n, n ∈ Z, corresponds to a unitary transformation of Hα. In particular, the
case α ∈ Z is equivalent to the magnetic field-free case α = 0, i.e. the Laplacian and its zero-
range perturbations, see [4, Chapt. 1.5]. Hence throughout the paper we restrict our attention
to the values α ∈ (0, 1).

So, for α ∈ (0, 1) and m 6∈ {0,−1}, the domain D(Hα,m) is given by
{

f ∈ Hr ∩H2,2
loc(R+) | −f ′′ − r−1f ′ + (m + α)2r−2f ∈ Hr

}
.

For m ∈ {0,−1}, let H
(1)
ν denote the Hankel function of the first kind and of order ν, and for

f, h ∈ H2,2
loc let W (g, h) stand for the Wronskian

W (f, h) := fh′ − f ′h .

One then has

D(Hα,m) =
{

f ∈ Hr ∩H2,2
loc(R+) |

− f ′′ − r−1f ′ + (m + α)2r−2f ∈ Hr and lim
r→0+

r
[
W (f, h±i,m)

]
(r) = 0

}
,
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where h+i,m(r) = H
(1)
|m+α|(e

iπ/4r) and h−i,m(r) = H
(1)
|m+α|(e

i3π/4r). It is known that the operator
Hα,m for m /∈ {0,−1} are self-adjoint on the mentioned domain, while Hα,0 and Hα,−1 have
deficiency indices (1, 1). This explains the deficiency indices (2, 2) for the operator Hα.

The problem of the description of all self-adjoint extensions of the operator Hα can be
approached by two methods. On the one hand, there exists the classical description of von
Neumann based on unitary operators between the deficiency subspaces. On the other hand,
there exists the theory of boundary triples which has been widely developed for the last twenty
years [8, 10]. Since our construction is based only on the latter approach, we shall recall it briefly
in the sequel.

Before stating a simple result on D(Hα,m) for m ∈ {0,−1} let us set some conventions. For
a complex number z ∈ C \ R+, the branch of the square root z 7→ √

z is fixed by the condition
=√z > 0. In other words, for z = reiϕ with r > 0 and ϕ ∈ (0, 2π) one has

√
z =

√
reiϕ/2. On

the other hand, for β ∈ R we always take the principal branch of the power z 7→→ zβ by taking
the principal branch of the argument arg z ∈ (−π, π). This means that for z = reiϕ with r > 0
and ϕ ∈ (−π, π) we have zβ = rβeiβϕ. Let us also recall the asymptotic behavior of H

(1)
ν (w) as

w → 0 in C \ R− and for ν 6∈ Z:

H(1)
ν (w) = − 2νi

sin(πν)Γ(1− ν)
w−ν +

2−νie−iπν

sin(πν)Γ(1 + ν)
wν + O(w2−ν). (3)

Proposition 1. For any f ∈ D(Hα,m) with m ∈ {0,−1}, the following asymptotic behavior
holds:

lim
r→0+

f(r)
r|m+α| = 0.

Proof. Let us set ν := |m + α| ∈ (0, 1), and recall that f ∈ D(Hα,m) implies f ∈ C1
(
(0, +∞)

)

and that the Hankel function satisfies
(
H

(1)
ν (z)

)′ = H
(1)
ν−1(z)− ν

z H
(1)
ν (z). By taking this and the

asymptotics (3) into account, the condition limr→0+ r[W (h±i,m, f)](r) = 0 implies that

lim
r→0+

{
rν+1f ′(r)− νrνf(r)

}
= 0 (4)

and that
lim

r→0+

{
r1−νf ′(r) + νr−νf(r)

}
= 0 . (5)

Multiplying both terms of (5) by r2ν and subtracting it from (4) one obtains that

lim
r→0+

rνf(r) = 0. (6)

On the other hand, considering (5) as a linear differential equation for f : r1−νf ′(r)+νr−νf(r) =
b(r), and using the variation of constant one gets for some C ∈ C:

f(r) =
C

rν
+

1
rν

∫ r

0
t2ν−1 b(t)dt .

Now Eq. (6) implies that C = 0, and by using l’Hôpital’s rule, one finally obtains:

lim
r→0+

f(r)
rν

= lim
r→0+

∫ r

0
t2ν−1 b(t)dt

r2ν
= lim

r→0+

r2ν−1b(r)
2 ν r2ν−1

=
1

2 ν
lim

r→0+
b(r) = 0.
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3 Boundary conditions and spectral theory

In this section, we explicitly construct a boundary triple for the operator Hα and we briefly
exhibit some spectral results in that setting. Clearly, our construction is very closed to the one
in [9], but this paper does not contain any reference to the boundary triple machinery. Our aim
is thus to recast the construction in an up-to-date theory. The following presentation is strictly
adapted to our setting, and as a general rule we omit to write the dependence on α on each of
the objects. We refer to [8] for more information on boundary triples.

Let Hα be the densely defined closed and symmetric operator in H previously introduced.
The adjoint of Hα is denoted by H∗

α and is defined on the domain

D(H∗
α) =

{
f ∈ H ∩H2,2

loc

(
R2 \ {0}) | Hαf ∈ H

}
.

Let Γ1, Γ2 be two linear maps from D(H∗
α) to C2. The triple (C2,Γ1, Γ2) is called a boundary

triple for Hα if the following two conditions are satisfied:

(1) 〈f,H∗
α g〉 − 〈H∗

α f, g〉 = 〈Γ1 f, Γ2 g〉 − 〈Γ2 f, Γ1 g〉 for any f, g ∈ D(H∗
α),

(2) the map (Γ1, Γ2) : D(H∗
α) → C2 ⊕ C2 is surjective.

It is proved in the reference mentioned above that such a boundary triple exists, and that
all self-adjoint extensions of Hα can be described in this framework. More precisely, let C, D ∈
M2(C) be 2× 2 matrices, and let us denote by HCD

α the restriction of H∗
α on the domain

D(HCD
α ) := {f ∈ D(H∗

α) | CΓ1f = DΓ2f} .

Then, the operator HCD
α is self-adjoint if and only if the matrices C and D satisfy the following

conditions:
(i) CD∗ is self-adjoint, (ii) det(CC∗ + DD∗) 6= 0. (7)

Moreover, any self-adjoint extension of Hα in H is equal to one of the operator HCD
α .

We shall now construct explicitly a boundary triple for the operator Hα. For that purpose,
let us consider z ∈ C \ R+ and choose k =

√
z with =(k) > 0. It is easily proved that the

following two functions fz,0 and fz,−1 define an orthonormal basis in ker(H∗
α − z), namely in

polar coordinates:

fz,0(r, θ) = Nz,0 H(1)
α (kr)φ0(θ), fz,−1(r, θ) = Nz,−1 H

(1)
1−α(kr)φ−1(θ),

where Nz,m is the normalization such that ‖fz,0‖ = ‖fz,−1‖ = 1. In particular, by making use
of the equality ∫ ∞

0
r
∣∣H(1)

ν (kr)
∣∣2dr =

(
π cos(πν/2)

)−1

valid for k ∈ {eiπ/4, ei3π/4}, one has

N±i,0 =
(
π cos(πα/2)

)1/2 and N±i,−1 =
(
π cos(π(1− α)/2)

)1/2 =
(
π sin(πα/2)

)1/2
.

Let us also introduce the averaging operator P with respect to the polar angle acting on any
f ∈ H and for almost every r > 0 by

[P(f)](r) =
∫ 2π

0
f(r, θ) dθ.
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Following [9, Sec. 3] we can then define the following four linear functionals on suitable f:

Φ0(f) = lim
r→0+

rα[P(fφ0)](r), Ψ0(f) = lim
r→0+

r−α
(
[P(fφ0)](r)− r−αΦ0(f)

)
,

Φ−1(f) = lim
r→0+

r1−α[P(fφ−1)](r), Ψ−1(f) = lim
r→0+

rα−1
(
[P(fφ−1)](r)− rα−1Φ−1(f)

)
.

For example, by taking the asymptotic behavior (3) into account one obtains

Φ0(fz,0) = Nz,0 aα(z), Φ−1(fz,0) = 0,
Ψ0(fz,0) = Nz,0 bα(z), Ψ−1(fz,0) = 0,

Φ−1(fz,−1) = Nz,−1 a1−α(z), Φ0(fz,−1) = 0,
Ψ−1(fz,−1) = Nz,−1 b1−α(z), Ψ0(fz,−1) = 0,

(8)

with

aν(z) = − 2νi

sin(πν)Γ(1− ν)
k−ν , bν(z) =

2−νie−iπν

sin(πν)Γ(1 + ν)
kν . (9)

The main result of this section is:

Proposition 2. The triple (C2, Γ1,Γ2), with Γ1,Γ2 defined on f ∈ D(H∗
α) by

Γ1f :=
(

Φ0(f)
Φ−1(f)

)
, Γ2f := 2

(
α Ψ0(f)

(1−α)Ψ−1(f)

)
,

is a boundary triple for Hα.

Proof. We use the schema from [7, Lem. 5]. For any f, g ∈ D(H∗
α) let us define the sesquilinear

forms
B1(f, g) := 〈f,H∗

αg〉 − 〈H∗
αf, g〉

and
B2(f, g) := 〈Γ1f , Γ2 g〉 − 〈Γ2 f, Γ1 g〉.

We are going to show that these expressions are well defined and that B1 = B2.

i) Clearly, B1 is well defined. For B2, let us first recall that D(H∗
α) = D(Hα)+ker(H∗

α− i)+
ker(H∗

α + i). It has already been proved above that the four maps Φ0, Φ−1, Ψ0 and Ψ−1 are well
defined on the elements of ker(H∗

α − i) and ker(H∗
α + i). We shall now prove that Γ1f = Γ2f = 0

for f ∈ D(Hα), which shows that B2 is also well defined on D(H∗
α). In view of the decomposition

(2) it is sufficient to consider functions f of the form f(r, θ) = fm(r)φm(θ) for any m ∈ Z and
with fm ∈ D(Hα,m). Obviously, for such a function f with m /∈ {0,−1} one has [P (f)](r) = 0
for almost every r, and thus Γ1f = Γ2f = 0. For m ∈ {0, 1} the equalities Γ1f = Γ2f = 0 follow
directly from Proposition 1.

ii) Now, since Γ1f = Γ2g = 0 for all f, g ∈ D(Hα), the only non trivial contributions to the
sesquilinear form B2 come from f, g ∈ ker(H∗

α − i) + ker(H∗
α + i). On the other hand one also

has B1(f, g) = 0 for f, g ∈ D(Hα). Thus, we are reduced in proving the equalities

B1(fz,m, fz′,n) = B2(fz,m, fz′,n)

for any z, z′ ∈ {−i, i} and m,n ∈ {0,−1}.
Observe first that for z 6= z′ and arbitrary m,n one has

B1(fz,m, fz′,n) = 〈fz,m, z′fz′,n〉 − 〈zfz,m, fz′,n〉 = 0
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since z′ = z. Now, for m 6= n one has Γ1fz,m ⊥ Γ2fz′,n, and hence B2(fz,m, fz′,n) = 0 =
B1(fz,m, fz′,n). For m = n one easily calculate with ν := |m− α| that

B2(fz,m, fz′,m) = 2νNz,m Nz′,m
(
aν(z)bν(z′)− bν(z)aν(z′)

)
= 0 ,

and then B2(fz,m, fz′,m) = 0 = B1(fz,m, fz′,m).

We now consider z = z′ and m 6= n. One has

B1(fz,m, fz,n) = 〈fz,m, zfz,n〉 − 〈zfz,m, fz,n〉 = 2z〈fz,m, fz,n〉 = 0

and again Γ1fz,m ⊥ Γ2fz,n. It then follows that B2(fz,m, fz,n) = 0 = B1(fz,m, fz,n).

So it only remains to show that B1(fz,m, fz,m) = B2(fz,m, fz,m). For that purpose, observe
first that

B1(fz,m, fz,m) = 2z〈fz,m, fz,m〉 = 2z.

On the other hand, one has

B2(fz,m, fz,m) = 2i=(〈Γ1fz,m,Γ2fz,m

)
= 2i=

(
2ν|Nz,m|2 aν(z)bν(z)

)

with ν = |m−α|. By inserting (9) into this expression, one obtains (with k =
√

z and =(k) > 0)

B2(fz,m, fz,m) = 4iν|Nz,m|2=
( −(kν)2 e−iπν

sin2(πν)Γ(1− ν)Γ(1 + ν)

)

= 4zν|Nz,m|2 sin(πν/2)
sin2(πν)Γ(1− ν)Γ(1 + ν)

.

Finally, by taking the equality

Γ(1− ν)Γ(1 + ν) =
πν

sin(πν)

into account, one obtains

B2(fz,m, fz,m) = 4z|Nz,m|2 sin(πν/2)
sin(πν)π

= 4zπ cos(πν/2)
sin(πν/2)
sin(πν)π

= 2z ,

which implies B2(fz,m, fz,m) = 2z = B1(fz,m, fz,m).

iii) The surjectivity of the map (Γ1, Γ2) : D(H∗
α) → C2 ⊕ C2 follows from the equalities

(8).

Let us now construct the Weyl function corresponding to the above boundary triple. The
presentation is again adapted to our setting, and we refer to [8] for general definitions.

As already mentioned, all self-adjoint extensions of Hα can be characterized by the 2 × 2
matrices C and D satisfying two simple conditions, and these extensions are denoted by HCD

α . In
the special case (C,D) = (1, 0), then H10

α is equal to the original Aharonov-Bohm operator HAB
α .

Recall that this operator corresponds to the Friedrichs extension of Hα and that its spectrum
is equal to R+. This operator is going to play a special role in the sequel.

Let us consider ξ = (ξ0, ξ−1) ∈ C2 and z ∈ C \ R+. It is proved in [8] that there exists a
unique f ∈ ker(H∗

α− z) with Γ1f = ξ. This solution is explicitly given by the formula: f := γ(z)ξ
with

γ(z)ξ =
ξ0

Nz,0 aα(z)
fz,0 +

ξ−1

Nz,−1a1−α(z)
fz,−1

7



The Weyl function M(z) is then defined by the relation M(z) := Γ2 γ(z). In view of the previous
calculations one has

M(z) = 2
(

α bα(z)/aα(z) 0
0 (1−α) b1−α(z)/a1−α(z)

)

= − 2
π

sin(πα)

(
Γ(1−α)2e−iπα

4α (kα)2 0

0
Γ(α)2e−iπ(1−α)

41−α (k1−α)2

)
.

In particular, one observes that for z ∈ C \ R+ one has M(0) := limz→0 M(z) = 0.

In terms of the Weyl function and of the γ-field γ the Krein resolvent formula has the simple
form:

(HCD
α − z)−1 − (HAB

α − z)−1 = −γ(z)
(
DM(z)− C

)−1
Dγ(z̄)∗

= −γ(z)D∗(M(z)D∗ − C∗)−1
γ(z̄)∗ (10)

for z ∈ ρ(HAB
α ) ∩ ρ(HCD

α ). The following result is also derived within this formalism, see [5] for
i), [10, Thm. 5] and the matrix reformulation [12, Thm. 3] for ii). In the statement, the equality
M(0) = 0 has already been taken into account.

Lemma 3. i) The value z ∈ R− is an eigenvalue of HCD
α if and only if det

(
DM(z)−C

)
= 0,

and in that case one has

ker(HCD
α − z) = γ(z) ker

(
DM(z)− C

)
.

ii) The number of negative eigenvalues of HCD
α coincides with the number of negative eigen-

values of the matrix CD∗.

We stress that the number of eigenvalues does not depend on α ∈ (0, 1), but only on the
choice of C and D.

Let us now add some comments about the role of the parameters C and D and discuss
some of their properties. Two pairs of matrices (C, D) and (C ′, D′) satisfying (7) define the
same boundary condition (i.e. the same self-adjoint extension) if and only if there exists some
invertible matrix L ∈ M2(C) such that C ′ = LC and D′ = LD [19, Prop. 3]. In particular,
if (C, D) satisfies (7) and if det(D) 6= 0, then the pair (D−1C, 1) defines the same boundary
condition (and D−1C is self-adjoint). Hence there is an arbitrariness in the choice of these
parameters. This can avoided in several ways.

First, one can establish a bijection between all boundary conditions and the set U(2) of the
unitary 2× 2 matrices U by setting

C = C(U) :=
1
2
(1− U) and D = D(U) =

i

2
(1 + U) , (11)

see a detailed discussion in [13]. We shall comment more on this in the last section.

Another possibility is as follows (cf. [20] for details): There is a bijection between the set
of all boundary conditions and the set of triples (L, I, L), where L ∈ {{0},C,C2

}
, I : L → C2

is an identification map (identification of L as a linear subspace of C2) and L is a self-adjoint
operator in L. For example, given such a triple (L, I, L) the corresponding boundary condition
is obtained by setting

C = C(L, I, L) := L⊕ 1 and D = D(L, I, L) := 1⊕ 0

8



with respect to the decomposition C2 = [IL] ⊕ [IL]⊥. On the other hand, for a pair (C, D)
satisfying (7), one can set L := Cd with d := 2 − dim[ker(D)], I : L → C2 is the identification
map of L with ker(D)⊥ and L := (DI)−1CI. In this framework, one can check by a direct
calculation that for any K ∈ M2(C) such that DK − C is invertible, one has

(
DK − C

)−1
D = I(PKI − L)−1P, (12)

where P : C2 → L is the adjoint of I, i.e. the composition of the orthogonal projection onto IL
together with the identification of IL with L.

Let us finally note that the conditions (7) imply some specific properties related to commu-
tativity and adjointness. We shall need in particular:

Lemma 4. Let (C, D) satisfies (7) and K ∈ M2(C) with =K > 0. Then

i) The matrices DK − C and DK∗ − C are invertible,

ii) The equality
[
(DK − C)−1D

]∗ = (DK∗ − C)−1D holds.

Proof. i) By contraposition, let us assume that det(DK − C) = 0. Passing to the adjoint, one
also has det(K∗D∗ − C∗) = 0, i.e. there exists f ∈ C2 such that K∗D∗f = C∗f . By taking the
scalar product with D∗f one obtains that 〈D∗f, KD∗f〉 = 〈f, CD∗f〉. The right-hand side is
real due to (i) in (7). But since =K > 0, the equality is possible if and only if D∗f = 0. It then
follows that C∗f = K∗D∗f = 0, which contradicts (ii) in (7). The invertibility of DK∗ −C can
be proved similarly.

ii) If det(D) 6= 0, then the matrix A := D−1C is self-adjoint and it follows that
[
(DK − C)−1D

]∗ =
[
(K −A)−1

]∗ = (K∗ −A)−1 = (DK∗ − C)−1D .

If D = 0, then the equality is trivially satisfied. Finally, if det(D) = 0 but D 6= 0 one has L := C.
Furthermore, let us define I : C→ C2 by IL := ker(D)⊥ and let P : C2 → C be its adjoint map.
Then, by the above construction there exists ` ∈ R such that (DK −C)−1D = I(PKI − `)−1P .
It is also easily observed that PKI is just the multiplication by some k ∈ C with =k > 0, and
hence (DK −C)−1D = I(k − `)−1P . Similarly one has (DK∗ −C)−1D = I(k̄ − `)−1P . Taking
the adjoint of the first expression leads directly to the expected equality.

4 Fourier transform and the dilation group

Before starting with the scattering theory, we recall some properties of the Fourier transform
and of the dilation group in relation with the decomposition (1). Let F be the usual Fourier
transform, explicitly given on any f ∈ H and y ∈ R2 by

[F f](y) =
1
2π

l.i.m.

∫

R2

f(x)e−ix·y dx

where l.i.m. denotes the convergence in the mean. Its inverse is denoted by F∗. Since the
Fourier transform maps the subspace Hm of H onto itself, we naturally set Fm : Hr → Hr by
the relation F(fφm) = Fm(f)φm for any f ∈ Hr. More explicitly, the application Fm is the
unitary map from Hr to Hr given on any f ∈ Hr and almost every κ ∈ R+ by

f̂(κ) := [Fmf ](κ) = (−i)|m| l.i.m.

∫

R+

rJ|m|(rκ)f(r)dr ,

9



where J|m| denotes the Bessel function of the first kind and of order |m|. The inverse Fourier
transform F∗m is given by the same formula, with (−i)|m| replaced by i|m|.

Now, let us recall that the unitary dilation group {Uτ}τ∈R is defined on any f ∈ H and
x ∈ R2 by

[Uτ f](x) = eτ f(eτx) .

Its self-adjoint generator A is formally given by 1
2(X ·(−i∇)+(−i∇)·X), where X is the position

operator and −i∇ is its conjugate operator. All these operators are essentially self-adjoint on
the Schwartz space on R2.

An important property of the operator A is that it leaves each subspace Hm invariant. For
simplicity, we shall keep the same notation for the restriction of A to each subspace Hm. So,
for any m ∈ Z, let ϕm be an essentially bounded function on R. Assume furthermore that the
family {ϕm}m∈Z is bounded. Then the operator ϕ(A) : H → H defined on Hm by ϕm(A) is a
bounded operator in H.

Let us finally recall a general formula about the Mellin transform.

Lemma 5. Let ϕ be an essentially bounded function on R such that its inverse Fourier transform
is a distribution on R. Then, for any f ∈ C∞

c

(
R2 \ {0}) one has

[ϕ(A)f](r, θ) = (2π)−1/2

∫ ∞

0
ϕ̌
(− ln(s/r)

)
f(s, θ)

ds

r
,

where the r.h.s. has to be understood in the sense of distributions.

Proof. The proof is a simple application for n = 2 of the general formulae developed in [14,
p. 439]. Let us however mention that the convention of this reference on the minus sign for the
operator A in its spectral representation has not been adopted.

As already mentioned ϕ(A) leaves Hm invariant. More precisely, if f = fφm for some
f ∈ C∞

c (R+), then ϕ(A)f = [ϕ(A)f ]φm with

[ϕ(A)f ](r) = (2π)−1/2

∫ ∞

0
ϕ̌
(− ln(s/r)

)
f(s)

ds

r
, (13)

where the r.h.s. has again to be understood in the sense of distributions

5 Scattering theory

In this section we briefly recall the main definitions of the scattering theory, and then give explicit
formulae for the wave operators. The scattering operator will be studied in the following section.

Let H1,H2 be two self-adjoint operators in H, and assume that the operator H1 is purely
absolutely continuous. Then the (time dependent) wave operators are defined by the strong
limits

Ω±(H2,H1) := s− lim
t→±∞ eitH2 e−itH1

whenever these limits exist. In this case, these operators are isometries, and they are said
complete if their ranges are equal to the absolutely continuous subspace Hac(H2) of H with

10



respect to H2. In such a situation, the (time dependent) scattering operator for the system
(H2, H1) is defined by the product

S(H2,H1) := Ω∗+(H2,H1)Ω−(H2,H1)

and is a unitary operator in H. Furthermore, it commutes with the operator H1, and thus is
unitarily equivalent to a family of unitary operators in the spectral representation of H1.

We shall now prove that the wave operators exist for our model and that they are complete.
For that purpose, let us denote by H0 := −∆ the Laplace operator on R2.

Lemma 6. For any self-adjoint extension HCD
α , the wave operators Ω±(HCD

α ,H0) exist and are
complete.

Proof. On the one hand, the existence and the completeness of the operators Ω±(HAB
α ,H0)

has been proved in [22]. On another hand, the existence and the completeness of the operator
Ω±(HCD

α ,HAB
α ) is well known since the difference of the resolvents is a finite rank operator, see

for example [15, Sec. X.4.4]. The statement of the lemma follows then by taking the chain rule
[26, Thm. 2.1.7] and the Theorem 2.3.3 of [26] on completeness into account.

The derivation of the explicit formulae for the wave operators is based on the stationary
approach, as presented in Sections 2.7 and 5.2 of [26]. For simplicity, we shall consider only
ΩCD− := Ω−(HCD

α ,H0). For that purpose, let λ ∈ R+ and ε > 0. We first study the expression

ε

π

〈
(H0 − λ + iε)−1f, (HCD

α − λ + iε)−1g
〉

and its limit as ε → 0+ for suitable f, g ∈ H specified later on. By taking Krein resolvent formula
into account, one can consider separately the two expressions:

ε

π

〈
(H0 − λ + iε)−1f, (HAB

α − λ + iε)−1g
〉

and
− ε

π

〈
(H0 − λ + iε)−1f, γ(λ− iε)

(
DM(λ− iε)− C

)−1
Dγ(λ + iε)∗g

〉
.

The first term will lead to the wave operator for the original Aharonov-Bohm system, as shown
below. So let us now concentrate on the second expression.

For simplicity, we set z = λ + iε and observe that

− ε

π

〈
(H0 − z̄)−1f, γ(z̄)

(
DM(z̄)− C

)−1
Dγ(z)∗g

〉

= − ε

π

〈
γ(z)

[(
DM(z̄)− C

)−1
D

]∗
γ(z̄)∗(H0 − z̄)−1f, g

〉
.

Then, for every r ∈ R+ and θ ∈ [0, 2π) one has

− ε

π

[
γ(z)

[(
DM(z̄)− C

)−1
D

]∗
γ(z̄)∗(H0 − z̄)−1f

]
(r, θ)

= − ε

π

(
H

(1)
α (

√
zr)φ0(θ)

H
(1)
1−α(

√
zr)φ−1(θ)

)T

·A(z)
[(

DM(z̄)− C
)−1

D
]∗

A(z̄)∗
(

ξ0(z,f)
ξ−1(z,f)

)

with

A(z) =
(

aα(z)−1 0
0 a1−α(z)−1

)
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and
(

ξ0(z, f)
ξ−1(z, f)

)
=

( 〈
H

(1)
α (

√
z̄·)φ0, (H0 − z̄)−1f

〉
〈
H

(1)
1−α(

√
z̄·)φ−1, (H0 − z̄)−1f

〉
)

=

( 〈F(H0 − z)−1H
(1)
α (

√
z̄·)φ0, f̂

〉
〈F(H0 − z)−1H

(1)
1−α(

√
z̄·)φ−1, f̂

〉
)

=

( 〈F0(H0 − z)−1H
(1)
α (

√
z̄·), f̂0

〉
R+〈F−1(H0 − z)−1H

(1)
1−α(

√
z̄·), f̂−1

〉
R+

)
=

( 〈
(X2 − z)−1F0H

(1)
α (

√
z̄·), f̂0

〉
R+〈

(X2 − z)−1F−1H
(1)
1−α(

√
z̄·), f̂−1

〉
R+

)

where 〈·, ·〉R+ denotes the scalar product in L2(R+, rdr).

We shall now calculate separately the limit as ε → 0 of the different terms. We recall the
convention that for z ∈ C \ R+ on choose k =

√
z with =(z) > 0. For λ ∈ R+ one sets

limε→0+

√
λ + iε =: κ with κ ∈ R+. We first observe that for ν ∈ (0, 1) one has

aν(λ+) := lim
ε→0+

aν(λ + iε) = − 2νi

sin(πν)Γ(1− ν)
κ−ν

but

aν(λ−) := lim
ε→0+

aν(λ− iε) = − 2νie−iπν

sin(πν)Γ(1− ν)
κ−ν .

Similarly, one observes that

M(λ±) := lim
ε→0+

M(λ± iε) = − 2
π

sin(πα)

(
Γ(1−α)2 e∓iπα

4α κ2α 0

0
Γ(α)2 e∓iπ(1−α)

41−α κ2(1−α)

)
.

Note that M(λ+) = M(λ−)∗. Finally, the most elaborated limit is calculated in the next lemma.

Lemma 7. For m ∈ Z, ν ∈ (0, 1) and f ∈ C∞
c (R+) one has

lim
ε→0+

ε
〈
(X2 − z)−1FmH(1)

ν (
√

z̄·), f〉
R+

= ieiπν/2(−1)|m|f(κ) .

Proof. Let us start by recalling that for w ∈ C satisfying −π
2 < arg(w) ≤ π one has [1,

eq. 9.6.4] :

H(1)
ν (w) =

2
iπ

e−iπν/2 Kν(−iw) ,

where Kν is the modified Bessel function of the second kind and of order ν. Then, for r ∈ R+

it follows that (by using [25, Sec. 13.45] for the last equality)

[FmH(1)
ν (

√
z̄·)](r)

= (−i)|m|l.i.m.

∫

R+

ρJ|m|(rρ)H(1)
ν

(√
z̄ρ

)
dρ

= (−i)|m|
2
iπ

e−iπν/2l.i.m.

∫

R+

ρJ|m|(rρ)Kν

(− i
√

z̄ρ
)
dρ

= (−i)|m|
2
iπ

e−iπν/2 1
r2

l.i.m.

∫

R+

ρJ|m|(ρ)Kν

(
− i

√
z̄

r
ρ
)
dρ

= c
1
r2

(
− i

√
z̄

r

)−2−|m|
2F1

( |m|+ ν

2
+ 1,

|m| − ν

2
+ 1; |m|+ 1;−

(
− i

√
z̄

r

)−2)

where 2F1 is the Gauss hypergeometric function [1, Chap. 15] and c is given by

c := (−i)|m|
2
iπ

e−iπν/2 Γ
( |m|+ν

2 + 1
)
Γ
( |m|−ν

2 + 1
)

Γ(|m|+ 1)
.
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Now, observe that
(
− i

√
z̄

r

)−2−|m|
= −(−i)−|m|

(√
z̄

r

)−2−|m|
and −

(
− i

√
z̄

r

)−2
= r2

z̄ . Thus, one
has obtained

[FmH(1)
ν (

√
z̄·)](r) = d

1
r2

(√z̄

r

)−2−|m|
2F1

( |m|+ ν

2
+ 1,

|m| − ν

2
+ 1; |m|+ 1;

r2

z̄

)

with

d = − 2
iπ

e−iπν/2 Γ
( |m|+ν

2 + 1
)
Γ
( |m|−ν

2 + 1
)

Γ(|m|+ 1)
.

By taking into account Equality 15.3.3 of [1] one can isolate from the 2F1-function a factor which
is singular when the variable goes to 1:

2F1

( |m|+ ν

2
+ 1,

|m| − ν

2
+ 1; |m|+ 1;

r2

z̄

)

=
1

1− r2z̄−1 2F1

( |m|+ ν

2
,
|m| − ν

2
; |m|+ 1;

r2

z̄

)

= − z̄

r2 − z̄
2F1

( |m|+ ν

2
,
|m| − ν

2
; |m|+ 1;

r2

z̄

)
.

Altogether, one has thus obtained:

ε
[
(X2 − z)−1FmH(1)

ν (
√

z̄·)](r)

= −d
ε

(r2 − z̄)(r2 − z)
z̄

r2

(√z̄

r

)−2−|m|
2F1

( |m|+ ν

2
,
|m| − ν

2
; |m|+ 1;

r2

z̄

)
.

Now, observe that

ε

(r2 − z̄)(r2 − z)
=

ε

(r2 − λ + iε)(r2 − λ− iε)
=

ε

(r2 − λ)2 + ε2
=: πδε(r2 − λ)

which converges to πδ(r2 − λ) in the sense of distributions on R as ε goes to 0. Furthermore,
the map

R+ 3 r 7→ 2F1

( |m|+ ν

2
,
|m| − ν

2
; |m|+ 1;

r2

λ− iε

)
∈ C

is locally uniformly convergent as ε → 0 to a continuous function which is equal for r = κ =
√

λ
to Γ(|m| + 1)

[
Γ
( |m|+ν

2 + 1
)
Γ
( |m|−ν

2 + 1
)]−1. By considering trivial extensions on R, it follows

that

lim
ε→0+

ε
〈
(X2 − z)−1FmH(1)

ν (
√

z̄·), f〉
R+

= −d̄π lim
ε→0+

∫

R+

rδε(r2 − λ)
z̄

r2

(√z̄

r

)−2−|m|
2F1

( |m|+ ν

2
,
|m| − ν

2
; |m|+ 1;

r2

z̄

)
f(r)dr

= − d̄π

2κ
κ(−1)−|m|

Γ(|m|+ 1)

Γ
( |m|+ν

2 + 1
)
Γ
( |m|−ν

2 + 1
)f(κ)

= ieiπν/2(−1)|m|f(κ) .

By adding these different results and by taking Lemma 4 into account, one has thus proved:
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Lemma 8. For any f of the form
∑

m∈Z fmφm with fm = 0 except for a finite number of m for
which f̂m ∈ C∞

c (R+) and for any g ∈ C∞
c (R2 \ {0}), one has

lim
ε→0+

− ε

π

〈
(H0 − λ + iε)−1f, γ(λ− iε)

(
DM(λ− iε)− C

)−1
Dγ(λ + iε)∗g

〉

= − 1
π

〈(
H

(1)
α (κ·)φ0

H
(1)
1−α(κ·)φ−1

)T
·A(λ+)

(
DM(λ+)− C

)−1
DA(λ−)∗

(
ieiπα/2f̂0(κ)

−ieiπ(1−α)/2f̂−1(κ)

)
, g

〉

Before stating the main result on ΩCD− , let us first present the explicit form of the station-
ary wave operator Ω̃AB− . Note that for this operator the equality between the time dependent
approach and the stationary approach is known [2, 9, 22], and that a preliminary version of the
following result has been given in [21]. So, let us observe that since the operator HAB

α leaves
each subspace Hm invariant [22], it gives rise to a sequence of channel operators HAB

α,m acting on
Hm. The usual operator H0 admitting a similar decomposition, the stationary wave operators
Ω̃AB± can be defined in each channel, i.e. separately for each m ∈ Z. Let us immediately observe
that the angular part does not play any role for defining such operators. Therefore, we shall
omit it as long as it does not lead to any confusion, and consider the channel wave operators
Ω̃AB±,m from Hr to Hr.

The following notation will be useful: T := {z ∈ C | |z| = 1} and

δα
m = 1

2π
(|m| − |m + α|) =

{ −1
2πα if m ≥ 0
1
2πα if m < 0

.

Proposition 9. For each m ∈ Z, one has

ΩAB
±,m = Ω̃AB

±,m = ϕ±m(A) ,

with ϕ±m ∈ C
(
[−∞, +∞],T

)
given explicitly by

ϕ±m(x) := e∓iδα
m

Γ
(

1
2(|m|+ 1 + ix)

)

Γ
(

1
2(|m|+ 1− ix)

) Γ
(

1
2(|m + α|+ 1− ix)

)

Γ
(

1
2(|m + α|+ 1 + ix)

) (14)

and satisfying ϕ±m(±∞) = 1 and ϕ±m(∓∞) = e∓2iδα
m.

Proof. As already mentioned, the first equality in proved in [22]. Furthermore it is also proved
there that for any f ∈ Hr and r ∈ R+ one has

[ΩAB
±,m f ](r) = i|m| l.i.m.

∫

R+

κJ|m+α|(κr)e∓iδα
m [Fmf ](κ)dκ .

In particular, if f ∈ C∞
c (R+), this expression can be rewritten as

s− lim
N→∞

e∓iδα
m

∫ N

0
κJ|m+α|(κr)

[ ∫ ∞

0
sJ|m|(sκ)f(s)ds

]
dκ

= s− lim
N→∞

e∓iδα
m

∫ ∞

0
sf(s)

[ ∫ N

0
κJ|m|(sκ)J|m+α|(κr)dκ

]
ds

= s− lim
N→∞

e∓iδα
m

∫ ∞

0

s

r
f(s)

[ ∫ Nr

0
κJ|m|( s

r κ)J|m+α|(κ)dκ
]ds

r

= e∓iδα
m

∫ ∞

0

s

r

[ ∫ ∞

0
κJ|m|( s

r κ)J|m+α|(κ)dκ
]
f(s)

ds

r
,

(15)
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where the last term has to be understood in the sense of distributions on R+. The distribution
between square brackets has been computed in [16, Prop. 2] but we shall not use here its explicit
form.

Now, by comparing (15) with (13), one observes that the channel wave operator ΩAB±,m is
equal on a dense set in Hr to ϕ±m(A) for a function ϕ±m whose inverse Fourier transform is the
distribution which satisfies for y ∈ R:

ϕ̌±m(y) =
√

2πe∓iδα
m e−y

[ ∫ ∞

0
κJ|m|(e−y κ)J|m+α|(κ)dκ

]
.

The Fourier transform of this distribution can be computed. Explicitly one has (in the sense of
distributions) :

ϕ±m(x) = e∓iδα
m

∫

R
e−ixy e−y

[ ∫

R+

κJ|m|(e−y κ)J|m+α|(κ)dκ
]
dy

= e∓iδα
m

∫

R+

κ(1−ix)−1 J|m+α|(κ)dκ

∫

R+

s(1+ix)−1 J|m|(s)ds

which is the product of two Mellin transforms. The explicit form of these transforms are pre-
sented in [18, Eq. 10.1] and a straightforward computation leads directly to the expression (14).
The second equality of the statement follows then by a density argument.

The additional properties of ϕ±m can easily be obtained by taking into account the equality
Γ(z) = Γ(z) valid for any z ∈ C as well as the asymptotic development of the function Γ as
presented in [1, Eq. 6.1.39].

Since the wave operators ΩAB± admit a decomposition into channel wave operators, so does
the scattering operator. The channel scattering operator SAB

m := (ΩAB
+,m)∗ ΩAB−,m, acting from Hr

to Hr, is simply given by
SAB

m = ϕ+
m(A)ϕ−m(A) = e2iδα

m .

Now, let us set Hint := H0 ⊕H−1 which is clearly isomorphic to Hr ⊗ C2, and consider the
decomposition H = Hint ⊕ H⊥int. It follows from the considerations of Section 2 that for any
pair (C, D) the operator Ω̃CD± is reduced by this decomposition and that Ω̃CD−

∣∣
H⊥int

= ΩCD−
∣∣
H⊥int

=

ΩAB−
∣∣
H⊥int

. Since the form of ΩAB− has been exposed above, we shall concentrate only of the

restriction of Ω̃CD− to Hint. For that purpose, let us define a matrix valued function which is
closely related to the scattering operator. For κ ∈ R+ we set

S̃CD
α (κ) := 2i sin(πα)

(
Γ(1−α)e−iπα/2

2α κα 0

0 Γ(α)e−iπ(1−α)/2

21−α κ(1−α)

)

·
(

D

(
Γ(1−α)2 e−iπα

4α κ2α 0

0 Γ(α)2 e−iπ(1−α)

41−α κ2(1−α)

)
+

π

2 sin(πα)
C

)−1

D

·
(

Γ(1−α)e−iπα/2

2α κα 0

0 −Γ(α)e−iπ(1−α)/2

21−α κ(1−α)

)
. (16)

Theorem 10. For any pair (C, D) satisfying (7), the restriction of the wave operator ΩCD− to
Hint satisfies the equality

ΩCD
−

∣∣
Hint

= Ω̃CD
−

∣∣
Hint

=
(

ϕ−0 (A) 0

0 ϕ−−1(A)

)
+

(
ϕ̃0(A) 0

0 ϕ̃−1(A)

)
S̃CD

α (
√

H0), (17)
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where ϕ̃m ∈ C
(
[−∞,+∞],C

)
for m ∈ {0,−1}. Explicitly, for every x ∈ R, ϕ̃m(x) is given by

1
2π

e−iπ|m|/2 eπx/2 Γ
(

1
2(|m|+ 1 + ix)

)

Γ
(

1
2(|m|+ 1− ix)

)Γ
(1

2
(1 + |m + α| − ix)

)
Γ
(1

2
(1− |m + α| − ix)

)

and satisfies ϕ̃m(−∞) = 0 and ϕ̃m(+∞) = 1.

Proof. a) The stationary representation Ω̃CD− is defined by the formula [26, Def. 2.7.2]:

〈
Ω̃CD
− f, g

〉
=

∫ ∞

0
lim

ε→0+

ε

π

〈
(H0 − λ + iε)−1f, (HCD

α − λ + iε)−1g
〉

dλ

for any f of the form
∑

m∈Z fmφm with fm = 0 except for a finite number of m for which
f̂m ∈ C∞

c (R+) and g ∈ C∞
c (R2 \ {0}). By taking Krein resolvent formula into account, we can

first consider the expression
∫ ∞

0
lim

ε→0+

ε

π

〈
(H0 − λ + iε)−1f, (HAB

α − λ + iε)−1g
〉

dλ

which converges to [2, 9, 22]:
∫ ∞

0

〈 ∑

m∈Z
i|m| eiδα

mJ|m+α|(κ·) f̂m(κ)φm, g
〉

κ dκ .

This expression was the starting point for the formulae derived in Proposition 9. This leads to
the first term in the r.h.s. of (17).

b) The second term to analyze is

−
∫ ∞

0
lim

ε→0+

ε

π

〈
(H0 − λ + iε)−1f, γ(λ− iε)

(
DM(λ− iε)− C

)−1
Dγ(λ + iε)∗g

〉
dλ . (18)

By using then Lemma 8 and by performing some simple calculations, one obtains that (18) is
equal to ∫ ∞

0

〈( 1
2
iαH

(1)
α (κ·)φ0

1
2
i1−αH

(1)
1−α(κ·)φ−1

)T
S̃CD

α (κ)
(

f̂0(κ)

f̂−1(κ)

)
, g

〉
κ dκ .

Now, it will be proved below that the operator Tm defined for m ∈ {0,−1} on F∗[C∞
c (R+)]

by

[Tmf ](r) :=
1
2
i|m+α|

∫ ∞

0
H

(1)
|m+α|(κr) [Fmf ](κ)κdκ (19)

satisfies the equality Tm = ϕ̃m(A) with ϕ̃m given in the above statement. The stationary
expression is then obtained by observing that F∗S̃CD

α (k)F = S̃CD
α (

√
H0), where S̃CD

α (k) is
the operator of multiplication by the function S̃CD

α (·). Finally, the equality between the time
dependent wave operator and the stationary wave operator is a consequence of Lemma 6 and of
[26, Thm. 5.2.4].

c) By comparing (19) with (13), one observes that the operator Tm is equal on a dense set
in Hr to ϕ̃m(A) for a function ϕ̃m whose inverse Fourier transform is the distribution which
satisfies for y ∈ R:

ˇ̃ϕm(y) =
1
2

√
2πe−iδα

m ey

∫

R+

κH
(1)
|m+α|(e

y κ)J|m|(κ)dκ .
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As before, the Fourier transform of this distribution can be computed. Explicitly one has (in
the sense of distributions) :

ϕ̃m(x) =
1
2

e−iδα
m

∫

R
e−ixy ey

[ ∫

R+

κH
(1)
|m+α|(e

y κ)J|m|(κ)dκ
]
dy

=
1
2

e−iδα
m

∫

R+

κ(1+ix)−1 J|m|(κ)dκ

∫

R+

s(1−ix)−1 H
(1)
|m+α|(s)ds

=
1
2π

e−iπ|m|/2 (−i)ix Γ
(

1
2(|m|+ 1 + ix)

)

Γ
(

1
2(|m|+ 1− ix)

)

·Γ(1
2
(1 + |m + α| − ix)

)
Γ
(1
2
(1− |m + α| − ix)

)
.

The last equality is obtained by taking into account the relation between the Hankel function
H

(1)
ν and the Bessel function Kν of the second kind as well as the Mellin transform of the

functions Jν and the function Kν as presented in [18, Eq. 10.1 & 11.1].

The additional properties of ϕ̃m can easily be obtained by using the asymptotic development
of the function Γ as presented in [1, Eq. 6.1.39].

6 Scattering operator

In this section, we concentrate on the scattering operator and on its asymptotic values for large
and small energies.

Proposition 11. The restriction of the scattering operator S(HCD
α ,H0) to Hint is explicitly

given by

S(HCD
α ,H0)

∣∣
Hint

= SCD
α (

√
H0) with SCD

α (κ) :=
(

e−iπα 0
0 eiπα

)
+ S̃CD

α (κ) .

Proof. Let us first recall that the scattering operator can be obtained from ΩCD− by the formula
[6, Prop. 4.2]:

s− lim
t→+∞ eitH0 e−itHΩCD

− = S(HCD
α ,H0).

We stress that the completeness has been taken into account for this equality. Now, let us set
U(t) := e−it ln(H0)/2, where ln(H0) is the self-adjoint operator obtained by functional calculus.
By the intertwining property of the wave operators and by the invariance principle, one also has

s− lim
t→+∞U(−t)ΩCD

− U(t) = S(HCD
α ,H0).

On the other hand, the operator ln(H0)/2 is the generator of translations in the spectrum
of A, i.e. U(−t)ϕ(A)U(t) = ϕ(A+ t) for any ϕ : R→ C. Since {U(t)}t∈R is also reduced by the
decomposition (1), it follows that

s− lim
t→+∞U(−t)

[
ΩCD
−

∣∣
Hint

]
U(t)

= s− lim
t→+∞U(−t)

[(
ϕ−0 (A) 0

0 ϕ−−1(A)

)
+

(
ϕ̃0(A) 0

0 ϕ̃−1(A)

)
S̃CD

α (
√

H0)
]
U(t)

=
(

ϕ−0 (+∞) 0

0 ϕ−−1(+∞)

)
+

(
ϕ̃0(+∞) 0

0 ϕ̃−1(+∞)

)
S̃CD

α (
√

H0).
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The initial statement is then obtained by taking the asymptotic values mentioned in Proposition
9 and Theorem 10 into account.

Even if the unitarity of the scattering operator follows from the general theory we give below
a direct verification in order to better understand its structure. In the next statement, we only
give the value of the scattering matrix at energy 0 and energy equal to +∞. However, more
explicit expressions for SCD

α (κ) are exhibited in the proof.

Proposition 12. The map
R+ 3 κ 7→ SCD

α (κ) ∈ M2(C) (20)

is continuous, takes values in the set U(2) and has explicit asymptotic values for κ = 0 and
κ = +∞. More explicitly, depending on C,D or α one has:

i) If D = 0, then SCD
α (κ) =

(
e−iπα 0

0 eiπα

)
,

ii) If det(D) 6= 0, then SCD
α (+∞) =

(
eiπα 0

0 e−iπα

)
,

iii) If dim[ker(D)] = 1 and α = 1/2, then SCD
α (+∞) = (2P − 1)

(
i 0
0 −i

)
, where P is the

orthogonal projection onto ker(D)⊥,

iv) If ker(D) =
( C

0

)
or if dim[ker(D)] = 1, α < 1/2 and ker(D) 6= (

0
C

)
, then SCD

α (+∞) =(
e−iπα 0

0 e−iπα

)
,

v) If ker(D) =
(

0
C

)
or if dim[ker(D)] = 1, α > 1/2 and ker(D) 6= ( C

0

)
, then SCD

α (+∞) =(
eiπα 0

0 eiπα

)
.

Furthermore,

a) If C = 0, then SCD
α (0) =

(
eiπα 0

0 e−iπα

)
,

b) If det(C) 6= 0, then SCD
α (0) =

(
e−iπα 0

0 eiπα

)
,

c) If dim[ker(C)] = 1 and α = 1/2, then SCD
α (0) = (1−2Π)

(
i 0
0 −i

)
, where Π is the orthogonal

projection on ker(C)⊥.

d) If ker(C) =
(

0
C

)
or if dim[ker(C)] = 1, α > 1/2 and ker(C) 6= ( C

0

)
, then SCD

α (0) =(
e−iπα 0

0 e−iπα

)
,

e) If ker(C) =
( C

0

)
or if dim[ker(C)] = 1, α < 1/2 and ker(C) 6= (

0
C

)
, then SCD

α (0) =(
eiπα 0

0 eiπα

)
.

Proof. Let us fix κ > 0 and set S := SCD
α (κ). For shortness, we also set L := π

2 sin(πα) C and

B = B(κ) :=
(

Γ(1−α)
2α κα 0

0
Γ(α)

21−α κ(1−α)

)
, Φ :=

(
e−iπα/2 0

0 e−iπ(1−α)/2

)
, J :=

(
1 0
0 −1

)
.

Note that the matrices B, Φ and J commute with each other, that the matrix B is self-adjoint
and invertible, and that J and Φ are unitary.
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I) It is trivially checked that if D = 0 the statement i) is satisfied.

II) Let us assume det(D) 6= 0, i.e. D is invertible. Without loss of generality and as explained
at the end of Section 3, we assume than that D = 1 and that the matrix C is self-adjoint. Then
one has

S = Φ2 J + 2i sin(πα)BΦ(B2 Φ2 + L)−1BΦJ

= BΦ(B2 Φ2 + L)−1
[
B

(
Φ2 + 2i sin(πα)

)
+ LB−1

]
ΦJ.

By taking the equality Φ2 + 2i sin(πα) = Φ−2 into account, it follows that

S = BΦ(B2 Φ2 + L)−1
(
BΦ−2 + LB−1

)
ΦJ

= Φ
(
Φ2 + B−1 LB−1

)−1(Φ−2 + B−1 LB−1
)
ΦJ

= Φ
(
B−1 LB−1 + cos(πα)J − i sin(πα)

)−1(
B−1 LB−1 + cos(πα)J + i sin(πα)

)
ΦJ .

Since the matrix B−1 LB−1 + cos(πα)J is self-adjoint, the above expression can be rewritten as

S = Φ
B−1 LB−1 + cos(πα)J + i sin(πα)
B−1 LB−1 + cos(πα)J − i sin(πα)

ΦJ (21)

which is clearly a unitary operator. The only dependence on κ in the terms B is continuous and
one has

lim
κ→+∞SCD

α (κ) = Φ
cos(πα)J + i sin(πα)
cos(πα)J − i sin(πα)

ΦJ =
(

eiπα 0
0 e−iπα

)

which proves the statement ii)

III) We shall now consider the situation det(D) = 0 but D 6= 0. Obviously, ker(D) is of
dimension 1. So let p = (p1, p2) be a vector in ker(D) with ‖p‖ = 1. By (12) and by using the
notation introduced in that section one has

S = Φ2 J + 2i sin(πα)BΦI (P B2 Φ2 I + `)−1P BΦJ. (22)

Note that the matrix of P := IP : C2 → C2, i.e. the orthogonal projection onto p⊥, is given by

P =
( |p2|2 −p1p̄2

−p̄1p2 |p1|2
)

and that PB2Φ2I is just the multiplication by the number

c(κ) = b2
1(κ) |p2|2 e−iπα − b2

2(κ) |p1|2 eiπα, (23)

with b1(κ) = Γ(1−α)
2α κα and b2(κ) = Γ(α)

21−α κ(1−α).

In the special case α = 1/2, the matrices B and Φ have the special form B =
√

π
2 κ1/2 and

φ = e−iπ/4. Clearly, one also has b1 = b2 =
√

π
2 κ1/2 := b and c(κ) = −i b2. In that case, the

expression (22) can be rewritten as

S = i

[
πκ/2− i`

πκ/2 + i`
P + (P− 1)

]
J (24)

which is the product of unitary operators and thus is unitary. Furthermore, the dependence in
κ is continuous and the asymptotic value is easily determined. This proves statement iii)
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If α 6= 1/2, let us rewrite S as

S = Φ
(
c(κ) + `

)−1[2 i sin(πα)BPB + c(κ) + `
]
ΦJ .

Furthermore, by setting X− :=
(
b2
1 |p2|2 − b2

2 |p1|2
)

and X+ :=
(
b2
1 |p2|2 + b2

2 |p1|2
)

one has

c(κ) + ` = cos(πα)X− + `− i sin(πα)X+

and

M := 2 i sin(πα)BPB + c(κ) + ` =
(

eiπα X− + ` −2 i sin(πα)b1 b2 p1 p̄2

−2 i sin(πα)b1 b2 p̄1 p2 e−iπα X− + `

)
.

With these notations, the unitary of S easily follows from the equality det(M) = |c(κ) + `|2.
The continuity in κ of all the expressions also implies the expected continuity of the map (20).
Finally, by taking (23) and the explicit form of M into account, the asymptotic values of SCD

α (κ)
for the cases iv) and v) can readily be obtained.

IV) Let us now consider the behavior of the scattering matrix near the zero energy. If C = 0,
then det(D) 6= 0 and one can use (21) with L = 0. The statement a) follows easily.

V) Assume that det(C) 6= 0. In this case, it directly follows from (16) that S̃CD
α (0) = 0, and

then S(0) =
(

e−iπα 0
0 eiπα

)
which proves b).

VI) We now assume that dim[ker(C)] = 1 and consider two cases.

Firstly, if det(D) 6= 0 we can assume as in II) that C is self-adjoint and use again (21).
Introducing the entries of L,

L =
(

l11 l12

l12 l22

)

one obtains

B−1 LB−1 + cos(πα)J + i sin(πα)
B−1 LB−1 + cos(πα)J − i sin(πα)

=
1

b2
1 l22 e−iπα − b2

2 l11 eiπα − b2
1 b2

2

·
(

b2
1 l22 eiπα − b2

2 l11 eiπα − b2
1 b2

2 e2iπα b1 b2 l12 (e−iπα − eiπα)
b1 b2 l12 (e−iπα − eiπα) b2

1 l22 e−iπα − b2
2 l11 e−iπα − b2

1 b2
2 e−2iπα

)
.

For α 6= 1/2 one easily obtains the result stated in d) and e). For α = 1/2, it follows that

lim
κ→0+

B−1 LB−1 + cos(πα)J + i sin(πα)
B−1 LB−1 + cos(πα)J − i sin(πα)

=
2

tr(L)
L− 1,

and it only remains to observe that L = tr(L) Π, where Π is the orthogonal projection on
ker(L)⊥ = ker(C)⊥. This proves c).

Secondly, let us assume that dim[ker(D)] = 1. By (11) there exists U ∈ U(2) such that
ker(C) = ker(1 − U) and ker(D) = ker(1 + U). As a consequence, one has ker(C) = ker(D)⊥

and then P = 1−Π. On the other hand, we can use the expressions for the scattering operator
obtained in III). However, observe that CI = C

∣∣
ker(D)⊥ = C

∣∣
ker(C)

= 0 so we only have to
consider these expressions in the special case ` = 0. The asymptotic at 0 energy are then easily
deduced from these expressions.

By summing the results obtained for det(D) 6= 0 and for dim[ker(D)] = 1, and since D = 0
is not allowed if det(C) = 0, one proves the cases c), d) and e).
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Remark 13. As can be seen from the proof, the scattering matrix is independent of the energy
in the following cases only:

• D = 0, then SCD
α (κ) =

(
e−iπα 0

0 eiπα

)
,

• C = 0, then SCD
α (κ) =

(
eiπα 0

0 e−iπα

)
, see (21),

• α = 1/2 and det(C) = det(D) = 0, then SCD
α (κ) = (2P − 1)

(
i 0
0 −i

)
, where P is the

orthogonal projection on ker(D)⊥ ≡ ker(C), see (24).

7 Final remarks

As mentioned before, the parametrization of the self-adjoint extensions of Hα with the pair
(C, D) satisfying (7) is highly none unique. For the sake of convenience, we recall here a one-to-
one parametrization of all self-adjoint extensions and reinterpret a part of the results obtained
before in this framework.

So, let U ∈ U(2) and set

C = C(U) :=
1
2
(1− U) and D = D(U) =

i

2
(1 + U). (25)

It is easy to check that C and D satisfy both conditions (7). In addition, two different elements
U,U ′ of U(2) lead to two different self-adjoint operators HCD

α and HC′D′
α with C = C(U), D =

D(U), C ′ = C(U ′) and D′ = D(U ′), cf. [13]. Thus, without ambiguity we can write HU
α for

the operator HCD
α with C,D given by (25). Moreover, the set {HU

α | U ∈ U(2)} describes all
self-adjoint extensions of Hα, and, by (10), the map U → HU

α is continuous in the norm resolvent
topology. Let us finally mention that the normalization of the above map has been chosen such
that H−1

α ≡ H10
α = HAB

α .

Obviously, we could use various parametrizations for the set U(2). For example, one could
set

U = U(η, a, b) = eiη

(
a −b
b a

)

with η ∈ [0, 2π) and a, b ∈ C satisfying |a|2 + |b|2 = 1, which is the parametrization used in [2]
(note nevertheless that the role of the unitary parameter was quite different). We could also use
the parametrization inspired by [9]:

U = U(ω, a, b, q) = eiω

(
q eia −(1− q2)1/2 e−ib

(1− q2)1/2 eib q e−ia

)

with ω, a, b ∈ [0, 2π) and q ∈ [0, 1]. However, the following formulae look much simpler without
such an arbitrary choice, and such a particularization can always be performed later on.

We can now rewrite part of the previous results in terms of U :

Lemma 14. Let U ∈ U(2). Then,

i) For z ∈ ρ(HAB
α ) ∩ ρ(HU

α ) the resolvent equation holds:

(HU
α − z)−1 − (HAB

α − z)−1 = −γ(z)
[
(1 + U)M(z) + i(1− U)

]−1(1 + U)γ(z̄)∗ ,
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ii) The number of negative eigenvalues of HU
α coincides with the number of negative eigenval-

ues of the matrix i(U − U∗),

iii) The value z ∈ R− is an eigenvalue of HU
α if and only if det

(
(1 + U)M(z) + i(1−U)

)
= 0,

and in that case one has

ker(HU
α − z) = γ(z) ker

(
(1 + U)M(z) + i(1− U)

)
.

The wave operators can also be rewritten in terms of the single parameter U . We shall not
do it here but simply express the asymptotic values of the scattering operator SU

α := S(HU
α ,H0)

in terms of U . If λ ∈ C is an eigenvalue of U , we denote by Vλ the corresponding eigenspace.

Proposition 15. One has:

i) If U = −1, then SU
α (κ) ≡ SAB

α =
(

e−iπα 0
0 eiπα

)
,

ii) If −1 6∈ σ(U), then SU
α (+∞) =

(
eiπα 0

0 e−iπα

)
,

iii) If −1 ∈ σ(U) with multiplicity one and α = 1/2, then SU
α (+∞) = (2P− 1)

(
i 0
0 −i

)
, where

P is the orthogonal projection onto V⊥−1,

iv) If V−1 =
( C

0

)
or if −1 ∈ σ(U) with multiplicity one, α < 1/2 and V−1 6=

(
0
C

)
, then

SU
α (+∞) =

(
e−iπα 0

0 e−iπα

)
,

v) If V−1 =
(

0
C

)
or if −1 ∈ σ(U) with multiplicity one, α > 1/2 and V−1 6=

( C
0

)
, then

SU
α (+∞) =

(
eiπα 0

0 eiπα

)
.

Furthermore,

a) If U = 1, then SU
α (0) =

(
eiπα 0

0 e−iπα

)
,

b) If 1 6∈ σ(U), then SU
α (0) =

(
e−iπα 0

0 eiπα

)
,

c) If 1 ∈ σ(U) with multiplicity one and α = 1/2, then SU
α (0) = (1− 2Π)

(
i 0
0 −i

)
, where Π is

the orthogonal projection on V⊥1 .

d) If V1 =
(

0
C

)
or if 1 ∈ σ(U) with multiplicity one, α > 1/2 and V1 6=

( C
0

)
, then SU

α (0) =(
e−iπα 0

0 e−iπα

)
,

e) If V1 =
( C

0

)
or if 1 ∈ σ(U) with multiplicity one, α < 1/2 and V1 6=

(
0
C

)
, then SU

α (0) =(
eiπα 0

0 eiπα

)
.

Remark 16. The scattering matrix is independent of the energy in the following cases only:

• U = −1, then SU
α (κ) ≡ SAB

α =
(

e−iπα 0
0 eiπα

)
,

• U = 1, then SU
α (κ) =

(
eiπα 0

0 e−iπα

)
, see (21),

• α = 1/2 and σ(U) = {−1, 1}, then SU
α = (2P − 1)

(
i 0
0 −i

)
, where P is the orthogonal

projection on V1, see (24).
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