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Abstract. We study planar central configurations of the five-body problem
where three of the bodies are collinear, forming an Euler central configura-
tion of the three-body problem, and the two other bodies together with the
collinear configuration are in the same plane. The problem considered here
assumes certain symmetries. From the three bodies in the collinear configura-
tion, the two bodies at the extremities have equal masses and the third one is
at the middle point between the two. The fourth and fifth bodies are placed in
a symmetric way: either with respect to the line containing the three bodies,
or with respect to the middle body in the collinear configuration, or with re-
spect to the perpendicular bisector of the segment containing the three bodies.
The possible stacked five-body central configurations satisfying these types of

symmetries are: a rhombus with four masses at the vertices and a fifth mass
in the center, and a trapezoid with four masses at the vertices and a fifth mass
at the midpoint of one of the parallel sides.

1. Introduction

Let (m1, m2, . . . , mn) be n positive masses in the plane, of position vectors
(r1, r2, . . . , rn) respectively, subject to Newtonian gravitation. The motion of the
system is governed by the equations

mir̈i =
∂U

∂ri
, i = 1, . . . , n,

where U represents the Newtonian potential given by

U =
∑

1≤i<j≤n

mimj

‖ri − rj‖
.

The configuration space for the n masses (m1, m2, . . . , mn) is the space of all
distinct position vectors for which the center of mass is fixed at the origin, i.e.,

M = {(r1, . . . , rn) | ri 6= rj for i 6= j and

n
∑

i=1

miri = 0}.

We say that (m1, m2, . . . , mn) form a central configuration if the gravitational
acceleration vectors are proportional to the position vectors, that is, in the config-
uration space we have

r̈i = λri, i = 1, . . . , n,

for some λ 6= 0. Dilations and rotations of a central configuration define an equiva-
lent central configuration. One can choose a representative of an equivalence class of
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central configurations by fixing the line and the distance between two distinguished
masses in the configuration.

The simplest examples of central configuration are those of n = 3 bodies. There
are only two types of central configurations of three bodies, due to Euler and La-
grange: collinear, when the three bodies lie on the same line, and equilateral, when
the three bodies are located at the vertices of an equilateral triangle.

The condition that (m1, m2, . . . , mn) form a planar, non-collinear, central con-
figuration is equivalent to the Laura/Andoyer/Dziobek equations

(1) fij :=

n
∑

k=1

k 6=i,j

mk(Rik − Rjk)∆ijk = 0, for 1 ≤ i < j ≤ n,

where Rij = 1/r3
ij and ∆ijk = (ri − rj) ∧ (ri − rk). The bivectors ∆ijk represent

the oriented areas of the parallelograms determined by ri − rj and ri − rk.
Central configurations are important for at least several reasons: configurations

that undergo simultaneous collisions are asymptotic to central configuration; planar
central configurations give rise to families of periodic solutions; the energy level
sets that contain central configurations correspond to the energy values for which
the hypersurfaces of constant energy and angular momentum bifurcate. Central
configurations make the subject of one of the open problems of Smale’s list of
mathematical problems for the “next century” (now, current century) — given n
bodies of masses (m1, m2, . . . , mn), is the number of central configurations of these
masses finite? In fact this open question was already formulated by Wintner in
1941. Some background and motivation on central configurations can be found in
[28, 27, 21, 1]. See also [22].

There is a recent interest in stacked central configurations: these are central
configurations in which some subset of three or more masses also forms a central
configuration. The term of a stacked central configuration was first introduced
in [10]. It is hoped that one can construct inductively new central configurations
by augmenting known central configurations with some extra bodies. Moreover, if
the original central configuration exhibits some symmetries, one would expect to
produce stacked central configurations that are themselves symmetric.

It turns out that one cannot form a non-collinear stacked central configuration
of four bodies by adding just one body to a collinear configuration of three bodies,
as it follows from the Perpendicular Bisector Theorem – Theorem 3.1 below (see
[1, 21]).

In this paper we consider stacked, symmetric planar configuration of five bodies
obtained by adding, in a symmetric way, two bodies to a collinear three-body config-
uration. The collinear configuration is also assumed to be symmetric, with the two
bodies at the extremities equally distanced from the middle one and having equal
masses. The symmetries that we consider for the extra two bodies added to the
collinear configuration are: symmetry with respect to the line of the three collinear
bodies; symmetry with respect to the middle body in the collinear configuration;
symmetry with respect to the perpendicular bisector of the segment defined by the
two bodies at the extremities in the collinear configuration. To fix a representa-
tive for each equivalence class of central configurations considered, we assume that
m1, m2, m3 lie on the horizontal axis of the cartesian plane, and the distances from
m1 to m2 and from m2 to m3 are both equal to 1. In the notation below, we will
not distinguish between a mass in the central configuration and its position vector.
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Theorem 1.1. Consider a five-body configuration of masses m1, m2, m3, m4, m5

as follows. Three of the masses, m1, m2, m3, form a collinear central configuration,
with m1 = m3 and m2 at the midpoint of the line segment between m1 and m3. The
two other masses, m4, m5, are placed with respect to the collinear three-body central
configuration as in the following four cases. In each case, we conclude whether there
exists a central configuration of the specific type.

(a) Assume that m4 and m5 are located symmetrically with respect to the line
through m1, m2, m3, and m4 = m5. Then there exists a continuous fam-
ily of central configuration with the line m4m5 passing through m2, i.e.,
m1, m3, m4, m5 lying at the vertices of a rhombus with m2 at the center.
When the rhombus is a square then m1 = m3 = m4 = m5 and the mass
m2 is undetermined, otherwise the masses m1, m2, m3, m4, m5 are uniquely
determined for each possible central configuration.

(b) Assume that m4 and m5 are located symmetrically with respect to m2 with-
out additional symmetries (m4 and m5 are not symmetric with respect to
either the line segment m1m3 or to its perpendicular bisector). We do not
assume m4 = m5. Then there is no central configuration of this type.

(c) Assume that m4 and m5 are located symmetrically with respect to the per-
pendicular bisector of the line segment m1m3 and lie on the two sides of
this line, and m4 = m5. Then there exists a continuous family of central
configurations of this type, consisting of trapezoids with the sides m1m3

and m4m5 parallel, and m2 at the midpoint of the side m1m3. The masses
m1, m2, m3, m4, m5 are uniquely determined for each possible central con-
figuration.

(d) Assume that m4 and m5 are on the perpendicular bisector of the line segment
m1m3. We do not assume m4 = m5. Then there is no central configuration
of this type (except for the one found in (a)).

The proofs of the four statements of Theorem 1.1 are provided in Section 2,
Section 3, Section 4 and Section 5, respectively. Our proofs follow similar ideas to
those in [10]. It appears that the trapezoidal configuration found in Theorem 1.1
(c) answers affirmatively a problem attributed to Jeff Xia on whether on not there
exist non-trivial five body central configurations where three masses are on a line.

In a future work we plan to investigate stacked central configurations of five
bodies obtained by adding two bodies to a collinear Euler configuration with no
symmetry assumptions, i.e., without m1 = m3.

We now discuss briefly how this result compares to similar results in the literature.
There are several known examples of stacked five body central configurations. The
simplest one is a square of four equal masses at the vertices plus a fifth mass at its
center; this is also found in Theorem 1.1 (a). In [8] it is provided a classification
of pyramidal five body configurations, in which four of the masses form a square
central configuration. In [10] there are described stacked five body configuration
where three of the masses lie at the vertices of an equilateral triangle and the
two other masses are inside the triangle, placed symmetrically about one of the
perpendicular bisector of the triangle. In [15] there are described stacked five body
configuration where three of masses lie at the vertices of an equilateral triangle
and the two other masses lie on the perpendicular bisector of one of the sides.
In [16] there are described stacked five body configuration where three of masses
lie at the vertices of an equilateral triangle and the two other masses are outside
the triangle, placed symmetrically about one of the perpendicular bisector of the
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triangle. See also [2]. In [14] it is presented a complete classification of the isolated
central configurations of the five-body problem with equal masses.

There are also works considering central configurations with more than five bod-
ies. Six-body central configurations with four bodies are at the vertices of a regular
tetrahedron and the other two bodies are on a line connecting one vertex of the
tetrahedron with the center of the opposite face are described in [18]. A family of
central configurations of seven bodies with the bodies are arranged as concentric
three and two dimensional simplexes is described in [11]. The distribution of equal
masses in the collinear central configuration of n masses, as well as the behavior of
this distribution as n → ∞ is studied in [6]. Bifurcation of central configuration in
the Newtonian 2n + 1-body problem with n ≥ 3 is studied in [26]. Planar central
configurations of (n + 1) bodies with one large mass n infinitesimal equal masses
are found analytically and numerically in [7].

An important class of related problems for applications are the ring problems.
The ring problem studies the motion of (n + 1)-bodies where n bodies of equal
masses are located at the vertices of a regular polygon centered at the remaining
body, thus forming a central configuration. It was proposed by Maxwell in [17] as a
model for the motion of the particles surrounding Saturn, and used more recently
to model systems like planetary rings, asteroid belts, planets around a star, certain
stellar formations, stars with accretion ring, planetary nebula, motion of an artificial
satellite about a ring, (see [23, 25, 24, 19, 20, 12, 13, 3, 9, 4, 5]). We remark that
the ring problem with four equal masses on the ring and a fifth mass at the center
of the ring considered in [23] coincides with the special case found in Theorem 1.1
(a); such a configuration has been found to be locally unstable.

2. Proof of statement (a) of Theorem 1.1

We consider symmetric stacked configuration of five bodies, in which three of the
bodies form a collinear central configuration of masses m1, m2, m3 with the masses
at the extremities being equal, m1 = m3, while the other two bodies, also of equal
masses, m4 = m5, are located symmetrically with respect to the line connecting m1

and m3, on the two sides of this line. See Fig. 1. The equations (1) for this system
have the following symmetries and relations: f12 = f13 = f45 = 0, and f14 = −f15,
f24 = −f25, f34 = −f35. Thus, the equations (1) reduce to the following system of
equations:

f14 := m2(R12 − R42)∆142 + m3(R13 − R43)∆143 + m5(R15 − R45)∆145 = 0,(2)

f34 := m1(R31 − R41)∆341 + m2(R32 − R42)∆342 + m5(R35 − R45)∆345 = 0,(3)

f24 := m1(R21 − R41)∆241 + m3(R23 − R43)∆243 + m5(R25 − R45)∆245 = 0.(4)

We have R14 = R15, R24 = R25 and R34 = R35, and also R12 = R23 = 1, R13 =
1/23. We have that ∆124 = ∆234 = 1

2∆134, as the corresponding parallelograms
have all the same height and the first two parallelograms have equal bases that are
equal to half of the base of the third parallelogram.

The problem depends only on two parameters (s, t), where by s we denote the
distance between m2 and the line m4m5, and by t we denote the distance from m4

or m5 to the line m1m3. With respect to these two parameters we have R14 =
((1 + s)2 + t2)−3/2, R24 = (s2 + t2)−3/2, R34 = ((1 − s)2 + t2)−3/2, ∆124 = ∆234 =
1
2∆134 = t, ∆154 = 2(1 + s)t, ∆254 = 2st, and ∆345 = 2(1 − s)t.
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m1 m2 m3

m5

m4

1 1s

t

Figure 1. A five body configuration.

Since m1 = m3 and m4 = m5, we can write (2),(3),(4) as a linear homogeneous
system in m1, m2, m4 given by the matrix

A =





−(1/23 − R34)∆134 −(1 − R24)∆124 −(R14 − R45)∆154

(1/23 − R14)∆134 (1 − R24)∆124 (R35 − R45)∆345

(−R14 + R34)∆124 0 −(R24 − R45)∆254



 .

A sufficient condition for this system to have non-trivial solutions in (m1, m2, m4)
(i.e., solutions different from (0, 0, 0)) is that the determinant of the matrix is zero.
Note that subtracting the first row and the second row from twice the third row
vanishes both the first and second entry of the third row. Thus

det(A) = (∆124)
2(R34 − R14)(1 − R24)

((R14 − R45)∆154 − (R35 − R45)∆345 − 2(R24 − R45)∆254) = 0.

We simplify the expression in the last factor by using the observation that ∆345 +
∆254 = ∆154 − ∆254, and we obtain the following cases:

(i) R14 = R34,
(ii) R24 = 1,
(iii) R14∆154 − R35∆345 − 2R24∆254 = 0.

Case (i) corresponds to a situation when m1, m3, m4, m5 are at the vertices
of a rhombus with m2 in the center. Case (ii) corresponds to a situation when
m1, m3, m4, m5 are all located on a circle of radius 1 centered at m2. The equation
(iii) is expressed in the variables (t, s) as

(5) g(t, s) :=
(1 + s)t

((1 + s)2 + t2)3/2
− (1 − s)t

((1 − s)2 + t2)3/2
− 2st

(s2 + t2)3/2
= 0.

We note that (t, 0) is a solution of g(t, s) = 0 for all t; this corresponds again to
the kite configuration from (i). Besides this solution, the equation g(t, s) = 0 has a
pair of solutions (t, s1(t)), (t, s2(t)) symmetric with respect to m2, with s1(t) < −1,
s2(t) > 1, and s1(t) = −s2(t), for all t > 0. This can be seen from the plot of
the curve g(t, s) = 0 in Fig. 1. The points on this curve with (t, s) = (0,±1)
correspond to collisions of m4 and m5 so they should be excluded. The points (t, s)
on g(t, s) = 0 with t 6= 0 correspond to a pairs of possible configurations having the
line m4m5 located off the line segment m1m3, to the left of it or to the right of it.

We have only found some necessary conditions for the existence of five-body cen-
tral configurations of the prescribed type. We now have to see if such configurations
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t

s

Figure 2. The curve g(t, s) = 0.

actually exist. We consider the linear system A(m1, m2, m4)
T = 0, express the en-

tries of A in terms of (s, t), and study the existence of solutions in each of the three
cases.

In case (i) we have s = 0, R14 = R34 = (1 + t2)−3/2, R24 = t−3, R45 = (2t)−3,
∆154 = ∆345 = t, ∆254 = 0. The system becomes








−( 1
23 − 1

(1+t2)3/2
)(2t) −(1 − 1

t3 )t −
(

1
(1+t2)3/2

− 1
(2t)3

)

(2t)

( 1
23 − 1

(1+t2)3/2
)(2t) (1 − 1

t3 )t
(

1
(1+t2)3/2

− 1
(2t)3

)

(2t)

0 0 0













m1

m2

m4



 = 0.

The system reduces to the equation

(6) a1(t)m1 + a2(t)m2 + a3(t)m4 = 0,

where a1(t) = t3[(1 + t2)3/2 − 8], a2(t) = 4(1 + t2)3/2(t3 − 1), and a3(t) = (2t)3 −
(1 + t2)3/2. Without loss of generality we assume that m1 = 1. We want to show
that for every masses m2, m4 > 0 there exists a unique solution of equation (6) with

t > 0. Note that when 0 < t < 1/
√

3 we have a1(t) < 0, a2(t) < 0, and a3(t) < 0, so

there is no solution m2, m4 > 0 for equation (6). When t >
√

3 we have a1(t) > 0,
a2(t) > 0, and a3(t) > 0, so again there is no solution m2, m4 > 0 for equation (6).

So a necessary condition to have a solution for this equation is that 1/
√

3 ≤ t ≤
√

3.
Studying the sign of the function t 7→ h(t) := a1(t)m1 + a2(t)m2 + a3(t)m4 yields

h(1/
√

3) = − 8
27 (−1+3

√
3)(1+4m2) < 0 and h(

√
3) = 8(−1+3

√
3)(m4 +4m2) > 0.

Thus equation (6) always has a solution t ∈ (1/
√

3,
√

3), for all m2 and m4.
Now we show that the solution is unique.
When m4 = 1, the unique solution is t = 1. Indeed, (6) becomes (t3 − 1) +

4(t2 − 1)m2 = 0 which clearly has t = 1 as the unique positive solution provided
m2 > 0. In this case, the central configuration is a square with equal masses
m1 = m3 = m4 = m5 = 1 at the vertices, and with a mass m2 in the center of the
square. The mass m2 is not uniquely determined. In fact, it is well–known and easy
to check that given a central configuration with n-equal masses at the vertices of a
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Figure 3. The graph of k(t) for t ∈ (1/
√

3,
√

3): for a < −1 on
the left, and for a > 1 on the right.

regular polygon, then one can add an arbitrary mass in the center of the polygon
and obtain a central configuration of (n + 1)-masses.

Now we consider m4 6= 1. We can write h(t) = (1 + t2)3/2((4m2 + 1)t3 − (4m2 +
m4)) + 8t3(m4 − 1). If we let k(t) = h(t)/(m4 − 1) and a = (4m2 + 1)/(m4 − 1) we
obtain k(t) = (1 + t2)3/2(at3 − (a + 1)) + 8t3. We note that when m4 < 1 we have
a < 0, and when m4 > 1 we have a > 0. The function k(t) also has a change of

sign for t ∈ (1/
√

3,
√

3) as h(t) does. The change of sign is unique. Indeed, using
the first derivative test one can verify that for a < 0, the function k(t) assumes

a positive value at t = 1/
√

3, increases up to some maximum value in (1/
√

3,
√

3)

and then decreases to a negative value at t =
√

3. Also, using the first derivative
test one can verify that for a > 0, the function k(t) assumes a negative value at

t = 1/
√

3 and then keeps increasing up to a positive value at t =
√

3. Thus, in

either case there is only one root of k(t) in (1/
√

3,
√

3). See Fig. 3.
In conclusion, for every choice of m1, m2, m4 there is a unique central configura-

tion with m1 = m3, m4 = m5 at the vertices of a rhombus and m2 at the center
of the rhombus. In the case when m4 = m5 = 1 the rhombus becomes a square of
side

√
2 and the mass m2 is not uniquely defined. This completes case (i).

In case (ii) we have R24 = 1 so s2 + t2 = 1, so we restrict to 0 < s < 1 and
0 < t < 1 (the case s = 0 and t = 1 corresponds to the square configuration
described above, and the case s = 1 and t = 0 corresponds to a collision hence is
excluded). The matrix A becomes











−( 1
23 − 1

((1−s)2+t2)3/2
)(2t) 0 −

(

1
((1+s)2+t2)3/2

− 1
(2t)3

)

(2(1 + s)t)

( 1
23 − 1

((1+s)2+t2)3/2
)(2t) 0

(

1
((1−s)2+t2)3/2

− 1
(2t)3

)

(2(1 − s)t)
(

− 1
((1+s)2+t2)3/2

+ 1
((1−s)2+t2)3/2

)

t 0 −
(

1 − 1
(2t)3

)

(2st)











.

The corresponding system does not depend on m2. Since s2 + t2 = 1, the first
equation yields

(7) m4 = −
1
23 − 1

(2+2s)3/2

(

1
(2−2s)3/2

− 1
8(1−s2)3/2

)

(1 − s)
m1,



8 MARIAN GIDEA AND JAUME LLIBRE

m1 m2 m3

m5

m4

1 1

Figure 4. An impossible five body central configuration.

which is positive if and only if 0 < s < 1/2. The second equation yields

(8) m4 = −
1
23 − 1

(2−2s)3/2

(

1
(2+2s)3/2

− 1
8(1−s2)3/2

)

(1 + s)
m1,

which is positive for all 0 < s < 1. The two expressions of m4 agree only if s = 0,
as the first expression is an increasing function of s and the second expression is a
decreasing function of s for s ∈ (0, 1/2). Also we note that the case s = 0 which
makes the two expressions agree also makes the third equation identically 0. The
case s = 0 agrees with case (i) when the masses m1, m3, m4, m5 are equal to 1 and

are placed at the vertices of a square of side
√

2 while the mass m2 at the center of
the square is not uniquely defined.

In conclusion, there is no central configuration with m4 = m5 lying on the unit
circle centered at m2 (other than the square configuration from case (i)). This
completes case (ii).

In case (iii), the solutions correspond to a pair of possible configurations with
the line m4m5 disjoint from the line segment m1m3, to the left of it or to the right
of it, see Fig. 4.

The system in (m1, m2, m4) reduces to

n11m1 + n12m2 + n13m4 = 0,(9)

n21m1 + n22m2 + n23m4 = 0,(10)

where s = s1(t) or s = s2(t), and

n11 = (
1

((1 − s)2 + t2)3/2
− 1

23
)(2t),

n12 = (
1

(s2 + t2)3/2
− 1)t,

n13 =

(

1

(2t)3
− 1

((1 + s)2 + t2)3/2

)

(2(1 + s)t),

n21 = (
1

23
− 1

((1 + s)2 + t2)3/2
)(2t),

n22 = (1 − 1

(s2 + t2)3/2
)t,

n23 =

(

1

((1 − s)2 + t2)3/2
− 1

(2t)3

)

(2(1 − s)).
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Equations (9) and (10) represent two planes in the (m1, m2, m4) space, so in
order to have positive solutions for (m1, m2, m4) we need all components of

(n1, n2, n2) = (n11, n12, n13) ∧ (n21, n22, n23)
= (n12n23 − n13n22, n13n21 − n11n23, n11n22 − n12n21),

to have the same sign. We compute n1,

n1 = 2t

(

1 − 1

(s2 + t2)3/2

) (

(1 − s)t

((1 − s)2 + t2)3/2
− (1 + s)t

((1 + s)2 + t2)3/2
+

2st

(2t)3

)

= −2t

(

1 − 1

(s2 + t2)3/2

)

g(t, s) = 0,

where g(t, s) is the function defined in (5). It was assumed that g(t, s) = 0 in this
case. Thus n1 = 0 so the intersection of the two planes is located in the plane
m1 = 0. Therefore there are no central configurations of this type.

Remark 2.1. In the case (i) described above, when m1, m3, m4, m5 are at the
vertices of a rhombus with m2 in the center, if we assume that m4 = m1 then
equation (6) reduces to

(1 + t2)3/2(t3 − 1)(m1 + 4m2) = 0.

If m2 = −m1/4 then the above equation is satisfied for every t. This does not yield
a central configurations since the masses m1, m2 have opposite signs. Nevertheless,
it is interesting to remark that if we allow for negative masses in the definition of
a central configurations, then we obtain a continuum of such configurations, for all
t > 0.

3. Proof of statement (b) of Theorem 1.1

We consider symmetric stacked configurations of five bodies, in which three of the
bodies form a collinear central configuration of masses m1, m2, m3 with m1 = m3

and m2 located at the middle point of m1 and m3, while the other two bodies, of
masses m4 = m5, are located symmetrically with respect to m2, on the two sides
of the line m1m3. See Fig. 1.

It turns out that such a central configuration is not possible, as it violates the
Perpendicular Bisector Theorem below.

Let (m1, . . . , mn) be n-masses forming a planar central configuration. For each
i 6= j, the line mimj together with its perpendicular bisector through the middle
point of mi and mj divide the plane into four quadrants; each pair of opposite
quadrants forms a cone. A cone with the boundary axes removed is referred as an
open cone. Thus, each pair of masses in a planar central configuration determines
two disjoint open cones.

Theorem 3.1 (Perpendicular Bisector Theorem). Let mi, mj two masses in a pla-
nar central configuration of n-masses (m1, . . . , mn). If one of the open cones deter-
mined by mimj and its perpendicular bisector contains some of the masses of the
configuration, then so does the other open cone.

In the case of the five-body configuration described above, we consider the open
cones formed by the masses m1 and m3 and its perpendicular bisector. See Figure
5. We note that the open cone formed by the second and fourth quadrant contains
m4 and m5, while the open cone formed by the first and third quadrant contains
no mass. Thus, such a configuration is impossible.
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m1 m2 m3

m5

m4

1 1

Figure 5. An impossible five body central configuration, symmet-
ric with respect to m2.

m1 m2 m3

m5m4

1 1

Figure 6. A five body central configuration symmetric with re-
spect to the perpendicular bisector of m1m3.

4. Proof of statement (c) of Theorem 1.1

We consider a symmetric stacked configuration of five bodies, in which m1, m2, m3

are collinear with m1 = m3 and m2 is at the midpoint of the line segment formed by
m1, m3, while the other two bodies, of masses m4 = m5, are located symmetrically
with respect to the perpendicular bisector of the line formed by m1, m3, on the two
sides of this perpendicular bisector. See Fig. 6.

The equations (1) for this system has the following symmetries and relations:
f12 = f23, f24 = f25, f15 = f34, f13 = f45 = 0. The equations (1) reduce to the
following system:

f12 := m4(R14 − R24)∆124 + m5(R15 − R25)∆125 = 0,(11)

f14 := m2(R12 − R42)∆142 + m3(R13 − R43)∆143 + m5(R15 − R45)∆145 = 0,(12)

f15 := m2(R12 − R52)∆152 + m3(R13 − R53)∆153 + m4(R14 − R54)∆154 = 0,(13)

f24 := m1(R21 − R41)∆241 + m3(R23 − R43)∆243 + m5(R25 − R45)∆245 = 0.(14)

Since we have ∆124 = ∆125, R24 = R25 and m4 = m5, equation (11) translates
into the following geometric condition on the configuration

(15) C := R14 + R15 − 2R24 = 0.

Taking into account that m1 = m3, m4 = m5, R14 = R35, R15 = R34, R24 = R25,
R12 = R23 = 1, R13 = 1/23 and ∆124 = ∆125 = ∆234 = (1

2 )∆134 = (1
2 )∆135, we can

write (12), (13), (14), as a linear homogeneous system in m1, m2, m4 of matrix

A =





−(1/23 − R34)∆134 −(1 − R24)∆124 −(R15 − R45)∆154

−(1/23 − R14)∆134 −(1 − R24)∆124 (R14 − R45)∆154

(R34 − R14)∆124 0 −(R24 − R45)∆154



 .

A sufficient condition for this system to have a non-trivial solution is that det(A) =
0. By multiplying the first row by −1 and then adding it to the second row, and
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substituting in the geometric condition (15) yields the matrix

Ã =





(1/23 − R34)∆134 (1 − R24)∆124 (R15 − R45)∆154

(R14 − R34)∆134 0 2(R24 − R45)∆154

(R34 − R14)∆124 0 −(R24 − R45)∆154



 ,

with − det(Ã) = det(A) = 0. Note that the third row in Ã is −1/2 times the

second row in Ã. Thus the zero determinant condition is always satisfied under the
geometric condition C = 0 in (15).

We introduce the parameter s equal to the distance from m4 or m5 to the per-
pendicular bisector of the line segment m1m3, and t equal to the distance from m4

or m5 to the line connecting m1 to m3. We have that

Ã11 = (1/23 − R34)∆134 =
(

1
23 − 1

((1+s)2+t2)3/2

)

(2t),

Ã12 = (1 − R24)∆124 =
(

1 − 1
(s2+t2)3/2

)

(t),

Ã13 = (R15 − R45)∆154 =
(

1
((1+s)2+t2)3/2

− 1
(2s)3

)

(2st),

Ã21 = (−2)Ã31,

Ã22 = 0,

Ã23 = (−2)Ã33,

Ã31 = (R34 − R14)∆124 =
(

1
((1+s)2+t2)3/2

− 1
((1−s)2+t2)3/2

)

(t),

Ã32 = 0,

Ã33 = −(R24 − R45)∆154 = −
(

1
(s2+t2)3/2

− 1
(2s)3

)

(2st).

We want to solve the system associated to Ã for m1, m2, m4 > 0. We disregard
the equation corresponding to the second row since it is equivalent to the equation
corresponding to the third row. The resulting system is of the form

Ã11m1 + Ã12m2 + Ã13m4 = 0,(16)

Ã31m1 + Ã33m4 = 0.(17)

Hence m4 = −(Ã31/Ã33)m1 and m2 = (−Ã11Ã33 + Ã13Ã31)m1/(Ã12Ã33), provided

Ã33 6= 0 and Ã12 6= 0, thus m2, m4 are uniquely determined by the parameters s, t
and by the mass m1. In Figure 7 we show the curves in t > 0, s > 0 corresponding
to the conditions C = 0, Ã33 = 0, Ã12 = 0, −Ã11Ã33 + Ã13Ã31 = 0, and the
corresponding signs of these expressions for points off these curves. Note that the
curve −Ã11Ã33 + Ã13Ã31 = 0 has three components in t > 0, s > 0. We are looking
for (t, s) satisfying the geometric condition C = 0 that yield positive solutions for

m1, m2, m4. Since R34 < R14 we have Ã31 < 0 so in order to have m1, m4 > 0
in (17) we need to have Ã33 > 0. This corresponds to the portion of the curve

C = 0 below the curve Ã33 = 0; it is the portion of the curve C = 0 with t > tP ,
where P = (1.902621271, 1.098478903) is the intersection point between C = 0

and Ã33 = 0. In order to have m2 > 0 we need that −Ã11Ã33 + Ã13Ã31 and Ã12

have the same sign. In the region of C = 0 where Ã33 > 0 we also have Ã12 > 0
therefore we need −Ã11Ã33 + Ã13Ã31 > 0. This corresponds to the portion of the
curve C = 0 with t < tQ, where Q = (2.419489969, 1.328380127) is the intersection

point between C = 0 and −Ã11Ã33 + Ã13Ã31 = 0. Thus the set of (t, s) on the
curve C = 0 that yields m1, m2, m4 > 0 is given by the portion of C = 0 with
tP < t < tQ. Note that for each pair (t, s) on C = 0 with tP < t < tQ there exists
a unique central configuration. Also note t = tP corresponds to the masses m2, m4
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0.5

s

1

0 1.5

t

31

2

0

2

1.5

0.5

2.5

-A11A33+A31A13=0
~ ~~~

A33=0
~

-

+

-  +

-  + +  -

A12=0
~

-   +

C=0

P

Q

Figure 7. The curves C = 0, Ã33 = 0, Ã12 = 0, −Ã11Ã33 +
Ã13Ã31 = 0.

being infinite, and t = tQ corresponds to the mass m2 = 0, so for these values of t
we do not obtain central configurations.

Now we analyze the special cases Ã33 = 0 and Ã12 = 0.
We have Ã33 = 0 if and only if R24 = R45, i.e., m2, m4, m5 form an equilateral

triangle. In this case the equation (17) becomes Ã31m1 = 0 with the only solution
m1 = 0 since A31 = (R34 − R14)∆124 6= 0. There are no central configurations of
this special type.

We have Ã12 = 0 if and only if R24 = 1, i.e., m1, m3, m4, m5 lie on a unit circle
centered at m2, i.e. s2 + t2 = 1. The equations (16) and (17) become

(

1

23
− 1

(2 + 2s)3/2

)

m1 +

(

1

(2 + 2s)3/2
− 1

(2s)3

)

(s)m4 = 0,(18)

(

1

(2 + 2s)3/2
− 1

(2 − 2s)3/2

)

m1 −
(

1 − 1

(2s)3

)

(2s)m4 = 0.(19)

Note that the system does not depend on m2. The condition to have a non-trivial
solution in (m1, m4) is that the determinant is zero, which reduces to

l(s) = −
(

1
23 − 1

(2+2s)3/2

)(

1 − 1
(2s)3

)

(2s)

−
(

1
(2+2s)3/2

− 1
(2s)3

)(

1
(2+2s)3/2

− 1
(2−2s)3/2

)

= 0.

However for 0 < s < 1 the function l(s) is strictly negative, see Figure 8. There are
no central configurations of this special type. The conclusion of this section is that
the only central configurations of the type considered in this section are trapezoids
with the sides m1m3 and m4m5 parallel, and m2 at the midpoint of the side m1m3.
These trapezoids form a continuous family corresponding to the portion between
the points P and Q of the curve C = 0 shown in Figure 7.

5. Proof of statement (d) of Theorem 1.1

We consider a symmetric stacked configuration of five bodies, in which m1, m2, m3

are collinear with m1 = m3 and m2 is at the middle of the line formed by m1, m3,
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Figure 8. The graph of l(s).

m1 m2 m3

m5

m4

1 1

Figure 9. An impossible five body central configuration symmet-
ric with respect to the perpendicular bisector of m1m3.

while the masses m4, m5, are located on the perpendicular bisector of the line
formed by m1, m3. Note that the symmetry of this case does not impose that
m4 = m5.

There are two choices:

(i) m4, m5 are on the same side of the line connecting m1 and m3,
(ii) m4, m5 are on opposite sides of the line connecting m1 and m3.

Case (i) violates the Perpendicular Bisector Theorem (Theorem 3.1), since the
line segment connecting m1 and m2 together with its perpendicular bisector defines
two open cones with the open cone corresponding to quadrants one and three con-
taining some masses and the open cone corresponding to quadrants two and four
containing no mass. See Fig. 10. So this configuration is impossible.

Case (ii) yields the following equations.

f12 := m4(R14 − R24)∆124 + m5(R15 − R25)∆125 = 0,(20)

f14 := m2(R12 − R42)∆142 + m3(R13 − R43)∆143 + m5(R15 − R45)∆145 = 0,(21)

f15 := m2(R12 − R52)∆152 + m3(R13 − R53)∆153 + m4(R14 − R54)∆154 = 0.(22)

Note that f13 = f24 = f25 = f45 = 0, f23 = f12, f34 = f14, and f35 = f15.
We introduce the parameters t equal to the distance from m4 to m2 and u equal to

the distance from m5 to m2. Then R14 = R34 = 1
(1+t2)3/2

, R15 = R35 = 1
(1+u2)3/2

,

R24 = 1
t3 , R25 = 1

u3 , and R45 = 1
(u+t)3 , while R12 = R23 = 1, R13 = 1

23 . We

also have ∆124 = −∆142 = t, ∆152 = −∆125 = u, ∆143 = −2t, ∆153 = 2u,
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m1 m2 m3

m5

m4

1 1

t

u

Figure 10. An impossible five body central configuration sym-
metric with respect to the perpendicular bisector of m1m3.

∆154 = −∆145 = u + t. Rewriting (20), (21), (22) in terms of t, u yields:

B31m4 − B32m5 = 0,(23)

B11m1 + B12m2 + B13m5 = 0,(24)

B21m1 + B22m2 + B23m4 = 0,(25)

where

B31 = t(
1

(1 + t2)3/2
− 1

t3
),(26)

B32 = u(
1

(1 + u2)3/2
− 1

u3
),(27)

B11 = (2t)(
1

23
− 1

(1 + t2)3/2
),(28)

B12 = t(1 − 1

t3
),(29)

B13 = (u + t)(
1

(1 + u2)3/2
− 1

(u + t)3
),(30)

B21 = (2u)(
1

23
− 1

(1 + u2)3/2
),(31)

B22 = u(1 − 1

u3
),(32)

B23 = (u + t)(
1

(1 + t2)3/2
− 1

(u + t)3
).(33)

If t = u we are back to Case 1.
We assume t 6= u. We use (23) to eliminate m4 and m5 in (24) and (25) and

then solve for m2 in terms of m1. Then we substitute the expression for m2 in (24)
and (25) and solve for m4 and m5. We obtain

m2 =
−B11B23B32 + B21B13B31

B12B23B32 − B22B13B31
m1,(34)

m5 = −B11(B12B23B32 − B22B13B31) + B12(−B11B23B32 + B21B13B31)

B13(B12B23B32 − B22B13B31)
m1,(35)

m4 = −B21(B12B23B32 − B22B13B31) + B22(−B11B23B32 + B21B13B31)

B23(B12B23B32 − B22B13B31)
m1.(36)
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m2 top=0

m2 bot=0

m2 top=0

t

u

m2 top=0

m4 top=0

m4 top=0

m4 top=0

m5 top=0

m5 top=0

m5 top=0

m5 bot=0

m4 bot=0

Figure 11. The curves corresponding to m2 top = 0, m2 bot = 0,
m5 top = 0, m5 bot = 0, m4 top = 0, m4 bot = 0. The notation
is defined in (37).

m2 top=0

m2 top=+

m2 top=−

m2 bot=0

m2 bot=−

m2 bot=+

m2 top=0

m2 top=0

m2 top=+

m2 top=−

t

u

Figure 12. The curves corresponding to m2 top = 0, m2 bot = 0,
and the signs of m2 top and m2 bot off these curves. The shaded
region represents the (t, u)-values where m2 > 0. The notation is
defined in (37).
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m4 top=0

m4 top=−

m4 top=+

m4 top=0

m4 top=0

m4 top=−

m4 top=+

m4 top=+

m4 top=−

m4 top=− m4 top top=+

B23=0
B23=−

B23=−

B23=+
B23=+

t

u

Figure 13. The curves corresponding to m4 top = 0, B23 = 0,
and the signs of m4 top and B23 off these curves. The shaded
region represents the (t, u)-values where m4 > 0. The notation is
defined in (37) and B23 is given by (33).

m5 bot=0

m5 top=+m5 top

m5 top=0

m5 top=0

m55 top=+

m5 top=0

m5 top=+

m5 top=−

B13 =−

B13=+

m5 top=−

m5 top=+

B13=− 13=+

m5 top=+

t

u

Figure 14. The curves corresponding to m5 top = 0, B13 = 0,
and the signs of m5 top and B13 off these curves. The shaded
region represents the (t, u)-values where m5 > 0. The notation is
defined in (37) and B13 is given by (30).
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In order to have positive solutions in m2, m5, m4 we need that the top and bottom
of each fraction in (34), (35), (36) have the same sign. The curves corresponding
to letting the top and bottom of each fraction in (34), (35), (36) equal to 0 divide
the parameter space t > 0, u > 0 into certain regions corresponding to different
combinations of signs. See Figure 11. We denote

(37)

m2 top = −B11B23B32 + B21B13B31,
m2 bot = B12B23B32 − B22B13B31,
m4 top = −B21(B12B23B32 − B22B13B31)

−B22(−B11B23B32 + B21B13B31),
m4 bot = B23(B12B23B32 − B22B13B31),
m5 top = −B11(B12B23B32 − B22B13B31)

−B12(−B11B23B32 + B21B13B31),
m5 bot = B13(B12B23B32 − B22B13B31).

The region of m4 bot > 0 consists of the intersection between the regions B23 > 0
and m2 bot > 0 union with the intersection between the regions B23 < 0 and
m2 bot < 0. Similarly, the region of m5 bot > 0 consists of the intersection between
the regions B13 > 0 and m2 bot > 0 union with the intersection between the regions
B13 < 0 and m2 bot < 0. For each of the expressions of m2, m5, m4 in (34), (35),
(36) we plot the corresponding curves and shadow the regions where m2 > 0,
m5 > 0, m4 > 0, respectively. The intersections of all of the shadowed regions,
corresponding to the region in the parameter space t > 0, u > 0 where m2 > 0,
m5 > 0 and m4 > 0, is the empty set. See Figure 12, Figure 14, and Figure 13. In
conclusion, there is no central configuration of this type (except for the special case
u = t, already discussed in Case 1).

6. Conclusions

In this paper we have studied study stacked, symmetric, planar, central config-
urations of five bodies of the following type: three bodies are collinear, forming an
Euler central configuration, with the two bodies at the extremities having equal
masses and being placed symmetrically with respect to the third body in the mid-
dle; the two other bodies are placed symmetrically, either with respect to the line
containing the three bodies, or with respect to the middle body in the collinear con-
figuration, or with respect to the perpendicular bisector of the segment containing
the three bodies. We have found the following possible configurations: a rhombus
with four masses at the vertices and a fifth mass in the center, and a trapezoid with
four masses at the vertices and a fifth mass at the midpoint of one of the parallel
sides.

It appears that the trapezoidal configuration describe above answers affirmatively
a problem attributed to Jeff Xia on whether on not there exist non-trivial five body
central configurations where three masses are on a line.

In a future work we plan to investigate stacked central configurations of five
bodies obtained by adding two bodies to a collinear Euler configuration with no
symmetry assumptions.
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[7] J.M. Cors, J. Llibre, and M. Ollé. Central configurations of the planar coorbitalsatellite
problem. Celestial Mechanics and Dynamical Astronomy, 89(4):319–342, 2004.
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