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Abstract

We give a new, short proof of the regularity away from the nuclei of the electronic
density of a molecule obtained in [FHHS1, FHHS2]. The new argument is based on
the regularity properties of the Coulomb interactions underlined in [KMSW] and on
well-known elliptic technics.
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1 Introduction.

For the quantum description of molecules, it is very useful to study the so-called electronic
density and, in particular, its regularity properties. This has be done for molecules with
fixed nuclei: see [FHHS1, FHHS2, FHHS3] for details and references. The smoothness and
the analyticity of the density away from the nuclei are proved in [FHHS1] and [FHHS2]
respectively. In this paper, we propose an alternative proof.

Let us recall the framework and the precise results of [FHHS1, FHHS2]. We consider a
molecule with N moving electrons (N ≥ 2) and L fixed nuclei. While the distinct vectors
R1, · · · , RL ∈ R3 denote the positions of the nuclei, the positions of the electrons are given
by x1, · · · , xN ∈ R3. The charges of the nuclei are given by the positive Z1, · · · , ZL and
the electronic charge is −1. In this picture, the Hamiltonian of the system is

H :=
N∑
j=1

(
−∆xj

−
L∑
k=1

Zk
|xj −Rk|

)
+

∑
1≤j<j′≤N

1

|xj − xj′ |
+ E0 (1.1)

where E0 =
∑

1≤k<k′≤L

ZkZk′

|Rk −Rk′|

and −∆xj
stands for the Laplacian in the variable xj. Setting ∆ :=

∑N
j=1 ∆xj

, we define
the potential V of the system as the multiplication operator satifying H = −∆ + V .
Thanks to Hardy’s inequality

∃c > 0 ; ∀f ∈W1,2(R3) ,
∫

R3

(
|t|−1 |f(t)|

)2
dt ≤ c

∫
R3
|∇f(t)|2 dt , (1.2)

one can show that V is ∆-bounded with relative bound 0 and that H is self-adjoint on the
domain of the Laplacian ∆, namely W2,2(R3N) (see Kato’s theorem in [RS], p. 166-167).
Let ψ ∈W2,2(R3N) \ {0} and E ∈ R such that Hψ = Eψ. Actually E is smaller than E0

by [FH]. The electronic density associated to ψ is the following L1(R3)-function

ρ(x) :=
N∑
j=1

∫
R3(N−1)

∣∣∣ψ(x1, · · · , xj−1, x, xj, · · · , xN)
∣∣∣2 dx1 · · · dxj−1dxj · · · dxN .

Here we used N ≥ 2. The regularity result is the following

Theorem 1.1. [FHHS1, FHHS2]. The density ρ is real analytic on R3 \ {R1, · · · , RL}.

Remark 1.2. In [FHHS1], it is proved that ρ is smooth on R3\{R1, · · · , RL}. This result
is then used in [FHHS2] to derive the analyticity.

Now let us sketch the new proof of Theorem 1.1, the complete proof and the notation
used are given in Section 2. We consider the almost everywhere defined L2-function

ψ̃ : R3 3 x 7→ ψ(x, ·, · · · , ·) ∈W2,2(R3(N−1)) (1.3)

and denote by ‖ · ‖ the L2(R3(N−1))-norm. By permutation of the variables, it suffices to
show that the map R3 3 x 7→ ‖ψ̃(x)‖2 belongs to Cω(R3 \ {R1, · · · , RL}; R), the space of
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real analytic functions on R3 \ {R1, · · · , RL}. We define the potentials V0, V1 by

V = V0 + V1 with V0(x) = E0 −
L∑
k=1

Zk
|x−Rk|

∈ Cω(R3 \ {R1, · · · , RL}; R) . (1.4)

We view the function ψ̃ as a distributional solution in D′(R3; W2,2(R3(N−1))) of

−∆xψ̃ + Q(x)ψ̃ = 0 , (1.5)

where the x-dependent operator Q(x) ∈ B := L(W2,2(R3(N−1)); L2(R3(N−1))) is given by

Q(x) = −∆x′ + V0 − E + V1 with ∆x′ =
N∑
j=2

∆xj
. (1.6)

Considering (1.5) in a small enough neighbourhood Ω of some x0 ∈ R3 \ {R1, · · · , RL},
we pick from [KMSW] a x-dependent unitary operator Ux0(x) on L2(R3(N−1)) such that

W : Ω 3 x 7→ Ux0(x)V1(x)Ux0(x)−1 ∈ B (1.7)

belongs to Cω(Ω;B). It turns out that P0 = Ux0(−∆x−∆x′)U
−1
x0

is an elliptic differential
operator in x with analytic, differential coefficients in B. Applying Ux0 to (1.5) and setting
ϕ = Ux0ψ̃, we obtain (

P0 + W (x) + V0(x) − E
)
ϕ = 0 . (1.8)

Since Ux0(x) is unitary on L2(R3(N−1)), ‖ψ̃(x)‖ = ‖ϕ(x)‖. Thus, it suffices to show that
ϕ ∈ Cω(Ω; L2(R3(N−1))). Using (1.8), a parametrix of the operator P0 +W + V0, we show
by induction that, for all k, ϕ ∈Wk,2(Ω; W2,2(R3(N−1))). Thus ϕ ∈ C∞(Ω; W2,2(R3(N−1))).
Finally we can adapt the arguments in [H1] p. 178-180 to get ϕ ∈ Cω(Ω; W2,2(R3(N−1))),
yielding ϕ ∈ Cω(Ω; L2(R3(N−1))).

The main idea in the construction of the unitary operator Ux0 is to change, locally in
x, the variables x2, · · · , xN in a x-dependent way such that the x-dependent singulari-
ties 1/|x − xj| becomes locally x-independent (see Section 2). In [KMSW], where this
clever method was introduced, the nuclei positions play the role of the x variable and the
x2, · · · , xN are the electronic degrees of freedom. The validity of the Born-Oppenheimer
approximation is proved there for the computation of the eigenvalues and eigenvectors
of the molecule. We point out that this method is the core of a recently introduced,
semiclassical pseudodifferential calculus adapted to the treatment of Coulomb singulari-
ties in molecular systems, namely the twisted h-pseudodifferential calculus (h being the
semiclassical parameter). This calculus is due to A. Martinez and V. Sordoni in [MS].

As one can see in [KMSW, MS], the above method works in a larger framework. So do
Theorem 1.1 and our proof. For instance, we do not need the positivity of the charges
Zk, the fact that E < E0, and the precise form of the Coulomb interaction. We do not
use the self-adjointness (or the symmetry) of the operator H. We could replace in (1.1)
each −∆xj

by |i∇xj
+ A(x)|2, where A is a suitable, analytic, magnetic vector potential.

We could also add a suitable, analytic exterior potential.
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Let us now compare our proof with the one in [FHHS1, FHHS2]. Here we only use (al-
most) classical arguments of elliptic regularity. In [FHHS1, FHHS2], the elliptic regularity
is essentially replaced by some Hölder continuity regularity result on ψ. The authors in-
troduced an adapted, smartly chosen variable w.r.t. which they can derivate ψ. Here the
x-dependent change of variables produces regularity with respect to x. As external tools,
we only exploit basic notions of pseudodifferential calculus, the rest being elementary. In
[FHHS1, FHHS2], a general, involved regularity result from the literature on “PDE” is
an important ingredient of the arguments. We believe that, in spirit, the two proofs are
similar. The shortness and the relative simplicity of the new proof is due to the clever
method borrowed from [KMSW], which transforms the singular potential V1 in an analytic
function with values in B.

Acknowledgment: The author is supported by the french ANR grant “NONAa” and by
the european GDR “DYNQUA”. He thanks Vladimir Georgescu, Sylvain Golénia, Hans-
Henrik Rugh, and Mathieu Lewin, for stimulating discussions.

2 Details of the proof.

Here we complete the proof of Theorem 1.1, sketched in Section 1.

Notation and basic facts. For a function f : Rd × Rn 3 (x,y) 7→ f(x,y) ∈ Rp,
let dxf be the total derivative of f w.r.t. x, by ∂αx f with α ∈ Nd the corresponding
partial derivatives. For α ∈ Nd and x ∈ Rd, Dα

x := (−i∂x)α := (−i∂x1)
α1 · · · (−i∂xd

)αd ,
Dx = −i∇x, x

α := xα1
1 · · ·xαd

d , |α| := α1+· · ·+αd, α! := (α1!) · · · (αd!), |x|2 = x2
1+· · ·+x2

d,
and 〈x〉 := (1 + |x|2)1/2. If A is a Banach space and O an open subset of Rd, we denote
by C∞c (O;A) (resp. C∞b (O;A), resp. Cω(O;A)) the space of functions from O to A
which are smooth with compact support (resp. smooth with bounded derivatives, resp.
analytic). Let D′(O;A) denotes the topological dual of C∞c (O;A). We use the traditional
notation W k,2(O;A) for the Sobolev spaces of L2(O;A)-functions with k derivatives in
L2(O;A) when k ∈ N and for the dual of W−k,2(O;A) when −k ∈ N. If A′ is another
Banach space, we denote by L(A;A′) the space of the continuous linear maps from A to
A′ and set L(A) = L(A;A). For A ∈ L(A) with finite dimensional A, AT denotes the
transpose of A and DetA its determinant. By the Sobolev injections,⋂

k∈N
W k,2(O;A) ⊂ C∞(O;A) . (2.1)

Denoting by ‖·‖A the norm of A, it is well-known (cf. [H3]) that a function u ∈ C∞(O;A)
is analytic if and only if, for any compact K ⊂ O, there exists some C > 0 such that

∀α ∈ Nd , sup
x∈K

∥∥∥(Dα
xu)(x)

∥∥∥
A
≤ C |α|+1 · (α!) . (2.2)

For convenience, we setWk = Wk,2(R3(N−1)), for k ∈ N. Recall that B = L(W2;W0). Let
B′ = L(W0;W2), B0 = L(W0), and B2 = L(W2).

Construction of Ux0 (see [KMSW, MS]). Let τ ∈ C∞c (R3; R) such that τ(x0) = 1
and τ = 0 near Rk, for all k ∈ {1; · · · ;L}. For x, s ∈ R3, we set f(x,s) = s+ τ(s)(x−x0).
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Notice that

∀(x; s) ∈ (R3)2 , f(x,x0) = x and f(x,s) = s if s 6∈ supp τ . (2.3)

Since (dsf)(x,s).s′ = s′ + 〈∇τ(s), s′〉(x − x0), we can choose a small enough, relatively
compact neighborhood Ω of x0 such that

∀x ∈ Ω , sup
s
‖(dsf)(x,s) − I3‖L(R3) ≤ 1/2 , (2.4)

I3 being the identity matrix of L(R3). Thus, for x ∈ Ω, f(x,·) is a C∞-diffeomorphism on
R3 and we denote by g(x,·) its inverse. By (2.4) and a Neumann expansion in L(R3),

(
(dsf)(x,s)

)−1
= I3 +

( ∞∑
n=1

(
−〈∇τ(s), (x− x0)〉

)n−1
)
〈∇τ(s), ·〉(x− x0) ,

for (x, s) ∈ Ω×R3. Notice that the power series converges uniformly w.r.t. s. This is still
true for the series of the derivatives ∂βs , for β ∈ N3. Since

(dsg)(x, f(x,s)) =
(
(dsf)(x,s)

)−1
and (dxg)(x, f(x,s)) = −(dsg)(x, f(x,s))·(dxf)(x,s),

we see by induction that, for α, β ∈ N3,(
∂αx∂

β
s g
)
(x, f(x,s)) =

∑
γ∈N3

(x− x0)γaαβγ(s) (2.5)

on Ω × R3, with coefficients aαβγ ∈ C∞(R3;L(R3)). For α = β = 0, this follows from
g(x, f(x,s)) = s. Notice that, except for (α, β, γ) = (0,0,0) and for |β| = 1 with (α, γ) =
(0,0), the coefficients aαβγ are supported in the compact support of τ .
For x ∈ R3 and y = (y2, · · · , yN) ∈ R3(N−1), let F (x,y) = (f(x,y2), · · · , f(x,yN)). For
x ∈ Ω, F (x,·) is a C∞-diffeomorphism on R3(N−1) satisfying the following properties:
There exists C0 > 0 such that, for all α ∈ N3, for all x ∈ Ω, for all y, y′ ∈ R3(N−1),

C−1
0 |y − y′| ≤ |F (x,y)− F (x,y′)| ≤ C0|y − y′| , (2.6)

|∂αxF (x,y)− ∂αxF (x,y′)| ≤ C0|y − y′| , (2.7)

and, for |α| ≥ 1 , |∂αxF (x,y)| ≤ C0 . (2.8)

For x ∈ Ω, denote by G(x,·) the inverse diffeomorphism of F (x,·). By (2.5), the functions

Ω× R3(N−1) 3 (x,y) 7→
(
∂αx∂

β
yG
)
(x, F (x,y)) ,

for (α, β) ∈ N3 × N3(N−1), are also given by a power series in x with smooth coefficients
in y. Given x ∈ Ω, let Ux0(x) be the unitary operator on L2(R3(N−1)) defined by

(Ux0(x)θ)(y) = |Det(dyF )(x,y)|1/2θ(F (x,y)) .
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Computation of the terms in (1.8) (cf. [KMSW, MS]). Consider the functions

Ω 3 x 7→ J1(x,·) ∈ C∞c
(
R3(N−1);L(R3(N−1); R3)

)
,

Ω 3 x 7→ J2(x,·) ∈ C∞c (R3(N−1); R3) ,

Ω 3 x 7→ J3(x,·) ∈ C∞b
(
R3(N−1);L(R3(N−1))

)
,

Ω 3 x 7→ J4(x,·) ∈ C∞c (R3(N−1); R3(N−1)) ,

defined by J1(x,y) = (dxG(x,y′))T
(
x, y′ = F (x,y)

)
,

J2(x,y) =
∣∣∣Det dyF (x,y)

∣∣∣1/2Dx

(∣∣∣Det dy′G(x,y′)
∣∣∣1/2)∣∣∣∣

y′=F (x,y)
,

J3(x,y) = (dy′G(x,y′))T
(
x, y′ = F (x,y)

)
,

J4(x,y) =
∣∣∣Det dyF (x,y)

∣∣∣1/2Dy′

(∣∣∣Det dy′G(x,y′)
∣∣∣1/2)∣∣∣∣

y′=F (x,y)
.

Actually, the support of Jk(x,·), for k 6= 3, is contained in the x-independent, compact
support of the function τ (cf. (2.3)). So do also the supports of the derivatives ∂αx∂

β
y J3 of

J3, for |α| + |β| > 0. Thanks to (2.5), the Jk(·,y)’s can also be written as a power series
in x with smooth coefficients depending on y. Now

Ux0∇xU
−1
x0

= ∇x + J1∇y + J2 and Ux0∇x′U
−1
x0

= J3∇y + J4 . (2.9)

In particular, Ux0(x) preserves W2,2(R3(N−1)), for all x ∈ Ω. Furthermore,

P0 = Ux0

(
−∆x − ∆x′

)
U−1
x0

= −∆x + J1(x; y;Dy) ·Dx + J2(x; y;Dy) , (2.10)

where J2(x; y;Dy) is a scalar differential operator of order 2 and J1(x; y;Dy) is a column
vector of 3 scalar differential operators of order 1. More precisely, the coefficients of
J1(x; y;Dy) and of J2(x; y;Dy) + ∆y are compactly supported, uniformly w.r.t. x. In
particular, these scalar differential operators belong to B. By (2.5), they are given on Ω
by a power series of x with coefficients in B and therefore are analytic functions on Ω
with values in B (cf. [H3]). Next, we look at W defined in (1.7). By (2.3), for j 6= j′ in
{2; · · · ;N}, for k ∈ {1; · · · ;L}, and for x ∈ Ω,

Ux0(x)
(
|x− xj|−1

)
U−1
x0

(x) = |f(x;x0)− f(x; yj)|−1 , (2.11)

Ux0(x)
(
|xj −Rk|−1

)
U−1
x0

(x) = |f(x; yj)− f(x;Rk)|−1 , (2.12)

Ux0(x)
(
|xj − xj′|−1

)
U−1
x0

(x) = |f(x; yj)− f(x; yj′)|−1 . (2.13)

Lemma 2.1. The potential W in (1.7) is an analytic function from Ω to B.

Proof: We prove the stronger result: W is analytic from Ω to B̃ := L(W1;W0). Notice
that W is a sum of terms of the form (2.11), (2.12), and (2.13). We show the regularity
of (2.11). Similar arguments apply for the other terms. We first recall the arguments in
[KMSW], which proves the C∞ regularity.
Using the fact that dx(f(x,x0)− f(x,yj)) does not depend on x,

Dα
x

(
|f(x,x0)− f(x,yj)|−1

)
= (τ(x0)− τ(yj))

|α|
(
Dα 1

| · |

)
(f(x,x0)− f(x,yj))
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for x0 6= yj. By (2.6) and (2.7), we see that, for all α ∈ N3 and for x0 6= yj,∣∣∣Dα
x

(
|f(x,x0)− f(x,yj)|−1

)∣∣∣ ≤ C
2|α|
0 |f(x,x0)− f(x,yj)||α|

∣∣∣∣Dα 1

| · |

∣∣∣∣(f(x,x0)− f(x,yj))

≤ C
2|α|
0 C(α!) · |f(x,x0)− f(x,yj)|−1 ,

thanks to

∀α ∈ N3 , ∃C > 0 , ∀y ∈ R3 \ {0} ,
∣∣∣∣Dα 1

| · |

∣∣∣∣(y) ≤ C(α!)

|y||α|+1
. (2.14)

Since |x′|−1 is ∇x′-bounded by (1.2) and since U(x0)(x) is unitary, |f(x,x0) − f(x,yj)|−1

is U(x0)(x)∇x′(U(x0)(x))−1-bounded with the same bounds. But, by (2.9),

U(x0)(x)∇x′U(x0)(x)−1
(
−∆y + 1

)−1/2

is uniformly bounded w.r.t. x. Thus∥∥∥Dα
x

(
|f(x,x0)− f(x,yj)|−1

)∥∥∥
B̃
≤ C1C

2|α|
0 C(α!) , (2.15)

uniformly w.r.t. α ∈ N3 and x ∈ Ω. Therefore W is a distribution on Ω the derivatives of
which belong to L∞(Ω), thus to L2(Ω). By (2.1), W is smooth.
To show the analyticity of W , we just add the following improvement of (2.14), that we
prove in appendix below. There exists K > 0 such that

∀α ∈ N3 , ∀y ∈ R3 \ {0} ,
∣∣∣∣Dα 1

| · |

∣∣∣∣(y) ≤ K |α|+1(α!)

|y||α|+1
. (2.16)

Now the l.h.s. of (2.15) is, for α ∈ N3 and x ∈ Ω, bounded above by C1C
2|α|
0 K |α|+1(α!) ≤

K
|α|+1
1 (α!), for some K1 > 0. This yields the result by (2.2).

Smoothness. Now we view (1.8) as an “elliptic” differential equation w.r.t. x with
coefficients in B and want to follow usual arguments of elliptic regularity to prove the
smoothness of ϕ. In fact, we shall use the basic pseudodifferential calculus in [H2] (p.
65-75). Since the symbol of P0 +W + V0 takes its values in B, which is not an algebra of
operators, we verify the validity of the basic calculus in our situation.
By (2.10), P0 +W + V0 is a differential operator in the x variable the symbol of which

p(x; ξ) = |ξ|2 + J1(x; y;Dy) · ξ + J2(x; y;Dy) + W (x) + V0(x) (2.17)

and belongs to the Hörmander class S(m2, g;B) on Ω× R3 with values in B, where

m(x; ξ) =
(
|ξ|2 + 1

)1/2
and g = dx2 + dξ2/〈ξ〉2 .

We can check that the basic calculus of [H2] actually works with the symbols classes
S(m′, g;B), S(m′, g;B′), S(m′, g;B0), and S(m′, g;B2), for any (scalar) order function m′

on Ω × R3. In particular, we have the following properties: We can give a sense to
asymptotic sums of symbols in S(m′, g;A), for A ∈ {B,B′,B0,B2}. The composition of
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operators a1(x,Dx)a2(x,Dx) = b(x,Dx) with b ∈ S(m′, g;B0) if a1, a2 ∈ S(m′, g;B0) and
if a1 ∈ S(m′, g;B) and a2 ∈ S(m′, g;B′), also with b ∈ S(m′, g;B2) if a1, a2 ∈ S(m′, g;B2)
and if a1 ∈ S(m′, g;B′) and a2 ∈ S(m′, g;B). The adjoint of an operator b(x,Dx) is
b∗(x,Dx) with b∗ ∈ S(m′, g;Bj) if b ∈ S(m′, g;Bj), b∗ ∈ S(m′, g;B′) if b ∈ S(m′, g;B), and
b∗ ∈ S(m′, g;B) if b ∈ S(m′, g;B′). For A ∈ {B,B′,B0,B2}, k ∈ Z, and a ∈ S(mk, g;A),

∀` ∈ Z , a(x,Dx) ∈ L
(
W`,2(Ω;A); W`−k,2(Ω;A)

)
. (2.18)

By the proof of Lemma 2.1, W (x)(−∆y + 1)−1/2 is uniformly bounded on Ω. By the
properties of J1 and J2, so are ξ · J1(x; y;Dy)(|ξ|2 − ∆y + 1)−1/2 and (J2(x; y;Dy) +
∆y)(−∆y + 1)−1/2 on Ω × R3. Thus, we can find a ∈ (0; 1) and b ∈ R such that, for all
(x, ξ) ∈ Ω× R3, for all u ∈ W2,

‖Tu‖W0 ≤ a‖(|ξ|2 −∆y + 1)u‖W0 + b‖u‖W0

with T = ξ · J1(x; y;Dy) + (J2(x; y;Dy) + ∆y) + W (x) + V0(x) .

By Theorem 4.11, p. 291 in [K], there exists C > 0 such that, for all (x, ξ) ∈ Ω × R3,
p(x, ξ) is bounded below by −C + 1. In particular, (C + p)−1 is a well-defined symbol in
S(m−2, g;B′) on Ω× R3 (this is the “ellipticity” we use).
By composition, (C + p)−1(x,Dx) · (p+C)(x,Dx) = 1− q(x,Dx) with q ∈ S(m−1, g;B2).
Defining the symbols qk in S(m−k, g;B′) by qk(x,Dx) = q(x,Dx)

k · (C + p)−1(x,Dx) and
denoting by q∞ an asymptotic sum of the symbols qk, we have

Q(P0 +W + V0 + C) = 1 +R with (2.19)

Q := q∞(x,Dx) ∈ L
(
Wk,2(Ω;B′); Wk+2,2(Ω;B′)

)
, (2.20)

R ∈ L
(
Wk,2(Ω;B2); Wk+`,2(Ω;B2)

)
, (2.21)

for all k, ` ∈ N (cf. [H2]).
Starting with ϕ ∈W0,2(Ω;W2) and applying Q to (1.8), we see that ϕ = (E+C)Qϕ−Rϕ
and actually belongs to W2,2(Ω;W2), by (2.19), (2.20), and (2.21). By induction and by
(2.1), we get that ϕ ∈ C∞(Ω;W2). We have recovered the result in [FHHS1]. Note that,
to get it, we need neither the refined bounds (2.16) nor the power series mentioned above
but just use the fact that the functions f, g, F,G are smooth w.r.t. x.

Analyticity. To show that ϕ ∈ Cω(Ω;W2), we adapt the proof of Theorem 7.5.1 in [H1]
for equation (1.8). So we view the latter as Pϕ = 0 where P =

∑
|α|≤2 aαD

α
x with analytic

coefficients aα ∈ B (cf. Lemma 2.1, (1.4), and (2.10)). Applying Dα
x to (2.19) with |α| ≤ 2

and using (2.20) and (2.21), we find C > 0 such that, for all v ∈ C∞c (Ω;W2) and α ∈ N3,

|α| ≤ 2 =⇒ ‖Dα
xv‖L2(Ω;W2) ≤ C‖Pv‖L2(Ω;W0) + C‖v‖L2(Ω;W2) . (2.22)

For ε > 0, let Ωε := {x ∈ Ω; d(x; R3 \Ω) > ε} and, for r ∈ N, denote the L2(Ωε;Wr)-norm
of v by N r

ε (v). As in [H1] (Lemma 7.5.1), we use an appropriate cut-off function, Leibniz’
formula, and (2.22), to find C > 0 such that, for all v ∈ C∞c (Ω;W2), for all ε, ε1 > 0, for
all α ∈ N3 such that |α| ≤ 2,

ε|α|N2
ε+ε1

(
Dα
xv
)
≤ Cε2N0

ε1

(
Pv
)

+ C
∑
|α′|<2

ε|α
′|N2

ε1

(
Dα′

x v
)
. (2.23)



Analyticity of the electronic density, 05-10-2009 9

We used the fact that (2.23) holds true for ε large enough since the l.h.s. is zero. Next we
show that there exists B > 0 such that, for all ε > 0, j ∈ N∗, and α ∈ N3,

|α| < 2 + j =⇒ ε|α|N2
jε

(
Dα
xϕ
)
≤ B|α|+1 . (2.24)

This is done by induction on j following the arguments in [H1]. As explained in [H1],
ϕ ∈ Cω(Ω;W2) follows from (2.24) and (2.2).

A Appendix

Using Cauchy integral formula for analytic functions in several variables (cf. [H3]), we
prove here the following extension of (2.16). For d ∈ N∗, there exists K > 0 such that

∀α ∈ Nd , ∀y ∈ Rd \ {0} ,
∣∣∣∣Dα 1

| · |

∣∣∣∣(y) ≤ K |α|+1(α!)

|y||α|+1
. (A.1)

In dimension d = 1, one can show (A.1) with K = 1 by induction. To treat the general
case, we use Cauchy inequalities for an appropriate analytic function.
Let
√
· denote the analytic branch of the square root that is defined on C \ R−. Take

y ∈ Rd \ {0}. On the polydisc

D =
{
z = (z1, · · · , zd) ∈ Cd ;∀j , |zj| < |y|/(4

√
d)
}
, <

d∑
j=1

(yj + zj)
2 ≥ (7/16)|y|2 > 0 .

Thus the function u : D −→ C given by

u(z) =
1√∑d

j=1(yj + zj)2

is well defined and analytic. Its modulus is bounded above by |y|−14/
√

7. By Cauchy
inequalities (cf. Theorem 2.2.7, p. 27, in [H3]),

∀α ∈ Nd , |∂αz u(0)| ≤ 4

|y|
√

7
· (α!) ·

(
|y|/(4

√
d)
)−|α|

≤ (4
√
d)|α|+1(α!)

|y||α|+1
. (A.2)

Here ∂zj
:= (1/2)(∂<zj

+ i∂=zj
) but it can be replaced by ∂<zj

in the formula since u is
analytic. Now (A.1) follows from (A.2) since, for all α,(

∂α<zu
)

(0) = i|α|
(
Dα 1

| · |

)
(y) .
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[FH] R.G. Froese, I. Herbst: Exponential bounds and absence of positive eigenvalues for
N-body Schrödinger operators. Comm. Math. Phys. 87, 429-447 (1982).
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