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Abstract

In this paper we present a mathematical analysis of the photoelectric effect for one-
electron atoms in the framework of non-relativistic QED. We treat photo-ionization as
a scattering process where in the remote past an atom in its ground state is targeted
by one or several photons, while in the distant future the atom is ionized and the elec-
tron escapes to spacial infinity. Our main result shows that the ionization probability,
to leading order in the fine-structure constant, α, is correctly given by formal time-
dependent perturbation theory, and, moreover, that the dipole approximation produces
an error of only sub-leading order in α. In this sense, the dipole approximation is
rigorously justified.

1 Introduction

Even today, more than 100 years after its discovery by Hertz, Hallwachs and Lenard, the
phenomenon of photoionization is still investigated, both experimentally and theoretically
[4, 1]. This research is driven by novel experimental techniques that allow for the production
of very strong and ultrashort laser pulses. In contrast, the photo electric effect in the early
experiments is produced by weak, non-coherent radiation of high frequency. There is a third
physical regime, where the radiation is weak, of high frequency, and coherent. This regime is
the subject of the present paper. We consider one-electron atoms within the standard model
of non-relativistic QED, and we present a mathematically rigorous analysis of the ionization
process caused by the impact of finitely many photons. Improving on earlier results con-
cerning more simplified models, we show that the probability of ionization, to leading order
in the fine-structure constant, is proportional to the number of photons, and, in the case of
a single photon, it is given correctly by the rules of formal (time-dependent) perturbation
theory. It turns out that the dipole approximation produces an error of subleading order,
which provides a rigorous justification of this popular approximation.

Let’s briefly recall the standard model of one-electron atoms within non-relativistic
QED. More elaborate descriptions may be found elsewhere [20, 31]. States of arbitrarily

1



many transversal photons are described by vectors in the symmetric Fock space

F :=
⊕
n≥0

Sn

[
⊗n L2(R3 × {1, 2})

]
over L2(R3×{1, 2}). Here Sn denotes the projection of L2(R3×{1, 2})n onto the subspace
of all symmetric functions of (k1, λ1), . . . , (kn, λn) ∈ R3×{1, 2}, and S0L

2(R3×{1, 2}) := C.
We shall use Ω to denote the vacuum vector (1, 0, . . .) ∈ F . Nf is the number operator
in F , and Hf = dΓ(ω) denotes the second quantization of multiplication with ω(k) = |k|
in L2(R3 × {1, 2}). See [27], X.7, for the notation dΓ(·) and for an introduction to second
quantization. The creation and annihilation operators a∗(h) and a(h), for h ∈ L2(R3 ×
{1, 2}), are densely defined, closed operators with a∗(h) = a(h)∗ and with

[a∗(h)Ψ](n) =
√
nSn(h⊗Ψ(n−1))

for vectors Ψ = (Ψ(0),Ψ(1), . . .) from the subspace D(N1/2
f ). Here, Ψ(n) denotes the n-

photon component of Ψ.
The system studied in this paper is composed of a non-relativistic, (spinless) quantum

mechanical, charged particle (the electron), and the quantized radiation field which is cou-
pled to the electron by minimal substitution. In addition, there is an external potential V ,
which may be due to a static nucleus. The Hilbert space is thus the tensor product

H := L2(R3)⊗F ,

and the Hamiltonian is of the form

Hα = (p + α
3
2 A(αx))2 + V +Hf (1.1)

= H0 +W,

where H0 = Hel +Hf , Hel = −∆ + V , and W = Hα −H0. The quantized vector potential
A(αx), for each x ∈ R3, is a triple of self-adjoint operators, each of which is a sum of a
creation and an annihilation operator. Explicitly,

A(αx) = a(Gx) + a∗(Gx), Gx(k, λ) :=
κ(k)√
2|k|

ε(k, λ)e−iαk·x, (1.2)

where ε(k, λ) ∈ R3, λ = 1, 2, are orthonormal polarization vectors perpendicular to k, and
κ is an ultraviolet cutoff chosen from the space S(R3) of rapidly decreasing functions. No
infrared cutoff is needed. Here and henceforth, the position of the electron, x ∈ R3, and
the wave vector of a photon, k ∈ R3, are dimensionless and related to the corresponding
dimensionfull quantities X,K by X = (a0/2)x and K = (2α/a0)k, where a0 := ~2/me2

is the Bohr-radius, m > 0 is the mass of the particle, e its charge, and α = e2/~c is the
fine structure constant. It follows that X ·K = αx · k, and in units where ~, c, and four
times the Rydberg energy 2mα2 are equal to unity, the Hamiltonian of a one-electron atom
with static nucleus at the origin takes the form (1.1) with V (x) = −Z/|x|, Z being the
atomic number of the nucleus. For simplicity, we confine ourselves, in this introduction, to
this particular potential V . In nature, α ≈ 1/137, but in this paper α is treated as a free
parameter that can assume any non-negative value.

2



For all α ≥ 0, the Hamiltonian Hα is self-adjoint on D(H0) and its spectrum σ(Hα) is
a half-axis [Eα,∞) [24, 23]. Moreover,

Eα := inf σ(Hα)

is an eigenvalue of Hα, and, at least for α sufficiently small, this eigenvalue is simple [2, 21].
We use Φα to denote a normalized eigenvector associated with Eα. Another important
point in the spectrum of Hα is the ionization threshold Σα, which, for our system, is given
by Σα = inf σ(Hα − V ). In a state vector from the spectral subspace Ran1(−∞,Σα)(Hα),
the electron is exponentially localized in the sense that

‖eβ|x|1(−∞,Σα−ε](Hα)‖ <∞ (1.3)

for all β with β2 < ε [19].
The phenomenon of photo-ionization can be considered as a scattering process, where

in the limit t → −∞, the atom in its ground state is targeted by a (finite) number of
asymptotically free photons, while in the limit t →∞ the atom is ionized in a sense to be
made precise. We begin by discussing incoming scattering states and their properties. To
this end it is convenient to introduce the space L2

ω(R×{1, 2}) of all those f ∈ L2(R×{1, 2})
for which

‖f‖2
ω :=

∑
λ=1,2

∫
|f(k, λ)|2

(
1 + ω(k)−1

)
d3k <∞. (1.4)

Given f ∈ L2
ω(R× {1, 2}), the asymptotic creation operator a∗−(f) is defined by

a∗−(f)Ψ := lim
t→−∞

eiHαta∗(ft)e−iHαtΨ, ft := e−iωtf, (1.5)

and its domain is the space of all vectors Ψ ∈ D(|Hα|1/2) for which the limit (1.5) exists.
This is know to be the case, e.g., for the ground state Ψ = Φα. Moreover, it is known that
a∗−(f1) · · · a∗−(fn)Φα is well defined and that

e−iHαta∗−(f1) · · · a∗−(fn)Φα

= a∗(f1,t) · · · a∗(fn,t)e−iHαtΦα + o(1), (t→ −∞), (1.6)

whenever fi, ωfi ∈ L2
ω(R × {1, 2}) for all i = 1, . . . , n [22]. By (1.6), a∗−(f1) · · · a∗−(fn)Φα

describes a scattering state, which, in the limit t → −∞ is composed of the atom in its
ground state and n asymptotically free photons with wave functions f1, . . . , fn. Results
analogous to those on a∗−(f) hold true for the asymptotic annihilation operators a−(f) [22].

The asymptotic annihilation and creation operators satisfy the usual canonical commu-
tation relations: e.g.

[a−(f), a∗−(g)] = 〈f, g〉 (1.7)

for all f, g ∈ L2
ω(R3 × {1, 2}). Moreover, the ground state Φα is a vacuum vector for

asymptotic annihilation operators in the sense that

a−(f)Φα = 0 for all f ∈ L2
ω(R3). (1.8)
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Hence, if f = (f1,m1, . . . , fn,mn) ∈
[
L2(R3×{1, 2})×N

]n with 〈fi, fj〉 = δij , then it follows
from (1.7) and (1.8) that

a∗−(f)Φα :=
n∏

k=1

1√
mk!

a∗−(fk)mkΦα (1.9)

is a normalized vector in H. All these properties of a−(f), a∗−(f) hold mutatis mutandis
for the asymptotic operators a+(g), a∗+(g) defined in terms of the limit t→ +∞.

We are interested in the probability that e−iHαta∗−(f)Φα describes an ionized atom in
the distant future, but we are not interested in the asymptotic state of the electron or
the radiation field in the limit t → +∞. We therefore shall not attempt to construct
outgoing scattering states describing an ionized atom, which is a difficult open problem.
Instead we base our computation of the probability of ionization on the following reasonable
assumption: the atom described by e−iHαta∗−(f)Φα is either ionized in the limit t→∞, or
else, in that limit, it relaxes to the ground state in the sense that e−iHαta∗−(f)Φα, for t large
enough, is well approximated by a linear combination of vectors of the form

a∗(g1,t) . . . a∗(gn,t)e−iEαtΦα. (1.10)

More precisely, relaxation to the ground state occurs if a∗−(f)Φα belongs to the closure of
the span of all vectors of the form

a∗+(g1) . . . a∗+(gn)Φα = lim
t→+∞

eiHαta∗(g1,t) . . . a∗(gn,t)e−iEαtΦα,

with gi, ωgi ∈ L2
ω(R3 × {1, 2}). Let Hα

+ denote this space and let Pα
+ be the orthogonal

projection onto Hα
+. Then ‖Pα

+a
∗
−(f)Φα‖2 is the probability for relaxation to the ground

state and
1− ‖Pα

+a
∗
−(f)Φα‖2 = ‖(1− Pα

+)a∗−(f)Φα‖2 (1.11)

is the probability of ionization.
The assumption that relaxation to the ground state is the only alternative to ioniza-

tion, is motivated by the conjecture of asymptotic completeness for Rayleigh scattering,
which is the property, that every vector Ψ ∈ H describing a bound state in the sense
that supt ‖eε|x|e−iHαtΨ‖ < ∞ for some ε > 0, will relax the ground state in the limit
t → ∞. In view of (1.3), asymptotic completeness for Rayleigh scattering implies that
Hα

+ ⊇ 1(−∞,Σα)(Hα), which can be proven for simplified models of atoms [30, 8, 18, 14].
The following two theorems will allow us to compute (1.11).

Theorem 1.1. Suppose that f1, . . . , fn ∈ L2(R3×{1, 2}) where
∑2

λ=1 ε(·, λ)fi(·, λ) belongs
to C2

0 (R3\{0},C3) for each i, and let f = (f1, . . . , fn). Then:

a∗−(f)Φα = a∗+(f)Φα − iα3/2

∫ ∞

−∞
2p(s)ϕel ⊗ [A(0, s), a∗(f)]Ω ds+O(α5/2) (1.12)

where p(s) = eiHelspe−iHels and A(0, s) = eiHf sA(0)e−iHf s.
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The first term of (1.12) gives no contribution to the ionization probability (1.11) because
a∗+(f)Φα ∈ Hα

+. The second term is proportional to α3/2 and it is due to scattering processes
where one of the n photons f1, . . . , fn is absorbed. The remainder terms are of order O(α5/2)
and stem from the dipole approximation A(αx) → A(0), from dropping α3A(x)2 and from
ignoring processes of higher order in α3/2. To isolate the contribution of order α3 from
(1.11) using (1.12), we need:

Theorem 1.2. Suppose that Hα
+ ⊇ 1(−∞,Σα)(Hα) for α in a neighborhood of 0, and suppose

that Hel has only negative eigenvalues. Then

lim
α→0

Pα
+ = 1pp(Hel) (1.13)

in the strong operator topology.

Combining Theorem 1.1 and Theorem 1.2 we see that

‖(1− Pα
+)a∗−(f)Φα‖2 = ‖(1− Pα

+)
(
a∗−(f)− a∗+(f)

)
Φα‖2

= ‖1c(Hel)
(
a∗−(f)− a∗+(f)

)
Φα‖2 + o(α3)

= α3‖1c(Hel)
∫ ∞

−∞
p(s)ϕel ⊗ [A(0, s), a∗(f)]Ω ds‖2 + o(α3)

where 1c(Hel) = 1−1pp(Hel), and where the second equation is justified by the α dependence
of a∗−(f)Φα − a∗+(f)Φα as given by (1.12). We are now going to express the coefficient of
α3 in terms of generalized eigenfunctions of Hel, which makes it explicitly computable in
simple cases. A general and sufficient condition for the existence of a complete set of
generalized eigenfunctions is the existence and completeness of a (modified) wave operator
Ω+ associated with Hel. This condition is satisfied for our choice of V . It means that there
exists an isometric operator Ω+ ∈ L(Hel) with RanΩ+ = 1c(Hel)Hel and HelΩ+ = Ω+(−∆).
In particular, the singular continuous spectrum of Hel is empty. Given the wave operator
Ω+ and the fact that (Hel − i)−1〈x〉−2 is a Hilbert-Schmidt operator, it is easy to establish
existence of generalized eigenfunctions ϕq, q ∈ R3, of Hel with the following properties [26]:

(i) The function (x,q) 7→ 〈q〉−2〈x〉−2ϕq(x) is square integrable on R3×R3, in particular
〈x〉−2ϕq ∈ L2(R3) for almost every q ∈ R3. 〈x〉 := (1 + |x|2)1/2.

(ii) If ψ ∈ D(|x|2) then

‖1ac(Hel)ψ‖2 =
∫

R3

| 〈ϕq, ψ〉 |2d3q (1.14)

(iii) If F : R → C is a Borel function, ψ ∈ D(|x|2) ∩D(F (Hel)), and F (Hel)ψ ∈ D(|x|2),
then

〈ϕq, F (Hel)ψ〉 = F (q2) 〈ϕq, ψ〉 (1.15)

for almost every q ∈ R3.

In (ii) and (iii) we use 〈ϕq, ψ〉 to denote the integral
∫
ϕq(x)ψ(x) d3x, which is well defined

by (i) and by the assumption ψ ∈ D(|x|2).
The Theorem 1.1 in conjunction with (i)-(iii) implies the following theorem, which is our

main result specialized to the case of only one asymptotic photon in the incident scattering
state.
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Theorem 1.3. For all f ∈ L2(R3 × {1, 2}) with
∑2

λ=1 ε(·, λ)f(·, λ) ∈ C2
0 (R3\{0},C3),∥∥1ac(Hel)

(
a∗−(f)Φα − a∗+(f)Φα

)∥∥2

= α3

∫
R3

d3p

∣∣∣∣〈ϕq,xϕel〉 ·
∫ ∞

−∞
ei(q

2−E0)t 〈Ω,E(0, t)a∗(f)Ω〉 dt
∣∣∣∣2 +O(α4) (1.16)

as α→ 0. Here, E(0, t) = −i[Hf ,A(0, t)], ϕel is a normalized ground state of Hel and ϕq,
q ∈ R3, is any family of generalized eigenfunction of Hel with properties (i)-(iii) above.

The expression (1.16) for the ionization probability can be understood, on a formal level,
by first order, time-dependent perturbation theory. To this end one considers the transitions
ϕel ⊗ f 7→ ϕq ⊗ Ω, for fixed q ∈ R3, in the interaction picture defined by H0. Then the
time-evolution of state vectors is generated by the time-dependent interaction operator
W (t) = eiH0tWe−iH0t = 2α3/2p(t) ·A(αx, t) + α3A(αx, t)2 with p(t) = eiHeltpe−iHelt and
A(αx, t) = eiH0tA(αx)e−iH0t. In the computation of the transition amplitude to the order
α3/2 one drops α3A(αx, t)2 and one replaces A(αx, t) by A(0, t), which is known as the
dipole approximation. Then, an integration by parts using that

2p(t) =
d

dt
x(t), − ∂

∂t
A(0, t) = E(0, t),

leads to a result for the transition amplitude which agrees with the expression in (1.16)
whose modulus squared is integrated over q ∈ R3. The Theorem 1.3 and its proof justify
this formal derivation and the use of the dipole approximation. Note that αx = X, hence
the ionization probability is of order α3 rather than of order α, as a formal computation,
similar to the one above, in dimension-full quantities would suggest.

We prove a more general result than Theorem 1.3, where the incoming scattering state
may contain several asymptotic photons, and where the external potential V is taken from a
large class of long range potentials. In the case where the asymptotic state at t = −∞ is of
the form (1.9) and each of the photons f1, . . . , fn ∈ L2(R3×{1, 2}) satisfies the hypotheses
of Theorem 1.3, in addition to 〈fi, fj〉 = δij , our result says that

∥∥1ac(Hel)
(
a∗−(f)Φα − a∗+(f)Φα

)∥∥2 = α3
n∑

l=1

mlP
(3)(fl) +O(α4) (1.17)

with

P (3)(fl) :=
∫
R3

d3q

∣∣∣∣〈ϕq,xϕel〉 ·
∫ ∞

−∞
〈Ω,E(0, t)a∗(fl)Ω〉 ei(q

2−E0)tdt

∣∣∣∣2 . (1.18)

The integral with respect to t in (1.18) can be computed explicitly in terms of fl and G0,
and it gives ∫ ∞

−∞
ei(q

2−E0)t 〈Ω,E(0, t)a∗(fl)Ω〉 dt

= iπ

∫
|k|=q2−E0

κ(k)
√

2|k|
∑

λ=1,2

ελ(k, λ)fl(k, λ)dσ(k),
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where dσ(k) is the surface measure of the sphere {k ∈ R3 : |k| = q2 − E0} in R3. The
integration over the spheres with |k| = q2 −E0 expresses the conservation of energy in the
scattering process, and the additivity (1.17) of the ionization probability with respect to the
incoming photons corresponds to the experimental fact, that the number of photo-electrons
is proportional to the intensity of the incoming radiation.

In Section 5 we give a second derivation of α3P3(f) based on a space-time analysis of
the ionization process. This approach, in a slightly different form, was introduced in the
papers [3, 33], and does not assume asymptotic completeness of Rayleigh scattering.

The existence of outgoing scattering state describing an ionized atom and an electron
escaping to spacial infinity is a difficult open problem in the model described above. Only
for V = 0 such states have been constructed so far [25, 5]. Hence it is not possible yet
to study the ionization probability based on transition probabilities between asymptotic
states.

Previously ionization by quantized fields was investigated in [3, 16, 17, 33]. [3] and [33]
are precursors of the present paper on simpler models of atoms and the ionization prob-
ability defined in a different, but equivalent way. In [16, 17] it is shown that a thermal
quantized field leads to ionization in the sense of absence of an equilibrium state of atom
and field.
There is a large host of mathematical results on ionization by classical electric fields:
Schrader and various coauthors study the phenomenon of stabilization by providing upper
and lower bounds on the ionization probability, see [10, 12, 11] and the references therein.
They use the Stark-Hamiltonian with a time dependent electric field E(t) that vanishes
unless 0 ≤ t ≤ τ < ∞. Lebowitz and various coauthors compute the probability of ioniza-
tion by an electric field that is periodic in time; see [7, 29] and references therein. Most of
these papers study one-dimensional Schrödinger operators with a single bound state that
is produced by a δ-potential. Ionization in a three-dimensional model with a δ-potential is
studied in [6].
Acknowledgment: M.G. thanks Vadim Kostrykin for pointing out that it is advantageous
to define ionization as the opposite of binding.

2 Notations and Hypotheses

For easy reference, we collect in this section the definitions, our notations and all hypotheses.
As usual, L2(R3×{1, 2}) denotes the space of square integrable functions f : R3×{1, 2} → C
with inner product

〈f, g〉 :=
∑

λ=1,2

∫
R3

f(k, λ)g(k, λ)d3k.

We recall from the introduction that L2
ω(R3×{1, 2}) consists of those functions f ∈ L2(R3×

{1, 2}) for which the norm ‖f‖ω defined in (1.4) is finite. Regularity assumptions will be
imposed on the vector-valued function

(εf)(k) :=
2∑

λ=1

ε(k, λ)f(k, λ), (2.1)
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rather than on on f(·, 1) and f(·, 2). It is useless to impose smoothness conditions on f(·, λ)
because it is (2.1) that matters and because the polarization vectors ε(k, 1) and ε(k, 2) are
necessarily discontinuous. On the other hand, every square integrable function f : R3 → C3

with k · f(k), for a.e. k ∈ R3, can be approximated, in the L2-sense, by smooth functions
of the form (2.1).

It is convenient to collect a family f1, ..., fN ∈ L2(R3×{1, 2}) of photon wave functions
in an N -tupel f = (f1, ..., fN ). We define

a(f) := a(f1) · · · a(fN )

a∗(f) := a∗(f1) · · · a∗(fN ).

This should not lead to confusion with (1.9), where f also includes occupation numbers.
For the various parts of the interaction operator W = Hα −H0, we use the notations

W dip := 2p ·A(0),

W (1) := 2p ·A(αx),

W (2) := A(αx)2.

It follows that
W = α

3
2W (1) + α3W (2) = α

3
2W dip +O(α

5
2 )

where the last equation is purely formal, but we shall give it a rigorous meaning in this
paper. The Hamiltonian

Hα = H0 +W

is self-adjoint on the domain of −∆+Hf provided that V is infinitesimally operator bounded
with respect to −∆, [23, 24]. This is the case, e.g., if V is the sum of Coulomb potentials
due to static nuclei; all our results are valid for such V . Nonetheless, it is useful to identify
the properties of V that are essential for our analysis. From now on, we shall only assume
the following hypotheses on V :

Hypotheses: Both V and ∇V belong to ∈ L2
loc(R3), lim|x|→∞ V (x) = 0, and there exist

constants µ > 0 and R > 0 such that for |β| = 1, 2 we have

|∂β
xV (x)| ≤ |x|−|β|−µ, if |x| > R.

Moreover, E0 := inf σ(Hel) < 0. We define e1 := inf(σ(Hel)\{E0}).

From these Hypotheses it follows that σess(Hel) = [0,∞), that σsc(Hel) = ∅ and that E0

is a simple eigenvalue. In fact, the decay assumptions on V imply long-range asymptotic
completeness [9], which is what we use to infer the existence of a complete set of generalized
eigenfunctions. All this remains true if a singular short-range potential is added to Hel.

The time evolution of an operator B in the interaction picture will be denoted by B(t),
that is,

B(t) := eiH0tBe−iH0t,

and Bt := B(−t). Note that p(t) = eiHeltpe−iHelt, A(0, t) = eiHf tA(0)e−iHf t and that
a#(f

t
) = e−iH0ta#(f)eiH0t = a#(f)t.
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3 Commutator estimates and scattering states

The main purpose of this section is to establish bounds on the commutators [W (j), a∗(f
t
)]

applied to Φα for W (j) ∈ {W (1),W (2),W dip}. We are interested in the decay as |t| → ∞
and in the dependence on α. Typically, our estimates are valid for α ≤ α̃, where α̃ is
defined in Proposition A.3. As a simple application of our decay estimates in t, we will
obtain existence of the scattering states

a∗±(f)Φα = lim
t→±

eitHαa∗(f
t
)e−itHαΦα,

which was already established in [22] in larger generality. Here f
t

= (f1,t, ..., fN,t) and
fj,t := e−itωfj . Given l ∈ {1, ..., N}, we write

a∗(f
[l],t

) := a∗(f1,t) · · · a∗(fl−1,t)A(αx)a∗(fl+1,t) · · · a∗(fN,t),

a∗(f
(l),t

) := a∗(f1,t) · · · a∗(fl−1,t)a∗(fl+1,t) · · · a∗(fN,t).

For x ∈ R3, 〈x〉 := (1 + |x|2)1/2.

Lemma 3.1. Suppose that f ∈ L2(R3 × {1, 2}) with εf ∈ Cn
0 (R3\{0},C3) for a given

n ∈ N. Then there exists is a constant c1,n = c1,n(f) such that

|〈G0, ft〉| ≤ c1,n
1

1 + |t|n
, (3.1)

|〈Gx, ft〉| ≤ c1,n
1 + (α|x|)n

1 + |t|n
for all x ∈ R3, (3.2)

|〈Gx −G0, ft〉| ≤ c1,n
α|x|〈αx〉n

1 + |t|n
for all x ∈ R3. (3.3)

Proof. Estimate (3.1) follows from (3.2). We next prove (3.2). By a stationary phase
analysis of

〈Gx, ft〉 =
∫
R3

d3k
κ(k)√
2ω(k)

eiαk·x−itω(k)(εf)(k) (3.4)

we obtain |〈Gx, ft〉| ≤ Cn|t|−n for α|x| ≤ |t|/2, [28] Theorem XI.14. It follows that

|〈Gx, ft〉|1{2α|x|≤|t|} ≤ Cn

|t|n

|〈Gx, ft〉|1{2α|x|>|t|} ≤ C

(
2α|x|
|t|

)n

where C := supt∈R,x∈R3 |〈Gx, ft〉| <∞. This proves (3.2). To prove (3.3) we write

〈Gx −G0, ft〉 =
∫
R3

e−itω(k)Fx(k)d3k

where
Fx(k) = iαk · x κ(k)√

2ω(k)
(εf)(k)g(αk · x)
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and g : R → C denotes the real-analytic function given by g(s) = (eis − 1)/(is) for s 6= 0.
g and all its derivatives are bounded, and by assumption on f , Fx ∈ C∞0 (R3\{0},C3) for
each x. It follows that

sup
x,k∈R3,x6=0

∣∣∣∂β
kFx(k)

∣∣∣|x|−1〈αx〉−|β| <∞,

which implies (3.3), again by stationary phase arguments.

Lemma 3.2. Suppose that εf1, ..., εfN ∈ Cn
0 (R3\{0},C3) for a given n ∈ N, and let α̃ be

defined by Proposition A.3. Then there exist constants α̃ > 0 and c2,n = c2,n(f), such that
for all α ≤ α̃, t ∈ R, and W (j) ∈ {W (1),W (2),W dip},∥∥[

W (j), a∗(f
t
)
]
Φα

∥∥ ≤ c2,n

1 + |t|n
. (3.5)

Proof. By definition of a∗(f
t
),

[W (j), a∗(f
t
)]Φα =

N∑
l=1

a∗(f1,t) · · · a∗(fl−1,t)
[
W (j), a∗(fl,t)

]
a∗(fl+1,t) · · · a∗(fN,t)Φα (3.6)

and by definition of W (1) and W (2)

[
W (1), a∗(fl,t)

]
= 2〈Gx, fl,t〉 · p (3.7)[

W (2), a∗(fl,t)
]

= 2〈Gx, fl,t〉 ·A(αx) (3.8)

From (3.2), (3.6), (3.7), (3.8) and Lemma A.1 it follows that

‖[W (1), a∗(f
t
)]Φα‖ ≤ Ncn

1 + |t|n
‖(Hf + 1)

N−1
2 〈αx〉npΦα‖ (3.9)

‖[W (2), a∗(f
t
)]Φα‖ ≤ Ncn

1 + |t|n
‖(Hf + 1)

N
2 〈αx〉nΦα‖ (3.10)

with some constant cn. Thanks to Lemma A.4, these upper bounds are bounded uniformly
in α ≤ α̃, α̃ being defined by Proposition A.3. This proves (3.5) for j = 1, 2. The assertion
for W dip now follows from W dip = W (1)|x=0, which leads to a bound for ‖[W dip, a∗(f

t
)]Φα‖

of the form (3.9) with x = 0.

Proposition 3.3. For all εf1, ..., εfN ∈ C2
0 (R3\{0},C3) there exists a constant c3 = c3(f),

such that for all α ≤ α̃ and for all s ∈ R,∥∥∥[
W (1) −W dip, a∗(f

s
)
]
Φα

∥∥∥ ≤ c3α

1 + s2
. (3.11)

Proof. By (3.6) for j = 1, (3.7), and the corresponding equations for W dip

[
W (1) −W dip, a∗(f

s
)
]
Φα = 2

N∑
l=1

〈Gx −G0, fl,s〉 · pa∗(f (l),s
)Φα

10



where

‖〈Gx −G0, fl,s〉 · pa∗(f (l),s
)Φα‖ ≤ α

c

1 + s2
∥∥|x|〈αx〉2a∗(f

(l),s
)pΦα

∥∥
≤ α

c

1 + s2
∥∥|x|2〈αx〉4pΦα

∥∥1/2‖a(f
(l),s

)a∗(f
(l),s

)pΦα

∥∥1/2

by (3.3) and the Cauchy-Schwarz inequality. The norms in the last expression are bounded
uniformly in α ≤ α̃ by Lemma A.1 and Lemma A.4.

Lemma 3.4. For all εf1, ..., εfN ∈ C2
0 (R3\{0},C3), there exists a constant c4 = c4(f) <∞,

such that for all α ≤ α̃ and s, t ∈ R

∥∥[
W dip

s , a∗(f
t
)
]
(Φα − Φ0)

∥∥ ≤ c4α
3
2

1 + |t− s|2
(3.12)∥∥[

W dip
s , a∗(f

t
)
]
Φ0

∥∥ ≤ c4
1 + |t− s|2

. (3.13)

∥∥[
W,

[
W dip

s , a∗(f
t
)
]]

Φα‖ ≤ c4α
3
2

1 + |t− s|2
(3.14)

Proof. Since
[
W dip

s , a∗(fl,t)
]

= 2〈G0, fl,t−s〉·ps, which commutes with the creation operators
a∗(fi,t),

[
W dip

s , a∗(f
t
)
]

=
N∑

l=1

a∗(f1,t) · · · a∗(fl−1,t)
[
W dip

s , a∗(fl,t)
]
a∗(fl+1,t) · · · a∗(fN,t)

= 2
N∑

l=1

a∗(f
(l),t

)〈G0, fl,t−s〉 · ps (3.15)

where |〈G0, fl,t−s〉| ≤ cl(1 + (t − s)2)−1 by (3.1). In view of Lemma A.1 and Lemma A.5,
this proves (3.12). The proof of (3.13) is similar.

From (3.15) we obtain, that

[
W,

[
W dip

s , a∗(f
t
)
]]

Φα = 2α
3
2

N∑
l=1

〈G0, fl,t−s〉 ·
[
W (1) + α

3
2W (2), a∗(f

(l),t
)ps

]
Φα.

Hence, by (3.1), it suffices to show that
∥∥W (j)a∗(f

(l),t
)psΦα

∥∥ and
∥∥a∗(f

(l),t
)psW

(j)Φα

∥∥ are

bounded uniformly in t, s and α ≤ α̃. We shall do this for a∗(f
(l),t

)psW
(1)Φα only, the

proofs in the other cases being similar. Let m ≥ (N − 1)/2. Then∥∥a∗(f
(l),t

)psW
(1)Φα

∥∥
≤

3∑
j=1

∥∥a∗(f
(l),t

)(Hf + 1)−mpspj(Hel + i)−1(Hel + i)(Hf + 1)mAj(αx)Φα

∥∥
≤ C

3∑
j=1

‖(Hel + i)(Hf + 1)mAj(αx)Φα‖

11



with a constant C, that is finite by Lemma A.1. We now want to compare ‖(Hel + i)(Hf +
1)mAj(αx)Φα‖ with ‖Aj(αx)(Hel + i)(Hf + 1)mΦα‖, because the latter norm is bounded
uniformly in α ≤ α̃, by Lemma A.1 and by (A.17). Thus we compute the commutator of
(Hel + i)(Hf + 1)m and Aj(αx) = a∗(Gx,j) + a(Gx,j) applied to Φα. Using

[
Hel, a

∗(Gx,j)
]

= α2a∗(ω2Gx,j)− α

3∑
m=1

2a∗(kmGx,j)pm

[
(Hf + 1)m, a∗(Gx,j)

]
=

m∑
l=1

(
m

l

)
a∗(ωlGx,j)(Hf + 1)m−l

and similar commutator equations for a(Gx,j), we see that all resulting terms have norms
that are bounded, uniformly in α ≤ α̃, thanks to (A.17) and Lemma A.1.

For completeness of this paper we now use Lemma 3.2 to prove existence of the asymp-
totic creation and annihilation operators on Φα. More general results can be found in
[13, 22].

Proposition 3.5. Suppose f = (f1, ..., fN ) ∈ [L2
ω(R3 × {1, 2})]N . Then, for all α ≤ α̃,

a∗±(f)Φα := lim
t→±∞

eiHαta∗(f
t
)e−iHαtΦα (3.16)

exists, and
‖a∗±(f)Φα‖ ≤ c5‖f1‖ω · · · ‖fN‖ω, (3.17)

with a constant c5 that is independent of α and f . If εfl ∈ Cn+1
0 (R3\{0},C3) for l = 1, ..., N ,

then there exists a constant cn(f), such that

∥∥a∗±(f)Φα − eiHαta∗(f
t
)e−iHαtΦα

∥∥ ≤ α3/2
cn(f)

1 + |t|n
(3.18)

Proof. Suppose first, that εf1, ..., εfN ∈ Cn+1
0 (R3\{0},C3). Then

d

dt

(
eitHαa∗(f

t
)e−itHαΦα

)
= iei(Hα−Eα)t[W,a∗(f

t
)]Φα,

and, by Lemma 3.2,

±
±∞∫
t

∥∥[W,a∗(f
s
)]Φα

∥∥ds ≤ α3/2
cn(f)

1 + |t|n
.

This estimate first proves existence of a∗±(f), by Cook’s argument, and then it implies
(3.18). The existence of a∗±(f)Φα in the case where fj ∈ L2

ω(R3 × {1, 2}) now follows from
the approximation argument given in [22], Proposition 2.1. By the Lemmas A.1 and A.4

‖eitHαa∗(f
t
)e−itHαΦα‖ ≤ ‖a∗(f

t
)(Hf + 1)−

N
2 ‖‖(Hf + 1)

N
2 Φα‖

≤ c5‖f1‖ω · · · ‖fN‖ω,

uniformly in t ∈ R and α ∈ [0, α̃]. Letting t→ ±∞ in this estimate, we obtain (3.17).
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4 Proofs of the main theorems

4.1 A reduction formula

In this section we first prove Theorem 4.1 below, which is a generalization of Theorem 1.1,
the latter corresponding to the choice τ = 0. The generalization to arbitrary τ ∈ R will be
needed in Section 5.

Theorem 4.1. Let εf1, ..., εfN ∈ C2
0 (R3\{0},C3). Then

a∗+(f
τ
)Φα − a∗−(f

τ
)Φα

= iα
3
2

∞∫
−∞

e−i(H0−E0)τ2p(s)ϕel ⊗ [A(0, s), a∗(f)]Ω ds+R(τ, α)

where ‖R(τ, α)‖ = O(α5/2) +O(α3|τ |) as α→ 0.

Remark. Part of the errorO(α5/2) stems from passing to the dipole-approximationW (1) →
W dip. Hence its order 5/2 = 3/2 + 1 cannot be improved.

Proof. Recall that Bt = B(−t) = e−itH0BeitH0 . To compare the time-evolutions generated
by Hα and H0 we will use that

ei(Hα−Eα)tBtΦα = BΦα +
∫ t

0
ei(Hα−Eα)s[iW,Bs]Φα ds. (4.1)

This equation may be iterated because [iW,Bs] = [iW−s, B]s. From

a∗±(f)Φα = lim
t→±∞

ei(Hα−Eα)ta∗(f
t
)Φα

and (4.1) it follows that

a∗+(f)Φα − a∗−(f)Φα =
∫ ∞

−∞
ei(Hα−Eα)s[iW, a∗(f

s
)]Φα ds.

Only terms contributing to this integral of order α3/2 need to be kept. Since W = α
3
2W (1)+

α3W (2), we may drop W (2), W (1)−W dip and restrict the interval of integration to |s| ≤ α−1

by Lemma 3.2 and Proposition 3.3. We obtain

a∗+(f)Φα − a∗−(f)Φα

= iα3/2

∫ ∞

−∞
ei(Hα−Eα)s[W dip, a∗(f

s
)]Φα ds+O(α5/2)

= iα3/2

∫
|s|≤α−1

ei(Hα−Eα)s[W dip
−s , a

∗(f)]sΦα ds+O(α5/2). (4.2)

Applying now (4.1) to the integrand in (4.2) and the time interval [τ, s], rather than [0, s],
we find ∫

|s|≤α−1

ei(Hα−Eα)s[W dip
−s , a

∗(f)]sΦα ds

= ei(Hα−Eα)τ

∫
|s|≤α−1

[W dip
−s , a

∗(f)]τΦαds (4.3)

+
∫
|s|≤α−1

ds

∫ s

τ
ei(Hα−Eα)r[iW, [W dip

r−s, a
∗(f

r
)]]Φα dr.
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By (3.14) in Lemma 3.4, the norm of the double integral is bounded by

const
∫
|s|≤α−1

|τ |+ |s|
1 + |s|2

α3/2 ds = O(α3/2|τ |) +O(α3/2 ln(α)). (4.4)

In the integral (4.3) we use Lemma 3.4 to replace Φα by Φ0 and to extend the integration
over all s ∈ R. We find that∫

|s|≤α−1

[W dip
−s , a

∗(f)]τΦα ds

=
∫ ∞

−∞
[W dip

τ−s, a
∗(f

τ
)]Φ0 ds+O(α)

=
∫ ∞

−∞
e−i(H0−E0)τ [W dip

−s , a
∗(f)]Φ0 ds+O(α). (4.5)

Equations (4.2), (4.3), (4.4) and (4.5) prove the theorem because e−i(Hα−Eα)τa∗±(f)Φα =
a∗±(f

τ
)Φα and because Φ0 = ϕel ⊗ Ω.

Theorem 4.1 in the case τ = 0 becomes Theorem 1.1, which implies that∥∥1ac(Hel)
(
a∗−(f)Φα − a∗+(f)Φα

)∥∥2 = α3P (3)(f) +O(α4)

where

P (3)(f) :=

∥∥∥∥∥1ac(Hel)

∞∫
−∞

2p(s)ϕel ⊗
[
A(0, s), a∗(f)

]
Ωds

∥∥∥∥∥
2

. (4.6)

We next show that P (3)(f) is additive in its one-photon contributions.

Proposition 4.2. Suppose that f = (f1,m1, . . . , fn,mn) ∈
[
L2(R3)×N

]n with 〈fi, fj〉 = δij
and εfl ∈ C2

0 (R3\{0},C3). Then P (3)(f) =
∑n

l=1mlP
(3)(fl) with

P (3)(fl) =

∥∥∥∥∥1ac(Hel)

∞∫
−∞

2p(s)ϕel · 〈Ω,A(0, s)a∗(fl)Ω〉 ds

∥∥∥∥∥
2

=

∥∥∥∥∥1ac(Hel)

∞∫
−∞

x(s)ϕel · 〈Ω,E(0, s)a∗(fl)Ω〉 ds

∥∥∥∥∥
2

. (4.7)

Proof. Since a∗(f) is a product of creation operators a∗(fl) and since [A(0, s), a∗(fl)] =
〈Ω,A(0, s)a∗(fl)Ω〉, a scalar multiple of the identity operator, we have

[
A(0, s), a∗(f)

]
Ω =

n∑
l=1

√
ml 〈Ω,A(0, s)a∗(fl)Ω〉 a∗(f (l)

)Ω

where f
(l)

= (f1,m1, . . . , fl, (ml − 1), . . . , fn,mn). The vectors a∗(f
(l)

)Ω are orthonormal

by construction. Hence by definition of P (3)(f) and by the Pythagoras identity,

P (3)(f) =
n∑

l=1

P (3)(fl)
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with P (3)(fl) given by the first equation in the statement of the proposition. The second
equation in the proposition follows from

2p(s)ϕel =
d

ds
x(s)ϕel,

d

ds
〈Ω,A(0, s)a∗(fl)Ω〉 = −〈Ω,E(0, s)a∗(fl)Ω〉

by an integration by parts. The differentiability of s 7→ x(s)ϕel and the expression for its
derivative are established in Lemma A.6.

4.2 Expansion in generalized eigenfunctions

In this section we prove Theorem 1.3 and the stronger statement expressed by the Equa-
tions (1.17) and (1.18). The ingredients are Theorem 1.1, Proposition 4.2, and a set of
generalized eigenfunctions ϕq with the properties (i)-(iii) in the introduction. Concerning
the existence of ϕq, we recall from [9], Theorem 4.7.1, that our hypotheses on V imply ex-
istence and completeness of a (modified) wave operator Ω+ associated with Hel. Moreover,
(Hel − i)−1〈x〉−2 is a Hilbert-Schmidt operator.

Lemma 4.3. Suppose that ϕ : R → Hel ∩D(|x|2) is such that s 7→ ϕ(s) and s 7→ |x|2ϕ(s)
are continuous and absolutely integrable with respect to the norm of Hel. Then

∫∞
−∞ ϕ(s)ds ∈

D(|x|2) and ∥∥∥1ac(Hel)
∫ ∞

−∞
ϕ(s)ds

∥∥∥2
=

∫
R3

∣∣∣∣∫ ∞

−∞
〈ϕq, ϕ(s)〉 ds

∣∣∣∣2 d3q.

Proof. From the existence of the improper Riemann integrals
∫∞
−∞ ϕ(s)ds and

∫∞
−∞ |x|2ϕ(s)ds

and the fact that multiplication with |x|2 is a closed operator, it follows that
∫ s
−s ϕ(s)ds ∈

D(|x|2) and that

|x|2
∫ ∞

−∞
ϕ(s)ds =

∫ ∞

−∞
|x|2ϕ(s)ds.

This equation and property (i) of ϕq imply that〈
ϕq,

∫ ∞

−∞
ϕ(s)ds

〉
=

〈
|x|−2ϕq,

∫ ∞

−∞
|x|2ϕ(s)ds

〉
=

∫ ∞

−∞

〈
|x|−2ϕq, |x|2ϕ(s)

〉
ds =

∫ ∞

−∞
〈ϕq, ϕ(s)〉 ds.

In view of (1.14), this proves the assertion.

Proposition 4.4. Suppose that εf ∈ C2
0 (R3\{0}). Then

P (3)(f) =
∫

R3

d3q

∣∣∣∣〈ϕq,xϕel〉 ·
∫ ∞

−∞
ei(q

2−E0)s 〈Ω,E(0, s)a∗(f)Ω〉 ds
∣∣∣∣2

= 4π2

∫
R3

d3q

∣∣∣∣∣ 〈ϕq,xϕel〉 ·
∫
|k|=q2−E0

|k|
∑

λ=1,2

G0(k, λ)f(k, λ)dσ(k)

∣∣∣∣∣
2

,

where dσ(k) denotes the surface measure of the sphere |k| = q2 − E0 in R3.
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Proof. We start with the expression (4.7) for P (3)(f) and we shall apply Lemma 4.3 to

ϕ(s) = x(s)ϕel · 〈Ω,E(0, s)a∗(f)Ω〉 . (4.8)

By Lemma A.6, x(s)ϕel = ei(Hel−E0)sxϕel belongs to D(|x|2) and ‖|x|2x(s)ϕel‖ ≤ C(1+s2).
On the other hand

〈Ω,E(0, s)a∗(f)Ω〉 =
∑

λ=1,2

∫
iω(k)e−iω(k)sG0(k, λ)f(k, λ)d3k

=
∫ ∞

0
dωe−iωs

∫
|k|=ω

iω
∑

λ=1,2

G0(k, λ)f(k, λ)dσ(k) (4.9)

is the Fourier transform of a function from C∞0 (R+), and hence rapidly decreasing as s→∞.
It follows that (4.8) satisfies the hypotheses of Lemma 4.3. Hence Lemma 4.3 proves the
first asserted equation because

〈ϕq,x(s)ϕel〉 = ei(q
2−E0)s 〈ϕq,xϕel〉 .

The second equation follows from the first one and from (4.9) by an application of the
Fourier inversion theorem.

4.3 Proof of Theorem 1.2

Lemma 4.5. If f = (f1, ..., fn) with εf1, ..., εfn ∈ C∞0 (R3\{0}) and F ∈ C∞0 ((−∞, 0)),
then

a∗+(f)F (Hα)− a∗(f)F (H0) = O(α
3
2 )

Proof. Choose R ∈ R, such that supp(f1), ..., supp(fn) ∈ {|k| < R} and then choose G ∈
C∞0 (R) with G = 1 on supp(F ) + [0, nR]. Then, by the pull through formula for a∗(f) and
by [13], Theorem 4 (iv),

a∗(f)F (H0) = G(H0)a∗(f)F (H0), a∗+(f)F (Hα) = G(Hα)a∗+(f)F (Hα).

Using that F (H0) − F (Hα) = O(α
3
2 ), by the Helffer-Sjöstrand functional calculus, that(

a∗(f) − a∗+(f)
)
F (Hα) = O(α3/2), by the proof of Proposition 3.5, and that G(H0)a∗(f),

a∗+(f)F (Hα) are bounded by Lemma A.1 and [22] Proposition 2.1, we find that

a∗(f)F (H0)− a∗+(f)F (Hα) = G(H0)a∗(f)F (H0)−G(Hα)a∗+(f)F (Hα)

= G(H0)a∗(f)
(
F (H0)− F (Hα)

)
+G(H0)

(
a∗(f)− a∗+(f)

)
F (Hα)

+
(
G(H0)−G(Hα)

)
a∗+(f)F (Hα) = O(α

3
2 )

as α→ 0.

Recall from the introduction that Hα
+ is the closure of the span of all vectors of the form

a∗+(h)Φα, h = (h1, ..., hn), where hi, ωhi ∈ L2
ω(R3 × {1, 2}), (4.10)

and that Pα
+ is the orthogonal projection onto Hα

+.
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Proof of Theorem 1.2. In the first two steps of this proof we shall establish (1.13) in the
weak operator topology. Then we establish norm convergence to conclude the proof.

Step 1: Suppose Helϕ = λϕ, n ∈ N and f = (f1, ..., fn) with εf1, ..., εfn ∈ C∞0 (R3\{0}).
Then

lim
α→0

Pα
+

(
ϕ⊗ a∗(f)Ω

)
= ϕ⊗ a∗(f)Ω (4.11)

and the analog statement holds for ϕ⊗ Ω.
Since λ < 0 there exists F ∈ C∞0 (R) with F (λ) = 1 and supp(F ) ⊆ (−∞, 0). Moreover

Pα
+F (Hα) = F (Hα) by the hypothesis of Theorem 1.2 and because Σα ≥ 0 for all α ∈ R.

Using, in addition, that

a∗+(f)F (Hα)− a∗(f)F (H0) = O(α
3
2 ),

which we know from Lemma 4.5, we conclude that

Pα
+

(
ϕ⊗ a∗(f)Ω

)
= Pα

+a
∗(f)F (H0)ϕ⊗ Ω = Pα

+a
∗
+(f)F (Hα)ϕ⊗ Ω +O(α

3
2 )

= a∗+(f)F (Hα)ϕ⊗ Ω +O(α
3
2 ) = ϕ⊗ a∗(f)Ω +O(α

3
2 ).

Step 1 implies that

lim
α→0

Pα
+Φ = Φ for all Φ ∈ Ran1pp(Hel)⊗ 1F .

Step 2: w − lim
α→0

Pα
+(1c(Hel)⊗ 1F ) = 0.

Since ‖Pα
+(1c(Hel)⊗ 1F )‖ ≤ 1 for all α ∈ R it suffices to show that

lim
α→0

〈a∗+(f)Φα, P
α
+(1c(Hel)⊗ 1F )ϕ〉 = 0

for all ϕ ∈ H and all f = (f1, ..., fn) with εf1, ..., εfn ∈ C∞0 (R3\{0}). Since a∗(f)Φα ∈
RanPα

+, this follows from
a∗+(f)Φα = a∗(f)Φ0 +O(α

3
2 ),

which follows from Lemma 4.5 and Lemma A.5.
From Step 1 and Step 2 it follows that

w − lim
α→0

Pα
+ = 1pp(Hel)⊗ 1F . (4.12)

Since Pα
+ and 1pp(Hel)⊗ 1F are orthogonal projectors, we have

‖Pα
+ϕ‖2 = 〈ϕ, Pα

+ϕ〉
α→0−→ 〈ϕ,1pp(Hel)⊗ 1Fϕ〉 = ‖1pp(Hel)⊗ 1Fϕ‖2.

Combined with (4.12) this proves the desired strong convergence.
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5 Space-Time Analysis of the Ionization Process

The purpose of this section is to connect our result with those of the previous papers [3, 33],
where expressions for the zeroth and first non-trivial order of the ionization probability were
defined. We transcribe the definitions from [33] to our model and prove their equivalence
to the definitions in this paper. Let FR := 1{|x|≥R} ⊗ 1F .

Proposition 5.1. Let εf1, ..., εfN ∈ C2
0 (R3\{0},C3). Then

lim
R→∞

lim sup
α↘0

sup
τ∈R

‖FRa
∗
±(f

τ
)Φα‖2 = 0. (5.1)

Remarks. The left hand side of Equation (5.1) may be interpreted as the ionization
probability to zeroth order in α [33]. Proposition 5.1 should be compared to Theorem 4.1
in [33].

Proof. As in the proof of Theorem 4.1

a∗±(f
τ
)Φα − a∗(f

τ
)Φα = i

±∞∫
0

eis(Hα−Eα)[W,a∗(f
τ+s

)]Φαds,

where the integral is O(α
3
2 ) in norm, uniformly in τ , by Lemma 3.2. Hence it remains to

show that
lim

R→∞
lim sup

α↘0
sup
τ∈R

‖FRa
∗(f

τ
)Φα‖2 = 0. (5.2)

To this end, we observe that, according to Lemma A.1,

‖FRa
∗(f

τ
)Φα‖2 ≤ ‖a∗(f

τ
)2Φα‖‖FRΦα‖

≤ C2N

N∏
l=1

‖fl‖2
ω ‖(Hf + 1)NΦα‖ ‖ |x|Φα‖

1
R
.

This proves (5.2), because lim sup
α→0+

‖(Hf +1)NΦα‖ and lim sup
α→0+

‖ |x|Φα‖ are finite by Lemma

A.4 and by (A.5).

Theorem 5.2. Let εf1, ..., εfN ∈ C2
0 (R3\{0},C3), suppose σsc(Hel) = ∅, and let τ(α) =

α−β for some β ∈ (0, 3
2). Then

P (3)(f) = lim
R→∞

lim sup
α↘0

α−3
∥∥∥FR

[
a∗−(f

τ(α)
)Φα − a∗(f

τ(α)
)Φα

]∥∥∥2
. (5.3)

Remarks. Equation (5.3) is to be compared with the expression defining Q(2)(A) in Equa-
tion (1.9) from [33]: if we set g = α3/2 and τ(g) = α−β in that equation, then Q(2)(A)
coincides with the right hand side of (5.3).

Proof. From Proposition 3.5 we know that

∥∥a∗+(f
τ(α)

)Φα − a∗(f
τ(α)

)Φα

∥∥ ≤ C
α3/2

τ(α)
= Cα3/2+β,
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hence we may replace a∗(f
τ(α)

)Φα by a∗+(f
τ(α)

)Φα for the proof of (5.3). From Theorem 4.1
we know that

lim
R→∞

lim sup
α↘0

α−3‖FR

[
a∗−(f

τ(α)
)Φα − a∗+(f

τ(α)
)Φα

]
‖2

= lim
R→∞

lim sup
α↘0

‖FRe
−iτ(α)(H0−E0)Ψ(f)‖2

= lim
R→∞

lim sup
τ→∞

‖FRe
−iτHel ⊗ 1FΨ(f)‖2 (5.4)

where

Ψ(f) :=

∞∫
−∞

2p(s)ϕel ⊗ [A(0, s), a∗(f)]Ω ds =
N∑

l=1

φl ⊗ ηl. (5.5)

Explicit expressions for φl and ηl may be taken from the proof of Proposition 4.2, e.g.,
ηl = a∗(f

(l)
)Ω, but they are not needed here. From (5.5) it follows that

FRe
−iτHelΨ(f) =

N∑
l=1

[
1{|x|≥R}e

−iτHelφl

]
⊗ ηl

where

1‖x‖≥R}e
−iτHelφl = (1− 1{‖x‖<R})e

−iτHel1ac(Hel)φl

+1{‖x‖≥R}e
−iτHel1pp(Hel)φl. (5.6)

By the RAGE Theorem, see [32], Satz 12.8,

lim
R→∞

sup
τ→∞

‖1{|x|≥R}e
iτHel1pp(Hel)φl‖ = 0, (5.7)

lim
τ→∞

‖1{|x|<R}e
iτHel1ac(Hel)φl‖ = 0. (5.8)

From (5.4)-(5.8) it follows, that

lim
R→∞

lim sup
τ→∞

‖FRe
−iτH0Ψ(f)‖2 = ‖(1ac(Hel)⊗ 1F )Ψ(f)‖2 = P (3)(f),

by Equation (4.6)

A Uniform estimates

In this appendix we collect estimates used in the previous sections. Most of them are well-
known for fixed α, but this is not sufficient for us: we need estimates holding uniformly for
α in a neighborhood of α = 0. This forces us to review some of the derivations with special
attention to the dependences on α.

Lemma A.1. For every N ∈ N there is a finite constant CN such that for all h1, ..., hN ∈
L2

ω(R3 × {1, 2})

‖a∗(h)(Hf + 1)−
N
2 ‖ ≤ CN

N∏
l=1

‖hl‖ω (A.1)

‖a∗(h1) · · · a∗(hl−1)A(αx)a∗(hl+1) · · · a∗(hN )(Hf + 1)−
N
2 ‖ ≤ CN

N∏
j=1
j 6=l

‖hj‖ω (A.2)
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Proof. Both, (A.1) and (A.2) follow from Lemma 17 in [13]. We recall that A(αx) =
a∗(Gx) + a(Gx) and we note that supx∈R3 ‖Gx‖ω <∞.

Proposition A.2 ([15]). For every λ < e1 there exists a constant αλ > 0, such that for all
n ∈ N

sup
α≤αλ

∥∥|x|n1(−∞,λ](Hα)
∥∥ <∞. (A.3)

Proposition A.3. There exists an α̃ > 0, such that:

a) For all α ≤ α̃

Eα := inf σ(Hα) (A.4)

is a simple eigenvalue of Hα. In the following Φα denotes the unique normalized
ground state of Hα whose phase is determined by 〈Φα,Φ0〉 ≥ 0.

b) For every n ∈ N,
sup
α≤α̃

‖ |x|nΦα‖ <∞. (A.5)

c) There exists a finite constant C, such that for all α ≤ α̃ and all k ∈ R3\{0}

‖a(k)Φα‖ ≤ α
3
2C

|κ(k)|√
|k|

(1 + α|k|), (A.6)

|E0 − Eα| ≤ α
3
2C, (A.7)

‖Φα − Φ0‖ ≤ α
3
2C. (A.8)

d) For every n ∈ N,

sup
α≤α̃

‖[Hn−1
f ,Hα](Hα + i)−n+1‖ < ∞, (A.9)

sup
α≤α̃

‖Hn
f (Hα + i)−n‖ < ∞, (A.10)

sup
α≤α̃

‖Hel(Hα + i)−1‖ < ∞. (A.11)

Remark. Boundedness of [Hn−1
f ,H](H + i)−n and Hn

f (H + i)−n has previously been
established in [13], Lemma 5, for a class of Hamiltonians H that includes Hα. Yet, that
results does not imply (A.9) and (A.10), and second, its proof is much more complicated
than the proof of (A.9) and (A.10), because H in [13] is defined in terms of a Friedrichs’
extension.

Proof. That Eα = inf σ(Hα) is an eigenvalue of Hα, for small α, was first shown in [2].
Its simplicity follows from (A.8), which hold for every normalized ground state vector Φα

that satisfies the phase condition 〈Φα,Φ0〉 ≥ 0. A proof of (A.8) may be found, e.g., in
[15], Proposition 19, Steps 4 and 5. A weaker form of (A.6) is given in Lemma 20 of [15],
but the proof there actually shows (A.6). Estimate (A.7) follows from Lemma 22 in [15]
by choosing the infrared cutoff in this lemma larger than the UV-cutoff. Finally, (A.5) is a
consequence of Proposition A.2 and (A.7).
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To prove (d) we set R0 := (H0+i)−1 and Rα := (Hα +i)−1. It is a simple exercise, using
(A.1) and the boundedness of (Hf + 1)1/2pR0, to show that ‖WR0‖ = O(α3/2) as α → 0.
Hence we may assume that supα≤α̃ ‖WR0‖ ≤ 1/2 after making α̃ smaller, if necessary. It
follows that

‖(H0 + i)Rα‖ = ‖(1 +WR0)−1‖ ≤ (1− ‖WR0‖)−1 ≤ 2 (A.12)

for all α ≤ α̃. Since HelR0 and HfR0 are bounded operators, we have thus proven statement
(d) for n = 1, (A.9) being trivial in this case. We now proceed by induction, assuming that
(A.9) and (A.10) hold true for all positive integers smaller or equal to a given n ≥ 1. To
prove (A.10) for n replaced by (n+ 1) we use that

[Hn
f ,Hα]Rn

α =
n∑

l=1

(
n

l

)
adl

Hf
(W )Hn−l

f Rn
α

=
n∑

l=1

(
n

l

)
adl

Hf
(W )Rα

(
Hn−l

f Rn−1
α − [Hn−l

f ,Hα]Rn
α

)
(A.13)

where supα≤α̃ ‖adl
Hf

(W )Rα‖ <∞ by (A.12), by explicit formulas for adl
Hf

(W ) and by the
arguments above proving that ‖WR0‖ = O(α3/2). Hence supα≤α̃ ‖[Hn

f ,Hα]Rn
α‖ <∞ follows

from (A.13) and from the induction hypothesis. Statement (A.10) with n replaced by n+1
now follows from Hn+1

f Rn+1
α = (HfRα)(Hn

f R
n
α)−HfRα[Hn

f ,Hα]Rn+1
α , from the induction

hypothesis, and from (A.9) with n replaced by n+ 1, which we have just established.

Lemma A.4. For all l,m ∈ N:

sup
α≤α̃

‖(Hf + 1)mΦα‖ < ∞, (A.14)

sup
α≤α̃

‖(Hf + 1)m〈x〉lΦα‖ < ∞, (A.15)

sup
α≤α̃

‖p2Φα‖ < ∞, (A.16)

sup
α≤α̃

‖(Hf + 1)mHelΦα‖ < ∞, (A.17)

sup
α≤α̃

‖(Hf + 1)m〈x〉lpΦα‖ < ∞. (A.18)

Proof. The statements (A.14) and (A.16) easily follow from (A.10), (A.11), and (A.7),
because Φα = (Hα + i)−nΦα(Eα + i)n; note that p2(Hel + i)−1 is bounded by assumption
on V . To prove (A.15) we use that

sup
α≤α̃

‖〈x〉l(Hf + 1)mΦα‖2 ≤ sup
α≤α̃

‖〈x〉2lΦα‖ · ‖(Hf + 1)2mΦα‖

where the right hand side is finite thanks to (A.5) and (A.14). To prove (A.17) we write

Hel(Hf + 1)mΦα = Hel(Hα + i)−1(Hα + i)(Hf + 1)mΦα

= Hel(Hα + i)−1
[
Hα, (Hf + 1)m

]
Φα

+Hel(Hα + i)−1(Hf + 1)mΦα(Eα + i).
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The vectors [Hα, (Hf + 1)m]Φα and (Hf + 1)mΦα, and the operator Hel(Hα + i)−1 are
bounded, uniformly in α ≤ α̃, by (A.9), (A.10) and (A.11). This proves (A.17).

The statement (A.18) follows from (A.15) and (A.16) after moving both p’s to one
side, and both factors 〈x〉l to the other side of the inner product ‖(Hf + 1)m〈x〉lpΦα‖2 =
〈(Hf + 1)m〈x〉lpΦα, (Hf + 1)m〈x〉lpΦα〉.

The following lemma improves upon (A.8).

Lemma A.5. For each m ∈ N there is a finite constant Km, such that for all α ≤ α̃

‖(Hel + i)(Hf + 1)m(Φα − Φ0)‖ ≤ Kmα
3
2 . (A.19)

Proof. Let λ := (E0 + e1)/2. Thanks to (A.7) in Proposition A.3, we may assume that
supα≤α̃Eα < λ by making α̃ smaller, if necessary. Pick g ∈ C∞0 (R) with suppg ⊂ (−∞, λ)
and with g(Eα) = 1 for all α ≤ α̃. On the one hand,

‖(Hel + i)(Hf + 1)mg(H0)(Φα − Φ0)‖
≤ ‖(Hel + i)(Hf + 1)mg(H0)‖‖Φα − Φ0‖ = O(α3/2)

by (A.8). On the other hand, (1− g(H0))(Φα − Φ0) = (g(Hα)− g(H0))Φα by construction
of g. Hence it remains to prove that

‖(Hel + i)(Hf + 1)m(g(Hα)− g(H0))Φα‖ = O(α3/2). (A.20)

To do so, we use the Helffer-Sjöstrand functional calculus with a compactly supported
almost analytic extension g̃ of g that satisfies an estimate |∂z̄ g̃(z)| ≤ C|y|2. Here and
henceforth z = x+ iy with x, y ∈ R. It follows that

(Hel + i)(Hf + 1)m(g(Hα)− g(H0))Φα

= − 1
π

∫
R2

(Hel + i)(H0 − z)−1(Hf + 1)mW (Hα − z)−1Φα
∂g̃

∂z̄
dxdy (A.21)

where

(Hf + 1)mW =
m∑

l=0

(
m

l

)
adl

Hf
(W )(Hf + 1)m−l =: α3/2W̃ (m)(Hf + 1)m. (A.22)

From the equations [Hf , a
∗(Gx)] = a∗(ωGx) and [Hf , a(Gx)] = −a(ωGx) it is clear that

the operator W̃ (m), defined by (A.22), is H0-bounded. Hence we can estimate the norm of
(A.21) from above by

α3/2

π
‖(Hel + i)(H0 + i)−1‖

∫ ∣∣∣∣∂g̃∂z̄
∣∣∣∣ ∥∥∥∥H0 + i

H0 − z

∥∥∥∥ 1
|z − Eα|

dxdy

× ‖W̃ (m)(H0 + i)−1‖‖(H0 + i)(Hf + 1)mΦα‖. (A.23)

The integral is finite by construction of g̃, because |z −Eα|−1 ≤ |y|−1, and because ‖(H0 +
i)(H0 − z)−1‖ ≤ 1 + (1 + |x|)/|y| by the spectral theorem. The last factor in (A.23) is
bounded uniformly in α ≤ α̃ by (A.14) and (A.17) from Lemma A.4. This establishes
(A.20) and thus concludes the proof of the lemma.
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Lemma A.6. Suppose that V satisfies the hypotheses in Section 2. Then

(i) xϕel ∈ D(Hel) and (Hel − E0)xϕel = −2∇ϕel.

(ii) e−iHeltxϕel ∈ D(|x|2) and there exists a constant C such that for all t ∈ R,

‖|x|2e−iHeltxϕel‖ ≤ C(1 + t2).

Proof. (i) For all γ ∈ C∞0 (R3) we have xHelγ = Helxγ + 2∇γ and hence

〈Helγ,xϕel〉 = 〈Helxγ + 2∇γ, ϕel〉
= 〈γ,E0xϕel − 2∇ϕel〉 .

Since C∞0 (R3) is a core of Hel, we conclude that xϕel ∈ D(Hel) and that

Helxϕel = E0xϕel − 2∇ϕ.

(ii) Let ψ := xiϕel for some i ∈ {1, 2, 3}. We shall only need that ψ ∈ D(|x|2)∩D(−∆)
which follows from (i). By the fundamental theorem of calculus, in a weak sense

eitHel |x|2e−itHelψ = x2ψ +

t∫
0

eisHel [iHel, |x|2]e−isHelψds

= |x|2ψ + 2

t∫
0

eisHel(x · p + p · x)e−isHelψds

= |x|2ψ + 2t(x · p + p · x)ψ + 2

t∫
0

ds

s∫
0

dreirHel(4p2 − x · ∇V )e−irHelψ. (A.24)

Here ψ ∈ D(|x|2) ∩ D(−∆) ⊂ D(x · p + p · x) and e−irHelψ ∈ D(Hel) = D(−∆) because
ψ ∈ D(Hel) by part (i). Therefore assertion (ii) follows from (A.24) and from the hypotheses
on V .
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Leitfäden. B. G. Teubner, Stuttgart, 2003. Anwendungen.

[33] Heribert Zenk. Ionization by quantized electromagnetic fields: the photoelectric effect.
Rev. Math. Phys., 20(4):367–406, 2008.

25


