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Abstract

We give a complete proof of the existence of eigenmodes for a vibrating
elliptic membrane: for each pair (m,n) € {0,1,27...}2 there exists a
unique even eigenmode with m ellipses and n hyperbola branches as nodal
curves and, similarly, for each (m,n) € {0,1,2,...} x {1,2,...} there
exists a unique odd eigenmode with m ellipses and n hyperbola branches
as nodal curves. Our result is based on directly using the separation of
variables method for the Helmholtz equation in elliptic coordinates and
in proving that certain pairs of curves in the plane of parameters a and
q cross each other at a single point. As side effects of our proof, a new
and precise method for numerically calculating the eigenfrequencies of
the modes of the elliptic membrane is presented and also approximate
formulae which explain rather well the qualitative asymptotic behaviour
of the eigenfrequencies.

1 Introduction

Let Q C R? be the open region bounded by a closed curve 9Q. If §2 is thought of
as covered by an elastic membrane whose boundary is fixed, the eigenmodes of
this membrane are functions 1(x,y) such that W(xz,y,t) = (z,y)e’“" is a non-
trivial solution of the wave equation 3;3 — AV = 0 obeying the homogeneous
Dirichlet boundary condition ¢ (z,y) = 0 for (z,y) € Q. Of course ¥ (x,y)

obeys the Helmholtz equation

AY = —wip . (1)
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The number w is called the eigenfrequency of eigenmode 1 and we see that 1
is an eigenfunction for the laplacian in 2 with homogeneous Dirichlet boundary
condition at 9Q; the corresponding eigenvalue is —w?.

The case of a circular membrane is very well known and often presented as
an example of the separation of variables method in basic books on PDEs such
as [6]. The case of 9 being an ellipse was first studied in the 19th century
by Mathieu [16]. Let o and 3 be respectively the semi-major and semi-minor
axes of 0€). Mathieu introduced elliptical coordinates £ and 7 related to the
cartesian x and y by

x = hcosh€cosn (2)

and
y = hsinh&sinn (3)

where h = y/a2 — 32 is half the distance between the foci of Q. If we substitute
Y(z,y) = F(§)G(n) in (1), then we get

F”(f) h2w2 G//(n) h2w2
+ cosh2¢ = — +

F(E) 2 G(n) 2
The last equality is due to £ and 1 being independent variables, thus both sides
must be equal to a constant a € R, up to now completely undetermined. It
follows that F' and G must satisfy

cos2n =a.

G"(n) + (a —2qcos 27) G(n) = 0 (4)
and
F"(€) — (a —2qcosh 26) F(§) = 0, (5)

respectively known as the Mathieu equation and the modified Mathieu equation,
in which parameter ¢ is related to eigenfrequency w by

h2w?
q = 1 (6)

and a is the parameter arising in the separation of variables.
By (2) and (3), the solutions to (4) must satisfy periodic boundary conditions

G(0) = G(27) and G'(0) = G'(2n) . (7)

In analogy with polar coordinates, boundary value problem (4, 7) is called
angular problem.

If
& = arc cosh% , (8)
then the Dirichlet homogeneous condition for v is transformed into
F(&) = 0. (9)

As G(—n) is a solution to (4) whenever G(n) is, we may restrict our attention
to 2m-periodic solutions to (4) which are either even or odd. From the geometry



underlying elliptic coordinates, it can be shown [17] that in order to obtain
solutions well-defined at the line segment joining the foci of 91, i.e. at £ = 0,
solutions to (5) must satisfy boundary conditions

F'(0) =0 (10)
in case the solution G to (4) is even and
F(0) = 0 (11)

in case the solution G to (4) is odd. In these cases the solutions F' to (5) are
also respectively even and odd functions of & Again in analogy with polar
coordinates, both boundary value problems (5, 10, 9) and (5, 11, 9) are called
radial problems.

We define an even eigenmode as an eigenmode ¢ (z,y) = F(£)G(n) in which
both factor functions F' and G are even. Analogously for an odd eigenmode.

Individually, each among the radial and angular problems are Sturm-Liouwville
problems, for which there exist many classical results, see e.g. [12]. In particu-
lar, for any of these problems and for each fixed ¢ there exist infinite sequences
of values of a such that for those values of a and ¢ the considered problem has
a non-trivial solution. Moreover, the set of all non-trivial solutions to Sturm-
Liouville problems is always an orthogonal basis to a suitable Hilbert space of
square integrable functions.

However, in order to find eigenmodes of the elliptic membrane one is led
to consider not the individual Sturm-Liouville problems. Instead one has to
search specific values of ¢ such that both radial and angular Sturm-Liouville
problems possess non-trivial solutions for the same value of a. More explicitly,
even eigenmodes are characterized by the existence of pairs (a, ¢) such that (4,7)
and (5,10, 9) simultaneosuly have non-trivial solutions F' and G such that G is
even. Analogously, odd eigenmodes are associated with pairs (a,q) such that
(4,7) and (5,11, 9) simultaneosuly have non-trivial solutions F' and G such that
G is odd.

This kind of problems has been termed multiparametric spectral problems
and has been studied by mathematicians since Klein [14] in the late 19th century
and still considered nowadays [23]. A good survey with a rich bibliography is
presented by Atkinson in [3]. Although Mathieu functions are cited at the very
beginning of that survey, the author asserts that the area “has reached no more
than a preliminary stage”. In particular, although the problem of calculating
eigenmodes and eigenfrequencies of the elliptic membrane has received some
recent attention [10, 5, 11, 25], we have never seen a proof of the existence
of the eigenmodes based on the Mathieu equations (4,5) and multiparametric
spectral theory.

Our purpose in this paper is to overcome this gap proving the following

Theorem 1.1 For each pair (m,n) € {0,1,2,...}2 there exists a unique pair
(@5 s Q) € R x (0,00) such that both problems (4,7) and (5,10, 9) have
non-trivial solutions Fy, ,(§) and Gy, . (n) if a = ay, ,, and q = gy, ,, with the

following properties:



(i) Fy,, hasm zeros in (0,&),

(ii) G¢,,, is even and has n zeros in [0, ).

m,n

Analogously, for each pair (m,n) € {0,1,2,...} x{1,2,...} there exists a unique
pair (ag, ., qm ) € R x (0,00) such that both problems (4,7) and (5,11, 9) have
and q = qy, , with the following properties:

! . e
non-trivial solutions if a = ay, ,

(i) Fy,,, has m zeros in (0,&),

(i) G2, is odd and has n zeros in [0,7).

m,n

Of course, products vr5.%, (,y) = F55,(§)G;,%,(n) are eigenmodes for the

m,n
elliptic membrane and the corresponding eigenfrequencies are related to ¢,
by (6).

If we see from (2,3) that curves & = const are ellipses confocal with 9, then
index m is interpreted as the number of nodal ellipses of the corresponding mode.
Also, each curve 17 = const represents a hyperbola branch, with exceptions at
n =km/2, k € Z, in which the curves are line segments. If we consider n = 7/2
as a degenerate hyperbola branch, then index n counts the number of nodal
hyperbola branches of the corresponding mode.

The above theorem is an analogue to Sturm’s famous oscillation theorem
[12] if we consider Sturm theory as the special case of multiparametric spectral
theory in which there is a single parameter. It is also analogous to Klein’s fully
multiparametric result for the Lamé equation [14, 12]. Accordingly, we will call
our result a Klein oscillation theorem for the elliptic membrane.

Before we proceed, let us briefly outline the methods for proving the above
theorem as well as cite some related work.

For each fixed ¢, the angular problem (4, 7) is a Sturm-Liouville problem.
We thus know [12, 15] that there exist infinite sequences ag(q), a1(q),... and
b1(q),b2(q), . . . of values for a such that (4) has 2w-periodic non-trivial solutions
— even solutions if a = a,(q) and odd solutions if a = b,(q). These a,’s and
bn’s are known as Mathieu characteristic numbers of integer orders and appear
in some other applications besides the elliptical membrane, see e.g. [17, 18, 20].
Although well-known, Mathieu characteristic numbers present difficulties to be
implemented in computers, as noted by Alhargan in a recent review [2]. For
this reason they have been considered also in some other recent writings, e.g.
[8, 19, 9].

Again, for each fixed ¢, radial problems (5,10, 9) and (5,11, 9) are also
Sturm-Liouville problems. Again there exist infinite sequences Ag(q), A1(q), . ..
and By(q), B1(q), - . . such that (5,10, 9) has non-trivial solution F¢, if a = A,,(q)
and (5,11, 9) has non-trivial solution F?, if a = B;,,(¢q). Moreover, F¢, and F?,
both have m zeros in (0, ). Compared to the Mathieu characteristic numbers,
literature about the A,,, B,, numbers is rather scarse.

In order to show existence and uniqueness of the even eigenmode with m
nodal ellipses and n nodal hyperbola branches, we must prove that the A,,(q)
curve intercepts the a,(g) curve at a single point in the ¢ > 0 half-plane of
the (a,q) plane. We do so by proving at first that each of these functions is



a continuous function of ¢; in fact we prove real analiticity. Also, the A,, are
q—00

negative for ¢ = 0 and we prove that A,,(¢) — oo. On the other hand,
the a, are non-negative for ¢ = 0 and it is known [17] that a,(q) % —.
Then, for each pair (m,n), graphs of A,,(¢) and a, (g) must cross at least once.
Uniqueness of the crossing will be proved by using some ideas in an old paper
[21] by Richardson, although he does not quote eigenmodes of the elliptical
membrane as applications of his results. Everything is analogous for odd modes.

Despite existence of eigenfunctions for the laplacian in very general domains
being standard, we believe our above result is interesting, because our proof is
fully constructive and relies on the very basic separation of variables method.
Also, as far as we know, no one had shown one-to-one correspondence of modes
for elliptical and circular membranes, by proving existence and uniqueness of
modes with prescribed numbers of nodal curves in each variable for the elliptical
membrane.

Moreover, as we will also exploit in this paper, viewing eigenmodes as in-
tersection points between curves in the (a,q) plane has suggested us a new
numerical scheme for calculating eigenfrequencies of the modes. It has also led
to approximate formulae (20), (21), (23) and (24), which explain well some
qualitative behaviour of the eigenfrequencies noticed but not explained in [25].

At this point we should say that although existence of eigenmodes for the
elliptical membrane is seldom looked at, many authors, taking existence for
granted, devised schemes for calculating the eigenfrequencies and used them
to draw interesting pictures of the eigenmodes. Several very different methods
were used, such as WKB approximation in [13], optimization in [10], multigrid
discretizations in [11] and a Galerkin method in [25]. Direct implementations
of solutions to (4) and (5) were also used, e.g. in [5] and [25]. In section 3 we
will also compare the eigenfrequencies calculated with our method with results
in these two papers.

2 Existence and uniqueness of the eigenmodes
for elliptic membranes

In this section, through a sequence of intermediate results, we will prove the
main theorem stated in section 1. As existence of the characteristic numbers
Ay B, ap, by, as functions of ¢ is proved by standard results in Sturm-Liouville
theory [12], we will assume from scratch existence of those functions.

Our first result is

Theorem 2.1 The characteristic numbers Ay, (q), m = 0,1,2,... for problem
(5,10, 9) and B,,(q), m = 0,1,2,... for problem (5,11, 9) are all real analytic
functions of q.

Proof We will prove the statement for the A,,(q), the proof for the B,,(q)
being analogous.



If f(a,q,§) is defined as the solution to the initial value problem

F7(€) — (a—2qcosh 26 F(€) = 0
FOO) = 1 |
F'(0) = 0

then for each ¢ € R, A,,(q) is the (m + 1)-th real solution in decreasing order
to the equation f(a,q,&) = 0. By usual arguments in the analytic existence-
uniqueness theory for linear ODEs [4], f is an analytic function in all C3, so
that f(a, q,&p) is analytic in C2. Take ¢ € R; we want to conclude that equation
f(a,q,&) = 0 implicitly defines A,, as an analytic function of ¢ in some complex
neighborhood of q. This follows from the analytic version of the implicit function
theorem [4], provided we show that

2f(a’ﬂq7£0) %0

da (0,0)=(Am (2),)

This is true because it is known, see section 10.72 in [12], that all zeros of the
equation f(a,q,&) = 0 are single. I

We have a similar result for the a,,(¢q) and b, (q), also relying on the analytic
version of the implicit function theorem. As the periodic boundary conditions
(7) introduce some important differences, we state the result separately:

Theorem 2.2 The Mathieu characteristic numbers a,(q), n = 0,1,2,... for
the even solutions to problem (4,7) and b,(q), n = 1,2,... for the odd solutions
to the same problem are all real analytic functions of q.

Proof Let gi(a,q,n) be the solution to the initial value problem for the
Mathieu equation (4) with initial conditions G(0) = 1, G’(0) = 0. Similarly, let
g2(a, ¢,m) be the solution to the same equation with initial conditions G(0) = 0,
G’(0) = 1. Then g; and g are both analytic in C3, g; being an even function
of n, whereas go is odd in 7. Define g(a,q) = g1(a,q,7) + g5(a, q,7), where the
prime stands for the partial derivative with respect to 1. By Floquet’s theory
[15] Mathieu equation will have a 27-periodic solution if and only if g(a, q) = 2.
For each fixed § € R we know by the general theory of Hill’s equation [15] that
with either sign the above equation has an infinite number of solutions which
are the a,(q), b,(q). Let A, (g) collectively denote the solutions to g(a,q) = £2.
By proceeding as in the proof of the preceding theorem, we may conclude that
these solutions are analytic functions of ¢ in some neighborhood of g if we can
prove that

£0. (12)

(a:0)=(An(2),0)

If ¢ = 0, we may explicitly calculate

g(a,0) = { 2cos(my/a), if a>0

2cosh(my/—a), if a<0 ’

B
%g(a,q)



which shows that g(a,0) = £2 when a = n?, n =0,1,2,.... Moreover, if n # 0,
a = n? are double roots to g(a,0) = +2, so that (12) fails to hold if g = 0.

Despite that, it can be shown that the Mathieu characteristic numbers are
analytic functions of ¢ in neighborhoods of ¢ = 0. In fact, Mathieu himself had
calculated [16] formal power series in ¢ for the characteristic numbers. These
series were later shown [24] to have positive convergence radii, thus proving our
analyticity claim if § = 0.

On the other hand if § € R, § # 0, we may show that a,,(g) # b,(7). One way
to do that is by expressing a,(q) and b, (g) as solutions to equations involving
continued fractions, as we did in [19]. We showed there that if n is even, then
the a,(g) are the values for a that solve

1
2% - - , (13)
o31 [ —
NOM
where o
_1)n
ol = (it (a —4n?) .
q

On the other hand, the b,(g) are the values for a such that the meromorphic
function defined by the continued fraction at the right-hand side of (13) has a
pole. This shows that a,(q) # b,(¢) if ¢ # 0 and n is even.
If n is odd and ¢ # 0, it was shown in [19] that the a,(q) and b,(q) are the
values for a solving
a—1 11— 1 ’

(o) 1

NONES
the 4 sign applying for the a,, and the — sign for the b,, and

_

. (a—(2n+1)%).

This proves that for odd n we also have a,(q) # b, (q) if ¢ # 0.

Rephrased in terms of the Mathieu equation, Corollary 2.1 in [15] states
that for some fixed ¢ € R, Mathieu equation will have 2 linearly independent
2m-periodic solutions for the same value of a if and only if g(a,q) = 2 has a
double root. As a,(g) # b,(q) for real non-zero values of g, then g(a,q) will
have no double roots for § # 0. This proves that (12) holds for § € R, § # 0,
thereby finishing the proof of our theorem. I

Now we may use Sturm oscillation/comparison theory phrased in terms of
Priifer coordinates, see Lemma V.4 (comparison lemma) in [22] or Theorem 1.2
in chapter 8 of [7], in order to have suitable bounds for the A,,(q), Bm(q):



Theorem 2.3 If ¢ > 0 then for each m € {0,1,2...} we have

2 2

2q — ((m;;)ﬁ) < An(q) < 2qcosh2&y — ((m;;)ﬂ> (14)
SR (S R A (BT

q—00

In particular, we have A,,(q) % 0 and Bin(q) — oo.

Proof Consider the three equations below

F'(€) + (—Am(q) +29) F(§) = 0
F'(&) + (—An(q) +2qcosh28) F(§) = 0
F"(€) + (=Am(q) +2qcosh2§o) F(§) = 0

all of them with initial conditions F(0) = 1, F’(0) = 0. The solutions of the
first and last initial value problems are respectively cos(w1€) and cos(wq&) with
w1 = \/—Ap(q) + 2q and wa = \/—A,,(q) + 2q cosh 2&,. By definition of A,,(q)
the solution to the second initial value problem is such that F'(&) = 0 and the
number of its zeros in (0,&p) is m.

In these equations, the coefficients of F(§) are arranged in ascending orders.
By applying Sturm’s theorem [22, 7] if we had wi&y > (m + 1/2)7 then the
solution of the second initial value problem would have at least m + 1 zeros in
(0,&p). As this would contradict the definition of A,,(q), then wi&y < (m+1/2).
Similarly, w2€p > (m + 1/2)7 because otherwise the solution of the second
initial value problem would not be zero at £ = &;. By solving the inequalities
w1&o < (M +1/2)7 < wa€p we obtain the bounds for A4,,(q).

The bounds for B,,(¢) are obtained in an analogous way. I

In the program for proving the main theorem we sketched at the end of
section 1, we have already proved that for each pair (m,n) the A,,(q) and the
an(q) curves cross at least once for ¢ > 0. The same holds for By, (¢q) and b, (q).
In order to complete the proof of the main theorem, we must show uniqueness
of such crossings.

By using again the Sturm comparison/oscillation theory, it is not hard to
see that A,, and B,, are increasing functions of ¢, but unfortunately the a,,, b,
are not decreasing, as can be easily seen by their well-known graphs. The way
out is dividing all these functions by ¢ and we will see that A":I(q) and B";(q)

bald) 5o decreasing for

are increasing functions if ¢ > 0, whereas a"T@) and ® .
q > 0. The idea of dividing by ¢ and the idea for the proof of the following
lemma were found in a paper [21] of 1912 by Richardson. As the result is
not properly emphasized in that paper and neither it was written in the fully

rigorous language of nowadays, we repeat it here.

Lemma 2.4 (Richardson) Let Q, Ay, A be continuous functions in a compact
interval [a,b] and P be of class C' and non-vanishing in the same interval.



Consider the differential equation
(P(2)y) + [Qx) + A(Ai(z) + rAs(2)]y = 0 (16)

along with pairs of boundary conditions which may be any among y(a) = y(b) =
0, y(a) = y'(b) =0, y'(a) = y(b) =0 or y'(a) = y'(b) = 0. Suppose also that
the above 2-parameter boundary value problem has a non-trivial solution when
(A k) = (\E), A # 0, and that a non-trivial solution for the same problem
exists also in some open neighborhood V' of X if k = ¥(\), where ¢ : V — R is
differentiable. Then, for all A € V,

b b
VO [ Aalw) o) s = —5; [ (P@)d @) - Qo) de, (1)

where ¢(x) is the non-trivial solution for the boundary value problem when k =

P(N).

Proof  We shall prove the lemma for the boundary conditions y(a) = y(b) =
0. The proof for the other boundary conditions cited above is exactly the
same. Let ¢(x, \, k) be the solution to equation (16) satisfying initial conditions
y(a) = 0,y'(a) = 1. Of course ¢ is differentiable in [a,b] x R x R. Let then
O(z,A) = ¢(x, A\, 9(N)), A € V. By differentiating with respect to A both sides
of the ODE satisified by ® and then multiplying the result by ® we get

o’
OA

)+ Q4+ AMA +w(A)A2)]<I>a—® + [A1 + (N Ay + M) (V) Ap] D2 = 0,

(P B

where of course &' = g—j By multiplying again the same ODE by g—‘f we get

0P o®
(POYS] + 1Q+ A1 + (W) A2)] 5 = 0.

Now we subtract the last two equations and integrate this difference between a
and b. A simple integration by parts with the use of the boundary conditions
shows that

b L ), 0
/a[<I>(Pa>\) — (PO)={]dz =0

and it results that
b b
/ [A1 + (M) A% dx + Ay (N) / Ay®*dr = 0.
a a

By using the ODE to substitute [A; + (A\)A2]® by —1/A[(P®')’ + Q®] in the
first integral above and performing another easy integration by parts we obtain

b 1 b
[ o asjeds = 5 [ (P@E@F - Q@)@)?) d.

which leads to (17) when substituted above. I



Corollary 1 Besides all conditions of the above lemma, suppose also that P(x) >
0, As(x) > 0 and Q(z) < 0 for all x € [a,b]. Then ¢ is a decreasing function
of \.

By identifying parameter A in the above results with ¢ in the Mathieu and

modified Mathieu equations, then x will be a/q in the Mathieu case and —a/q

in the modified Mathieu case. By applying the above corollary we see that anla)

q
by . A B . . . .
and 229 are decreasing and An(@) anq @ are increasing. This observation

completes the proof of the main theorem in this paper.

3 Numerical calculation and approximate for-
mulae for the eigenfrequencies

Among various other methods, direct implementation of the Mathieu charac-
teristic numbers and numerical solution to the modified Mathieu equation were
also used for calculating eigenfrequencies and eigenmodes for elliptic membranes.
Two remarkable papers which follow this track are [5] and [25]. We will explain
in this section a simple method for calculating eigenfrequencies of elliptic mem-
branes and we will compare our results with the ones in the above papers.
We will also show interesting approximate formulae, which although not very
precise, describe the qualitative behaviour of eigenfrequencies noticed in [25].

As Mathieu characteristic numbers a,, and b,, are exact eigenvalues of certain
tri-diagonal infinite matrices, they may be approximated by truncating these
matrices to large orders and using fast eigenvalue solvers. This method was
used by both papers cited above. Both papers also used truncated series of
products of Bessel functions to approximate solutions to the modified Mathieu
equation and a numerical method for finding the zeros in ¢ for (9).

As results of their scheme, some beautiful plots of special eigenmode shapes
are shown in [5]. Also some tables are given of eigenfrequencies for some modes.
We take as an example, their table 1, with the eigenfrequencies calculated for
the first eigenmodes of an almost circular elliptic membrane with a@ = cosh 2,
B = sinh 2.

In our own table 1 below, the reader will find a corrected version of the
corresponding table in [5]. In fact, not only the eigenfrequencies reported there
are not correct to all decimal figures shown, but also that table reports frequen-
cies for some non-existing modes (odd modes with n = 0) and does not report
frequencies for some existing modes.

We conjecture that those errors were due to small accuracy in the numerical
scheme, later corrected in [25], but also due to the lack of a solid existence result
as our main theorem. For example, figure 1 below depicts the a,, b,, Am, Bmn
curves in a part of the a,q plane and intersection of the corresponding curves
illustrates existence of the odd modes with (m,n) = (0,1), (m,n) = (0,2) and
(m,n) = (0,3), all of them missing in the table at [5]. Also, the same picture
shows that in an almost circular membrane even and odd modes with the same

10



values of m and n have nearly identical frequencies already for small values of
n. This will also be apparent in our table 1, but in the table in [5] the reported
frequency differences are larger.

Figure 1: We show in the a, ¢ plane the a,, curves (solid lines), b,, curves (dashed
lines), the A,, curves (filled dots) and B,, curves (empty dots) for an almost
circular elliptic membrane with o = cosh2, 3 = sinh 2. Intersections of these
curves identify the eigenmodes of an elliptic membrane as explained in the
present article.

In the more recent [25], Wilson and Scharstein implemented more or less the
same method as a MATLAB program. As a result, they show a table with the
frequencies of the first 100 even and the first 100 odd eigenmodes for a more
eccentric membrane with o = 1 and g = 2 all calculated with 8 decimal figures.
They also calculate the same eigenfrequencies by a Galerkin and by a finite
element method. Although not complete, agreement among the 3 methods is
very good.

Our method for proving existence of eigenmodes for elliptic membranes sug-
gested a numerical method which enabled us to fully reproduce the results in
[25] and correct the results in [5]. We also believe our method is conceptually
simpler.

11



m=0 m=1 m =2 m=3 m=4 m=2>5 m=206
n=0 even 0.651231 1.49785 2.35503 3.21749 4.08204 4.94733 5.81293
odd - - - - - - -
n=1 even 1.02808 1.88387 2.73594 3.59121 4.45108 5.31394 6.17819
odd 1.04708 1.91836 2.78412 3.64925 4.51455 5.38009  6.2458
n=2 even 1.38748 2.26883 3.12671 3.97902 4.83233 5.68947 6.55018
odd 1.39069  2.28074 3.15123 4.01676 4.88119 5.74569 6.61051
n=3 even 1.72603 2.6382  3.51256 4.37137 5.22392 6.07591 6.93071
odd 1.72634  2.64047 3.52057 4.38937 5.25397 6.11736 6.98078
n=4 even 2.05327 2.99268 3.88482 4.7567 5.61649 6.46963 7.3209
odd  2.05329 2.99296 3.88639 4.76219 5.62975 6.49355 7.356
n=25 even 2.37354 3.3379  4.24576 5.13016 6.00084 6.86163 7.71566
odd 2.37354 3.33793 4.24598 5.13124 6.00462 6.87134 7.73453
n=6 even 2.68878 3.67659 4.59921 5.49463 6.3749 7.24488  8.1066
odd  2.68878  3.67659 4.59923 5.49479 6.37565 7.24749 8.11364

Table 1: Values of hw for some eigenmodes of an elliptic membrane with o =
cosh2, B = sinh2. This is a correction to table 1 in [5] in which several errors
were found.

Let f,,(gq) be the solution evaluated at £ = & of the initial value problem

F"(&) — (an(q) —2gcosh(28))F(§) = 0
FO) = 1 . (18)
F'(0) = 0

The rough idea for the method is to search for the even eigenmode frequencies
with some given value of n by walking over the a,, curve and searching for zeros
of fn(q). More exactly, we find the ¢ values for the odd eigenmodes with a
given n in an interval [gmin, ¢max] by partitioning this interval with a suitably
fine grid, evaluating f,(¢) in the grid points and using the bisection method until
we obtain up to some prescribed tolerance € the positions in which f,(g) = 0.
A similar method can be used for the odd eigenmodes.

We thus need a method for approximating the a,(q), b,(¢) and for numeri-
cally solving (18).

Although extensive tables of Mathieu functions exist e.g. in [17], computer
implementation of these functions is still problematic. According to Alhargan
[2], the major difficulty is exactly the calculation of the Mathieu characteristic
numbers a,(q), b, (q). Most computer algebra systems have built-in functions for
implementing them, but the implementation in Mathematica does not perform
well for intermediate values of ¢ and large n. If the reader asks Mathematica
version 6 to plot e.g. big(g) for ¢ between 0 and 200, he/she will notice a large
discontinuity in the graph. For larger values of n, graphs for a,(q) or b,(q)
exhibit discontinuities in some intervals.

We showed in [19] that sequences of upper and lower bounds for Mathieu
characteristic numbers converging to these numbers may be obtained as zeros
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of suitable polynomials. As the errors in the Mathematica implementations did
produce some wrong eigenmodes and eigenfrequencies in the calculations for
the membrane with a = 2, § = 1, in the calculations for that membrane we
used upper bounds from the above work as good approximations for the Math-
ieu characteristic numbers. As in the calculation in table 1 for the membrane
with @ = cosh2, f = sinh2 smaller values of ¢ are involved, we could rely
on the much quicker built-in Mathematica implementation in the calculation of
eigenfrequencies. In both cases our numerical scheme may use any standard
numerical method for solving (18). Just for the sake of reproducibility of our
results, we used a 4th order Runge-Kutta.
Very accurate results may be obtained with this scheme because

1. Upper and lower bounds in [19] can be used in order to approximate a,(q)
up to any desired accuracy.

2. Accuracy in the numeric ODE solution may be increased e.g. by decreasing
the step size in a Runge-Kutta method.

3. The tolerance € in the bisection method can be chosen as small as desired.

By using the above mentioned scheme we calculated the frequency of all
even and odd eigenmodes of an elliptic membrane with a = 1 and 3 = 2 for all
values of n up to n = 30. The Mathieu characteristic numbers a,, and b,, were
approximated by their upper bounds of order 30 in the notation of [19]. In our
tests, this approximation provides values correct to the 10th decimal place. We
also used a 4th order Runge-Kutta method with interval [0, £y] divided into 1000
steps for solving the modified Mathieu equation. The tolerance € in the bisection
method was equal to 10710, As a result we got the first 130 eigenfrequencies of
even modes and the first 116 eigenfrequencies of odd modes.

We compared our frequencies with the ones reported by Wilson and Scharstein
[25] at their tables 1 and 2, each comprising 100 modes. Our figures were exactly
equal to the ones at the third row of their tables to all 8 decimal places, with
some few exceptions in which results did not coincide in the last decimal figure.
All calculations were performed by Mathematica version 6 on a 2.40 GHz Core
2 Duo, 4 GByte RAM Windows PC in less than 1 hour.

The results in table 1 were produced with the same method, but using 500
steps in the Runge-Kutta and the built-in Mathematica function for the Math-
ieu characteristic numbers. Calculations took about 6 minutes with the same
equipment mentioned above.

As another interesting application of the proof of our Main Theorem, we
may combine the exact lower and upper bounds for A,, and B,, in (14) and
(15) with known asymptotic formulae for a,, and b, to produce approximate
formulae for the eigenfrequencies g7,

For example, as a particular case of formula (20.2.30) in [1] we have that

q—00

an(q) "7 bpya(q) TR =20+ 2(2n +1)4/q . (19)
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If we use the above formula to approximate a,(g) together with the lower bound
in (14) to approximate A,,(q) and equate the two approximations, then we get

2
1 1 T &£ (n+i 1
\/qgﬁ,nzi(n‘i‘a)‘f'fgo 1+0< 2 (m+§)7 (20)

2 \m+ 1
where the approximate value above is an upper bound for /g5, ,, in the limit
in which (19) becomes exact. Analogously, using the upper bound in (14) to
approximate A,,(¢q) and again (19) for a,(q) we get the approximation

1 1
Imn 1 + cosh 2&, n+§+
2
1+ cosh26\? & 262 n+1i 1
i U B et
( 2 o + 72(1 4 cosh26) \m + 3 (m + 2) (21)

which is expected to be a lower bound to /g5, ,, in the limit where (19) becomes
exact.

The above approximations can be compared with the exact values of the
eigenfrequencies and it turns out that they are not very precise. In fact they are
less precise than values calculated by asymptotic formulae and supplied by both
[5] and [25] in their tables. The importance of the above formulae is that they
explain a qualitative behaviour observed and not explained in [25]. Adapting
their notation to ours, they claim in page 48 that

\/Gmon & co + c1m + can (22)

where cg, c; and ¢y are constants with ¢, “considerably smaller” than c;.

If &y is much smaller than 7 and n not much larger than m, then the value
of the square root at the right hande side in (20) is not much larger than 1 and
we obtain (22) with ¢; = % and cp = % For the particular membrane with
a =1 and 8 = 2 they used in their paper, we have £, ~ 0.55 and ¢; ~ 5.7c¢s,
justifying and explaining their claim as a consequence of &, being considerably
smaller than 7. An important consequence is that even mode eigenfrequencies
increase approximately 6 times faster in variable m than in n. A similar result
with somewhat different numerical values holds if use we use (21) instead of
(20).

Corresponding formulae for the eigenfrequencies of odd eigenmodes can also
be found. For completeness, they are respectively

2

1 1 ™ & (n-3\’
mmi(n—§)+% 1+0(m+21> (m+1) (23)
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for an “approximate upper bound” and

1 1
o ~ R
Imn ™ T cosh 2&, " +

1\ 2

1+ cosh2¢\"/? =« 262 o1
(2) 50\/1+ 72(1 + cosh 26,) <m+21) (m+1){24)

for an “approximate lower bound”.
We should also say that formulae (20), (21), (23) and (24) here look similar
to formulae (30) and (31) in [25], for small values of n.

4 Conclusions

Calculations of eigenfrequencies for elliptic membranes are notoriously difficult.
As already quoted, several methods have been recently proposed for such cal-
culations [10, 5, 11, 25] and results are not always coincident.

In our opinion, some of this confusion arised because of lack of solid knowl-
edge on the existence of the eigenmodes. Also, as far as we know, no theorem
had already been proved stating one to one correspondence between modes for
the circular and elliptic membranes. Only the lack of this correspondence could
justify missing modes and non-existing modes such as in table 1 in [5].

In this work we proved existence of eigenmodes for elliptic membranes and
one to correspondence with modes for circular membranes. As a side effect,
we also obtained an efficient numerical scheme for calculating large numbers of
eigenfrequencies with excellent accuracy.
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