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Abstract

We consider a class of continuous-time stochastic growth models on d-dimensional
lattice with non-negative real numbers as possible values per site. We remark that the
central limit theorem proven in our previous work [NY09a] can be extended to wider class
of models so that it covers the cases of potlatch/smoothing processes.
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1 Introduction

We write N* = {1,2,...}, N= {0} UN*, and Z = {#2 ; € N}. For 2 = (1,..,24) € R?,
|z| stands for the ¢l-norm: |z| = Z‘ij:l |z;|. For n = (Nz)peza € RZ!|n| = Y zezd |Me]. Let
(Q, F, P) be a probability space. We write P[X : A] = [, X dP and P[X]| = P[X : Q] for a
random variable X and an event A.

1.1 The model

We go directly into the formal definition of the model, referring the reader to [NY09a, NY09b]
for relevant backgrounds. The class of growth models considered here is a reasonably ample
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subclass of the one considered in [Lig85, Chapter IX] as “linear systems”. We introduce a
random vector K = (K ),czq¢ such that

0 < Ky < brljg|<r} a.s. for some constants by, rx € [0, 0), (1.1)
the set {x € Z%; P[K,] # 0} contains a linear basis of R?. (1.2)

The first condition (1.1) amounts to the standard boundedness and the finite range assump-
tions for the transition rate of interacting particle systems. The second condition (1.2) makes
the model “truly d-dimensional”.

Let %%, (2 € 74, i e N*) be i.i.d. mean-one exponential random variables and T%% =
4 4720 Let also K%' = (KZ"),cza (2 € 29, i € N*) be i.i.d. random vectors with
the same distributions as K, independent of {Tz’i}zezd7ieN*. We suppose that the process
(m¢) starts from a deterministic configuration 1y = (10.¢),cza € NZ* with |no| < co. At time
t =T, n;_ is replaced by 7;, where

Kg7i77t— z ifx = zZ,
Nt = - . (1.3)
! { Nt—a + ;iznt—,z if v # 2.

We also consider the dual process (; € [O,OO)Zd, t > 0 which evolves in the same way as
1 )i>0 except that (1.3) is replaced by its transpose:
(1) > p p y P
Crw = ZyEZd K;fxgt—ay if z =z, (1‘4)
’ Gt if © # 2.

Here are some typical examples which fall into the above set-up:

e The binary contact path process (BCPP): The binary contact path process (BCPP),
originally introduced by D. Griffeath [Gri83] is a special case the model, where

- { (02,0 + 0xe)peza  With probability ﬁ, for each 2d neighbor e of 0 (1.5)

0 with probability Wlﬂ'

The process is interpreted as the spread of an infection, with 7, , infected individuals at time
t at the site z. The first line of (1.5) says that, with probability W)\H for each |e] =1, all
the infected individuals at site x — e are duplicated and added to those on the site z. On the
other hand, the second line of (1.5) says that, all the infected individuals at a site become
healthy with probability Wl-i-l' A motivation to study the BCPP comes from the fact that

the projected process (n;z A1), .54, t >0 is the basic contact process [Gri83].

e The potlatch/smoothing processes: The potlatch process discussed in e.g. [HL81] and
[Lig85, Chapter IX] is also a special case of the above set-up, in which

Ky =Wky, zecZ% (1.6)

Here, k = (k3)4eza € [0, 50)%" is a non-random vector and W is a non-negative, bounded,
mean-one random variable such that P(W = 1) < 1 (so that the notation k here is consistent
with the definition (1.7) below). The smoothing process is the dual process of the potlatch
process. The potlatch/smoothing processes were first introduced in [Spi81] for the case W = 1
and discussed further in [LS81]. It was in [HL81] where case with W # 1 was introduced and
discussed. Note that we do not assume that k, is a transition probability of an irreducible
random walk, unlike in the literatures mentioned above.



We now recall the following facts from [Lig85, page 433, Theorems 2.2 and 2.3]. Let F;
be the o-field generated by ns, s < t. Let (nf)¢>0 be the process (n:)i>0 starting from one
particle at the site z: nj = d,. Similarly, let ({{’)¢>0 be the dual process starting from one
particle at the site z: (§ = ;.

Lemma 1.1.1 We set

ko= (ka)pezs = (P[Ke])pepa (L.7)
M = (e i ) eza.
Then,

a) (|7, Ft)e=0 is a martingale, and therefore, the following limit exists a.s.

[7oo| = Jim [77,]. (1.9)
b) FEither
Pl7%)]=1 or 0. (1.10)

Moreover, P[|7%|] = 1 if and only if the limit (1.9) is convergent in L*(P).

c) The above (a)—(b), with n, replaced by (; are true for the dual process.

1.2 Results

We first introduce some more notation. For 7,( € RZd, the inner product and the discrete
convolution are defined respectively by

<7I,C> = Z nzCz and (77 * C)x = Z ﬁz—yCy (1'11)

YA yeZd

provided the summations converge. We define for z,y € Z¢,

Bay = P[(K = d0)z(K —do)y] and B, = Z Baty,y (1.12)
yEZA

If we simply write § in the sequel, it stands for the function z — 3,. Note then that

(B,1)= > Bey=PlIK|-1). (1.13)
x,y€Z4
We also introduce: ~
Gs(z) = / P(S; = x)dt, (1.14)
0

where ((S})t>0, P%) is the continuous-time random walk on Z¢ starting from z € Z¢, with
the generator

kx—y + ky—z

Lsf(z) =) Ls(z,y) (f(y) — f(x)), with Ls(z,y) = 5

y€Z4

forz #y, (1.15)

cf. (1.7). The set of bounded continuous functions on R? is denoted by Cj,(R?).

Theorem 1.2.1 Suppose d > 3. Then, the following conditions are equivalent:



a) (B,Gs) < 2.
b) There exists a bounded function h : Z% — [1,00) such that

(Lsh)(x) + 280.(B,h) <0, x€Z% (1.16)

c) sup P[[7,[*] < oo
£>0

d) lim § F (@@= m) V) = il [ | P in L2(P) for il ] € C(R),

where m =Y ;a4 xk, € RY and v is the Gaussian measure with

/Rd xidv(x) =0, /Rd rirjdv(x) = Z xiTike, 1,7 =1,..,d. (1.17)

x€Z4

b’) There exists a bounded function h : Z¢ — [1,00) such that

(Lsh)(z) + 3h(0)3, <0, x € Z% (1.18)

c’) sup P[[¢,|*] < oo.
>0

@) im 3 7 (@ m)/VE) G = G / fdv in L2(P) for all f € Cy(RY).

e zEZ? R
The main point of Theorem 1.2.1 is that (a) implies (d) and (d’), while the equivalences
between the other conditions are byproducts.

Remarks: 1) Theorem 1.2.1 extends [NY09a, Theorem 1.2.1], where the following extra
technical condition was imposed:

Bz =0 for x # 0. (1.19)

For example, BCPP satisfies (1.19), while the potlatch/smoothing processes do not.
2) Let my4 be the return probability for the simple random walk on Z%. We then have that

A> for BCPP,

,Gg) <2 — 2d(1-2m0)
(8.Gs) { PW?] < % for the potlatch/smoothing processes.

(1.20)
cf. [Lig85, page 460, (6.5) and page 464, Theorem 6.16 (a)]. For BCPP, (1.20) can be seen
from that (cf. [NY09a, page 965])

Yz =0} + A1 {jz| =1}
Y 2d\ + 1

2dA+1 1
dzy, and Gg(0) = 2N 1o

To see (1.20) for the potlatch/smoothing processes, we note that i (k + k) * Gs = |k|Gs — do,
with k, = k_, and that

Bey = PW3kyky — kz0y0 — kydz.0 + 0z.00,.0-
Thus,

(B,Gs) = PW(Gskk)—(Gsk+k)+Gs(0)
= PW?{Gsxk,k)+2— (2k| - 1)Gs(0),



from which (1.20) for the potlatch/smoothing processes follows.
3) It will be seen from the proof that the inequalities in (1.16) and (1.18) can be replaced
by the equality, keeping the other statement of Theorem 1.2.1.

As an immediate consequence of Theorem 1.2.1, we have the following

Corollary 1.2.2 Suppose either of (a)—(d) in Theorem 1.2.1. Then, P[|Tj|] = |no| and for
all f € CL(RY),

hm Zf(:z:—mt)/f) |tx1{m¢0} / fdv
:EEZd
in probability with respect to P( - |n; # 0, Vt).

where m = Y ,axk, € RY and v is the Gaussian measure defined by (1.17). Similarly,
either of (a),(b’),(c’),(d’) in Theorem 1.2.1 implies the above statement, with n; replaced by
the dual process (;.

Proof: The case of (n.) follows from Theorem 1.2.1(d). Note also that if P(|f..| > 0) > 0,
then, up to a null set,

{|ﬁoo|>0}:{77t?_é07 Vt}v

which can be seen by the argument in [Gri83, page 701, proof of “Proposition”]. The proof
for the case of ((.) is the same. O

2 The proof of Theorem 1.2.1

2.1 The equivalence of (a)—(c)

We first show the Feynman-Kac formula for two-point function, which is the basis of the proof
of Theorem 1.2.1. To state it, we introduce Markov chains (X, X ) and (Y,Y) which are also
exploited in [NY09a]. Let (X, X) = ((Xt,Xt)t>0,P;’2;~() and (Y,Y) = ((Y},Yt)po, ) be

the continuous-time Markov chains on Z? x Z¢ starting from (z, ), with the generators

XXf Z L xwy, )(f(yag)_f(x7%>)v
yger (2.1)
and  Lygf(z,2) = Y Lyg(@.29.9) (f(y,9) - f(z,7)),
y,y€Zd

respectively, where

LX)?(@" z,y,y) = (k — 00)a— yOz,5 + (k — 50)5—§5x,y + Bo—ys—y0y

2.2
and L, (xxy@ LXX(yy,:cx) (2.2)
It is useful to note that
S Lys@Fyg) = 20k 1)+ bz (2.3)
Y,y
Y Lyp(aZy.y) = 20k —1)+(5,1)d,5 (2.4)
Y,y

Recall also the notation (1} ):>0 and (¢f)i>0 introduced before Lemma 1.1.1.



Lemma 2.1.1 Fort >0 and z,%,y,7 € Z°,

Plcl,C0) = Pty
= PP oo (X0 K) = (2.9)]

_ e(lkl—l)tp;@ [ewt (V. Ye) = (y y)},

where ey 5, = €exp (fg ﬂXs—)?sd‘S) and ey , = exp (< ) Jo 6 Y.,Ys dS)

Proof: By the time-reversal argument as in [Lig85, Theorem 1.25], we see that (17, nfg) and

(Cg o Ct%) have the same law. This implies the first equality. In [NY09a, Lemma 2.1.1], we
showed the second equality, using (2.4). Finally, we see from (2.2) — (2.4) that the operators:

f(xa 5) = LX7)~(f(x7%) + ﬁx—if(x7%)7
f(xa i) = Ly}f/f(l‘a?i) + <ﬁ7 1 >5m,5f(x755)

are transpose to each other, and hence are the semi-groups generated by the above operators.
This proves the last equality of the lemma. a

Lemma 2.1.2 ((X; — )A(/t)tZO,P;’(}() and ((Yz Y})t>0,Py’§~/) are Markov chains with the

generators:
Ly_zf(x) =2Lsf(x)+ 8.(f(0) — f(2))
and Ly _g f(x) = 2Lsf(x) + (5, ) = (8,1)f(2))z0,

respectively (cf. (1.15)). Moreover, these Markov chains are transient for d > 3.

(2.5)

Proof: Let (Z,Z) = (X,X) or (Y,Y). Since (Z,Z) is shift-invariant, in the sense that

LZ’Z(.I‘ +v,T+v,y+v,y+v) = LZ,Z(x,i,y,@ for all v € Z%, ((Z; — Zt)tZO,P;zg) is a

Markov chain. Moreover, the jump rates L, ~(z,y), * # y are computed as follows:

L

kr—y + ky—a: + 6z,0ﬁy if (Zv Z) = <Y7 Y)

koy + ky—o + 008 if (Z,2) = (X, X),
Z—Z(x7y>: ZLZ,Z(:U7O7Z+y7Z):{ Y Y y,Oﬁ ( ) ( )

z€Z4
These prove (2.5). By (1.2), the random walk S. is transient for d > 3. Thus, Z — 7 is
transient d > 3, since LZ 7(w,+) = 2Ls(z,-) except for finitely many z. 0

Proof of (a) < (b) < (c): (a) = (b): Under the assumption (a), the function h given below
satisfies conditions in (b):

(B,1)

h=1+cGg with c= ———— .
5 2—(B,Gs)

(2.6)

In particular it solves (1.16) with equality.
(b) = (c): By Lemma 2.1.1, we have that

) PRI = P [eyy,], wiezd,



where e, = exp (( B8,1) f(f 5Yg,§~fsds)' By Lemma 2.1.2, (1.16) reads:

Ly _gh(z)+(B,1)d,0h(z) <0, zeZ’ 2
and thus,
PeY ey h(Yi = V)| < hia), w ez

Since h takes its values in [1, sup h| with sup h < oo, we have
0
sgp P;? |:eY,}~/,t] <suph < .
By this and (1), we obtain that

sup P[77;[[77;]] < sup h < oo.
x

(c) = (a) : Let Gy_¢(x,y) be the Green function of the Markov chain Y — Y (cf. Lemma
2.1.2). Then, it follows from (2.5) that

Gy_y(z,y) = 3Gs(y —2) + 3 (( B,Gs ) — (8,1)Gs(0)) Gy _g(2,0). (2.8)
On the other hand, we have by (1) that for any =, 2 € Z¢,
PET [eysy ] = PUms I < PP,
where the last inequality comes from Schwarz inequality and the shift-invariance. Thus,

P;,’;' |:6Y,§7,ooi| < StggPHﬁ?P] < 0. (2.9)

Therefore, we can define h : Z¢ — [1,00) by:

M) = P2 leyy ) (2.10)
which solves:
h(z) =1+ Gy _¢(x,0)(B,1)h(0).

For x = 0, it implies that
Gy_?(o, 0)< ,3, 1 > < 1.

Plugging this into (2.8), we have (a). O

Remark: The function h defined by (2.10) solves (2.7) with equality, as can be seen by the
way it is defined. This proves (c) = (b) directly. It is also easy to see from (2.8) that the
function h defined by (2.10) and by (2.6) coincide.

2.2 The equivalence of (c) and (d)

To proceed from (c) to the central limit theorem (d), we will use the following variant of
[NY09a, Lemma 2.2.2]:



Lemma 2.2.1 Let ((Z;)1>0, P%) be a continuous-time random walk on Z¢ starting from ,
with the generator

LZf ZLny f( ))7

yezZd

where we assume that

Z 12|2L (0, z) < oo.

x€Z4

On the other hand, let Z = ((Zt)tzg, P7) be the continuous-time Markov chain on Z% starting
from x, with the generator

=3 Ly@y)(f(y) - f(2)).

yeZd

We assume that z € Z¢, D C 74 and a function v : Z* — R satisfy

Lz(z,y) = Lz(z,y) ifx ¢ DU {y},
D is transient for both Z and Z

v 18 bounded and v = 0 outside D,

et def exp <f0 du> t > 0 are uniformly integrable with respect to P,
Then, for f € Cp(R?),
Jim P* [et F(Ze —mt) /\/i)] — P*[ew] / fv,

where m =3 ;4 xLz(0,2) and v is the Gaussian measure with

/ xidv(x) =0, / xiz;dv(x Z zix;jLz(0,z), i,j=1,..,d.
R R

z€Z4

Proof: We refer the reader to the proof of [NY09a, Lemma 2.2.2], which works almost
verbatim here. The uniform integrability of e; is used to make sure that lim, .o SUp;> [€s,¢| =
0, where €4, is an error term introduced in the proof of [NY09a, Lemma 2.2.2]. O

Proof of (¢) < (d): (c) = (d): Once (2.9) is obtained, we can conclude (d) exactly in the
same way as in the corresponding part of [NY09a, Theorem 1.2.1]. Since (c¢) implies that
limy oo ;] = M| in L2(P), it is enough to prove that

U, < Z Teof ((a:— mt)/\/f) — 0 inL?*P)ast /oo

rEZd

for f € Cp(R?) such that [p, fdv = 0. We set fy(2,Z) = f((x — m)/Vt)f((Z —m)/Vt). B
Lemma 2.1.1,

P[UE} = Z P[Ut:c??m]ft(x l‘ Z 770x770mPYY Ytht(Yt’Y;f)]

x,2€Z4 x,7€Z4
Note that by (2.9) and (c),
1) P [
v,Y

6Y5;700} < 0.



Since |no| < 00, it is enough to prove that for each z,7 € Z¢

Jim PP [ey g i, )] =0.

To prove this, we apply Lemma 2.2.1 to the Markov chain Z def- (s, }N/t) and the random
walk (Z;) on Z% x Z¢ with the generator

sz(l',%) = Z Lz(.’L', %73/7&) (f(y7§) - f(l',%)) )
y,yeZl
where
kg,g ifxzyand%;ég,
LZ('zvv'%vyag): kyf:v lfx7éya'nd'%:ga
0 if otherwise.

Let D = {(2,2) € Z¢ x Z%; x = 7}. Then,

2) Ly(0,79,5) = Ly (@,3,5,0) if (2,3) € D U{(y,3)}.
Moreover, by Lemma 2.1.2,

3) D is transient both for (Z;) and for (Z;).

Finally, the Gaussian measure v ® v is the limit law in the central limit theorem for the
random walk (Z;). Therefore, by (1)-(3) and Lemma 2.2.1,

2
i P2 ey 06,59 = £ o] ([ 00) =0

t—oo Y,

(d) = (c):This can be seen by taking f = 1. O

2.3 The equivalence of (a),(b’),(c’)

(a) = (b’): Let h=2—(3,Gg )+ [+ Gg. Then, it is easy to see that h solves (1.18) with
equality. Moreover, using Lemma 2.3.1 below, we see that h(z) > 0 for = # 0 by as follows:

(3G - (3+Gs)0) = (U 1) (8G90 - 2500
Gs(z) Gs(z)
(Gs(0>_1)2_2as(o>‘ >

Since h(0) = 2 and lim ;o h(z) =2 — (B * Gs)(0) € (0,00), h is bounded away from both
0 and co. Therefore, a constant multiple of the above h satisfies the conditions in (b’).

(b’) < (c¢’): This can be seen similarly as (b) < (c) (cf. the remark at the end of section
2.1).

(¢’) = (a) : We first note that

1) lim (6% Gg)(z) =0,

|z|—o0

since Gg vanishes at infinity and ( is of finite support. We then set:

ho(@) = PL%Jex ol hale) = holw) — S ho(0)(8 % Cs) (a).



Then, there exists positive constant M such that ﬁ < hg < M and

1
(Lsho)(x) = =5 ho(0)Bs,  for all € yAS

By (1), hg is also bounded and
(Lsha)(2) = (Lsho)(z) = 3ho(0)Ls(5 * Gs)(@) = ~ 3 ho(0)6s + 5ho(0)B = 0.

This implies that there exists a constant ¢ such that ke = ¢ on the subgroup H of Z¢ generated
by the set {x € Z¢; k, +k_, > 0}, i.e.,

2) ho(z) — %hg(o)(ﬁ ¥ Gs)(x) = ¢ forz e H.

By setting z = 0 in (2), we have

e = ho(0)(1 — 2981

On the other hand, we see from (1)—(2) that

1
0< i < |11|1Lnoo ho(x) = c.

rzeH

These imply (5,Gg) < 2. O

Lemma 2.3.1 Ford > 3,

(8% Gs)(x) > Z32)

- GS(O) ((ﬁ * GS)(O) - 2) + 250,{17 HARS Zd-

Proof: The function (3, can be either positive or negative. To control this inconvenience, we
introduce: By = > <70 P[KyKyy]. Since 8, > 0 and Gs(z +y)Gs(0) > Gs()Gs(y) for all
z,y € Z% we have

1) Gs(0)(Gs * f)(x) = Gs(2)(Gs * 5)(0).

On the other hand, it is easy to see that

B=0F—k—k+d, with ky =k_j.
Therefore, using 5(k + k) x Gg = |k|Gs — do,
2) BxGg=(B—k—k+0)*Gs=pxGs— (2k] — 1)Gs + 20.
Now, by (1), and (2) for z =0,

~ Gs(z) oy Gs() B B
(G B)fa) = GL G (Gs + BO) = GL07(8 + Gs(0) = 2) + (20k] = 1)Gis(a).
Plugging this in (2), we get the desired inequality. O
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2.4 The equivalence of (c¢’) and (d’)

(d’) = (c’): This can be seen by taking f = 1.
(¢’) = (d):By Lemma 2.1.1, Schwarz inequality and the shift-invariance, we have that

3 =1 -0 -
PET [ex 5] = PIGHIG N < PUCR), for 2,7 e 27,

where e XX = XD ( fg ﬁxr 7, ds). Thus, under (c’), the following function is well-defined:

z,0
ho(x) = PX,X [ex % ool

Moreover, there exists M € (0,00) such that +; < hg < M and
1
(Lsho)(x) = = 5ho(0)3s,  for all 2 € yAS

We set
hl(x) = h0($> — .

Then, we have 0 < ﬁ < hg <M and

1 1 .
Lshi(z) = Lsho(z) = —5ho(0)fe = —5h1(0)pBs, with p=
This implies, as in the proof of (b) = (c) that

Q?,ACE; D _ < 2 o~ d
21215) PX7X [eX’XJ] <2M* < oo forx,x €7,

which guarantees the uniform integrability of e, 5 ,, ¢ > 0 required to apply Lemma 2.2.1.
The rest of the proof is the same as in (c¢) = (d). O
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