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Abstract. For a Cr-diffeomorphism (r ≥ 3) f on a smooth compact Rie-
mannian manifold possessing a hyperbolic attractor, the potential function for
the SRB measure − log Juf(hf (x)) is differentiable with respect to f in a Cr-
neighborhood of f . We show that if we calculate the unstable Jacobian Juf
with respect to a Hölder continuous metric ω0 under which the stable and
unstable subspaces are orthogonal, the derivative formula in a given direction
δf, a vector field on M evaluated at f(x), is given exactly by

δ(log Ju
0 f(hf (x))) = divu

ρXu(f(x))

where Xu, Xs are the projections of the vector field δf ◦ f−1 onto unstable
and stable subbundles, divu

ρXu is the divergence of Xu with respect to the
volume form induced by the SRB measure ρ of f , and Ju

0 f is the unstable
Jacobian with respect to the metric ω0 on the unstable manifold of f . This
result complements Ruelle’s formula by identifying a metric under which the
coboundary term can be determined exactly and also gives an alternative proof
of the derivative formula of the SRB measure.

1. Introduction

Let f be a C1+α-diffeomorphism of a smooth (C∞) compact manifold M pos-
sessing a hyperbolic attractor ∆f , assuming that it is also topologically mixing on
∆f . The SRB measure of f , ρf is the unique equilibrium state for the potential
function ϕ(x) = − log Juf(x), where Juf(x) is the Jacobian of f along the unsta-
ble manifold, i.e., µ = ρf is the unique invariant measure satisfying the equation
(variational principle)

hµ +
∫

ϕ(x)dµ = 0,

where hµ is the metric entropy of f with respect to µ.
In [7], Ruelle proved that the map f → ρf is differentiable and the derivative,

or the linear response function is given by

(1) δρf (Φ) =
∞∑

n=0

ρf < grad(Φ ◦ fn), X >,

in a suitable functional setup.
To be precise, assume that f0 is a Cr-diffeomorphism (r ≥ 3) of a smooth com-

pact Riemannian manifold possessing a topologically mixing hyperbolic attractor
∆0. Let U(f0) denote the Cr-neighborhood of f0 such that any map f ∈ U(f0) pos-
sesses a hyperbolic attractor ∆f and is topologically conjugate to f0 via a Hölder
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continuous map hf : ∆0 → ∆f :

f ◦ hf = hf ◦ f0.

Then, the SRB measure ρf pulled back onto ∆0 by the conjugating map hf is the
unique equilibrium state for the potential function − log Juf(hf (x)):

Hh∗f ρf
+

∫

∆0

− log Juf(hf (x))dh∗fρf = 0,

where Hh∗f ρf
is the measure-theoretic entropy of f with respect to the measure

h∗fρf . Given any smooth function Φ on the manifold, the functional

f →
∫

∆f

Φdρf =
∫

∆0

Φ ◦ hfdh∗fρf

is differentiable in f ∈ U(f0) and its derivative formula evaluated at f is given by
(1).

The derivation of this formula [7] relies mainly on the calculation of the derivative
of the potential function − log Juf(hf (x)) with respect to f . Ruelle showed that the
derivative of log Juf(hf (x)), in the direction δf (a vector field on M evaluated at
f(x)) is coboundary with the divergence of the vector field X = δf ◦ f−1 restricted
to the unstable manifold with respect to the volume form induced by the SRB
measure’s density, i.e. there exists a Borel measurable function φ(x) on ∆f such
that

δ(log Juf(hf (x))) = divu
ρXu(hf (x)) + φ(f(hf (x)))− φ(hf (x)).

Note that there is no essential difference in evaluating the derivative formula at
the point f0 or any other point f = hf ◦ f0 ◦ h−1

f ∈ U(f0). The expression of the
formula becomes simpler if it is evaluated at f0:

δ(log Juf(hf (x)))
∣∣
f0

= divu
ρXu(x) + φ(f0(x))− φ(x).

In this article, we show that if we calculate the unstable Jacobian with respect
to a Hölder continuous metric ω0, under which the stable and unstable subspaces
of f0 are orthogonal (for example, the Lyapunov metric), the coboundary term φ
can be determined explicitly. Our calculation is also more elementary, although not
necessary shorter, and thus, provides an alternative proof of the derivative formula.

Let f ∈ U(f0) and hf be the conjugating map: f◦hf = hf◦f0. Let Ju
0 f(x) denote

the Jacobian of the map f restricted to the unstable manifold with respect to the
volume form induced by the metric ω0 whose precise definition will be given in the
next section. Let δf be a Cr-vector field evaluated at f0(x). Thus, X = δf ◦ f−1

0

is a Cr-vector field on M . Let Xu, Xs be the projections of X onto stable and
unstable invariant subspaces of Df0. We have the following theorem.

Theorem 1. The map f → log Ju
0 f(hf (x)) is differentiable in terms of f ∈ U(f0).

Its derivative at the point f0, in a given direction specified by a vector field evaluated
at f0(x), δf , is given by

δ(log Ju
0 f(hf (x)))

∣∣
f0

= divu
ρXu(f0(x)),

where divu
ρXu(x) is the divergences of Xu on the unstable manifold with respect to

the volume form induced by the density of the SRB measure ρf0 .
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In next section, we will give definitions of the terms in this theorem and recall
some related results. They include the topology of the spaces of the potential
functions, the differentiability of the conjugating map hf in terms of f and stable
and unstable subspaces, the divergence of a non-smooth vector fields, the volume
form induced by the density of the SRB measure on the unstable manifold which
is only defined up to a constant factor, the Hölder continuous metric ω0, as well as
the Lyapunov metric.

2. The preliminaries

For standard definitions of commonly used terms such as uniformly hyperbolic
maps, attractors, topological mixing, Cr-topology, conjugating map, exponential
splitting etc., we refer to the book [5].

2.1. Spaces of subbunbles of the tangent bundle and Hölder continuous
maps. Much of the setup is the same as that in [7]. We include here a brief
description.

2.1.1. The Banach manifold structure of DiffCr

(M). What we need is a description
of its tangent space. Let Ax be the exponential map from the tangent space TxM

to M at the point x. Given a diffeomorphism f ∈ DiffCr

(M), for any map g in
its small Cr neighborhood, The map g̃(x) : x → A−1

f(x)g(x) ∈ Tf(x)M defines a Cr

vector field on M . Note that this vector field is evaluated at the point f(x). With
the linear structure of the tangent space, we have the following Banach space

B = {g̃(x) : x → ξ(x) = A−1
f(x)g(x) ∈ Tf(x)M, Cr}

equipped with the norm

‖g̃(x)‖Cr = sup
x∈M

‖A−1
f(x)g(x)‖Cr

where the Cr-norm in Tf(x)M is induced by the Riemannian metric on M . Clearly,
the map g̃ → g is a Cr diffeomorphism in a small neighborhood of the zero section.

In a similar way, we can define the Banach manifold structure of Hölder contin-
uous maps on M . If h is a Hölder continuous map of M with a Hölder exponent
0 < α ≤ 1, its Cα neighborhood, as a Banach manifold, is identified with the Cα

neighborhood of the zero vector field in the space of all Cα vector fields on M . The
Cα norm of a vector field v(x) is defined by

‖v(x)‖Cα = ‖v(x)‖C0 + sup
x∈M

sup
y∈M,y 6=x

‖v(x)− v(y)‖
d(x, y)α

,

where ‖v(x)− v(y)‖ is the norm in the tangent space Th(x)M and d(x, y) is the dis-
tance on M . When h is the identity, we denote its Cα neighborhood by Cα(M, M).
If we replace the norm by the absolute value, we have the Banach space of Hölder
continuous functions on M and we denote it by Cα(M,R).

2.1.2. The Banach manifold structure of the space of Hölder continuous Grass-
mannian bundles of the tangent bundle. Let Gk(M) denote the space of Hölder
continuous Grassmannian bundles of order k of the tangent bundle. Each point of
Gk(M), J (x) is a k-dimensional linear subspace bundle of the tangent bundle TM .
J (x) is Hölder continuous with respect to x in the Grassmannian metric on the
linear subspaces. Such Grassmannian bundles are also defined on any subset of M ,
in particular, on the hyperbolic attractor of f . Since the tangent space has a linear
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structure with a Riemannian metric, Gk(M) forms naturally a Banach manifold
with the Grassmannian distance defined between k-dimensional linear subspaces of
the tangent space TxM induced by this metric.

Let Eu
f (x) and Es

f (x) denote the unstable and stable invariant subspaces of f .
They are Hölder continuous in x over the hyperbolic attractor ∆f . Let u and s
denote also the dimensions of the unstable and stable subspaces of Df . For any
given f ∈ U(f0), since hf (x) is close to x, Eu

f (hf (x)), Es
f (hf (x)) can be identified

with subspaces of the tangent space TxM using local coordinate charts. They can
thus, be considered as Hölder continuous subbundles of the tangent bundle over the
hyperbolic attractor ∆f0 . We have that Eu

f (hf (x)) and Es
f (hf (x)) are elements of

Gu(∆f0) and Gs(∆f0) for each f ∈ U(f0).
The following proposition summarizes the preliminary results we need concerning

the differentiability of the conjugating map, the exponential splittings, and the
potential function.

Proposition 1. [7] If f0 is Cr, r ≥ 3, then,
(1) the map f ∈ U(f0) → hf ∈ Cα(M,M) is Cr−1 for some 0 < α < 1. The

derivative in the direction of δf is given by

δhf (x) =
∞∑

n=0

DfnXs −
∞∑

n=1

Df−nXu.

where X = δf ◦ f−1 and X = Xs + Xu.
(2) the maps f → Eu

f (hf (x)), Es
f (hf (x)) are Cr−2 from U(f0) to Gu(∆f0),

Gs(∆f0), respectively.
(3) the map f → − log Juf(hf (x)) is Cr−2 from U(f0) to Cα(M,R).

2.2. The divergence of Xu. Let δf ∈ TfU(f0) be an element in the tangent
space of U(f0) at f . It is a Cr vector field evaluated at the point f(x). Thus, the
composition X = δf ◦f−1 is a Cr vector field on M . Since Tx(M) = Eu

f (x)⊕Es
f (x)

for x ∈ ∆f , the vector field X can be projected onto these invariant subspaces
of the differential operator Df : X = Xu + Xs. Since ∆f is an attractor, the
global and local unstable manifolds are smooth submanifolds equipped with induced
Riemannian metric from M . Thus, Xu is a well-defined vector field on both global
and local unstable manifolds. Since Es

f (x) is only Hölder continuous along Wu
f ,

the vector field Xu is only Hölder continuous, in general. However, using a weaker
definition of divergence (a distribution), given any smooth volume form on the
unstable manifold, the divergence of Xu respect to the given volume form exists
due to the absolute continuity of the holonomy map defined by the stable foliation.

Definition 1. [4] Let X be a continuous vector field defined in an open set U on
a Riemannian manifold with a volume form dw. Let G denote the family of C∞

functions in U with compact support. Assume that there is an integrable function
h(x) such that ∫

< gradg, X > dw = −
∫

g(x)h(x)dw,

for all g ∈ G. Then, we call h(x) the divergence of X and denote it by divX.

The next proposition gives a sufficient condition for the existence of the di-
vergence in our context. Since the definition of the divergence concerns only the
vector field in a small open neighborhood, we state the proposition in the case when
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the unstable manifold is a linear subspace Ru in a n-dimensional linear space Rn

equipped with Riemannian metric.

Proposition 2. [4] Let X be a C1-vector field on Rn = Ru ⊕ Rs equipped with a
smooth Riemannian metric with the property that the metric is independent of the
coordinate in Rs. Let W be an absolutely continuous foliation with smooth leaves
transversal to Ru. Let Es(x) be the distribution tangent to W at x ∈ Ru and
X = Xu + Xs denote the projections of X onto Ru and Es(x), respectively. Then,
divuXu, the divergence of Xu on the manifold Ru with respect to the volume form
restricted to the manifold is well defined. Moreover, when the Jacobian Jξ(xu, t) of
the the holonomy map ξ(xu, t) from Ru to Ru + tX defined by the foliation W is
differentiable in t and continuous in xu, we have

(2) divuXu = divuXu
c −

d

dt
Jξ(xu, t)|t=0, x

u ∈ Ru

where Xu
c is the projection of the vector field X onto the coordinate subspaces Ru

and Rs: X = Xu
c + Xs

c .

For a uniformly hyperbolic attractor, the stable foliation is absolutely continu-
ous. The Jacobian of the holonomy map ξ(xu, t) defined by this foliation from the
unstable manifold Ru to Ru + tX is given by [6, p. 255]

Jξ(xu, t) =
∞∏

n=0

|det(Dpnf
∣∣∣
En

)|

|det(Dp′nf
∣∣∣
E′n

)|
,

where pn = fn(x), p′n = fn(ξ(x, t)), En = DpnfnEu(x), and E′
n = Dp′nfnEu

t , where
Eu

t = Eu(x) + tX(x). It is Hölder continuous in xu and differentiable in t. Thus,
divuXu is a well-defined Hölder continuous function on the unstable manifold. In
the stable direction, since the unstable subspace is Hölder continuous, divuXu is
Hölder continuous as well. Thus, divuXu is Hölder continuous on the hyperbolic
attractor.

The divergence, by its definition, can be taken with respect to any smooth volume
form on the manifold. We denote divu

ωXu the divergence taken with respect to a
volume form ω. For two smooth volume forms ω1 and ω2, let p(x) = dω1

dω2
be the

relative density function. We have the relation

(3) divu
ω1

Xu = divu
ω2

Xu+ < grad log p(x), Xu > .

When volume forms differ only by a constant factor, the divergence is clearly the
same. Thus, the divergence can be taken with respect to the volume form given by
the density function of the SRB measure ρ on the unstable manifold. We denote
this divergence by divu

ρXu. We use divuXu to denote the divergence taken with
respect to the volume form induced by the original Riemannian metric on M .

Note that the volume form given by the SRB measure is independent of the
original choice of the Riemannian metric as long as the volume forms induced are
equivalent. The density function p(x) of the SRB measure is given by

(4)
p(x)
p(y)

=
∞∏

i=1

|det Dfyi |Eu
yi
|

|det Dfxi |Eu
xi
| =

∞∏

i=0

| detDf−1
xi
|Eu

xi
|

| detDf−1
yi |Eu

yi
| ,
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where xi = f−i(x) , yi = f−i(y), and y is a given point on the unstable manifold
Wu(x). We have
(5)

divu
ρXu = divuXu+ < grad log p(x), Xu > = divuXu +

∞∑
n=1

< gradpf ◦f−n, Xu >,

where pf is the potential function − log | detDf |Eu = − log Juf(x).

2.3. Lyapunov metric. Lyapunov metric is defined only on the attractor ∆f for
a given f ∈ U(f0). Given any point x ∈ ∆f , let v1, v2 be two vectors in the unstable
subspace Eu(x), the new inner product < ·, · >′x is defined by

< v1, v2 >′x=
∞∑

k=0

< Df−kv1, Df−kv2 > |f−k(x) = < v1, v2 >x +

∞∑

k=1

< Df−1
f−k+1(x)

Df−1
f−k+2(x)

· · ·Df−1
x v1, Df−1

f−k+1(x)
Df−1

f−k+2(x)
· · ·Df−1

x v2 > |f−k(x),

where < v1, v2 >x denotes the inner product of v1, v2 in the tangent space TxM .
For vectors in the stable subspace, Lyapunov metric’s inner product is defined

by

< v1, v2 >′x=
∞∑

k=0

< Dfkv1, Dfkv2 > |fk(x).

For vectors v ∈ Eu
x and w ∈ Es

x, the inner product is defined to be zero. For
general vectors, the inner product is defined by using their projections on the stable
and unstable subspaces and the bi-linearity of the inner product. Clearly, under this
metric, stable and unstable subspaces are orthogonal. However, Lyapunov metric
is only a Hölder continuous metric since stable and unstable subspaces are Hölder
continuous with respect to the base point x.

Proposition 3. The volume form induced by the Lyapunov metric on the unsta-
ble manifold is smooth and equivalent to the volume form induced by the original
Riemannian metric. Its density function r(x) is a smooth function on the unsta-
ble manifold and Hölder continuous on ∆f . The composition function r(hf (x))
depends on f differentiably as a Hölder continuous function on ∆0.

Proof. We only need to show that r(hf (x)) is differentiable in terms of f . Since
the metric is defined by

< v1, v2 >′x=
∞∑

k=0

< Df−kv1, Df−kv2 > |f−k(x),

we have that the density function at the point x induced by the Lyapunov metric

r = 1 +
∞∑

k=1

det Df−k
Eu

x
= 1 +

∞∑

k=1

k∏

i=1

det Df−1
Eu

f−i+1(x)

= 1 +
∞∑

k=1

[
k∏

i=1

det DfEu
f−i(x)

]−1

= 1 +
∞∑

k=1

[
k∏

i=1

JufEu
f−i(x)

]−1

.
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Thus,

r(hf (x)) = 1 +
∞∑

k=1

[
k∏

i=1

JufEu
f−i(hf (x))

]−1

= 1 +
∞∑

k=1

[
k∏

i=1

Juf(hf (f−i
0 ))

]−1

.

Since Juf(hf (x)) depends on f differentiably by Proposition 1, we can differentiate
each term in the series with respect to f . Note that the series is essentially a power
series in f , both the series and its termwise derivative series converge uniformly
due to the uniform hyperbolicity. The function r(hf (x)) is thus, differentiable in
f . ¤

We will see that this proposition allows us to calculate the unstable Jacobian
Juf(hf (x)) with respect to the volume form given by Lyapunov metric and it is
still differentiable in terms of f , i.e., f → Juf(hf (x)) is differentiable in f . But
unfortunately, the dependence of the metric on f makes it difficult to estimate the
first order term in the difference between Juf(hf (x)) and Juf0(x). The metric we
use in the calculation comes from f0 only. Since the Lyapunov metric induced by
f0 is only defined on the hyperbolic attractor ∆0, in the next section, we explain
how it can be extended into the neighborhood of ∆0 so that Juf(hf (x)) can be
calculated with this metric.

2.4. Choice of volume forms on the unstable manifolds. Assume that ω is
the given smooth Riemannian metric on M . The unstable Jacobian Juf(hf (x))
is calculated in terms of the induced volume form (also denoted by ω) on unsta-
ble manifolds at hf (x) and f(hf (x)) = hf (f0(x)). Note that the computing of
this function Juf(hf (x)) depends on choices of volume forms at points hf (x) and
f(hf (x)) = hf (f0(x)). Theoretically, any volume forms defined on the unstable
manifolds of the hyperbolic attractor ∆f can be used to calculate the potential
functions. The volume forms can be dependent on the map f as f is fixed when
we calculated the value of the function. Indeed, even the induced volume form ω
depends on the map f since the unstable manifold depends on f . For any other
volume form equivalent to ω, assume the density function is given by g(z), z ∈ ∆f .

With respect to the volume form wg = g(z)ω, we have the following coboundary
relation:

(6) log Ju
ωf(hf (x)) = log Ju

ωg
f(hf (x)) + log g(hf (f0(x)))− log g(hf (x)).

As long as g(hf (x)) is a differentiable function in f , the new unstable Jacobian is
again differentiable in f . In particular, it means we can use the volume forms on
the unstable manifold induced by either the Lyapunov metric or the SRB measure.
In the case of SRB measures, g(z) is piecewise defined on ∆f and the derivative of
g(hf (x)) with respect to f will be a piecewise continuous function in x. However,
neither metric is convenient: one needs to estimate the changes of the metric in
terms of f .

Note that the point x is fixed when we consider the differentiability of log Juf(hf (x))
with respect to f , the continuity of g(hf (x)) in x is not needed: its measurability
is sufficient. The metric can be defined locally depending on x.

Given any local smooth metric ω0(x) in a neighborhood of x which is independent
of f , its induced volume form on the local unstable manifold of f passing the point
hf (x) is always differentiably dependent on f . This follows from the fact that the
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induced volume form depends on f through the unstable subspace Eu(hf (x)) which
depends on f differentiably.

Definition of the local metric ω0(x)
Take any smooth metric defined on the local unstable manifold of f0 at x, for

example, the metric ω induced by the original Riemannian metric, the Lyapunov
metric of f0, or the induced metric ω times the density function of the SRB measure.
We extend it into an open neighborhood of x in the following way. Identify an open
neighborhood of x with a neighborhood of the origin in Rn = Ru⊕Rs so that that
the local unstable manifold of f0 at x, Wu(x), is contained in the subspace (Ru, 0).
The leaf of the local stable foliation passing the point xu

0 = (xu, 0) ∈ Wu(x) can be
expressed as (F (xu

0 , xs), xs), xs ∈ Rs, where F (xu
0 , xs) is a Cr map from Rs to Ru.

Given any point z = (xu, xs) ∈ Ru ⊕ Rs near the origin, there exists xu
0 ∈ Wu(x)

such that xu = F (xu
0 , xs). For a fixed xs, the map xu → xu

0 so defined is the
holonomy map induced by the stable foliation from (Ru, xs) to Wu(x). Indeed,
(xu

0 , xs) gives another coordinate for each point in this small neighborhood of x.
In this coordinate system, the local stable manifolds are simply the coordinate
hypersurfaces xu

0 = C. The metric ω0 at point z = (xu, xs) is defined by the
following rules:

(1) If the vectors of TzM are in the subspace Ru, then, the metric is the same
as the metric in Ru at the point (xu

0 , 0).
(2) If the vectors are in the tangent space of the stable leaf, they inherit the

original Riemannian metric.
(3) The metric ω0 is defined so that Ru and the tangent space of the stable leaf

are orthogonal.
At each point (xu, xs) in the local stable submanifold passing through the point

(xu
0 , 0), the metric ω0, restricted to the subspace Ru of the tangent space, is inde-

pendent of the coordinate xs. When the metric is restricted to any stable leaf, it
is smooth. With this definition, we have a Hölder continuous metric in an open
neighborhood of every x ∈ ∆0. We can then, partition an appropriately small
closed neighborhood of ∆0 into finite compact subsets so that each subset belongs
to at least one of such open neighborhoods. For each element of the partition, we
fix a choice of the metric ω0. The metric ω0 is thus only measurable over this
closed neighborhood of ∆0. It is Hölder continuous in x when restricted to one
open neighborhood. The potential function calculated using this metric is denoted
by log Ju

0 f(hf (x)).
Because of the lack of the differentiability of the metric ω0 with respect to the

base point x, the differentiability of log Ju
0 f(hf (x)) becomes a question in the com-

putation of the derivative, we need a sequence of smooth metrics wn that approx-
imate the metric ω0. This sequence of smooth (local) metrics are obtained by
approximating the stable foliation by smooth foliations that are locally invariant
under f0.

Definition of the local smooth metric ωn(x)
For each n = 1, 2, · · · , we define maps Fn(xu

0 , xs) so that it is Cr (r > 2) in
both xu

0 and xs and both Fn(xu
0 , xs) and DxsFn(xu

0 , xs) converge to F (xu
0 , xs) and

DxsF (xu
0 , xs) uniformly in the neighborhood of x. These maps surely exist, e.g.,

see [1] Pages 137-138. The metric wn is then defined in the same way as ω0 is
defined by replacing F (xu

0 , xs) with Fn(xu
0 , xs). The metric ωn is differentiable in

the base point x. When restricted to Ru, ωn is the same as ω0. We also require
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that Fn(xu
0 , xs) satisfy the local invariance under f0: the leaves of foliations satisfy

the relation
f0(Fn(xu

0 , xs)) ⊂ Fn(f0(xu
0 ), xs).

The local smooth foliation defined by Fn(xu
0 , xs) is denoted by W s

n. For each fixed
n, we have a local coordinate system (xu

0 , xs) defined by this smooth foliation.

3. Computation of the derivative of the map f → − log Juf(hf (x))

The computation of the derivative is divided into three steps: reduction of the
number of variables from 3 to 2 and calculation of the two resulting partial deriva-
tives. Since the metric ω0 is not differentiable, we calculate the derivative formula
with respect to the metric ωn. We show that for each n the derivative is bounded
and converges to a Hölder continuous function. Following a standard real analy-
sis argument (see Lemma 6.6 in [3]), we obtain both the differentiability and the
derivative formula of the map f → − log Ju

0 f(hf (x)), where the unstable Jacobian
is calculated with respect to the metric ω0. We use Juf to denote the unstable
Jacobian under a generic smooth metric.

3.1. Reduction of the Number of Variables. Even though the function− log Juf(y)
is differentiable in y along the unstable manifold of f , it is, in general, not differen-
tiable over the entire hyperbolic attractor of f , ∆f [11]. We can not use the chain
rule to obtain the derivative of the composition pf ◦ hf = − log Juf(hf (x)). In the
potential function pf ◦hf = − log Juf(hf (x)), there are three terms that vary with
f : the unstable Jacobian Juf in terms of f , the unstable direction Eu

f in which
Juf is calculated, and the base point hf (x). We describe the dependence of the
potential function on f in a neighborhood of f0 with the help of local coordinate
systems on the manifold. Note that we need only to calculate the derivative formula
at the given map f0.

We first extend the domain of the map f → pf ◦hf = − log Juf(hf (x)) to a cross-
product of two infinite dimensional manifolds: U(f0) and the space of Grassmannian
bundle over M .

We consider the space of Grassmannian bundle over M of order k, where k is the
dimension of the unstable subspace. The space consisting of all continuous Grass-
mannian bundles forms a smooth Banach manifold G with the usual supremum
metric provided by the Grassmannian distance. For any diffeomorphism f ∈ U(f0),
the small Cr-neighborhood of f0, we define a map in the form of

(g, f) ∈ G × U(f0) → Df(x)|g(x) = Df(g(x)) ∈ G.

Note that for a given point x, Df(x)|g(x) is a linear map on the subspace g(x) of the
tangent space TxM . When g(x) = Eu

f (x), x ∈ ∆f , the invariant unstable subspace,
we have Df(x)|Eu

f (x) = Df(Eu
f (x)) = Eu

f (f(x)). Once the metric is chosen, we
have

(7) Juf |Eu
f
(hf (x)) = | detDfEu

f (hf (x))|.
Since hf (x) is close to x when f is close to f0, we identify the tangent spaces at

these two points. Thus, Eu
f (hf (x)), the unstable subspace of f at the point hf (x)

can be identified with a subspace in the tangent space TxM close to the unstable
subspace of Df0, Eu

f0
(x), and vice versa. We now compare the determinants of two
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linear maps DfEu
f (hf (x)) and DfEu

f0
(x), where Eu

f0
(x) is considered as a subspace of

the tangent space at the point hf (x). Note that the map

(8) f → Juf |Eu
f0

(x)(hf (x)) = |det DfEu
f0

(x)|
is differentiable in terms of f when the subspace Eu

f0
(x) is held independent of f .

The determinant depends on f and hf .
What we shall prove next is that these two determinants (7) and (8), when

calculated with the metric ω0, differ by a higher order term in terms of the Cr-
distance of f and f0.

Lemma 1. Let ε = distC3
(f, f0) be the C3 distance between f and f0. Then, we

have

lim
ε→0

1
ε
| log Ju

0 fEu
f
(hf (x))− log Ju

0 fEu
f0

(x)(hf (x))| = 0,

The lemma implies that the functionals f → log Ju
0 fEu

f
(hf (x)) and

f → log Ju
0 fEu

f0
(x)(hf (x)) will have the same differentiability with respect to f and

thus, the same derivative formula at the point f0 when differentiable.
Lemma 1 is a direct consequence of the following linear algebra result.

Proposition 4. Let Ek, Es be two invariant subspaces of a linear transformation
T on an n-dimensional inner product space Rn and Ek ⊕ Es = Rn. Assume that
Ek, Es are almost orthogonal: there exists a small number δ > 0 such that for
any unit vectors e ∈ Ek and w ∈ Es , | < e, w > | < δ. Assume that E′k is
another linear space which is ε-close to Ek, i.e., E′k is a linear span of vectors
(e1 + w1, e2 + w2, · · · , ek + wk), where wi ∈ Rn and ‖wi‖ < ε. Then, there exists a
constant C such that

| detT |Ek − detT |E′k | < C(δε + ε2).

Proof. Let (e1, e2, · · · , ek) be an orthonormal basis of Ek. Let (v1, v2, · · · , vs) be
an orthonormal basis of Es. Since δ > 0 is a small number and Ek ⊕ Es =
Rn, (e1, e2, · · · , ek, v1, v2, · · · , vs) is a basis of Rn. Under this basis, the matrix
representation of the linear transformation T takes a block diagonal form since Ek

and Es are invariant under T :

T =
(

A 0
0 B.

)

Using the Gram-Schmidt orthogonalization procedure, we can obtain an orthonor-
mal basis of Rn (e1, e2, · · · , ek, v′1, v

′
2, · · · , v′s), where

v′1 = (1− β1)(v1 + α11e1 + α12e2 + · · ·+ α1kek),

α1i = − < ei, v1 >, i = 1, 2, · · · , k, β1 = 1−
√

1− α2
11 − α2

12 − · · · − α2
1k. Note that

< v2, v
′
1 >= (1− β1)(α11 < v2, e1 > + · · ·+ α1k < v2, ek >).

We have
v′2 = (1− β2)(v2 + η1v

′
1 + α21e1 + α22e2 + · · ·+ α2kek),

where α2i = − < ei, v2 >, η1 = − < v2, v
′
1 >, and

β2 = 1−
√

1− η2
1 − α2

21 − α2
22 − · · · − α2

2k.
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Inductively, we conclude

(v′1, v
′
2, · · · , v′s) = (e1, e2, · · · , ek, v1, v2, · · · , vs)

[
P

I + Q

]
,

where the absolute value of the entries of P is bounded by δ and the absolute value
of the entries of Q is bounded by Cδ2 for some constant C. Under this new or-
thonormal basis (e1, · · · , ek, v′1, · · · , v′s), the transformation’s matrix representation
becomes

[
I P
0 I + Q

]−1 [
A 0
0 B

] [
I P
0 I + Q

]
=

[
I P ∗

0 I + Q∗

] [
A 0
0 B

] [
I P
0 I + Q

]

=
[
A AP + P ∗B + P ∗BQ
0 B + Q∗B + BQ + Q∗BQ

]
,

where Q∗ = −∑∞
i=1 Qn and P ∗ = −P − PQ∗. The matrices Q∗ and P ∗ has

entries on the order of δ2 and δ, respectively. We denote P̃ = AP + P ∗B +
P ∗BQ and Q̃ = Q∗B + BQ + Q∗BQ. Clearly, det T |Ek = det(A). To calculate
detT |E′k , we take an orthonormal basis (e′1, · · · , e′k) of E′k. Under the basis of
(e1, · · · , ek, v′1, · · · , v′s), the k column vectors (Te′1, · · · , T e′k) form a matrix H of
size n× k. Then, | detT |E′k | =

√
det(H ′H). We now compute H.

Since E′k is ε-close to Ek, we can take a basis of E′k in the form of

(e1, · · · , ek, v′1, · · · , v′s)
[

I
E

]

with entries of E bounded by ε. We apply again the Gram-Schmidt orthogonaliza-
tion procedure to this basis of E′k to obtain an orthonormal basis (e′1, · · · , e′k). By
the same argument, we have

(e′1, · · · , e′k) = (e1, · · · , ek, v′1, · · · , v′s)
[

I
E

]
(I + R),

where R is a matrix of size k × k whose entries are on the order of ε2. Then

H =
[
A P̃

0 B + Q̃

] [
I
E

]
(I + R) =

[
A + AR + P̃E(I + R)

(B + Q̃)E(I + R)

]

Finally, we obtain the leading terms of H ′H up to the second order of ε, δ.

H ′H = A′A + A′AR + A′PE + (AR)′A + (PE)′A + (BE)′BE.

Thus, we have

| detT |E′k | =
√

det(H ′H) =
√

det(A′A) + C(δε + ε2),

for some constant C. ¤

Proof of Lemma 1. Let f be sufficiently C3-close to f0. The unstable and
stable subspaces Eu

f (hf (x)) and Es
f (hf (x)) are invariant under Df and ε-almost

orthogonal since they are within the ε-distance of Eu
f0

(x) and Es
f0

(x), respectively.
Thus, we have

log Ju
0 fEu

f
(hf (x)))− log Ju

0 fEu
f0

(hf (x))) = O(ε2),

where the determinants are calculated with the metric ω0 at hf (x) and hf (f0(x)).
¤
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Now we consider the differentiability and the derivative of the function
− log Ju

0 fEu
f0

(hf (x)) with respect to f . We denote by − log Ju
nfEu

f0
(hf (x)) the

same Jacobian but calculated with the local smooth metric ωn, n = 1, 2, 3, · · · .
Since both the subspace Eu

f0
(x) and the metric ωn are fixed, for each n ≥ 1,

− log Ju
nfEu

f0
(y) is a continuously differentiable function in terms of f ∈ DiffC2

(f0)
and it is continuously differentiable in y ∈ M . Thus, we can calculate the derivative
of − log Ju

nfEu
f0

(hf (x)) with respect to f at the point f0 by calculating two partial
derivatives.

Take a fixed perturbation δf of f0 and consider a small interval of [−r, r], r << 1.
We show that the sequence of functions gn(ε) = − log Ju

nf ε
Eu

f0
(hfε(x)), ε ∈ (−r, r) is

differentiable in ε, where f ε = f0 + εδf and their derivatives are bounded uniformly
in n and the sequence of derivatives converge to a function continuous in ε. Thus,
we conclude that the derivative of the limit function g0(ε) = − log Ju

0 f ε
Eu

f0
(hf (x)) is

differentiable in ε and its derivative is given by the limit of the derivatives of gn(ε).
We drop the negative sign in front of the function in our calculation for simplicity.

We can now determine the derivative formula of log Ju
nf ε

Eu
f0

(hfε(x)) with respect
to ε using the chain rule. The derivative at any given point ε0 ∈ (−r, r) is

∂

∂ε
log Ju

nf ε
Eu

f0
(hfε(x))|ε0

=
∂

∂ε
log Ju

nf ε
Eu

f0
(hfε0 (x))|ε0 +

∂

∂y
log Ju

nf ε0
Eu

f0
(y)|hfε0 (x)

∂

∂ε
hfε |ε0 .

3.2. Calculating the first partial derivative
∂

∂ε
log Ju

nf ε
Eu

f0
(hfε0 (x))|ε0 .

Since the calculation of the function log Ju
nf ε

Eu
f0

(hfε0 (x)) does not depend on any
specific coordinate system, we identify the neighborhood of the given point x with
Ru × Rs where the local unstable manifold of f0 at x is identified with an open
set in (Ru, 0) ⊂ Ru × Rs. For each n ≥ 1, the local smooth foliation W s

n gives
us a coordinate system whose leaves and (Ru, xs), xs ∈ Rs form the coordinate
hyper-surfaces. Denote the tangent space of W s

n by Es
n. Under the metric ωn, the

subspaces Ru and Es
n are orthogonal by definition.

Let X be the vector field defined by the composition δf ◦ (f ε0)−1. Let Xu
n and

Xs
n denote the projections of X onto Ru and Es

n, respectively. We have

Theorem 2.
∂

∂ε
log Ju

nf ε
Eu

f0
(hfε0 (x))|ε0 = divu

ωn
Xu

n(f ε0(x)).

Proof. We first carry out the calculation in the special case ε0 = 0. We need a
more detailed description of the space where f is taking values. Let FCr

denote
the collection of the following vector fields

FCr

= {δf : x → δf(x) ∈ Tf0(x) is Cr}.
When ε is small, f ε(x) = f0(x) + εδf(x) is identified with a point in the neigh-
borhood of f0(x) by using the exponential map at this point x. Since our calcu-
lation is restricted in a small open neighborhood, δf(x) can be considered as a
map from an open neighborhood of x to Rn and ‖δf‖Cr is small. We thus, have
Df ε(x) = Df0(x) + εDδf(x). Furthermore,

det(Df0(x)+εDδf(x))
∣∣
Eu

f0

= det
(
If0(x)+εDδf(x)·Df−1

0 (f0(x))
)|Eu

f0
detDf0|Eu

f0
(x),
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where If0(x) denotes the identity map of the tangent space Tf0(x). Let X(x) denote
the vector field δf ◦ f−1

0 (x). We have

Dδf(x) ·Df−1
0 (f0(x)) = DX(f0(x)),

the differential of the vector field X evaluated at the point f0(x).
By Lemma 2 that we shall prove next,

d

dε
log det(I + εDX(x))|Eu

f0
= divXu(x).

In general, given any ε0 ∈ (−r, r), I + εDX = (I + ε0DX) + (ε − ε0)DX =(
I+(ε−ε0)DX(I+ε0DX)−1

)
(I+ε0DX) and DX(I+ε0DX)−1 = D

[
δf ◦(f ε0)−1

]
.

Thus, we have

∂

∂ε
log Ju

nf ε
Eu

f0
(hfε0 (x))|ε0 = divu

ωn
Xu

n(f ε0(x)).

¤

It leaves us to prove the following lemma.

Lemma 2. Let X be a smooth vector field defined in an open neighborhood U of
x on a Riemannian manifold. Assume that the smooth metric w on U satisfies the
following conditions:

(1) there exists a split of tangent space Rn = Ru⊕Rs such that the volume form
dw = ρ(x)dx1 ∧ · · · ∧ dxn induced by the metric at the point x = (xu, xs) ∈ U has
the property that ρ(xu, xs) = ρu(xu) for some smooth function ρu defined on Ru.

(2) The subspaces Ru and Rs are orthogonal under the metric w.
Then,

d

dε
log det(I + εDX(x))|Ru = divXu(x),

where the derivative is evaluated at ε = 0, Xu + Xs = X is the projection of the
vector field X onto Ru and Rs, and the divergence is taken with respect to the
induced volume form dw = ρu(xu)dx1 ∧ · · · ∧ dxu on Ru.

Proof. Let
(

A11 A12

A21 A22

)
denote the matrix representation of the operator DX un-

der the orthonormal bases provided by the subspaces Ru and Rs at the correspond-
ing points x and x + εX(x). We have

det(I + εDX(x))|Ru =

√
det

[
(I + εA11 εA21)T

(
I + εA11

A21

)]
· ρ(x + εX(x))

ρ(x)

=
√

det(I + 2εA11 + ε2AT
11A11 + ε2AT

21A21) · ρ(x + εX(x))
ρ(x)

.

This gives

d

dε
log det(I + εDX(x))|Ru = trace(A11) +

d

dε
log ρ(x + εX(x)).

We write x + εX(x) = (xu + εXu(x), xs + εXs(x), where X(x) = Xu(x) + Xs(x) is
the decomposition over Ru ⊕ Rs. Since ρ(x + εX(x)) = ρu(xu + εXu(x)), we have

d

dε
log ρ(x + εX(x)) =< grad log ρu(xu), Xu(x) > .
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Thus,

det(I + εDX(x))|Ru = trace(A11)+ < grad log ρu(xu), Xu(x) >,

i.e., the divergence of the vector field Xu on Ru with respect to induced volume
form ρudx1 ∧ · · · ∧ dxu.

¤
As we take the limit n → ∞, the metric ωn converges to ω0 uniformly. So do

the leaves of the smooth foliation W s
n(x) to the stable foliation. As a linear oper-

ator, DX can still be represented as a matrix in four blocks in the limiting metric
ω0. Both terms trace(A11) and < grad log ρu(xu), Xu(x) > are well-defined for
the limiting metric and are Hölder continuous. This implies the uniform bounded-
ness of divu

ωn
Xu

n in n when X = δf ◦ (f ε0)−1. We conclude that log Ju
0 f ε

Eu
f0

(x) is
differentiable in ε and

∂

∂ε
log Ju

0 f ε
Eu

f0
(x)

∣∣
ε=0

= divXu(f0(x)),

where the determinant and the divergence are taken with respect to the metric ω0.
Remark. Even though the value of the derivative ∂

∂ε log Ju
nf ε

Eu
f0

(x)
∣∣
ε=0

does not
depend on the choice of distributions complementary to Eu

f0
. Its calculation can be

made to depend on the complementary subspaces Es(x) to represent the value in
terms of a divergence of a vector field on the unstable submanifold.

3.3. Calculating the second partial derivative
∂

∂y
log Ju

nf ε0
Eu

f0
(y)|hfε0 (x)

∂

∂ε
hfε |ε0 .

Let pfε0 (y) = − log Ju
nf ε0

Eu
f0

(y). Since both f ε0 and Eu
f0

are now fixed and ωn is a

smooth metric. The function pfε0 (y) is smooth in y within an open neighborhood
of x. By Proposition 1, we have

∂

∂y
log Ju

nf ε0
Eu

f0
(y)|hfε0 (x)

∂

∂ε
hfε |ε0

=
∞∑

k=1

< grad(pfε0 ◦ (f ε0)−k), Xu > −
∞∑

k=0

< grad(pfε0 ◦ (f ε0)k), Xs >,

where Xu + Xs = X, X = δf ◦ (f ε0)−1, Xu and Xs are projections of X onto the
unstable and stable subspaces of f ε0 .

This sequence is uniformly bounded in n and continuous in ε0 ∈ (−r, r) due to
the uniform hyperbolicity. Its limit as n →∞ is

∞∑

k=1

< grad(pf0 ◦ f0
−k), Xu > −

∞∑

k=0

< grad(pf0 ◦ f0
k), Xs >,

where Xu + Xs = X and X = δf ◦ f−1
0 .

Lemma 3. Let Xs be any vector in the tangent space of the stable submanifold W s

at x.
< grad(log Ju

0 f0

∣∣
Eu

f0

(x), Xs >= 0

Proof. Assume that Xs
n is a vector in the tangent space of the smooth foliation W s

n

and limn→∞Xs
n = Xs.

We show that
< grad(log Ju

nf0

∣∣
Eu

f0

(x), Xs
n >= 0
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We use the coordinate system given by Eu
f0

and the subspace tangent to the
smooth foliation. Since the leaves are invariant under f0, we have

Df0(y) =
(

A 0
C D

)
,

for all y near x. Note that Eu
f0

in invariant under Df0(x). Thus, C = 0 when y = x

and C is of order ε when |y − x| = ε. The submatrix A is independent of y as y
moves along the leaves of W s

n. By the orthogonality of the metric, we have

|det Df0(y)| =
√

det[AT A + CT C].

Since CT C is of second order in ε, we have

< grad log |detDf0Eu
f0
|(x), Xs >= 0

for any given direction Xs tangent to the leaves of W s
n. The result of the lemma

follows as we take the limit n →∞.
¤

Combining the two partial derivatives, we obtain the derivative formula

δ(log Ju
0 f(hf (x)))

∣∣
f0

= divuXu(f0(x)) +
∞∑

k=1

< grad(pf0 ◦ f0
−k), Xu > .

Since

divu
ρXu = divuXu +

∞∑

k=1

< grad(pf0 ◦ f0
−k), Xu >,

we have

δ(log Ju
0 f(hf (x)))

∣∣
f0

= divu
ρXu(x) + divuXu(f0(x))− divuXu(x).

If we choose ω0 so that its density function coincides with that induced by the
SRB measure ρ, we have

δ(log Ju
0 f(hf (x)))

∣∣
f0

= divu
ρXu(f0(x)),

as claimed in Theorem 1.
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