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Abstract

For a subquadratic symbol H on Rd × Rd = T ∗(Rd), the quantum propagator of the time
dependent Schrödinger equation i~ ∂ψ

∂t
= Ĥψ is a Semiclassical Fourier-Integral Operator when

Ĥ = H(x, ~Dx) (~-Weyl quantization of H). Its Schwartz kernel is describe by a quadratic
phase and an amplitude. At every time t, when ~ is small, it is “essentially supported” in a
neighborhood of the graph of the classical flow generated by H, with a full uniform asymptotic
expansion in ~ for the amplitude.
In this paper our goal is to revisit this well known and fondamental result with emphasis on
the flexibility for the choice of a quadratic complex phase function and on global L2 estimates
when ~ is small and time t is large. One of the simplest choice of the phase is known in chemical
physics as Herman-Kluk formula. Moreover we prove that the semiclassical expansion for the
propagator is valid for |t| << 1

4δ
| log ~| where δ > 0 is a stability parameter for the classical

system.

1 Introduction and Results

Let us consider the time-dependent Schrödinger equation

i~
∂ψ(t)
∂t

= Ĥ(t)ψ(t), ψ(t = t0) = ψ0, (1.1)

where ψ is an initial state, Ĥ(t) is a quantum Hamiltonian defined as a continuous family of self-
adjoint operators in the Hilbert space L2(Rd), depending on time t and on the Planck constant
~ > 0, which plays the role of a small parameter in the system of units considered in this paper.
Ĥ(t) is supposed to be the ~-Weyl-quantization of a classical smooth observable H(t,X), X =
(x, ξ) ∈ Rd × Rd (see [27] for more details concerning semiclassical Weyl quantization).
Our main results concern subquadratic hamiltonians H; that means here that H(t,X) is continuous
in t ∈ R, C∞ smooth in X ∈ R2d and satisfies, for every γ ∈ N2d, |γ| ≥ 2,

|∂γXH(t,X| ≤ CT,γ , ∀t, |t− t0| ≤ T, ∀X ∈ R2d (1.2)

where ∂X = ∂
∂X and CT,γ > 0.

Let us introduce some classes of symbols (“classical observables”) defined as follows. Let be
m,n ∈ N.

Definition 1.1 We say that a symbol s is in Om(n) if s is a smooth function on the Euclidian
space Rn such that for every γ ∈ Nn, |γ| ≥ m we have

|s|∞,γ := sup
X∈Rn

|∂γXs(X)| < +∞ (1.3)
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If s(ε) depends on a parameter ε ∈ P we say that s(ε) is bounded in Om(n) if for every γ, we have

sup
ε∈P
|s(ε)|∞,γ < +∞.

It is well known that the subquadratic assumption entails that equation (1.1) is solved by a
unique quantum unitary propagator in L2(Rd) such that ψt = U(t, t0)ψ0, ∀t ∈ R. For the same
reason, the classical dynamics is also well defined ∀t ∈ R. zt = (qt, pt) is the classical path in the
phase space R2d such that zt0 = z and satisfying{

q̇t = ∂pH(t, qt, pt)
ṗt = −∂Hq(t, qt, pt), qt0 = q, pt0 = p

(1.4)

It defines an Hamiltonian flow : φt(z) = zt (φt0(z) = z). Let us introduce the stability Jacobi
matrix of this Hamiltonian flow : F (t) = ∂zφ

t(z). F (t) is a 2d × 2d symplectic matrix with four

d× d blocks, F (t) =
(
At Bt
Ct Dt

)
, where

At =
∂qt
∂q

, Bt =
∂qt
∂p

, Ct =
∂pt
∂q

, Dt =
∂pt
∂p

(1.5)

We also introduce the classical action

S(t, z) =
∫ t

t0

(ps · q̇s −H(s, zs))ds (1.6)

where u · v denote the usual scalar product for u, v ∈ Rd, and the phase function

Φ(t, z;x, y) = S(t, z) + pt · (x− qt)− p · (y − q) +
i

2
(
|x− qt|2 + |y − q|2

)
(1.7)

For applications it is useful to introduce semi-classical subquadratic symbols. These symbols have
an asymptotic expansion in the semiclassical parameter ~ > 0, H~(t,X) �

∑
j≥0

~jHj(t,X) such

that the following conditions are satisfied.

∀j ≥ 0, Hj(t, •) ∈ O(2−j)+(2d) and are bounded in O(2−j)+(2d) for t ∈ R, (1.8)

∀N ≥ 1, ~−N−1
(
H(t,X)−

∑
0≤j≤N

~jHj(t,X)
)

is bounded in O0 for t ∈ R and ~ ∈]0, 1]. (1.9)

Let us recall the definition of Weyl quantization. For any symbol s in Om(2d),and for any ψ ∈
S(Rd), we have

Opw~ [s]ψ(x) = (2π~)−d
∫∫

R2d
e
i
~ (x−y)·ξs

(x+ y

2
, ξ
)
ψ(y)dydξ. (1.10)

We shall also use the notation ŝ = Opw~ [s].
The Herman-Kluk formula is included in the following asymptotic result which will be discussed

in details in this paper. This formula was discovered by several authors in the chemical-physics
litterature in the eighties. We refer to the introductions of [22] and [29] for interesting historical
expositions. It is rather surprising that until the recent paper [29] there was no explicite connexion
in the mathematical litterature between the Herman-Kluk formula and Fourier-Integral Operators
with complex phases.
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Theorem 1.2 Let be H~(t) a time dependent semiclassical subquadratic Hamiltonian and K~(t;x, y)
be the Schwartz kernel of its propagator U~(t, t0). Then there exists a semi-classical symbol of order
0, a~(t; z) =

∑
0≤j<+∞

aj(t; z)~j where aj is continuous in t,

K~(t;x, y) �
∫

R2d
e
i
~ Φ(t,z;x,y)a(~; t; z)dz (1.11)

in the L2 uniform norm. More precisely, if we denote

K(~,N)(t;x, y) = (2π~)−3d/2

∫
R2d

e
i
~ Φ(t,z;x,y)

( ∑
0≤j≤N

aj(t; z)~j
)
dz (1.12)

and U (~,N)(t, t0) the operator, in L2(Rd), with the Schwartz kernel K(~,N)(t;x, y), then, for every
T > 0 and every N ≥ 1, there exists C(T,N) > 0 such that for the L2 operator norm we have

‖U~(t, t0)− U (~,N)(t, t0)‖ ≤ C(T,N)~N+1, ∀t, |t− t0| ≤ T, ~ ∈]0, 1]. (1.13)

The leading term is

a0(t; z) = det1/2(At +Dt + i(Bt − Ct)) exp
(
−i
∫ t

t0

H1(zs)ds
)

(1.14)

where the square root is defined by continuity starting from t = t0 (a0(t0; z) = 2d/2).
Moreover, the amplitudes aj are smooth functions defined by transport equations (see the proof
below) and, for every T > 0 they are bounded in O0 for |t| ≤ T .

In [29] the authors give a rigorous proof of this result with an additionnal hypothesis : they
assume that H(x, ξ) is a polynomial in ξ. Here we consider more general subquadratic symbols.
In particular our result applies to relativistic Hamiltonians like

√
1 + |ξ|2 + V (x). Using a global

diagonalization (see [28], section 3), the result can be extended to Dirac systems.
Similar results are true with more general quadratic phases and for systems with diagonalisable
leading symbols (see [4, 28]). Let us define the quadratic phase

Φ(Θt,Γ)(t, z;x, y) = S(t, z)+pt ·(x−qt)−p ·(y−q)+
1
2
(
Θt(x−qt) ·(x−qt)−Γ(y−q).(y−q)

)
(1.15)

where Γ,Θt are complex symmetrix matrices with a definite-positive imaginary part, Θt is C1 in
t. Γ is constant, Θt may depend smoothly on t and z such that the following condition is satisfied
:

∃cT > 0, =Θtv.v ≥
1
cT
|v|2, ∀t, |t| ≤ T, ∀z ∈ R2d (1.16)

∀γ, |γ| ≥ 1,∃CT,γ , ‖∂γzΘt‖ ≤ CT,γ , ∀z ∈ R2d,∀|t| ≤ T. (1.17)

So we have

Theorem 1.3 Under the assumptions of Theorem 1.2 and (1.16), (1.17), we have

K(t;x, y) � (2π~)−3d/2

∫
R2d

e
i
~ Φ(Θt,Γ)(t,z;x,y)f(~; t; z)dz (1.18)

where f(~; t; z) =
∑

0≤j<+∞

fj(t; z)~j with the same meaning as in Theorem 1.2.

In particular
f0(t, z) = 2d/2det1/2[M(Θt,Γ)

]
(1.19)

where
M(Θt,Γ) = i

(
C +DΓ−Θ(A+BΓ

)
.
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There exist several methods to prove this theorem. In [29] the authors prove it as a consequence
of a symbolic calculus for FIO with complex quadratic phases. In [5] the authors proved a weaker
result for Γ = iI and Θt = Γt is determined by the propagation of Gaussian coherent states:
Γt = (C+DΓ)(A+BΓ)−1 (see section 2 of this paper). Laptev-Sigal in [23] have also considered a
similar formula for the propagator (see section 5 of this paper) but assume that the initial data has
a compact support in momenta. Kay [22] explains how to compute all the semiclassical corrections
aj but did not give estimates on the error term, so its expansion is not rigorously established.
Here we choose another approach, may be more explicit and simpler. We shall prove the general
theorem 1.3 as a consequence of the particular case of Theorem 1.2 by using a real deformation
of the phase Φ(Θt,Γ) on the simpler one Φ(iI,iI). Moreover we give a direct proof of Theorem 1.2,
proving the necessary properties for Fourier integrals with complex quadratic phases. This way we
can get easily explicit estimates for the error terms for large times.

Let us assume that conditions on Ĥ(t) are satisfied for T = +∞. Moreover assume that there
exists a positive real function µ(T ) ≥ 1, T > 0, such that the classical flow φt satisfies, for every
multiindex γ, |γ| ≥ 1, we have for some Cγ > 0,

|∂γz φt,t
′
(z)| ≤ Cγµ(T )|γ|, for |t|+ |t′| ≤ T, ∀z ∈ R2d (1.20)

We have discussed in [5] the condition (1.20). In particular this condition is fulfilled with µ(T ) =
eδT for δ = sup

X∈R2d,t∈R
‖J∂2

X,XH(t,X)‖.

Theorem 1.4 Choosing the phase as in theorem 1.2, for j ≥ 0 the amplitudes aj(t, z) satisfy the
following estimates, for every multiindex γ there exist a constant Cj,γ such that

|∂γz aj(t, z)| ≤ Cjγ |det1/2Mt|µ(t)4j+|γ|, ∀t ∈ R, ∀z ∈ R2d. (1.21)

Hence we have the following Ehrenfest type estimate. For every N ≥ 1 and every ε > 0 there exists
CN,ε such that we have

‖U(t, t0)− U (N)(t, t0)‖ ≤ CN,ε~ε(N+1), ∀t, |t| ≥ 1− ε
4δ

, ∀~ ∈]0, 1]. (1.22)

In previous works an Ehrenfest time TE = c log ~−1, c > 0, was estimated for propagation of
Gaussians in [9] and propagation of observables in [6]. For Gaussians we got c = 1

6δ , for observables
c = 1

2δ . In [29] the authors gave an Ehrenfest time without explicit estimate on c.

2 Gaussians Coherent States and Quadratic Hamiltonians

The phase functions Φ(Θ,Γ) in (1.7) and (1.15) are closely related with Gaussian coherent states.
This can be seen by proving a particular case of Theorem.1.2 for quadratic time-dependent Hamil-
tonians:

Ht(q, p) =
1
2

(Gtq · q + 2Ltq · p+Ktp · p)

where q, p ∈ Rd, Kt, Lt, Gt are real, d×d matrices, continuous in time t ∈ R, Gt,Kt are symmetric.
The classical motion in the phase space is given by the linear differential equation(

q̇
ṗ

)
= J.

(
Gt LTt
Lt Kt

)(
q
p

)
, J =

(
0 I
−I 0

)
(2.23)

where LT is the transposed matrix of L, J defines the symplectic form σ(X,X ′) := JX · X ′,
X = (x, ξ), X ′ = (x′, ξ′).
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This equation defines a linear symplectic transformation, Ft, such that F0 = I (we take here
t0 = 0). It can be represented as a 2d× 2d matrix which can be written as four d× d blocks :

Ft =
(
At Bt
Ct Dt

)
. (2.24)

The quantum evolution for the Hamiltonian Ĥ(t) is denoted by U(t) (U(0) = I). We can compute
the matrix elements of U(t) on the coherent states basis ϕz. This has been done in Littlejohn
[24] (p.249, (6.36)), Bargmann [3], Fedosov [12], [10]. We follow here the presentation given in
[10]. Let us introduce some notations which will be used later. g denotes the Gaussian function:
g(x) = π−d/4e−|x|

2/2 and Λ~ is the dilation operator Λ~ψ(x) = ~−d/4ψ(~−1/2x). So ϕ0 = Λ~g, and
the general Gaussian coherent states are defined as follows.

ϕ(Γ)
z = T̂ (z)ϕ(Γ), (2.25)

where T̂ (z) is the Weyl translation operator, z = (q, p),

T̂ (z) = exp
(
i

~
(p · x− q · ~Dx)

)
(2.26)

where Dx = −i ∂∂x and z = (q, p) ∈ Rd × Rd. ϕ(Γ) is the Gaussian state:

ϕ(Γ)(x) = (π~)−d/4aΓ exp
(
i

2~
Γx.x

)
(2.27)

where Γ is a complex symmetric matrix such that =Γ is definite-positive, aΓ is a normalization
constant. (aΓ = det1/4=Γ).
It is convenient to introduce here the Siegel space Σ+(d) of d × d complex matrices Γ such that
=Γ is definite-positive. (see in [13] properties of Σ+(d)).

Let us define the Fourier-Bargmann transform F (Γ)
B as follows, ψ ∈ L2(Rd),

F (Γ)
B [ψ](z) = (2π~)−d/2〈ψ,ϕ(Γ)

z 〉. (2.28)

z ∈ R2d, ϕ(Γ)
z is the following coherent state living at z, z = (q, p) ∈ Rd × Rd, x ∈ Rd,

ϕ(Γ)
z (x) = (π~)−d/4aΓ exp

( i
~
(
p · x− p · q

2
)

+
iΓ(x− q) · (x− q)

2~

)
(2.29)

F (Γ)
B is an isometry from L2(Rd) into L2(R2d) (with the Lebesgue measures). If Γ = iI we denote

FB = F iIB ; its range consists of F ∈ L2(R2d) such that exp
(
p2

2 + i q·p2

)
F (q, p) is holomorphic in

Cd in the variable q − ip. In other words,

FBψ(z) = Eψ(q − ip) exp
(
−p

2

2
− i q · p

2

)
(2.30)

where Eψ is entire in Cd (see [25]). Moreover we have the inversion formula

ψ(x) =
∫

R2d
F (Γ)
B [ψ](z)ϕ(Γ)

z (x)dz, in the L2 − sense. (2.31)

These properties are well known (see [25, 5]). Sometimes we shall use the shorter notation ψ̃Γ =
F (Γ)
B ψ and ψ̃Γ = ψ̃.
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Let us denote by R̂[Ft] the quantum propagator for the Hamiltonian H(t) (this is the metaplec-
tic representation of Ft) and K(Ft) its Schwartz kernel. We know that Λ~R̂[Ft]g is the following
Gaussian state [10, 13],

Λ~R̂[Ft]g(x) = (π~)−d/4aΓ(t) exp
(
i

2~
Γtx.x

)
(2.32)

where aΓ(t) = [det(At + ΓBt)]−1/2aΓ, the complex square root is computed by continuity ∗ from
t = t0 = 0, and

Γt = (Ct + ΓDt)(At + ΓBt)−1, Γt0 = Γ. (2.33)

Proposition 2.1 We have the following exact formula

K(Ft)(x, y) = 2d/2(2π~)−3d/2det1/2
(M(Θt,Γ)

i

)∫
R2d

eΦ(Θ,Γ)(t,z;x,y)dz (2.34)

where Γ,Θt ∈ Σ+(d), Θt is C1 in t; M(Θt,Γ) = C +DΓ̄−Θt(A+BΓ̄) and

Φ(Θt,Γ)(t, z;x, y) =
1
2

(qt ·pt−q ·p)+pt ·(x−qt)−p ·(y−q)+
1
2
(
Θt(x−qt) ·(x−qt)−Γ(y−q).(y−q)

)
Let us remark that here the action is S(t, z) = 1

2 (qt · pt − q · p).

First of all let us remark that the integral (2.34) is an oscillating integral and is defined, as usual,
by integrations by parts. We shall give two proofs of this formula.
Proof I. We start with any Γ0 in the Siegel space Σ+(d). Using the formula

ψ(x) = (2π~)−d
∫

R2d
〈ψ,ϕΓ0

z 〉ϕΓ0
z dz

we get the formula

K(Ft)(x, y) = (2π~)−d
∫

R2d
ϕ

(Γ0
z (y)ϕ(Γt)

zt (x)dz (2.35)

So, we get

K(Ft)(x, y) = (2π~)−3d/2k0(t)
∫

R2d
e
i
~ Φ(Γt,Γ0)(t,z;x,y)dz, (2.36)

where

k0(t) = 2d/2
det1/2(=Γ0)

det1/2(A+BΓ0)

Now we shall transform the phase Φ(Γt,Γ0) into the phase Φ(Θ,Γ0).
Let us introduce Θ(s) = sΘ + (1−s)Γt, 0 ≤ s ≤ 1. We have Θ(s) ∈ Σ+(d). We want to find k(t, s)
such that k(t, 0) = k0(t) and

∂

∂s

(
k(t, s)

∫
R2d

e
i
~ Φ(Θt,Γ0)(t,z;x,y)dz

)
= 0, ∀s ∈ [0, 1]. (2.37)

We have
∂

∂s
e
i
~ Φ(Θt,Γ0)

=
i

2~
(Θt − Γt)(x− qt) · (x− qt)e

i
~ Φ(Θt,Γ0)

.

The main trick used here and later in this paper, and also in all the previous papers on this subject
([23, 22, 29]), is to integrate by parts to convert each factor (x − qt) into ~, using the following
equality

(∂q + Γ̄∂p)ΦΘ,Γ =
(
Cτ + Γ̄Dτ − (Aτ + Γ̄Bτ )Θ

)
(x− qt) (2.38)

∗this definition of det1/2 is different that the det1/2 function on Σ+(d), this is explained in [10] to compute
Maslov index
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where Aτ denotes the transposed matrix of A. Let us introduce the matrix

M = M(Θ,Γ) = C +DΓ̄−Θ(A+BΓ̄)

So we have
Mτ (x− qt)e

i
~ Φ(Θ,Γ)

=
~
i

(
∂q + Γ̄∂p

)
e

~
i ΦΘ,Γ

. (2.39)

Let us remark that M is invertible. This is a consequence of the following Lemma (see [11], [13]
or [28], appendix A, for proofs).

Lemma 2.2 For every linear symplectic map in F : T ∗(Rd)→ T ∗(Rd), F =
(
A B
C D

)
and every

Γ ∈ Σ+(d), (A+BΓ), (C +DΓ) are non invertible in Cd and (C +DΓ)(A+BΓ)−1 ∈ Σ+(d).

So we have

M̄ = C +DΓ− Θ̄(A+BΓ) =
(
(C +DΓ)(A+BΓ)−1 − Θ̄

)
(A+BΓ)−1

But (C +DΓ)(A+BΓ)−1 − Θ̄) ∈ Σ+(d) so is invertible.
Denote M(t, s) = M(Θs,Γt). Let us recall the Liouville formula

∂sdet
(
M(t, s)

)
= det

(
M(t, s)

)
Tr
(
∂sM(t, s)M(t, s)−1

)
. (2.40)

So, integrating by parts in (q, p) we get

k(t, s) = k(t, 0)
det1/2M(t, s)

det1/2M(t, 0)
(2.41)

Now we have to compute k(t,0)

det1/2M(t,0)
. A simple computation gives M(t, 0) = (D− ΓtB)(Γ̄0 − Γ0).

The proof of (2.34) follows from the formula

det(D − ΓtB) = det(A+BΓ0)−1. (2.42)

This equality follows from the symplecticity of F (DτB = BτD). We have BτΓtB − DτB =
−(A+BΓ0)−1B. So we get (2.42) if detB 6= 0. The general case follows by a density argument.
Let us remark that can exchange the role of Θ and Γ by considering the adjoint U(t)∗ of U(t). ut
Proof II
We solve directly the Schrödinger equation(

i~
∂

∂t
− Ĥ(t)

)
ψ(t, x) = 0 (2.43)

for any initial data ψ(x) := ψ(0, x), ψ ∈ S(Rd) using the ansatz

ψ(t, x) = (2π~)−3d/2k(t)
∫

R2d×Rd
eiΦ

(Θ,Γ)(t,z;x,y)ψ(y)dzdy (2.44)

We have to compute k(t) such that k(0) = 2d/2. Let us remark that if we integrate first in y then
the integral (2.44) in z converges because the Fourier-Bargmann transform of ψ, FBψ, is in the
Schwartz space S(R2d).
For simplicity we assume here that Θ = Γ = iI. The general case can be reached by the same
method or by using the deformation argument of proof I as we shall see later for more general
Hamiltonians.
Here the Hamiltonian Ĥ(t) is a quadratic form. So using dilations we can assume that ~ = 1. A
simple computation left to the reader, gives the following



8

Lemma 2.3

(g−1Ĥ(t)g)(x) = Gx · x+ i(L+ Lτ )x · x−Kx · x+ Tr(K − iL) (2.45)

where g(x) = e−
|x|2

2 .

So we get

(i∂t − Ĥ(t))ψ(t) = (2π~)−3d/2

∫∫
R2d×Rd

e
i
~ Φ(Θ,Γ)(t,z;x,y)b(t, x, z)ψ(y)dzdy (2.46)

where
b(t, z, z) = i∂tk(t)− k(t)

(
E(x− qt) · (x− qt) + Tr(K − iL)

)
As in proof I, we integrate by parts in the variable z ∈ R2d, using

(∂q − i∂p)Φ = Mτ (x− qt)

with M = C − B − i(A + D), which is invertible (see below Lemma 3.2). Using the Hamilton
equation of motion we get

Ṁ = −E(A− iB)− i(K − iL)M. (2.47)

So, we find the following differential equation for k(t),

k̇ =
1
2

Tr(
(
MṀ

)
k. (2.48)

Using the Liouville formula, we get again (2.34) for this particular phase. ut

3 Proof of Theorem 1.2 and Theorem 1.4

As usual for this kind of problems there are two steps : 1-Determine the amplitudes aj solv-
ing by induction transport differential equations, 2-Estimate the error between the approximated
propagator and the exact one.

3.1 Transport equations

It is convenient to write

e
i
~ Φ = (π~)d/2ϕzt(x)ϕ̄z(y)e

i
~ (S(t,z)+(p·q−pt·qt)/2) (3.49)

Then we have to compute Ĥ~(t)ϕzt . It is not difficult to add contributions of the lower order terms
of the Hamiltonian, so we shall assume for simplicity that H~(t) = H0(t) := H(t).

Lemma 3.1 For every N ≥ 2 we have

Ĥ(t)ϕzt(x) =
∑
|γ|≤N

~|γ|/2

γ!
∂γXH(t, zt)Πγ

(x− qt√
~

)
ϕzt(x) + ~(N+1)/2T (zt)Λ~Op

w
1 [RN (t, zt)]g(x)

(3.50)
where

RN (t, zt, X) =
∫ 1

0

(1− s)N

N !

∑
|γ|=N+1

∂γXH(t, zt + s
√

~X)Xγds (3.51)

and Πγ is a universal polynomial of degree ≤ |γ| which is even or odd according |γ| is even or odd.
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Proof. Let us recall that ϕz = T̂ (z)Λ~g. In this proof we put zt = z. An easy property of Weyl
quantization gives

Λ−1
~ T̂ (z)Ĥ(t)T̂ (z)Λ~ = Opw1 [H(

√
~ •+z)] (3.52)

So the Lemma follows easily from the Taylor formula with integral remainder.ut
In this first step we don’t take care of remainder estimates, this will be done in the next step.

Let us denote I(a,Φ) the formal operator having the Schwartz kernel

Ka(x, y) = (2π~)−3d/2

∫
R2d

e
i
~ Φ(t,z;x,y)a(t, z)dz (3.53)

From the Lemma 3.1 we can write

Ĥ(t)I(a,Φ) ∼ I(b,Φ), where

b ∼
∑
γ

~|γ|/2

γ!
∂γXH(t, zt)Πγ

(x− qt√
~

)
a (3.54)

We have
Πγ(x) =

∑
β≤γ

hγ,βx
β (3.55)

The quadratic part can be computed as for quadratic Hamiltonians and the linear part disappears
with the classical motion. So we have

b ∼ H(t, zt)a+ (∂qH(t, zt) + i∂pH(t, zt)) · (x− qt)a+

~
(
E
(x− qt√

~
)
·
(x− qt√

~
)

+ Tr(K − iL)
)
a (3.56)

where we denote ∂2
X,XH(t,X) the Hessian matrix of H(t). We have

∂2
X,XH(t, zt) =

(
G L
L K

)
, E = G+ 2iL−K. (3.57)

with G := ∂2
q,qH(t, zt), L := ∂2

q,pH(t, zt), K := ∂2
p,pH(t, zt).

Here the stability matrix Ft =
(
At Bt
Ct Dt

)
satisfies Ḟt = J∂2

X,XH(t, zt)Ft, Ft=0 = I.

As in the quadratic case we want to transform the power of (x− qt) into power of ~.

Lemma 3.2 Let us denote Mt = (Ct −Bt)− i(At +Dt). We have∣∣detMt

∣∣ ≥ 2−d, and (3.58)

~(∂q − i∂p)e
i
~ Φ = iMτ

t (x− qt)e
i
~ Φ (3.59)

Proof. For simplicity, let us forget the lower index t.
Let us consider the 2d× 2d matrix

I + F + iJ(I− F ) =
(

I +A− iC B + i(I−D)
C − i(I−A) I +D + iB

)
=
(

I +A− iC −i(D + iB) + i
i(A− iC) I +D + iB

)
(3.60)

Using the Lemma 4 in [13], Appendix A, we get

det(I+F+iJ(I−F )) = det
(
(I+A−iC)(I+D+iB)−(A−iC−I)(D+iB−I)

)
= 2d det

(
A+D+i(B−C)

)
(3.61)

Using that F is symplectic, we get

(I + F + iJ(I− F ))∗(I + F + iJ(I− F )) = (I + F τ )(I + F ) + (1− F τ )(I− F ) ≥ I2d (3.62)
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hence (3.58) follows.
Let us recall classical computations for the derivatives of the action

∂qS = (∂qqt)τpt − p (3.63)
∂pS = (∂pqt)τpt (3.64)

Then we can compute ∂qΦ, ∂pΦ and we get (3.59). ut
Integrate by parts like in the quadratic case, we get

(i~∂t − Ĥ(t))I(a,Φ) � I(f,Φ) (3.65)

where

f ∼ i~
(
∂ta−

1
2

Tr
(
ṀM−1

)
a

+
∑
|γ|≥3

~|γ|/2

γ!
∂γXH(t, zt)Πγ

(x− qt√
~

)
a (3.66)

Hence using the Liouville formula, we get the first term

a0(t, z) = 2d/2det1/2
(
iM
)

(3.67)

We shall obtain the next terms aj by successive integrations by parts. This is solved more explicitly
with the following Lemma.

Lemma 3.3 For any symbol b ∈ O0(2d), and every multiindex α ∈ N2d we have∫
R2d

(x− qt)αe
i
~ Φb(z)dz =

∑
|α|
2 ≤|β|≤|α|

~|β|
∫

R2d
fα,β(t, z)e

i
~ Φ∂βz b(z)dz (3.68)

where fα,β(t, z) are symbols of order 0, uniformly bounded in O0(2d) on bounded time intervals.
They only depend on the classical flow φt(z) and its derivatives.
More precisely, let us assume that there exists a non positive function µ(T ) such that for every
γ ∈ N2d we have

sup
|a|≤T

|∂γz φt(z)| ≤ Cγµ(T )|γ| (3.69)

Then we have
|∂εzfα,β(z)| ≤ Cα,β;εµ(T )|α|−|β|+|ε| (3.70)

Proof. The Lemma is easily obtained by induction on |α| using Lemma 3.2 ut
Now, to determine the transport equation, we solve inductively on j ≥ 0, the equation

(i~∂t − Ĥ(t))I
( ∑

0≤k≤j+1

~kak(t),Φ
)

= O(~j+2) (3.71)

Reasoning by induction on j ≥ 0, we get the transport equation for aj+1(t) by cancellation of the
coefficient of ~j+1 in (3.71).

∂taj+1(t, z) =
1
2

Tr
(
ṀM−1

)
aj+1(t, z) + bj(t, z), aj+1(0, z) = 0, (3.72)

where
bj(t, z) =

∑
|α|+2k≤2(j+2)

Fj,k,α(t, z)∂αz ak(t, z). (3.73)
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Moreover, Fj,k,α(t, z) depends only on the classical flow φt(z) and its derivatives and satisfies

|∂γzFj,k,α(t, z)| ≤ Cj,k,α,γµ(T )2(j−k+2)+|γ|−|α| (3.74)

where Cj,k,α,γ only depends on sup
|t|≤T

|H(t)|∞,γ , 2 ≤ |γ| ≤ j + 2.

So we get, for every j ≥ 0,

aj+1(t, z) =
∫ t

0

det1/2
(
M(t, z)M(s, z)−1

)
bj(s, z)ds (3.75)

Moreover, from (3.73) and (3.74), we get the following estimate, for every j ≥ 0, |t| ≤ T , z ∈ R2d,

|∂γz aj(t, z)| ≤ Cj,γ |det1/2M(t, z)|µ(T )4j+|γ| (3.76)

with the same remark as in (3.74) for the constant Cj,γ .

3.2 Error estimates

Let us denote
RN (t) = (i~∂t − Ĥ(t))I

(
a(N)(t),Φ

)
(3.77)

where a(N)(t) =
∑

0≤k≤N

~kak. Using Duhamel formula we have

‖U~(t)− UN,~(t)‖ ≤ ~−1

∫ t

0

‖R(s)‖ds (3.78)

where t0 = 0, U~(t) = U~(t, 0), UN,~(t) = I
(
a(N)(t),Φ

)
.

So we have to estimate ‖RN (t)‖. Let us denote K(N)(x, y) the Schwartz kernel of RN (t) and
K̃(N)(X,Y ) the Schwartz kernel of RN (t) in the Fourier-Barmann representation :

K̃(N)(X,Y ) =
∫∫

Rd×Rd
K(N)(x, y)ϕX(y)ϕY (x)dxdy. (3.79)

Let be R̃N (t) the operator with Schwartz kernel K̃(N)(X,Y ). The following Lemma is well known.
Here we forget N and t for simplicity.

Lemma 3.4 We have the L2 norm estimate

‖R‖L2(Rd) ≤ (2π~)−d‖R̃‖L2(Rd) (3.80)

In particular we have

‖R‖L2(Rd) ≤ (2π~)−d max
{

sup
Y

∫
|K̃(X,Y )|dX, sup

X

∫
|K̃(X,Y )|dY

}
(3.81)

Proof For inequality (3.80) we use that the Fourier-Bargmann transform is an isometry.
Inequality (3.81) is known as Carleman (or Schur) L2 estimate.ut
Using Lemma 3.1 we get

K̃(N)(X,Y ) = 2−3d/2(π~)−d
∫

R2d

〈
T̂ (zt)Λ~Op

w
1 [RN (t)]g, ϕY

〉
〈ϕX , ϕz〉a(N)(t, z)e

i
~ δ(t,zdz (3.82)
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where δ(t, z) = S(t, z) + p·q−pt·qt
2 .

Using Weyl commutation formula we have

〈ϕX , ϕz〉 = exp
(
−|X − z|

2

4~
+

i

2~
σ(X, z)

)
(3.83)〈

T̂ (zt)Λ~Op
w
1 [RN (t)]g, ϕY

〉
=

〈
Opw1 [RN (t)]g, gY−zt√

~

〉
. (3.84)

We know the Wigner function W0,Z of the pair (g, gZ), Z ∈ R2d [28]

W0,Z(X) = 22d exp
(
−|X − Z

2
|2 − iσ(X,Z)

)
(3.85)

By a well known property of Weyl quantization [13], for any symbol s, we have

〈Opw1 [s]g, gZ〉 = (2π)−d
∫

R2d
s(X)W0,Z(X)dX (3.86)

We shall use the following Lemma

Lemma 3.5 Let be f ∈ O0(2d). For every γ ∈ N2d and m > 0 there exists Cγ,m such that∣∣∣∫
R2d

Xγf(X)e−|X−Z|
2−iJZ·XdX

∣∣∣ ≤ Cγ,m(1 + |Z|)−m sup
|α|≤m+|γ|; Y ∈R2d

|∂αY f(Y )| (3.87)

Proof It is enough to assume |Z| ≥ 1. We integrate m times by parts with the differential operator

L =
2(X − Z)− iJZ ·X
4|X − z|2 + |JZ|2

∂X (3.88)

using that (Lτ )m =
∑
|α|≤m

lm,α∂
α
X , with |lm,α| ≤ Cm,α(|Z|+ |X − Z|)−m, where

θ(X) = −|X − Z|2 − iJZ ·X. ut
So using Lemma 3.5 we get the following estimate : for every N ;N ′ there exists CN,N ′ (depending
only on semi-norms |H(t)|∞,γ , 2 ≤ |γ| ≤ N +N ′, such that for X,Y ∈ R2d and |t| ≤ T we have

|K̃(N)(X,Y )| ≤ CN,N ′(µ(T ))N+N ′~
N+1

2 −d
∫

R2d
e−
|X−z|2

4~

(
1 +
|Y − zt|√

~

)−N ′
|a(N)(t, z)|dz. (3.89)

Let us denote φ∗t = φ0,t = (φt)−1. We have the Lipchitz estimate, for |t| ≤ T ,

|φ∗,tY − z| ≤ µ(T )|Y − zt| (3.90)

So we get ∣∣∣∫
R2d

e−
|X−z|2

4~

(
1 +
|Y − zt|√

~

)−N ′
dz
∣∣∣ ≤ CN ′(1 +

|φt∗Y −X|
µ(T )

√
~

)−N ′
(3.91)

and

|K̃(N)(X,Y )| ≤ CN,N ′(µ(T ))N+N ′~
N+1

2

(
1 +
|φt∗Y −X|
µ(T )

√
~

)−N ′
sup

z∈R2d,|t|≤T
|a(N)(t, z)| (3.92)

Then using Lemma 3.4 and choosing N ′ > 2d, we get the following uniform L2 estimate for the
remainder term, for |t| ≤ T ,

‖RN (t)‖ ≤ CN (µ(T ))N+1~(N+1)/2 sup
z∈R2d,|t|≤T

|a(N)(t, z)| (3.93)

If T is fixed, pushing the expansion up to 2N instead of N we get easily Theorem 1.2 using Duhamel
formula.
Using global estimates on aj(t, z) obtained from the transport equation (3.76) and pushing the
asymptotic expansion up to 2N , we get the proof of Theorem 1.4 using again Duhamel formula.



13

4 Varying phase. Proof of Theorem 1.3

To avoid technicalities we fix the time t. It would be not difficult to follow a time parameter t if
necessary for application. So in this section φ is a symplectic diffeomorphism in R2d, such that φ,
φ−1 are Lipchitz continuous and φ ∈ O1(2d).
We denote z = (q, p) ∈ R2d, φ(z) = (Q(z), P (z)) ∈ Rd × Rd and S an action for φ, i.e a primitive
on R2d of the closed 1-form PdQ− pdq. We consider the following phases

Φ(φ,Θ,Γ)(z;x, y) = S(z) +P · (x−Q)− p · (y− q) +
1
2
(
Θ(x−Q) · (x−Q)−Γ(y− q).(y− q)

)
(4.94)

This class of Fourier-Integral operators with complex quadratic phase was ready analyzed in [29].
We want here to show how to vary the choice of the matrices Θ,Γ for a given canonical transfor-
mation φ of R2d. As in section 3, let us denote I(a,Φ) the operator with the Schwartz kernel

Ka(x, y) = (2π~)−3d/2

∫
R2d

e
i
~ Φ(φ,Θ,Γ)(z;x,y)a(z)dz (4.95)

where a ∈ O0(2d), Φ = Φ(φ,Θ,Γ).
Using a Fourier-Bargmann transform and the following estimate : there exist C > 0, c > 0 such
that for all X ∈ R2d we have

|〈ϕΓ, ϕX〉| ≤ C exp
(
−c|X|

2

~

)
, (4.96)

we can estimate the Fourier-Bargmann transform K̃a(X,Y ) of Ka and prove that I(a,Φ) is
bounded in L2(Rd) (see section 3, Lemma 3.5 and the section 5 below).
Our goal in this section is to prove the following result which gives Theorem 1.3 as a particular
case.

Proposition 4.1 Let be 4 matrices in Σ+(d), Θ,Θ′,Γ,Γ′ and a ∈ O0(2d). Θ,Θ′ may be z depen-
dent such that

∃c > 0, =Θ(′)v.v ≥ c|v|2, ∀z ∈ R2d (4.97)

∀γ, |γ| ≥ 1,∃Cγ , ‖∂γzΘ(′)‖ ≤ Cγ , ∀z ∈ R2d. (4.98)

Then there exists a semi-classical symbol a′ ∼
∑
j ~ja′j of order 0 such that we have for the L2

operator norm,
I(a,Φ(φ,Θ,Γ)) = I(a′,Φ(φ,Θ′,Γ′)) +O(~∞) (4.99)

Moreover we have for the principal symbol a′0 the formula

a′0(z) = a0(z)
det1/2(M(1))

det1/2(M(0))
(4.100)

where M(s) := C +DΓ̄−
(

(1− s)Θ + sΘ′
)

(A+BΓ̄)

Proof. The method is rather simple and is an extension of what we have already done for quadratic
Hamiltonians (Proof I) except that here we have to solve transport equations in the deformation
parameter s to get the lower order correction terms.
Let us remark that this class of Fourier-integral operators is closed under adjointness :

I(a,Φ(Θ,Γ))∗ = I(a∗,Φ∗), (4.101)

where a∗(Z) = ā(φ−1Z), Z = (Q,P ), Z = φ(z) and

Φ∗(Z;x, y) = −S(φ−1Z) + p · (x− q)− P · (y −Q) +
1
2
(
Γ(x− q) · (x− q)−Θ(y −Q).(y −Q)

)
(4.102)
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So by transitivity we can assume that Γ = Γ′. As in the quadratic Hamiltonian case let us introduce
Θs = (1−s)Θ+sΘ′, Φ(s) = Φ(Θs,Γ), 0 ≤ s ≤ 1 and look for a semiclassical symbol a(s) =

∑
j ~ja(s)

j

such that
∂

∂s

∫
R2d

e
i
~ Φ(s)(z;x,y)a(s)(z)dz = O(~∞), ∀s ∈ [0, 1] (4.103)

But we have
∂

∂s
Φ(s)(z;x, y) =

i

~
(Θ′ −Θ)(x−Q) · (x−Q) (4.104)

and we have to find a C1 family symbol a(s), 0 ≤ s ≤ 1 such that

I
(
∂sa

(s) +
i

~
(Θ′ −Θ)(x−Q) · (x−Q)a(s),Φ

)
= O(~∞) (4.105)

The principal term a′0 = a(1) is computed as in the quadratic case.
Let us suppose for a moment that Θ,Θ′ are constant. Then as in the quadratic case we have

(∂q + Γ̄∂p)Φ(s) =
(
Cτ + Γ̄Dτ − (Aτ + Γ̄Bτ )Θs

)
(x−Q) (4.106)

where A = ∂qQ, B = ∂pQ, C = ∂qP , D = ∂pP and F =
(
A B
C D

)
is a symplectic matrix.

We know that M(s) := C + DΓ̄ − Θs(A + BΓ̄) is invertible so we can integrate by parts as in
section 3. and as above we can achieve the proof of Proposition 4.1.
When Θ,Θ′ are z dependent, the integrations by part are more tricky. We have to use

(∂q + Γ̄∂p)Φ(s) = Mτ(s, z)(x−Q) +N(s, z)(x−Q, x−Q) (4.107)

where N(s, z)(x, y) is a bilinear application in (x, y) ∈ Rd×Rd into d×d matrices, with coefficients
in O0 in z, C1 in s.
Hence we have

(x−Q)e
i
~ Φ(Θ,Γ)

=
~
i

(Mτ )−1(s, z)
(
∂q + Γ̄∂p

)
e

~
i Φ(Θ,Γ)

−Mτ )−(s, z)N(s, z)(x−Q, x−Q)e
~
i Φ(Θ,Γ)

(4.108)
So we apply (4.108) and the following lemmas to proceed like in section 3.

Lemma 4.2 For any symbol b ∈ O0(2d), for every multiindex α ∈ N2d and every N ≥ |α|/2 we
have ∫

R2d
(x−Q)αe

i
~ Φ(s)

b(z)dz =
∑

|α|
2 ≤|β|≤N

~|β|
∫

R2d
fα,β(s, z)e

i
~ Φ(s)

∂βb(z)dz +

∑
|β|+|γ|=N+1,|β|≥1

~|γ|
∫

R2d
gα,β(s, z)(x−Q)βe

i
~ Φ(s)

gβ,γ∂
γb(z)dz (4.109)

where fα,β(s, z), gα,β(s, z) are symbols of order 0, uniformly bounded in O0(2d) for s ∈ [0, 1].

Lemma 4.3 For every b ∈ O0(2d) and β ∈ Nd we have the crude L2 estimate, uniform in s ∈ [0, 1],

‖I((x−Q)βb,Φ(s)‖ = O
(
~|β|/2

)
(4.110)

Using these two lemmas we get the full semiclassical symbol a′ ∼
∑
j ~ja′j , where

a′0(z) = a0
det1/2(M(s))

det1/2(M(0))
(4.111)

and for j ≥ 1, a′j is computed by induction as solution for s = 1 of the differential equation

∂saj(s) = Tr
(
Ṁ(s)M−1(s)

)
aj(s) + bj(s), aj(0) = aj . (4.112)

where bj(s) depends on the ak(s), k ≤ j − 1 ut
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Remark 4.4 Considering the adjoint operator, it is possible to exchange the role of the matrices
Θ and Γ.
If the symbol a depends smoothly on some parameter λ, it is not difficult to show that a′ also
depends smoothly in λ.

Proof of Lemma 4.2. This is done by an induction on N such that α ≤ N .ut
Proof of Lemma 4.3. Let us begin by giving a simple proof of (4.96) when Θ is z dependent
satisfying the assumptions (4.1). We shall prove the more general estimate, for every β ∈ Nd there
exist C > 0, c > 0 such that

|〈xαgΘ, gY 〉| ≤ Ce−c|Y |
2
, ∀Y ∈ R2d (4.113)

Let us denote Y = (y, η) ∈ Rd × Rd. By a direct estimate we get easily,

|〈xαgΘ, gY 〉| ≤ Ce−2c|y|2 , ∀(y, η) ∈ R2d. (4.114)

Using Fourier transform and Plancherel formula, we exchange y and η and we get (4.113).
Now we can follow the method of section 3 to estimate L2 norm of operators using a Fourier-
Bargmann transformation.
Let be K̃(X,Y ) the Fourier-Bargmann kernel of I((x−Q)βb,Φ(s)). We have

K̃(X,Y ) = 2−3d/2(π~)−d~|α|/2
∫

R2d

〈
T̂ (Z)Λ~(xβgΘ), ϕY

〉
〈ϕX , ϕz〉b(z)e

i
~ δ(t,z)dz (4.115)

where Z = (Q,P ) = φ(z) and

|
〈
T̂ (Z)Λ~(xβgΘ), ϕY

〉
| = |〈xβgΘ, gY−Z√

~
〉|. (4.116)

So we get

|K̃(X,Y )| ≤ C~|α|/2
∫

R2d
exp
(
− c

~
(|Y − φ(z)|2 + |X − z|2

)
dz (4.117)

Using that φ is a Lipchitz canonical transformation, we have, for C0 large enough and c0 > 0 small
enough,

|K̃(X,Y )| ≤ C0~|α|/2 exp
(
−c0

~
(|Y − φ(X)|2

)
(4.118)

Hence we get the proof of Lemma 4.3 using Lemma 3.4.ut
we have proved Proposition 4.1 and Theorem 1.3.

5 Semiclassical Fourier Integral Operators

In [23], [8] and in the recent preprint [30], the authors have considered Fourier-integral operators
defined by the following simpler phase

Ψ(φ,Θ)(p;x, y) = S(y, p) + P · (x−Q) +
1
2

Θ(x−Q) · (x−Q) (5.119)

where (Q,P ) = φ(y, p), φ is a bilipchitz canonical transformation like above, Θ ∈ Σ+(d).
In [23] and [8] the authors have proved semiclassical expansions for the propagator of Schrödinger
equation for initial data with a compact support. This result is extended in [30] for the Schrödinger
Hamiltonian −~24 + V , to general data in L2 with uniform norm estimates. We shall give here
some extensions of results of [30] using the same techniques as in section 3 and 4, so we shall not
repeat the details.

Let us denote J (a,Ψφ,Θ) the operator whose Schwartz kernel is

K(x, y) = (2π~)−d
∫

Rd
e
i
~ Ψ(φ,Θ)(p;x,y)a(y, p)dp (5.120)
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A natural question discussed in this section is to compare the Fourier-Integral operators I(a,Φ(φ,Θ,Γ))
defined with 2d “frequency variables” and J (a,Ψ(φ,Θ)) defined with d “frequency variables”.
A Fourier integral operator in L2(Rd) is always a quantization of a canonical transformation φ in the
cotangent space T ∗(Rd). A nice way to make clear this relationship is to use a Fourier-Bargmann
transform (see [7, 31]). This can be easily done in the same way for Semiclassical-Fourier-Integral
operators as we shall see now.

Definition 5.1 A family of operators, depending on a small parameter ~ ∈]0, 1], U~ : S(Rd) →
S ′(Rd) is a Semiclassical-Fourier-Integral operator of order m ∈ R associated to the canonical
bilipchitz transformation φ : T ∗(Rd) → T ∗(Rd), if for every N ′ we have U~ = U~

N ′ + R~
N ′ where

U~
N ′ : S(Rd)→ S ′(Rd) and ‖R~

N ′‖ = O(~N ′) and for every N ≥ 0 there exists CN such that

|K̃~(X,Y )| ≤ CN~m−3d/2
(

1 +
|Y − φ(X)|√

~

)−N
, ∀X,Y ∈ R2d, ~ ∈]0, 1], (5.121)

where K̃~(X,Y ) is the Schwartz kernel of FBU~
N ′F∗B.

Remark 5.2 1. In this definition, which cöıncides with a definition given in [31] for ~ = 1, a
semiclassical-Fourier-Integral operator has, up to a negligible operator in ~, a kernel living in
a neighborhood of the graph of a canonical transformation φ. But this definition says nothing
concerning asymptotic expansion of K̃~(X,Y ) in a neighborhood of the graph of φ when ~ is
small. So this definition is certainly too permissive. But for ~ fixed it is suitable as proven
in [31].

2. Using Carleman-Schur estimate, a semiclassical F.I.O of order 0 is uniformly bounded in
L2(Rd). This is a straightforward consequence of the definition. This class of semiclassical
F.I.O of order 0 is clearly closed by composition.

3. In Definition 5.1 it is equivalent to use any Fourier-Bargmann transformation F (Γ)
B , Γ ∈

Σ+(d).

4. There are other definitions of semiclassical F.I.O using Lagrangian analysis and real phase
functions. For this point of view see for example [1].

5. Fourier-Integral operators with complex phase were used to study propagation of singularities
of P.D.E. Many papers and books have been published on this subject, among them let us
point out [2, 26, 32].

Now we shall see that the operators already considered in this paper are semiclassical-Fourier-
Integral operators.

Proposition 5.3 Let be amplitudes a = a(x, z), a ∈ O0(3d) and u = u(x, y, p), u ∈ O0(3d)
and Θ,Γ ∈ Σ+(d), Θ may depend in z or (y, p), such that (1.16), (1.17) are satisfied. Then
I(a,Φ(φ,Θ,Γ)) and J (u,Ψφ,Θ) are semiclassical-Fourier-Integral operators of order 0.

Proof. Concerning I(a,Φ(φ,Θ,Γ)), we get the result following subsection 3.2, estimate (3.92).
The proof for J (u,Ψφ,Θ) is almost the same. For simplicity we assume Θ constant. For Θ
depending in (y, p) we could proceed as in section 4.
Let us denote X = (x̃, ξ̃), Y = (ỹ, η̃). We want to estimate

K̃(X,Y ) = (2π~)−d
∫ ∫ ∫

R3d
e
i
~ Φ̃u(x, y, p)dpdxdy (5.122)

where

Φ̃ = S(y, p) + P · (x−Q) +
Θ
2

(x−Q) · (x−Q) +

i

2
(x̃− y) · (x̃− y) + ξ̃ · (x̃− y) +

i

2
(ỹ − x) · (ỹ − x) + η̃ · (ỹ − x) (5.123)
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Let us remark that we have : F−1 =
(
Dτ −Bτ
−Cτ Aτ

)
if F =

(
A B
C D

)
. So, because F−1 is

symplectic, we know that Dτ −BτΘ is invertible. Hence we have

∂yΦ̃ = (Cτ −AτΘ)(x−Q) + (ξ̃ − p) + i(x̃− y) (5.124)

∂pΦ̃ = (Dτ −BτΘ)(x−Q) (5.125)

∂xΦ̃ = Θ(x−Q) + (P − η̃) + i(ỹ − x). (5.126)

So we get the necessary estimates on K̃ by integrations by parts using

∂yΦ̃− (−AτΘ + Cτ )(Dτ −BτΘ)−1∂pΨ = (ξ̃ − p) + i(x̃− y) (5.127)

∂xΦ̃−Θ(Dτ −BτΘ)−1∂pΨ = (P − η̃) + i(ỹ − x) (5.128)

ut
The following result is a slight generalization of [23, 8, 30].

Theorem 5.4 Under the assumptions of Theorem 1.2 and (1.16), (1.17), we have

K(t;x, y) � (2π~)−d
∫

Rd
e
i
~ψ

(φt,Θt)(t,y,p,x)u(~; t, y, p)dp (5.129)

where u(~; t, y, p) =
∑

0≤j<+∞

uj(t; y, p)~j has the same meaning as in Theorem1.2.

In particular
u0(t, y, p) = det1/2

(
D −ΘB)

)
(5.130)

Sketch of proof. These result can be proved following the same strategy as for proving Theorem
1.3.
We first prove the Theorem for some Θ (Θ = iI), following the proof of Theorem 1.2. then we can
get the Theorem for any Θ by the variation argument as in the proof of Theorem 1.3. L2 estimate
for operator norm of Fourier-Integral operators is used to control the remainder terms. ut

Remark 5.5 It is not difficult to adapt the proof of Theorem 1.4 concerning an Ehrenfest time
estimate to the setting of Theorem 5.4.
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[11] Córdoba, A. and Fefferman, C. Wave packets and Fourier Integral Operators. Comm. in
P.D.E, 3(11), p. 979-1005 (1978)

[12] B. Fedosov, Deformation quantization and index theory, Akademie Verlag de Berlin, Mathe-
matical topics 9 (1996)

[13] Folland, G.B. Harmonic Analysis in Phase Space, Annals of Mathematics Studies 122. Prince-
ton University Press, Princeton, NJ (1989)

[14] Fujiwara, D. A construction of the fundamental solution for the Schrödinger equation. J.
d’Analyse Math. 35, 41-96 (1979)

[15] Hagedorn, G. Semiclassical quantum mechanics I: The ~ ↘ limit for coherent States. Com-
mun. Math. Phys. 71, 77-93 (1980)

[16] Hagedorn, G. and Joye, A. Exponentially accurate semi-classical dynamics : propagation,
localization, Ehrenfest Times, Scattering and More General States. Ann. Henri Poincaré 1(5),
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