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Abstract. For Dynamical Systems, a strong bound on multiple correlations implies the
Central Limit Theorem (CLT) [ChMa]. In Chernov’s paper [Ch2], such a bound is derived
for dynamically Hölder continuous observables of dispersing Billiards. Here we weaken the
regularity assumption and subsequently show that the bound on multiple correlations follows
directly from the bound on pair correlations. Thus, a strong bound on pair correlations
alone implies the CLT, for a wider class of observables. The result is extended to Anosov
diffeomorphisms in any dimension.
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1. Introduction

In the context of dynamical systems, the question whether fast decay of pair correlations
implies the Central Limit Theorem (CLT) is an open one. Hopes that the answer is positive
are not completely without warrant: we have been unable to locate examples in the literature
in which pair correlations decay rapidly but the CLT fails. On the other hand, cases in which
the CLT has been inferred from little more than a pair correlation bound are few. The
purpose of this paper is to investigate the possibility of using information solely regarding
pair correlations for claiming control over multiple correlations, and further for obtaining
the CLT. In a physically interesting example, we show that a single pair correlation bound
implies the CLT for Sinai Billiards in a simple fashion. We also prove a similar result for
Anosov diffeomorphisms in arbitrary dimension.

Let F : M → M be a dynamical system with an invariant measure µ. Measurable
functions f :M→ C are called observables and their averages are denoted 〈f〉 =

∫
M f dµ.

Recall that a dynamical system is mixing if limn→∞〈f · g ◦Fn〉 = 〈f〉〈g〉 for all f, g ∈ L2(µ).
For a mixing system, a typical bound on pair correlations is

|〈f · g ◦ Fn〉 − 〈f〉〈g〉| ≤ cf,grf,g(n) (1)

for all n, given that f and g belong to some suitable classes of observables, H1 and H2,
respectively. Here the constant cf,g usually depends on a few properties of f and g — such
as their norms — rather than the details of the functions. Moreover, as n→∞, rf,g(n)→ 0
at a rate that only depends on a few properties of f and g. For instance, this rate could be
exponential and the exponent could depend on the regularity — say the Hölder exponents
— of the observables. Then, cf,g and rf,g are uniform on proper subclasses of Hi.
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Assume now that f is real-valued and consider sums of the form

Sn =
n−1∑
j=0

f ◦ F j.

Recall that the Central Limit Theorem (CLT) states that the distribution of the normalized
sequence Sn/

√
VarSn tends to the standard Gaussian distribution:

lim
n→∞

µ

(
Sn√

VarSn
≤ t

)
=

1√
2π

∫ t

−∞
e−s

2/2 ds ∀ t ∈ R. (2)

If the sequence of auto correlations Cf (n) = 〈f ·f ◦Fn〉−〈f〉2 has a finite first moment, i.e.,
∞∑
n=1

n|Cf (n)| <∞, (3)

then a direct computation reveals that

lim
n→∞

VarSn
n

= σ2
f = Cf (0) + 2

∞∑
i=1

Cf (i), (4)

in which case
√

VarSn can be replaced by
√
nσf in (2). The summability of the auto

correlations, at the very least, is necessary for the CLT to hold in this form. Establishing
(1) has been an essential, but not sufficient, part of CLT proofs in the literature.

In [ChMa], it is shown that the CLT is actually implied by good decay of multiple cor-
relations. The authors give the Sinai Billiards as an application, and deduce the CLT from
the strong bound on multiple correlations obtained in [Ch2].

Multiple correlations can generically be viewed as pair correlations: assuming f1, . . . , fk
are observables and n ≥ 0 and 0 ≤ i1 < · · · < il < il+1 < · · · < ik are integers, we have

〈f1 ◦ F i1 · · · fl ◦ F il · fl+1 ◦ F il+1+n · · · fk ◦ F ik+n〉 = 〈f̃ · g̃ ◦ Fn〉,
if we define

f̃ = f1 ◦ F i1 · · · fl ◦ F il and g̃ = fl+1 ◦ F il+1 · · · fk ◦ F ik .
This representation, the choice of l and n, is rather arbitrary, but if the time gap n can be
chosen large, one may hope to benefit from (1) and claim control over multiple correlations

in order to verify that the CLT holds. However, even if one is able to prove that f̃ ∈ H1 and
g̃ ∈ H2, which is not always the case, it may turn out that cf̃ ,g̃ or rf̃ ,g̃(n) is substantially
worse than needed for the argument to work. In the following sections, the idea of con-
trolling multiple correlations through pair correlations is developed further. In particular,
applications to Billiards and Anosov diffeomorphisms are presented.

Unified approaches for obtaining the CLT for dynamical systems are available in the
literature [Ch1, Li2]. They are general, but of quite different flavor compared to this work.
The paper [Ch1] has been formulated in terms of mixing properties of partitions of the phase
space and is based on Markov approximations. Martingale approximations are used in [Li2].
In the invertible case, the latter too requires refined information about partitions, their
measurability, existence of conditional measures, and estimates on the size of their elements.
See, however, the first paragraph of Section 5 discussing the non-invertible case. It is clear
that, for the relevant parts, equivalent information must be contained in any CLT proof; in
our examples it has surprisingly been encoded into a strong pair correlation bound.
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2. Obtaining the CLT from the decay of multiple correlations

Here we make precise the informal statement that sufficient control over multiple corre-
lations implies the CLT. Theorem 1 is obtained by rephrasing parts of the proof of Theo-
rem 7.19 in [ChMa] to suit our needs. As all the necessary details can be found in [ChMa],
we omit them here. We nevertheless mention that the backbone is a clever trick due to Bern-
stein [Be1, Be2] for approximating sums of weakly dependent random variables by those of
independent ones. The CLT is then inferred by checking that a Lindeberg condition on the
independent variables is satisfied.

To formulate the theorem, we first partition the time interval [0, n− 1] into an alternating
sequence of long and short intervals. The long intervals are of length1 p = [na] and the short
ones are of length q = [nb] with 0 < b < a < 1

2
. Hence, there are precisely k = [n/(p+ q)] ∼

n1−a pairs of long and short intervals (and a remaining interval of length n−k(p+q) < p+q).

Theorem 1. Denote g = eitf/
√
kVarSp and, for each 1 ≤ r ≤ k,

wr =
(
g · g ◦ F · · · g ◦ Fp−1

)
◦ F (p+q)(r−1) = w1 ◦ F (p+q)(r−1).

If (3) and
lim
n→∞

|〈w1 · · ·wk〉 − 〈w1〉 · · · 〈wk〉| = 0 ∀ t ∈ R (5)

hold, then the CLT (2) is satisfied together with (4).

Remark 2. We stress that p, q, k, g, and wr all depend on n. Notice that a time gap of
length q separates the variables wr which are ‘supported’ on the long intervals of length p.

To shed a bit of light on the method of [ChMa], let us denote by ∆r, 1 ≤ r ≤ k, the long
intervals and split the sum

Sn = S ′n + S ′′n,

where S ′n and S ′′n are the sum over all the long intervals, ∪r∆r, and the remainder, [0, n −
1] \ ∪r∆r, respectively:

S ′n =
k∑
r=1

S(r)
p with S(r)

p =
∑
i∈∆r

f ◦ F i.

Notice that the number of long and short intervals as well as the length of each interval
increases as n increases. However, the fraction of the entire time interval [0, n − 1] covered
by ∪r∆r tends to 1, because

lim
n→∞

p+ q

p
= lim

n→∞

[na] + [nb]

[na]
= 1.

Therefore, the sum S ′′n can asymptotically be neglected. Moreover, as the variables f ◦ F i
are weakly dependent and as the gaps between the long intervals ∆r increase with n, the

sums S
(r)
p become asymptotically independent. This way, Sn can be approximated by a sum

of i.i.d. random variables and the asymptotic normality of Sn/
√
n be verified.

It appears that [Ch2, ChMa] are the first places where the possibility of obtaining the
CLT based solely on a strong bound on multiple correlations has been explicitly mentioned,
although Bernstein’s trick has been introduced into the study of dynamical systems at least

1Here [x] is the integer part of a number x.
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as early as [BuSi]. We would like to stress that it is not the rate of decay per se, but the
form of the bound on multiple correlations that counts in the proof appearing in [ChMa];
hence our choice to call such bounds strong as opposed to, say, exponential. See Corollary 8
and Remark 9. Indeed, as explained in the Introduction, fast decay of pair correlations could
yield fast decaying bounds on multiple correlations which, however, are too weak to be used
in conjunction with Theorem 1 for deducing the CLT.

We remind the reader once more that each wr in (5) depends on n. Nevertheless, we mimic
pair correlation notation by rewriting the multiple correlations in (5) as the telescoping sums

〈w1 · · ·wk〉 − 〈w1〉 · · · 〈wk〉 =
k−1∑
r=1

〈w1〉 · · · 〈wr−1〉 [〈wr · · ·wk〉 − 〈wr〉〈wr+1 · · ·wk〉] .

Recalling |〈wr〉| ≤ 1 and using stationarity, we obtain

Corollary 3. Denote Wr = w1 · · ·wr−1. If (3) and

lim
n→∞

k∑
r=2

∣∣〈w1 ·Wr ◦ Fp+q〉 − 〈w1〉〈Wr〉
∣∣ = 0 ∀ t ∈ R

hold, then the CLT (2) is satisfied together with (4).

A message of the present paper is that, while fast decay of pair correlations alone may not
suffice for the CLT to hold, detailed information about their structure sometimes will. Below
we will show that two interesting classes of dynamical systems, Sinai Billiards (see [ChDo1]
for applications) and Anosov diffeomorphisms, actually both admit a strong pair correla-
tion bound that yields the CLT directly by supplying strong enough bounds on multiple
correlations. As far as the author knows, these are the first examples of the kind.

3. Sinai Billiards

Here Sinai Billiards [Si] refers to the 2D periodic Lorentz gas with dispersing scatterers
and finite horizon (finite free path). We will only list some facts about such systems, but
the reader unfamiliar with Billiards should be able to follow the reasoning by taking the
estimates in this section for granted. For background, see [ChMa, Sz, Ta].

Recall that the dynamics of Sinai Billiards induces a billiard map F : M → M on
the collision space M, which preserves a smooth ergodic SRB measure µ. This map is
uniformly hyperbolic but has a set of singularities due to tangential collisions. In a standard
representation of the collision space, tangential collisions correspond to horizontal lines —
the boundary S0 of M. The map also suffers of unbounded distortion because of the same
reason. In order to deal with this nuisance, the space M is divided by countably many
horizontal lines into a disjoint union of strips [BuSiCh, Ch2], on each of which distortions
can be controlled. Let us denote the union of such lines S. This way the space is divided
by S0 ∪ S into countably many connected components which we call homogeneity strips or
briefly H-strips.

There are two special families of cones associated with billiards. The unstable cones are
invariant under F and the stable ones under F−1. A smooth curve is called stable if at every
point its tangent vector belongs to the stable cone. The H-strips divide any stable curve into
disjoint H-components. A stable curve W is a stable manifold if FnW is a stable curve for all
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n > 0. Notice that the image FnW of a stable manifold W shrinks as n increases, but may
well consist of several H-components. A stable manifold W is a homogeneous stable manifold,
if FnW has just one H-component for all n > 0. Unstable curves, unstable manifolds, and
homogeneous unstable manifolds are defined analogously by considering unstable cones and
backward iterates of F .

For all x, y, we define the future separation time

s+(x, y) = min{n ≥ 0 : Fnx and Fny lie in different H-strips}
and the past separation time

s−(x, y) = min{n ≥ 0 : F−nx and F−ny lie in different H-strips}.
We will now introduce two notions of regularity. We say f is dynamically Hölder continuous

on homogeneous unstable manifolds and write f ∈ H+
? , if there exist Kf ≥ 0 and ϑf ∈ (0, 1)

such that, for any homogeneous unstable manifold W u,

|f(x)− f(y)| ≤ Kfϑ
s+(x,y)
f ∀x, y ∈ W u. (6)

Similarly, we say f is dynamically Hölder continuous on homogeneous stable manifolds and
write f ∈ H−? , if there exist Kf ≥ 0 and ϑf ∈ (0, 1) such that, for any homogeneous stable
manifold W s,

|f(x)− f(y)| ≤ Kfϑ
s−(x,y)
f ∀x, y ∈ W s. (7)

To make comparisons with [Ch2] in the following, we denote f ∈ H+ if (6) holds on all
unstable curves W u and f ∈ H− if (7) holds on all stable curves W s.

Obviously, H±? are vector spaces. If f, g ∈ H±? are bounded, then fg ∈ H±? with

Kfg = ‖f‖∞Kg +Kf‖g‖∞ and ϑfg = max(ϑf , ϑg). (8)

The classes H±? enjoy the following stability property under the action of F :

Lemma 4. If f ∈ H−? , then f ◦ F ∈ H−? with

ϑf◦F = ϑf and Kf◦F = Kfϑf .

If f ∈ H+
? , then f ◦ F−1 ∈ H+

? with

ϑf◦F−1 = ϑf and Kf◦F−1 = Kfϑf .

Proof. Let f ∈ H−? . Assume that W s is a homogeneous stable manifold. If x, y ∈ W s,
then Fx,Fy ∈ FW s which is also a homogeneous stable manifold. Hence, s−(Fx,Fy) =
1 + s−(x, y) and

|f(Fx)− f(Fy)| ≤ Kfϑ
s−(Fx,Fy)
f = (Kfϑf )ϑ

s−(x,y)
f .

The case f ∈ H+
? follows by reversing time. �

Remark 5. The proof of the H−? part of Lemma 4 relies on the fact that regularity is
only required on homogeneous stable manifolds. In [Ch2], regularity on all stable curves is
required, which results in the class H− of more regular functions. However, the F-image of
a stable curve is not necessarily a stable curve but rather tends to align with the unstable
direction. One may then consider relaxing the regularity condition and restricting to stable
manifolds or H-components of stable manifolds2. However, while the F-image FW of such an

2Such a case is recovered by collapsing the invariant cones into invariant lines [Ch2].
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H-component W is stable, it may have several H-components, in which case s−(Fx,Fy) = 0
for some x, y ∈ W . The remedy is to give up more regularity and to consider the class H−? ,
i.e., observables that are dynamically Hölder continuous on homogeneous stable manifolds.

Similar remarks apply for the H+
? part.

Corollary 6. Suppose f̃ = f0 ◦ F i0 · · · fk ◦ F ik , where 0 ≤ i0 < · · · < ik and each fi ∈ H−?
is bounded. Setting K{fi} = maxiKfi

and ϑ{fi} = maxi ϑfi
, we have f̃ ∈ H−? with

ϑf̃ = ϑ{fi} and Kf̃ = K{fi}

∏
i‖fi‖∞

mini‖fi‖∞

ϑi0{fi}

1− ϑ{fi}
.

Similarly, if each fi ∈ H+
? is bounded, then f̃ = f0 ◦F−i0 · · · fk ◦F−ik ∈ H+

? with ϑf̃ and Kf̃

as above.

Proof. Follows by induction from (8) and Lemma 4. �

Here we present a strengthened version of Theorem 4.3 of [Ch2]. ϑΥ < 1, κ > 0, and
C0 > 0 are constants whose definitions can be found in that paper. The proof is at the end
of the section.

Theorem 7. For every bounded pair f ∈ H+
? , g ∈ H−? , and n ≥ 0,

|〈f · g ◦ Fn〉 − 〈f〉〈g〉| ≤ Bf,gθ
n
f,g,

where 〈 · 〉 denotes the µ-integral,

θf,g =
[
max{ϑΥ, ϑf , ϑg, e

−1/κ}
]1/4

< 1, (9)

and

Bf,g = C0(Kf‖g‖∞ + ‖f‖∞Kg + ‖f‖∞‖g‖∞).

In [Ch2] the formulation of the theorem requires f, g ∈ H−∩H+ but it is remarked that the
proof requires only the weaker assumption f ∈ H+ and g ∈ H−. We have further relaxed the
assumptions. This is an important point to us, as will now become apparent. Owing to the
stability properties of the classes H−? and H+

? stated in Corollary 6, Theorem 7 immediately
implies the following bound on multiple correlations. Generalization to nonconsecutive times
is easy.

Corollary 8. Let f̃ = f0 · f1 ◦ F−1 · · · fr ◦ F−r and g̃ = g0 · g1 ◦ F1 · · · gk ◦ Fk, where
f0, . . . , fr ∈ H+

? and g0, . . . , gk ∈ H−? are bounded and have identical parameters3 in the
sense that ϑfi

= ϑf0, Kfi
= Kf0, ‖fi‖∞ = ‖f0‖∞, ϑgi

= ϑg0, Kgi
= Kg0, and ‖gi‖∞ = ‖g0‖∞.

Then ∣∣∣〈f̃ · g̃ ◦ Fn〉 − 〈f̃〉〈g̃〉∣∣∣ ≤ Bf̃ ,g̃θ
n
f0,g0

for all n ≥ 0, where θf0,g0 is as in (9) and

Bf̃ ,g̃ = C0‖f0‖r∞‖g0‖k∞
(

Kf0

1− ϑf0
‖g0‖∞ + ‖f0‖∞

Kg0

1− ϑg0
+ ‖f0‖∞‖g0‖∞

)
.

3This can always be arranged by scaling the functions and choosing the weakest parameters. It is also a
simple task to modify the statement so as to remove this condition. This does not serve our purpose here.
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Remark 9. The reader should pay attention to the form of the prefactor Bf̃ ,g̃. Any growth
with r and k is associated with the norms ‖ · ‖∞, which measure size, not with the dynamical
Hölder constants K·, which measure regularity. Moreover, the rate of decay remains under
control (in fact unchanged) as r and k increase.

Corollary 8 strengthens Theorem 4.5 of [Ch2] regarding the regularity assumption. We
are in position to prove

Theorem 10. If f ∈ H−? ∩H+
? is real-valued and bounded, then the Central Limit Theorem

(2) holds together with (4).

Proof. Because the auto correlations Cf (n) decay sufficiently fast by Theorem 7, condi-
tion (3) is satisfied which implies (4). According to Corollary 3, it suffices to bound
|〈w1 ·Wr ◦ Fp+q〉 − 〈w1〉〈Wr〉| (see the definitions of w1 and Wr in Theorem 1 and Corol-

lary 3). This involves functions of the form g = eitf/
√
kVarSp ∈ H−? ∩H+

? , for which ‖g‖∞ = 1,

ϑg = ϑf , and Kg ≤ (|t|/
√
kVarSp)Kf = O(1/

√
n)|t|Kf . We then use Corollary 8 with

w1 ◦ F−p assuming the role of f̃ and Wr that of g̃ (recall that F is invertible):∣∣〈w1 ·Wr ◦ Fp+q〉 − 〈w1〉〈Wr〉
∣∣ ≤ C0

(
O(1/

√
n)|t|Kf

1− ϑf
+ 1

)
θqf,f .

Finally, recall from above Theorem 1 that the quantity k appearing in Corollary 3 grows as
n1−a. Hence, limn→0 kθ

q
f,f = 0, and the CLT follows by Corollary 3. �

The class H−? ∩ H+
? of observables f is wider than the class H− ∩ H+ of [Ch2]. Notice

in particular that we have derived the CLT directly from a pure pair correlation bound,
Theorem 7.

In [Ch2], the proof of Theorem 4.5 (which corresponds to Corollary 8 above) is almost
identical with the proof of Theorem 4.3 (which corresponds to Theorem 7 above). We have
seen above that Theorem 4.5 actually becomes a direct consequence of Theorem 4.3 after
the classes H+

? and H−? have been incorporated as in Theorem 7 and Corollary 8.

Remark 11. In [Ch2], Theorem 4.3 is derived from an “equidistribution property” stated in
Theorem 4.1. Similarly, Theorem 4.5 is derived from Theorem 4.2 which states an “equidis-
tribution property” for multiple observation times. Both Theorem 4.1 and 4.2 require the
observables to be in H− ∩H+, but as is pointed out in the paper (and clear from the proof),
they hold under the weaker assumption that the observables be in H−. Interestingly, Theo-
rem 4.1 can be strengthened so as to hold for H−? . After this it implies directly a stronger
form of Theorem 4.2 that holds for H−? .

Next, we give the argument leading to Theorem 7. Instead of repeating large parts of
[Ch2] in which all the basic work has been done, we point directly to the places in it where
care is needed.

Proof of Theorem 7. The Coupling Lemma [Ch2, Lemma 3.4] does not concern observables
at all and is thus immune to relaxing their regularity. The Equidistribution Theorem [Ch2,
Theorem 4.1] holds assuming just g ∈ H−? 4. This is so, because regularity is only used in the

4In the original text, the observable is denoted f . We have renamed it g not to create confusion in the
rest of this proof.
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estimate (4.4) of the proof, and this estimate remains valid if g ∈ H−? as the coupled points
x and y lie on the same homogeneous stable manifold5 according to the Coupling Lemma.

One then has to verify that relaxing the regularity condition for the pair correlation bound
of [Ch2, Theorem 4.3] is legitimate. The bound on the quantity δα appearing below (4.11) in
[Ch2] is clearly the only place where the regularity of g matters. This bound remains unaf-
fected if we assume g ∈ H−? , since it only relies on the bound in Theorem 4.1 which remains
unchanged as we saw above. As far as the regularity of f is concerned, only homogeneous
unstable manifolds count. This is obvious from the definition of f̄ and the inequality (4.10).
Thus, it is enough to take f ∈ H+

? . �

4. Anosov diffeomorphisms

We will exemplify with Anosov diffeomorphisms the passage from a strong pair correlation
bound to the CLT. As Anosov diffeomorphisms lack the singularities of Billiards, one rightly
expects everything to work as in the previous section. Notice, however, that throughout
Section 3 it was assumed that the space is 2-dimensional. We include this section because of
its transparency and because detailed pair correlation bounds are available in any dimension.

In the following, C1+α stands for differentiable functions whose first derivative is Cα,
i.e., Hölder continuous with exponent 0 < α < 1. Let M be a d-dimensional Riemannian
manifold and F a transitive C1+α Anosov diffeomorphism on it. Let ds(x, y) denote the
distance between x and y along a stable manifold (= ∞ if x and y are not on the same
stable manifold, i.e., y /∈ W s(x)). Similarly, let du(x, y) be the distance along an unstable
manifold. There exists 0 < ν < 1 such that ds(Fx,Fy) ≤ νds(x, y) if x ∈ W s(y) and
du(F−1x,F−1y) ≤ νdu(x, y) if x ∈ W u(y).

We recall some definitions from [BrLi]. Fix δ > 0 and 0 < β < 1. Define, for all
f :M→ C,

|f |s = sup
ds(x,y)≤δ

|f(x)− f(y)|
ds(x, y)β

, ‖f‖s = ‖f‖∞ + |f |s,

and

|f |u = sup
du(x,y)≤δ

|f(x)− f(y)|
du(x, y)α

, ‖f‖u = ‖f‖1 + |f |u,

where the L1-norm is defined with respect to the Riemannian volume. Finally, Cs stands for
the set of Borel measurable functions f :M→ C with ‖f‖s <∞.

Although results similar to the one below have been known much earlier, we cite [BrLi,
Corollary 2.1] due to the precise form of the bound there.

Theorem 12. There exists a unique F-invariant SRB measure µ. There exist 0 < θ < 1
and C0 > 0 such that, for all f ∈ Cα and all g ∈ Cs,

|〈f · g ◦ Fn〉 − 〈f〉〈g〉| ≤ C0‖f‖u‖g‖sθ
n,

where 〈 · 〉 stands for the µ-integral.

The following bound on multiple correlations is readily implied. Extending it to noncon-
secutive times is easy.

5In [Ch2], homogeneous (un)stable manifolds are often called (un)stable H-manifolds.
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Corollary 13. Let f̃ = f0 · f1 ◦ F−1 · · · fr ◦ F−r and g̃ = g0 · g1 ◦ F1 · · · gk ◦ Fk, where
f0, . . . , fr ∈ Cα and g0, . . . , gk ∈ Cs. Assume also that each ‖fi‖∞ = ‖f0‖∞ and each
‖gi‖∞ = ‖g0‖∞. Then, ∣∣∣〈f̃ · g̃ ◦ Fn〉 − 〈f̃〉〈g̃〉∣∣∣ ≤ Bf̃ ,g̃θ

n,

where

Bf̃ ,g̃ = C‖f0‖r∞‖g0‖k∞
(

max
i
|fi|u‖g0‖∞ + ‖f0‖∞max

i
|gi|s + ‖f0‖∞‖g0‖∞

)
.

Proof. Assuming ds(x, y) ≤ δ,

|g̃(x)− g̃(y)| ≤
k∑
l=0

∣∣g0(x) · · · gl−1(F l−1x)
∣∣ ∣∣gl(F lx)− gl(F ly)

∣∣ ∣∣gl+1(F l+1y) · · · gk(Fky)
∣∣

≤
k∑
l=0

(∏
i 6=l

‖gi‖∞

)∣∣gl(F lx)− gl(F ly)
∣∣ ≤ k∑

l=0

(∏
i 6=l

‖gi‖∞

)
|gl|sd

s(F lx,F ly)β

≤
k∑
l=0

(∏
i 6=l

‖gi‖∞

)
|gl|sν

βlds(x, y)β ≤
∏

i‖gi‖∞
mini‖gi‖∞

maxl |gl|s
1− νβ

ds(x, y)β.

From this we obtain a bound on |f |s which implies

‖g̃‖s ≤
1

1− νβ

(∏
i

‖gi‖∞

)(
1 +

maxl |gl|s
mini‖gi‖∞

)
and that g̃ ∈ Cs. It is clear that f̃ ∈ Cα. Mimicking the treatment of g̃ and using ‖f̃‖1 ≤
‖f̃‖∞‖1‖1, we also get

‖f̃‖u ≤
max(1, ‖1‖1)

1− να

(∏
i

‖fi‖∞

)(
1 +

maxl |fl|u
mini‖fi‖∞

)
.

We can then apply Theorem 12. �

Notice that the proof contains a stability result similar to Lemma 4. Following [ChMa],
the Central Limit Theorem can then be established immediately with the aid of Corollary 13.

Theorem 14. If f ∈ Cα ∩ Cs is real-valued, then the Central Limit Theorem (2) holds
together with (4).

Proof. The proof of Theorem 10 applies, mutatis mutandis. �

Corollary 13 is interesting in its own right, as it gives a rather explicit bound on the
multiple correlations for generic transitive Anosov diffeomorphisms.

5. A non-invertible example

Here we present an example of a non-invertible, piecewise expanding, dynamical system in
which a known pair correlation bound (Theorem 15) can be used to prove the CLT. However,
this time the situation is not as straightforward, and an extra ingredient, the Lasota–Yorke
inequality appearing in (11), will be needed. The latter is known to imply a spectral gap
and further the CLT. Nonetheless, our proof is formally independent of spectral arguments
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and we have chosen to include it as an interesting example of the usage of Corollary 3. In
the case at issue, a notably direct way of passing from the pair correlation bound to the CLT
has been established in [Li2]. It is based on a general result on martingale approximations
rather than bounding multiple correlations, which seems particularly well suited to the non-
invertible setting.

Let F : [0, 1]→ [0, 1] be a piecewise C2, uniformly expanding, map and suppose dµ = φdx
is an absolutely continuous invariant measure with respect to the Lebesgue measure dx
with density φ ∈ L1([0, 1], dx). We write ‖f‖1 =

∫ 1

0
|f | dx. A complex-valued function

g defined on [a, b] is of bounded variation, denoted g ∈ BV [a, b], if the total variation∨b
a g = sup(xi)

∑
i |g(xi)−g(xi+1)| is finite. Here the supremum runs over all finite partitions

of [a, b]. The following theorem [HoKe] can be found in [Li1] up to trivial modifications.

Theorem 15. Suppose the system (F , µ) is mixing and that inf φ > 0. Then there exist
constants b > 0, K > 0, and Λ ∈ (0, 1) such that, for each f ∈ L1([0, 1], dx) and g ∈ BV [0, 1]∣∣∣∣∫ 1

0

f ◦ Fng dx−
∫ 1

0

f dµ

∫ 1

0

g dx

∣∣∣∣ ≤ KΛ−n‖f‖1

(
‖g‖1 + b

1∨
0

g

)
. (10)

Remark 16. Under the assumptions of the theorem, φ ∈ BV [0, 1].

Let us denote λ = inf |F ′| and assume λ > 2, by considering a sufficiently large power
of F if necessary. Let L stand for the transfer operator of F with respect to the Lebesgue
measure:

(Lg)(x) =
∑

y∈F−1x

g(y)

|F ′(y)|
.

There exists a constant A, depending on the map F , such that

1∨
0

(Lg) ≤ 2λ−1

1∨
0

g + A‖g‖1 (11)

holds for all g ∈ BV [0, 1] [LaYo]. Together, (10) and (11) imply the CLT in a straightforward
fashion, as we will now see.

Remark 17. The Lasota–Yorke inequality (11) is usually used with real-valued functions.
From its proof in [Li1] it is apparent that it holds true for complex-valued functions. Also the
bound in (10) extends to complex-valued functions. First assume f = u+ iv is complex and
g is real, use (10), and notice that ‖u‖1 + ‖v‖1 ≤

√
2‖f‖1. Next, assume also g = t+ iw is

complex, use (10), and notice that
∨1

0 t+
∨1

0w ≤ 2
∨1

0 g.

Setting Wr = w1 · · ·wr−1 and 〈f〉 =
∫ 1

0
f dµ as before,

〈w1 · · ·wr〉 = 〈w1 ·Wr ◦ Fp+q〉 =

∫ 1

0

Lp−1(φw1) ·Wr ◦ F q+1 dx. (12)

Moreover, ∫ 1

0

Lp−1(φw1) dx = 〈w1〉 and

∫ 1

0

Wr dµ = 〈w2 · · ·wr〉,
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where invariance has been used. Hence, (10) yields

|〈w1 · · ·wr〉 − 〈w1〉〈w2 · · ·wr〉| ≤ KΛ−q−1

(
1 + b

1∨
0

Lp−1(φw1)

)
, (13)

as |wi| = 1 implies ‖Wr‖1 = 1 and ‖Lp−1(φw1)‖1 ≤ ‖φw1‖1 = ‖φ‖1 = 1.

We are done if we can establish a good bound on
∨1

0 Lp−1(φw1). A straightforward iteration

of (11) will not suffice, because
∨1

0(φw1) seems to grow at a dominating exponential rate
due to the presence of Fp−1 in w1. Controlling the growth of total variation is precisely the
reason we introduced the regularizing transfer operator L in (12).

Let us denote Gp = φ·g ·g◦F · · · g◦Fp, where g = eitf/
√
kVarSp . In particular, Gp−1 = φw1.

With the aid of the identity

L(f ◦ F · g) = f · Lg
we are able to write the recursion relation

LpGp = Lp(Gp−1 · g ◦ Fp) = Lp(Gp−1) · g = L(Lp−1Gp−1) · g,

because Lp is the transfer operator of Fp. Now,

1∨
0

LpGp ≤ ‖g‖∞
1∨
0

L(Lp−1Gp−1) + ‖LpGp−1‖∞
1∨
0

g,

where |g| = 1 yields |LpGp−1| ≤ Lp|Gp−1| = Lpφ = φ so that ‖LpGp−1‖∞ ≤ ‖φ‖∞. By (11),

1∨
0

LpGp ≤ 2λ−1

1∨
0

Lp−1Gp−1 + A+ ‖φ‖∞
1∨
0

g,

which can be iterated to prove

1∨
0

LpGp ≤ (2λ−1)p
1∨
0

(φg) +
A+ ‖φ‖∞

∨1
0 g

1− 2λ−1
≤ (2λ−1)p

1∨
0

φ+
A+ 2‖φ‖∞

∨1
0 g

1− 2λ−1

for every value of p. Finally,
∨1

0 g ≤ (|t|/
√
kVarSp)

∨1
0 f = O(1/

√
n)
∨1

0 f for fixed values

of t. Hence, supn
∨1

0 Lp−1(φw1) <∞ and

|〈w1 · · ·wr〉 − 〈w1〉〈w2 · · ·wr〉| ≤ CΛ−q (14)

for all 2 ≤ r ≤ k and all n. This bound implies the CLT due to Corollary 3.
We finish with a discussion of the map F : x 7→ 2x mod 1. In this case the situation

is quite a bit simpler than above, and (11) is not needed. First of all, φ ≡ 1. Second,∨1
0 Lg ≤

1
2

∨ 1
2
0 g+ 1

2

∨1
1
2
g = 1

2

∨1
0 g and

∨1
0 g ◦ F ` ≤ 2`(

∨1
0 g+ |g(1)− g(0)|) ≤ 2`+1

∨1
0 g hold

for all g ∈ BV . Using these facts and the bound
∨1

0 fg ≤
∨1

0 f ‖g‖∞+‖f‖∞
∨1

0 g recursively,

1∨
0

Lp−1w1 ≤
1

2p−1

1∨
0

w1 ≤
1

2p−1
‖g‖p−1

∞

p−1∑
`=0

1∨
0

g ◦ F ` ≤ 4‖g‖p−1
∞

1∨
0

g.

Finally, we recall that ‖g‖∞ = 1 and insert the bound above into (13). Again, (14) follows.
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6. Conclusion

We have argued that detailed information about pair correlations for suitable classes of
observables may be sufficient for proving the Central Limit Theorem for a given dynamical
system. We have then shown that, for Sinai Billiards in two dimensions as well as transitive
Anosov diffeomorphisms in any dimension, such information can be encoded into a single
pair correlation estimate. In the case of Billiards, the estimate has been obtained by relaxing
the regularity assumptions of an estimate in [Ch2]. An estimate in [BrLi] works readily in
the Anosov case.

Interesting in its own right is the fact that in both cases the pair correlation estimates
implied good estimates on multiple correlations, which tend to be difficult to bound. As
suggested in [Ch2], such bounds yield limit theorems more sophisticated than the CLT,
including the Weak Invariance Principle and Almost Sure Invariance Principle. We have
chosen not to discuss these extensions here as it would seem to produce little that is new.

Let us mention that the pair correlation bound for Billiards is the product of a coupling
argument, originally due to Young [Yo] and further refined by Dolgopyat (see [ChDo2], [Ch2],
and [ChMa]). The proof of the pair correlation bound for Anosov diffeomorphims in [BrLi]
is likewise based on a coupling method. This approach has turned out to be very flexible
and adaptable to many kinds of systems with some hyperbolicity.

It is then informative to recognize that the proof of the CLT for Billiards presented above
depends, at the formal level, little on the fact that the rate of correlation decay is exponential.
Rather, the stability property of the classes of observables (Lemma 4) and the form of the
prefactor in the correlation estimate (Remark 9) are the ingredients that count. Similar
remarks apply to the Anosov case. It would be interesting to know if it is possible to derive
a pair correlation bound that implies a strong bound on multiple correlations and hence the
CLT in a slowly mixing example.

We have also discussed non-invertible systems in the setting of piecewise expanding interval
maps and observed that the situation seems rather different. Further work is needed.

Finally, we propose the following objective, which has motivated our work, to think about:
formulate checkable conditions on pair correlations for a dynamical system — likely more
complicated than a single estimate — under which the CLT holds. Advances in this direction
are not only of theoretical interest but could benefit the applied scientist.
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