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Abstract

For each integer n > 2 and a parameter A = (6,n) with 6 and n being n x n
real anti-symmetric matrices, a quantum phase space (QPS) (or a non-commutative
phase space) with n degrees of freedom, denoted QPS,,(A), is defined, where § and
7 are parameters measuring non-commutativity of the QPS. Hilbert space represen-
tations of QPS,, (A) are considered. A concept of quasi-Schrodinger representation
of QPS,,(A) is introduced. It is shown that there exists a general correspondence
between representations of QPS,,(A) and those of the canonical commutation rela-
tions with n degrees of freedom. Irreducibility of representations of QPS,, (A) are
investigated. A concept of Weyl representation of QPS,,(A) is defined. It is proved
that every Weyl representation of QPS,,(A) on a separable Hilbert space is unitarily
equivalent to a direct sum of a quasi-Schrodinger representation of the QPS,,(A) (a
uniqueness theorem). Finally representations of QPS,,(A) which are not unitarily
equivalent to any direct sum of a quasi-Schrédinger representation are described.
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tation relations.
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1 Introduction

In recent years, there have been increasing interests in studying physical aspects of quan-
tum theory on non-commutative space-times (e.g., [3, 5, 11]), non-commutative spaces
(e.g., [7, 8]) and non-commutative phase spaces (e.g., [9, 10, 15, 19]). Each of these non-
commutative objects are defined by a non-commutative algebra. It seems, however, that

mathematically rigorous analyses of the non-commutative algebras from representation



theoretic points of view have not yet fully developed. In this paper we consider Hilbert
space representations of a non-commutative phase space with general finite degrees of
freedom.

We denote by N = {1,2---} the set of natural numbers. Let n € N with n > 2.
To define a non-commutative phase space with n degrees of freedom, we take two n x n
real anti-symmetric matrices 6 = (0;);x=1,...n and 17 = (1;x)jk=1,.n. LThen we introduce
an algebra generated by 2n elements Qj, 15]( j=1,---,n) and a unit element I obeying

deformed canonical commutation relations (CCR’s) with n degrees of freedom

Q) Qx) = 101, (1.1)
[P}, P) = ini 1, (1.2)

where [A, B] := AB — BA, i is the imaginary unit, and d,; is the Kronecker delta. We call
this algebra the quantum phase space (QPS) or the non-commutative phase space with n

degrees of freedom and parameter
A= (n,0). (1.4)

We denote it by QPS,,(A).

It is obvious that Qj and Qk (resp. 13] and Pk) with j # k do not commute if and only
if 01 # 0 (vesp. M, # 0). Hence the parameter A “measures” the non-commutativity
of Qj’s and ]5]-’8 respectively. Moreover QPS, (A) in the case § = n = 0 reduces to the
algebra of the CCR’s with n degrees of freedom. Hence QPS, (A) can be regarded as a
deformation of the algebra of the CCR’s with n degrees of freedom.

As a piece of work closely related to the present one, we mention only [19], where the

following case is considered in a heuristic manner: n = 2,
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9:

(a > 0 and b > 0 are constants) with

e::<_01 (1)> (1.5)

Our QPS is a generalization of this QPS.

Let 3 be a complex Hilbert space with inner product (-, -) (linear in the second
variable) and norm || - ||. For a linear operator A, we denote its domain by D(A). Let
D # {0} be a subspace of H (not necessarily dense in H) and Q;, P; be symmetric

operators on JH.



Definition 1.1 We say that the triple (9’(,@, {Qj,f?j}?:l) is a representation (on )
of the algebra QPS, (A) if D C N?,_,D(Q;Qx) N D(P;Py) N D(Q;P:) N D(P;Qy) and it
satisfy (1.1)—(1.3) on D with I being the identity on H (we sometimes omit the identity

I below).
If all Qj and ]53 (j =1,--+,n) are self-adjoint, we say that the representation <9{, D,

{Qj7 15]}?:1> is self-adjoint.

In every representation <9—C, D, {Q;, E}?ﬂ) of QPS,,(A), we have commutation rela-
tions (1.1)—(1.3) on D. Hence the following Heisenberg uncertainty relations follow: for
all p € D with ¢ =1and j,k=1,---,n,

(AQ)o(AQ0 > £ [0, (1.6
(AP)u(APy > Sl (17)
(AQ)) (AP > 16, (1.9

where, for a symmetric operator A and a vector ¢ € D(A) with ||¢| =1,

(AA)y = [[A = (@, Ay |,

the uncertainty of A in the vector state 1.

The outline of the present paper is as follows. In Section 2, we introduce a concept of
normality of the parameter A. Using the Schrodinger representation of the CCR’s with n
degrees of freedom, we show that there exists a general class of self-adjoint representations
of QPS,,(A) with A normal. We call each of them a quasi-Schrodinger representation
of QPS,,(A). As a special case, we introduce a concept of Schrodinger representation
of QPS,(A). We also define regularity of A and show that, if A is regular, then the
Schrodinger representation of the CCR’s with n degrees of freedom can be recovered from
a quasi-Schrodinger representation of QPS, (A).

In Section 3, we show that there exists a general correspondence between representa-
tions of QPS,,(A) and those of the CCR’s with n degrees of freedom.

Section 4 is concerned with irreducibility of representations of QPS, (A). We formulate
a sufficient condition for a representation of QPS, (A) to be irreducible. As a corollary,
we show that every quasi-Schrodinger representation of QPS,,(A) is irreducible.

In Section 5 we define a concept of Weyl representation of QPS,, (A) and prove that each

Weyl representation of the CCR’s with n degrees freedom produces a Weyl representation

of QPS, (A).



In Section 6 we show that every Weyl representation of QPS,,(A) on a separable Hilbert
space with A regular is unitarily equivalent to a direct sum of a quasi-Schrodinger repre-
sentation of QPS, (A). This is a QPS version of the celebrated von Neumann uniqueness
theorem on Weyl representations of the CCR’s with n degrees of freedom [18].

In the last section, we consider representations of QPS, (A) which are not unitarily
equivalent to any direct sum of a quasi-Schrodinger representation of QPS, (A). Concrete
examples of such representations of QPS,,(A) are given.

In Appendix, we prove some general facts on self-adjoint operators by which generated
strongly continuous one-parameter unitary groups obey Weyl type relations. They may
have independent interests.

It would be interesting to develop operator theoretical or spectral analyses for opera-
tors constructed from representations of QPS, (A). But, in the present paper, we do not

investigate these aspects.

2 A Class of Self-Adjoint Representations of QPS, (A)
on L*(R")

In this section, we show that there exist self-adjoint representations of QPS, (A) on L?(R™),
the Hilbert space consisting of equivalence classes of square integrable Borel measurable
functions on R" = {z = (x1, -, z,)|z; € R,j =1,---,n} (R is the set of real numbers).
This is done by using the Schrodinger representation of the CCR’s with n degrees of
freedom.

We denote by C§°(R™) the set of infinitely differentiable functions on R™ with compact
support.

Let (L*(R™), Cg°(R™), {g;, p;}1_;) be the Schrédinger representation of the CCR’s with
n degrees of freedom, namely, ¢; is the multiplication operator by the jth variable z; on
L*(R™) and p; := —iD; with D; being the generalized partial differential operator in z;
on L*(R"), so that

(95, Px] = 101, (2.1)
[QJqu]:()? [pjapk] :07 j?k::l?’nv (22>

on the subspace C§°(R").
For linear operators Ly, ---, Ly, on a Hilbert space (M € N), the domain of the sum

SM L, is defined by

m=1

as usual, unless otherwise stated.



Lemma 2.1 For all aj,b; € R,j=1,---,n, > 7 (a;p; + bjq;) is essentially self-adjoint
on C°(R™).

Proof. This fact may be well known. But, for completeness, we give a proof. Let
X =370 (ajpj + bjg;). Then Cg°(R") € D(X) and X is a symmetric operator. As is
well known, the operator N := 3", (p +¢7) + 1 is self-adjoint with N > 1 and C§°(R")

is a core of N. It is easy to see that there exist constants ¢,d > 0 such that

XS < clINFII,

[(XFNF) = (NLXF) | < AINVEFI2 f € CRRY).
Thus, by the Nelson commutator theorem (s.g., [14, Theorem X.37]), X is essentially
self-adjoint on C§°(R™). O

For an n-tuple L = (Ly,- - -, L,) of linear operators L;,j = 1,---, n, on a Hilbert space
and an n X n matrix A = (Ajx);jk=1,n, we define the n-tuple AL = ((AL)y,---,(AL),)

of linear operators by
(AL); =Y ALy (2.3)
k=1

We say that the parameter A = (6,7) is normal if there exist n x n real matrices
A, B,C and D satisfying

AD — B'C =1, (2.4)
AB—BYA—=0, (2.5)
C'D - D'C =n, (2.6)

where I,, is the n x n unit matrix and *A denotes the transposed matrix of A.

For a normal parameter A with (2.4)—(2.6), we can define a (2n) x (2n) matrix:

A B
o (40) o
et 6 I 0 I
K(A):z(_[n " ), Jn::(_ln 0 > (2.8)
Then we have
GJ,'G = K(A). (2.9)

Conversely, if a (2n) x (2n) real matrix G of the form (2.7) satisfies (2.9), then A, B, C
and D obey relations (2.4)—(2.6).
Thus A is normal if and only if there exists a (2n) x (2n) real matrix G satisfying

(2.9). In that case, we call G a generating matrix of A.

5



We remark that, for a normal parameter A, its generating matrices are not unique. For
example, if GG is a generating matrix of A, then, for all orthogonal matrix M commuting
with K(A), MG is a generating matrix of A too.

Suppose that A is normal with (2.4)—(2.6). We set

a=(q,""",q); P= (P, ,Pn) (2.10)
and define

q:=Aq+ Bp, p:=Cq+ Dp. (2.11)
Then, by Lemma 2.1, the operators ¢; and p; (j = 1,---,n) are essentially self-adjoint on

C§°(R™). Hence their closures 63- and ﬁj are self-adjoint!. Moreover, we have the following

result:

Theorem 2.2 The set (L2(]R"), Ce(R™), {éj,]_ﬁj}jzlj..m) is a self-adjoint representation
of QPS,(A).

Proof. It is easy to see that ¢; and p; leave C§°(R") invariant. Then, by direct
computations using (2.1) and (2.2), we have

(G5, G6) =i > (AjeBre — BjoApe) = i(A'B — B'A)
=

on C§°(R™). By (2.5), the right hand side is equal to i6,;, on Cg°(R"). Similarly one can

prove the other cases. O

We call the representation (L*(R™), C§°(R™),{4;,p;}j=1,--n) the quasi-Schrédinger rep-
resentation of QPS, (A) with generating matrix G of the form (2.7).

Remark 2.3 One can write

q1 q1
Wl =qg| I (2.12)
h P1
Pn Pn

on N7_; D(q;) N D(p;). Equation (2.9) is rewritten as follows:

GJ,'G = J, +6(N) (2.13)
with
S(A) = ( ’ 2 ) | (2.14)

IFor a closable linear operator 7', we denote its closure by 7.

6



Hence ‘G is symplectic if and only if 6(A) = 0 (i.e., § = n = 0). Therefore the matrix
d(A) represents a difference from the symplectic relation. Note that the diagonal element

6 (resp. n) of 6(A) gives the non-commutativity of ¢;’s (resp. pi’s) (j,k =1,---,n).

2.1 The Schrodinger representation of QPS

It may be interesting to consider a special case of A. Let a > 0,b > 0 be constants and

fm 1 (2.15)

ab’
14+ =
+4

Let v be an n x n real anti-symmetric matrix satisfying

S (2.16)
Then the parameter
Ag = (&%av,%)  (the case 8 = Eary,n = ) (2.17)
is normal, since the matirix
£[n _l£a7 )
Gs = 2 2.18
o= (e (2.18)

is a generating matrix of Ag, as is easily checked. We denote (_ij and ]_5]- in the present case

by c]](-s) and ﬁg»s) respectively:

) 1 . 1 ‘
Qi = 5(%‘ - §a(7p)j>, By = f(Pj + 55(%1)]‘)7 j=1-n (2.19)

As is seen, this representation is simple. We call this self-adjoint representation <L2(R”),

Cee(R™), {Q§S),ﬁ§s) }jzlw-,n) of QPS,,(As) the Schridinger representation of QPS, (As).

Example 2.4 Consider the case n = 2 and let € be the 2 x 2 matrix defined by (1.5).
Define operators ¢; and p; (j = 1,2) on L?(R?) as follows:

. . . B . B

gj=q G=12), pri=p+ 52 P2iEP2 50,

where B € R\ {0} is a constant. Then we have
[qua (jk] = 07 [ﬁ]?ﬁk] = iBij, [ijaﬁk] = Zéjk? ja k= ]-a 2)

on C§°(R?). Hence the set {g;, ]5]-}?:1 in the present example is the Schrodinger repre-
sentation of QPS,(0, Be) (the case A = (0, Be)). As is well known, this representation

appears in the two dimensional quantum system with a constant magnetic field B.



2.2 Reconstruction of the Schrodinger representation of the
CCR’s with n degrees of freedom

In this subsection, we consider reconstruction of ¢; and p; in terms of ¢; and p;. By
(2.12), this problem may be reduced by the invertibility of the matrix G. From this point
of view, we introduce a class of parameters A.

We say that A is regular if it is normal and has an invertible generating matrix. It
follows from (2.9) that, if A is regular, then every generating matrix of A is invertible.

The next lemma characterizes the regularity of A:

Lemma 2.5 Let A be normal with a generating matriz G given by (2.7). Then A is
reqular if and only if I, + 0n and I, +nb are invertible. In that case, G is invertible and

tr y—1 -1 ([n+ 9)_1 _(In+ 9>_1
(GG :—( i +77977)‘177 <[n+9:77)_19 ) (2.20)

Proof. Throughout the proof, we set K = K(A).
Suppose that A is regular. Then (2.9) implies that K is invertible. Let

-1, 0 -1,
Mliz(jn 0 >, MQI:<I 0 )

Then M; and M, are invertible. Hence K M; and K M, are invertible. On the other hand,
by direct computations, we have

(I, +0n —0 (I 0
o= (P00 = ().

For a square matrix M, we denote by det M the determinant of M. Then we have
0 # det(KM;) = det(I, + 6n),0 # det(K Ms) = det(1,, + nd), Thus I, + 0n and I,, + nb
are invertible.

Conversely, suppose that I, + 6n and I,, + nf are invertible. By direct computations,
we have
" -1, _ I, +0n 0
det K det < n —In

I, 0
Therefore det K # 0, implying that K is invertible. Then, by (2.9), det G # 0. Hence G

is invertible. Hence A is regular. Using (2.9) and J, ' = —J,, we have

Hence
) = det(l,, + 0n) det(I,, +nb) # 0,

(‘\G)' .G =K



It is easy to see that

-1 _ ([n + 779)_177 _(In + 779)_1
K= ( (I, +6n)~t (I, +6n)7'0 ) '

Thus (2.20) holds. O

Let A be regular with a generating matrix G. Then we can write

F F
-1 _ 1 L2
(BB, -
where I}, Fy, F3 and F; are n X n real matrices.
Let
él :((_?17 "7qAn)7 IA):: (ﬁla"'aﬁn)- (222>

Theorem 2.6 The following equations hold:
q=Fq+ Fp, p=Fq+Fp. (2.23)
on Mj_1 D(q;) N D(p;).
Proof. By (2.12), we have
a\_[(Fh F q
p F3 Fy p
on M?_; D(g;) N D(p;). Hence (2.23) on N_,; D(q;) N D(p;) follows. O
Theorem 2.6 also implies relations of matrix elements of G~ *:

Corollary 2.7

Flé?tFl + antFQ + Flth - FZtFl = O, (224)
Fdeth + F477tF4 + thF4 - F4tF3 = O, (225)
FletF3+F27]tF4+F1tF4—FQth = [n (226)

Proof. Using (2.23), one needs only to compute [g;, ¢x] = 0 (resp. [p;, px] =0, [g;, px] =
i) on Cg°(R™). Then one obtains (2.24) (resp. (2.25), (2.26)). O

We now apply Theorem 2.6 to the Schrédinger representation {(}J(-S) , ﬁgs) n_, of QPS, (As):
Corollary 2.8 Let a,b,& and v be as in Subsection 2.1. Suppose that

1
x:=1-— Zab # 0. (2.27)



Then

1 1

%=z (q( Tt 50(); ) (2.28)
1 [ 1. . _

=g (p(-s) S0, ) j=1,---n, (2.29)

on C§°(R™).
Proof. In the present case, we have
I, +0n=1,4+n0 = (1—¢ab), = * #0.

Hence I,, + 6n and I,, + nf are invertible. By (2.18), we have

_ 1 I Lay )
Gg'! o2 .
3N < —30 I

Thus (2.28) and (2.29) follow. O

3 General Correspondence Between a Representa-
tion of QPS,(A) and a Representation of the CCR’s
with n Degrees of Freedom

3.1 Construction of a representation of QPS, (A) from a repre-
sentation of the CCR’s with n degrees of freedom

The contents in Section 2 suggest a general method to construct a representation of
QPS,,(A) from a representation of the CCR’s with n degrees of freedom.

Let (5{ D, {Qy, P} ) be a representation of the CCR’s with n degrees of freedom,
namely, H is a Hilbert space, D is a dense subspace of H and (); and P; (j =1,---,n) are
symmetric operators on J{ such that D C N7, _, (Qij)ﬂD(P]Pk)ﬂD(QJPk)ﬂD(Pij)
and {Qj, P;}}_, obeys the CCR’s with n degrees of freedom on D: for j,k=1,---,n,

[Q;,Qr] =0, [P}, Pl =0, [Q,P]=1id (3.1)

on D. Let
Q:(Qlu"'7Qn)) P:(P177Pn)

Let A be normal and A, B,C, D be n x n real matrices obeying (2.4)-(2.6). By an
analogy with (2.11), we define the n-tuples

Q = (Qla"'aQn)a (32)



and
P:=(P, -, P, (3.3)

by
Q:=AQ+ BP, P:=CQ+ DP. (3.4)

Theorem 3.1 The set (9{, D, {Q;, PJ}?:l> defined by (3.4) is a representation of QPS,, (A).

Proof. The symmetry of Qj and f’j follows from the density of D and the symmetry
of Q; and P; (j = 1,---,n). Commutation relations (1.1)-(1.3) can be proved by direct

computations. 0

We remark that the representation (J—C, D, {Qj, R}’;:l) of QPS,,(A) is not necessarily
self-adjoint even in the case where all ); and P; (j =1,---,n) are self-adjoint.
As in the case of quasi-Schrodinger representations of QPS, (A) discussed in Section

2, we have the following fact:

Theorem 3.2 Let A be reqular with generating matriz G given by (2.7) and Fy, Fy, F3
and Fy be as in (2.21). Then

Q=FRQ+ kP, (3.5)
P = F3Q + F,P. (3.6)

on D.

3.2 Construction of a representation of the CCR’s with n de-
grees of dreedom from a representation of QPS, (A)

We next consider constructing a representation of the CCR’s with n degrees of freedom
from a representation of QPS, (A). A method for that is suggested by Theorem 3.2.
Let <U-C, D, {Qj, p]};‘:l> be a representation of QPS,(A) on a Hilbert space H with

D dense in H. Throughout this subsection, we assume the following:
(A) The parameter A is regular with generating matrix G given by (2.7).

Let Fy, Fy, F5 and Fy be as in (2.21). Then we can define Q(A) = (Q1(A), -, Qn(A))
and P(A) = (P1(A),---, P,(A)) by

Q(A) := F,Q + KP, (3.7)
P(A) = F3Q + F,P. (3.8)

11



Theorem 3.3 Assume (A). Then (H,D,{Q;(A), P;(A)}I_,) is a representation of the
CCR’s with n degrees of freedom.

Proof. The symmetry of Q;(A) and P;(A) is obvious. By direct computations using
(1.1)-(1.3) and (2.24)-(2.26), one can show that QQ;(A)’s and Pj(A)’s satisfy the CCR’s

with n degrees of freedom. O

The next theorem shows that every representation of QPS,(A) with condition (A)

comes from a representation of the CCR’s with n degrees of freedom:

Theorem 3.4 Assume (A). Let Q(A) and P(A) be defined by (3.7) and (3.8) respectively.
Then

~ A

Q=AQ(A)+ BP(A), P=CQ(A)+ DP(A) (3.9)
on D.

Proof. Direct computations. 0

4 Irreducibility

For a Hilbert space H, we denote by B(H) the set of all bounded linear operators B on
H with D(B) = H. Let A be a linear operator on H. We say that A strongly commutes
with B € B(H) if BA C AB (i.e., for all ¢» € D(A), By € D(A) and BAY = ABv). For

a set A of linear operators on H, we define
A" :={B e B(H)|BA C AB,VA € A}. (4.1)

We call A’ the strong commutant of A.
We say that A is irreducible if A" = {cI|c € C} (C is the set of complex numbers).

Lemma 4.1 Let S be a self-adjoint operator on a Hilbert space H and B € B(H) such
that BS C SB. Then, for allt € R, Bel*S = 9B,

Proof. Let C*(S) := N2 D(S™). Then, for all » € C*°(S) and all n € N, By is in
D(S™) and BS™) = S"B. Let Eg(-) be the spectral measure of S and

Dy := UgzoRan (Eg([—a, a])),

where, for a linear operator A, Ran (A) denotes the range of A. Then it is easy to see
that Dy is a dense subspace of H satisfying Dy C C*(S). For all ¢,¢ € Dy, t € R and

N € N, we have
N (itg)n N (g
<B*¢,Z(”n,) w> - <Z( ) ¢,Bw>.
— nl !

n=0

12



Employing spectral representations on S and the Lebesgue dominated convergence theo-
rem to take the limit N — oo, we obtain (B*¢,¢™¢y) = (e~"9¢, Bi), which implies that
Be*Seh = €5 Bap. Since Dy is dense, the operator equality Be™® = €5 B follows. O

Theorem 4.2 Assume (A) in Subsection 3.2. Let (H,D,{Q;, P]};‘:l) be a representation
of the CCR’s with n degrees of freedom. Suppose that, for each j =1,---,n, Q; and P,

are essentially self-adjoint on D and {Qj, Pj}?zl 18 irreducible. Then the representation

(5{, D, {éj,l_ﬁj}?ﬂ) of QPS,,(A) given by (3.4) is irreducible.

Proof. Let B € B(3) such that BQ, C Q,B, BP;C P;B,j=1,---,n. Let

\E

Rj = ((Fl)ijk + (Fz)jkpk) :

k=1
Then, BR; C R;B. This implies that BRj C RjB. On the other hand, by Theorem 3.2,
we have Q;|D C R;. By this fact and the essential self-adjointness of @); on D, we have
Q; = R;. Therefore BQ; C Q;B. Similarly we can show that BP; C P;B. It follows
from the irreducibility of {Q;, P;}7_, that B = ¢I with some ¢ € C. Thus the desired

result follows. 0

We can apply Theorem 4.2 to the quasi-Schrodinger representation {c_jj, ]_5]-};?:1 of
QPS,,(A) discussed in Section 2.

Theorem 4.3 Assume (A). Then the representation (L*(R™),Cg°(R™), {q;,p;}7—) of
QPS,,(A) is irreducible.

Proof. We need only to apply Theorem 4.2 to the case where H = L*(R"), D =
C&ER™), Q; = ¢4, P; = py, Qj = ¢; and jf’j = p;. It is well known that ¢; and p; are
essentially self-adjoint on C§°(R") and {g;, p;}}j; is irreducible. Hence, in the present

case, the assumption of Theorem 4.2 is satisfied. O

5 Weyl Representations of QPS,(A)

5.1 Definition and a basic fact

As is well known, a Weyl representation of the CCR’s with n degrees of freedom on
a Hilbert space 3{ is defined to be a set {Q;, P;}7_; of 2n self-adjoint operators on 3
obeying the Weyl relations:

e”Qj 615Pk _ 6—15t5jkelspk ethj’ 5.1
ethj eszk _ ezSlethg" (52)
€ZtPj€ZSPk _ ezsteltPj, j’ k = 1’ -eeom, s, t e R. (53)

13



Based on an analogy with Weyl representations of CCR’s, we introduce a concept of
Weyl representation of QPS,,(A).

Definition 5.1 Let {Qj, ]5]-}?:1 be a set of self-adjoint operators on a Hilbert space H.
We say that {Q;, pj};'l:1 is a Weyl representation of QPS,,(A) if

eth]‘ ezst — e*lst(sjkezst e'LtQj7 5.4
ethJ‘ elst — e—lstejkelst eth]'7 55
etfighsbi — g=istijngishigithy = 5l — 1 ... n st eR. (5.6)

We call these relations the deformed Weyl relations with parameter A.

One can write relations (5.4)—(5.6) in simpler form. Let

Aj;:{@; J= Lo (5.7)
]Dj—n; ]:n+1772n

and
ij, j7k:1’-..’n
) NGenyk—n) 5 S k=n+1---2n
—Ok(j—n) ; j=n+1---2nk=1,---,n.
Then (5.4)—(5.6) are equivalent to the following relations:
e’itAj eisAk — €_i8tajk€iSAk€itAj, j, k — 1’ . 2n (59>

For a linear operator A on a Hilbert space, we denote its spectrum by o(A).

Proposition 5.2 Let {Qj,f’j}?:l be a Weyl representation of QPS,(A). Then it is a
self-adjoint representation of QPS, (A). Moreover, for each j = 1,---,n, Qj and Pj are

purely absolutely continuous with
U(QJ)ZR U(pj):R, Jj=1--,n (5.10)

Proof. By (5.9), we can apply the results described in Appendix of the present paper.

In the present context, we need only to take N = 2n, a;, = aj, and A; = Aj. By

Proposition A.4-(iii) and Corollary A.5, there exists a dense subsapce Dy such that Dy C
ﬂgj207j:17...72nD(A€1Ag2 <. Agﬁln) and

(A}, Ay] = iay, (5.11)

on Dy. This implies (1.1)—(1.3) on Dy. Thus the first half of the proposition holds. The

second half follows from Proposition A.1. O
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Remark 5.3 The converse of Proposition 5.2 does not hold. As we shall show later,

there exists a self-adjoint representation of QPS,,(A) which is not a Weyl one.

Proposition 5.4 The set {eit@j, eitpj|t eR,j=1,---,n} is irreducible if and only if so
is {Qj7 PJ};Zzl

Proof. A simple application of Corollary A.8. OJ

5.2 A review of Weyl representations of CCR’s

We say that two self-adjoint operators A and B on a Hilbert space strongly commute if
their spectral measures commute. A set {Sy,---,S,} of self-adjoint operators on a Hilbert
space is said to be strongly commuting if, for all j,k = 1,---,n with j # k, S; and Sj
strongly commute.

For an n-tuple L = (Ly,---, L,) of linear operators L; (j = 1,---,n) on a Hilbert

sapce and a € R", we define
n
a-L:= Z CL]LJ
j=1

Let {Q;, Pj}j—; be a Weyl representation of the CCR’s with n degrees of freedom on

a Hilbert space H and define operators 7} as follows:

TJ"{Pj_n; j=ntlo (512)
and
Oa j,k:1,~--,n
A= 0 Sk=nt1,.,2n (5.13)

Oj(k—n) } j=1,---nk=n+1,---,2n
—Ok(j—ny; J=n+1---2mk=1---n

Then (5.1)-(5.3) are equivalent to the following relations:

itT;

e j eiSTk

— e—iStAjkeiSTk eitTj

. k=1, 2n. (5.14)

Hence we can apply the facts proved in Appendix of the present paper to prove the

following lemma:
Lemma 5.5 For alla € R" and b € R", the operator
Pap:=a-Q+b-P. (5.15)

18 self-adjoint and

eiqﬁa’b _ eia.b/Qeiﬁeib.P _ 6i<a,lo)/2 (H eianj> (H 6ibij> . (5.16)
j=1 j=1
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Proof. We need only to apply Theorem A.6 with N = 2n and A; = Tj; for (5.16),
we use also the strong commutativity of {Q;}7_, (resp. {P;}}_;) which follows from(5.2)
(resp. (5.3))2. O

Lemma 5.6 For alla,b,c,d € R,

€i¢a’b€i¢c’d — 6—i(a'd—b‘c)ei¢c,d 6i¢a,b . (5 17)

Proof. One needs only to use (5.16) and (5.1)—(5.3). O

5.3 Construction of a Weyl representation of QPS,(A) from a
Weyl representation of the CCR’s with n degrees of freedom

Theorem 5.7 Let {Q;, P;}j_, be a Weyl representation of the CCR’s with n degrees of
freedom. Let A be normal with a generating matriz G of the form (2.7) and and let Qj
and P; be defined by (3.4). Then {@j, }Sj};‘zl is a Weyl representation of QPS, (A).

Proof. By Lemma 5.6, we have
(itQ isQu — o—ist(A'B)—(B'A) 1) gisQ itQ;
By (2.5), we have
(AB)jr — (B*A)jx = Oji.
Hence (5.5) holds. Similarly one can prove (5.4) and (5.5). O

It is well known that the Schrodinger representation {g;,p;}}j—, of the CCR’s with n
degrees of freedom is an irreducible Weyl representation. Hence Theorem 5.7 immediately

leads us to the following fact:

Corollary 5.8 Let A be normal with a generating matriz G of the form (2.7). Then the
representation {(@,]@- "y of QPS,(A) is an irreducible Weyl representation of QPS, (A).

6 Uniqueness Theorems on Weyl Representations of
QPS,(A)

In this section we prove that, for each regular parameter A, every Weyl representation
of QPS,,(A) on a separable Hilbert space is unitarily equivalent to a direct sum of a

quasi-Schrédinger representation {E}j, ﬁj }ioy of QPS,(A).

2An application of a criterion for strong commutativity of self-adjoint operators (e.g., [13, Theorem
VIII.13]).
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Theorem 6.1 Assume (A). Let {Qj,lﬁj}?zl be a Weyl representation of QPS, (A) on a
separable Hilbert space H. Then there exist closed subspaces H, such that the following

(i)(iii) hold:
(i) H = &N H, (N is a positive integer or 0o).

(ii) For each j = 1,--- n, Qj and ]5] are reduced by each Hy 0 = 1,--- N. We
denote by Qy) (resp. ]5]-(3)) the reduced part of Qj (resp. 15]) to H,.

(iii) For each {, there exists a unitary operator Uy : Hy — L*(R™) such that
AW 77— % ) 17— = .
UZQE)Uelqu ngj( )Uzlzpj’ ]:1,...777,’ (61)

where {E?j,ﬁj}?:l is the quasi-Schrédinger representation of QPS, (A) defined by
(2.11).

Proof. We define Q;(A) and P;(A) by (3.7) and (3.8) respectively. For simplicity, we
put Q; := Q;(A) and P; := P;(A) throughout the proof. Note that ¢); and P; can be

written as follows:

2n 2n
szzcjkAkﬁ P)J:Zd]kAka Jg=1--,n,
k=1 k=1

where A; is defined by (5.7) and

e BT I S 62
R R S 9
Hence, by an application of Theorem A.6, (); and P; are essentially self-adjoint and
oQi — it i omecincie/2 pitej Av | eitcj(zn)A2n7 6.4
ez‘tPj _ e“Q >, akgdjkdjg/2eitdj1141 L eitdj(gn)Agn, teR. (6.5)

Using (5.9), we have for all t,s € R
eitQj eiSQk — o s Z?ffgﬂ ahgcthkgeiSQk eith“
But, by the anti-symmetry of oy, in h and g, Zitlgzl angCincrg = 0. Hence

eitQ]’ eiSQk — eiSQk e’itQj .

Similarly we can show that

itP;

e ]eispk — 6isl5k e’itPj .
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As for e®@iePs  we have
eitQj eispk — e—itijkeiSPk eit@j,

where

By (2.26), M = I,,. Hence

e’itQj eiSPk — e_itS(SjkeiSPk e’itQj .

Thus €% and el (s,t € R,j,k=1,---,n) obey the Weyl relations with n degrees of
freedom. Namely {Q;, P;}_, is a Weyl representation of the CCR’s with n degrees of
freedom. Hence, by the von Neumann uniqueness theorem (e.g.,[13, Theorem VIII.14]),

there exist closed subspaces H, such that the following (i)—(iii) hold:
(i) H = &), H, (N is a positive integer or co).

(ii) For each j = 1,---,n and all t € R, Qi and i leave each H, invariant

((=1,---,N).
(iii) For each ¢, there exists a unitary operator U, : H, — L*(R™) such that

UgeitQjUg_l = e Ueeitpj Ug_l =™, teRj=1,-n, (6.6)

By (3.9) and (5.16), we have

n n
eitQj — IR A By /2 <H eitAthh> (H eitthPh> ’ (6.7)

h=1 h=1
n n
eZtPJ — elt Zh:l CJhDJh/2 (H elthth) (H elthhPh) 7 t c R (68)
h=1 h=1
Hence €% and e leave H, invariant (¢ =1,---,n). Therefore Qj and ﬁj are reduced

by each 3,. We denote the reduced part of Q; (resp. P;) to H, by ng) (resp. ]—ﬁ’j(e)).
Then, by (6.6)—(6.8), we have

U,eit?)” Ul = et U, cith U7t = eiths,
Thus (6.1) follows. O

Theorem 6.1 tells us that, under the assumption there, every Weyl representation
{Q;, lf’j}’jzl of QPS,,(A) is unitarily equivalent to a direct sum of the quasi-Schrodinger

representation {E}j, ﬁj }7_1, because the operator
U:=a) U : H— oVL*R"),
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is unitary and
UQ;U =&y, UPRU™ =aVp;
Theorem 6.1 and the irreducibility of the representation {¢;,p;}7—; (Corollary 5.8)

immediately lead us to the following fact:

Corollary 6.2 Assume (A). Let {Qj,pj}?zl be an irreducible Weyl representation of
QPS,,(A) on a separable Hilbert space H. Then there exists a unitary operator W : H —
L*(R™) such that

WQjW_IZC_jJW W-ij_lzl_ajw j:]-u»n

Applying this corollary to the case where {Qj, Pj}?:l is a quasi-Schrodinger represen-
tation of QPS,(A), we obtain the following result:

Corollary 6.3 Let A be reqular. Let G and G’ be two generating matrices of A: G is

given by (2.7) and
, (A B
G - ( Cl D/ ) )

where A', B, C" and D" are n x n real matrices. Let {E};,]_ﬁ;}’le be the quasi-Schrodinegr

representation of QPS, (A) with generating matriz G':
q:=Aq+Bp, p=Cq+Dp.
Then there exists a unitary operator V : L*(R") — L*(R") such that
ViVTt=q;, VeV l'=p, j=1--,n (6.9)
Corollary 6.3 shows that, for each regular parameter A, quasi-Schrodinger representa-
tions of QPS,,(A) are unique up to unitary equivalences.
7 Non-Quasi-Schrodinger Representations of QPS

From representation theoretic points of view, it is interesting to investigate if there exists
a self-adjoint representation of QPS, (A) which is not unitarily equivalent to any direct
sum of a quasi-Schrodinger representation {g;,p;}7—; of QPS,(A). In this section, we
show that there exist such representations of QPS,, (A).

We say that a representation of QPS, (A) is non-quasi-Schrédinger (resp. non-Schrédinger)
if it is not unitarily equivalent to any direct sum of a quasi-Schrodinegr (resp. the
Schrodinegr) representation {g;, p; 7, (resp. {d;s),ﬁg.s) 7_1) of QPS,,(A) (resp. QPS, (Asg)).
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7.1 A general case

Let (3, D,{Qj, P;}}—,) be a self-adjoint representation of the CCR’s with n degrees of
freedom on a Hilbert space H such that D is dense in H and a common core of (); and

Pj(j=1,---,n). Let Q; and P; be defined by (3.4) (j = 1,---,n).

Theorem 7.1 Assume (A). Suppose that {Q;, P;}}_, is not unitarily equivalent to any di-
rect sum of the Schrodinger representation {q;, pj}j—,. Then the representation {Qj, Pj Hie

of QPS,,(A) is non-quasi-Schridinger.

Proof. We have (3.5) and (3.6) on D. Since D is a core of ); and P; by the present

assumption, we have

Q; = i <(F1)ijk + (F2)jk15k), (7.1)
P = y ((F:s)ngk + <F4)jkpk>- (7.2)

k=1

Now suppose that there exists a unitary operator U : H — @&V L?(R") (N € Nor N = c0)
such that B B

UQ,Uut=avq, UPU=a"p;
Then, by (7.1) and (7.2), we have

N n
UQ;U™ =D (F)jrds + (Fa)jupr) = &g,
k=1

N n
UPU™ =D (F3)jndi + (Fa)upi) = &"p;.
k=1

But this contradicts the present assumption. O]

7.2 Non-Schrodinger representations of QPS

Examples of non-Schrédinger representations of QPS, (Ag) can be constructed from those
of CCR’s with n degrees of freedom. For simplicity, we consider the case n = 2 here and

we take Ag as
As = (§ae, Ebe),

where € is given by (1.5), a > 0,b > 0 and £ is defined by (2.15). Let (3, D, {Q;, P;};—,)
be a self-adjoint representation of the CCR’s with two degrees of freedom on a Hilbert

space H with D dense in H. Suppose that D is a common core of (); and P;, j = 1,2 such
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that @1 (resp. Q2) strongly commutes with P, (resp. P;). Then, by functional calculus

of strongly commuting self-adjoint operators (e.g., [16, Theorem 9.1.2]), the operators

Q15=§<Q1—%GP2>, Q21=§<Q2+%GP1>,

. 1 . 1
P1125<P1+55Q2>, P2¢:§<P2—55Q1>-
are essentially self-adjoint. Hence {éj, ;7]- }i=1.2 is a self-adjoint representation of QPS,(Ag).

Corollary 7.2 Suppose that one of the following conditions holds:
(i) (Q1, Py) is not a Weyl representation of the CCR with one degree of freedom.
(ii) (Qa, P) is not a Weyl representation of the CCR with one degree of freedom.
(iii) The operators Q1 and Qy are not strongly commuting.
(iv) The operators Py and Py are not strongly commuting.

Then {éj, ﬁj}?ﬂ is a non-Schridinger representation of QPS,(Ag).

Proof. In each case of (i)-(iv), {Q;, P;}7_, is not a Weyl representation of the CCR’S
with two degrees of freedom. Thus, by Theorem 7.1, the desired result follows. 0

Example 7.3 We consider the case where H = L*(R?) and

Qu=q +exp(—=V2mp1),  Pri=py+exp(—V2rq),
Q= p Pr=ps

For n € {0} UN,r > 0 and ¢ € C, we define a function f,,. on R by f,,..(x1) =
x’fe*”%*“l,xl € R. Let D be the linear span of {f,,.® gln € {0} UN,r > 0,c €
C,g € C(R)}. Then Q; and P; (j = 1,2) are essentially self-adjoint on D and
(L*(R?),D,{Q;, P;}5,) is a self-adjoint representation of the CCR’s with two degrees
of freedom [6]. It is obvious that @ (resp. ()2) strongly commutes with P, (resp. P).
Fuglede [6] proved that {Q., P} is not a Weyl representation. Hence condition (i) in
Corollary 7.2 holds. Thus the corresponding representation {Qj, pj }o_1 of QPSy(Ag) is
non-Schrodinger.

Example 7.4 Let ay,---,ay (N € N) be mutually distinct points in the complex plane
C and f(z) be a holomorphic function on C \ {a,|n = 1,---, N} with possible poles at
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Qpyn = 1,--- N. Let a, be the point in R? corresponding to «,, and S := {a,|n =
1,---,N}. Then one can define functions A;(z) and As(x) on M :=R?\ S by

Aj(x) :=Tm f(x1 +ixg), As(x) :=Re f(x; +irs), x=(x1,22) € M,

where, for z € C, Rez (resp. Im z) denotes the real (resp. imaginary) part of z. By the

Cauchy—Riemann equation, we have
B(iL‘) = 81A2($) — 82/41(55) == O, x e M, (73)

where 0; := 0/0x;,j = 1,2. Since the Lebesgue measure of S is zero, each function A;
defines a self-adjoint multiplication operator on L?(R?); we denote it by the same symbol
A;. We can prove that, for all A € R\ {0}, the operators

Pri=p —AA,  Pyi=py— My

are essentially self-adjoint on C§°(M) ([1, Proposition 2.1]).
Let

QO =q, Qr:=q

acting in L?(R?). Then (L*(R?),C5°(M),{Q;, P;j}_,) is a self-adjoint representation of
the CCR’s with two degrees of freedom. It is easy to see that @y (resp. )2) strongly
commutes with P, (resp. P)).

By (7.3), the line integral

- / PR IGIEE BN

along the circle |x —a,| = ¢ with center a,, and radius € > 0 (the orientation is taken to be
anticlockwise) is independent of e sufficiently small. It can be shown that, if there exists
an n such that v, & 27Z/\ (Z is the set of integers), then P, and P, are not strongly
commuting [1, Theorem 5.4]. Hence condition (iv) in Corollary 7.2 holds in the present
case. Thus the corresponding representation {Qj, P; }3_, of QPS,(Ag) is non-Schrodinger.

Physically this example appears in a two dimensional quantum system with perpen-
dicular magnetic field B concentrated on the set S in the distribution sense. In this
context, (A, Ay) represents a vector potential of B. The condition v, & 277/ for some
n corresponds to the occurrence of the so-called Aharonov-Bohm effect. Therefore the
non-Schrédinger representation of QPS,(Ag) is connected with a physically interesting
and important situation.

In a series of papers ([1] and references therein), the present author showed that
there appear self-adjoint representations of the CCR’s with two degrees of freedom in

two-dimensional quantum systems with singular magnetic fields (the example discussed
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above is one of them) and that, in each case, there is a correspondence between the
occurrence of the Aharonov-Bohm effect and a non-Schrédingerness of the representation

under consideration. The result derived above can be extended to a more general case.

A Some Properties of Self-Adjoint Operators Satis-
fying Relations of Weyl Type

Let N > 2 be an integer and A; (j = 1,---,N) be self-adjoint operators on a Hilbert
space H satisfying relations of Weyl type:

eztAjezsAk — efztsajkezsAkeztA% t, = ]R, j, L= 1’ . N, (Al)

where a;;,’s are real constants. It follows that

ajk:—akj, j,k: 1,"',N. (AQ)

The unitarity of €4 and functional calculus imply that

exp(ise'™ Ape ") = exp(is(Ay — ta;i)), st € R.
Hence we have the operator equality
et Ape i = Ay — tajr,, teR,j,k=1,--- N. (A.3)
For a linear operator A on a Hilbert space, we denote the spectrum of A by o(A).

Proposition A.1 Suppose that there exists a pair (j,k) such that a;, # 0 (hence j # k).
Then
o(A;) =R, o(A) =R (A.4)

Moreover, A; and Ay are purely absolutely continuous.

Proof. By (A.3) and the unitary invariance of spectrum, we have o(Ay) = o(Ar —ta;i)
for all t € R. Since aj; # 0, this implies the second equation of (A.4). By (A.2), we have
ai; # 0. Hence, by considering the case of (j, k) replaced by (k,j), we obtain the first
equation of (A.4).

Relation (A.3) means that (Ag, A;) is a weak Weyl representation of the CCR with
one degree of freedom [2]. Hence A; is purely absolutely continuous [2, 12, 17]. Similarly

we can show that A; is purely absolutely continuous. 0
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Proposition A.2 Let j and k be fized. Then, for all v € D(A;) N D(A;Ax), ¢ is in
D(A,A;)) and
[Aj, Aplp = daii. (A.5)

Proof. By (A.3), we have for all ¢ € D(Ay)
AkeiitAj'Lb = eiitAj (Akd) — tajki/}). (A6>

Let » € D(A;Ax) N D(A;). Then the right hand side of (A.6) is strongly differentiable in
t with

%eiztA] (Aklp — tajk¢) = —1e tA; AJ(Akw — t(ljkw) — e tAJajkw.

Hence so is the left hand side of (A.6). This implies that A;¢ is in D(A) and

%Ake_imiw = —iApAjeT i,

Hence, considering the case t = 0, we obtain
—ZAkAJ¢ = —’LAJAk'Lb — Cijl/J.
Thus the desired result follows. 0

For each function f € C°(RY) and each vector ¢ € H, we define a vector ¢; by

Yy 3:/ fltr, o ty)e™ A e N ANty iy, (A7)
RN
where the integral on the right hand side is taken in the strong sense. We introduce
Dy = Span{yy| € I, f € C5°(RY)}, (A.8)

where Span{---} denotes the subspace algebraically spanned by the vectors in the set
{---}. It is easy to see that Dy is dense in H.
For f : RN — C, we set

RN

Lemma A.3 Let f,, f € C(RY) such that || f,— f|l1 — 0(n — 00). Then |[¢y, —y| —

0(n — o0).

it;Aj

Proof. Since e is unitary, we have

[0, = el < Nl fn = FlLllOl

Thus the desired result follows. O
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Proposition A.4
(i) For allt €R and j = 1,---, N, ¢4 leaves Dy invariant.
(it) For each j =1,--- N and all { € N, Dy C D(A%) with
Ay = (i), | € CRRY) (A9)

where F; : C3°(RY) — C5°(RY) is defined by
j—1
Fi(f) = =0;f =iy japtef, [f€CF(RY) (A.10)
k=1
and Fje is the £ times composition of F;

(iii) For all t1,---,{n € NU{0}, Dy C D(A?A? : A?\]I\,) and

Al AL Ay, = wFflmeVN(f), f € CE(RY). (A.11)
Proof. (i) Let s be as above. Then we have
eitAj¢f — / f(th . 7tN)eitAj61'751141 . eitNAN@Z)dtl . dt]\[
RN

By (A.1), we have

itA;

e ]eit1A1 .

itNAN — e—it Zi;i a]’ktkeitlAl . eitjflAjflei(tj-i-t)Aj eitj+1Aj+1 X itNAN‘

N €

Hence

eitqu/,f = / ftr, ooty bty —ttjy, - JN)e*itZ?;ll Ukth gt AL L GUNAN Ly
RN

We define fj(t) :RY — C by
FO (b1, tn) = Ftry oty by — bty - Ey)e " Dhmt aokt, (A.12)
It is easy to see that f]@ is in Cg°(RY) and
et inh = p s € Do. (A.13)

Thus 47 leaves D, invariant.
(ii) By (A.13), we have for t € R\ {0}

£ RACRE YN
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It is easy to see that ||(fj(t) — )/t —F;(f)|lli — 0(t — 0). Hence, by Lemma A.3,
itA; 1
lim —(e JVs
t—0 t

Therefore ¢y is in D(A;) and iA;9; = ¥p,(5). Hence (A.9) with £ = 1 holds. Then one
can prove (A.9) by induction.

= V(1)

(iii) This easily follows from (ii). O

Corollary A.5 We have
[Aj,Ak] :iajk; j,kzl,"',N, (A14>
on Dy.

Proof. This follows from Proposition A.2 and Proposition A.4. OJ

Theorem A.6 Forallc;eR,j=1,---,N, Z?{:l c;A; is essentially self-adjoint on Dy
and
6it2§\;1 CjAj _ eit2 Z;\’<k ajijck/QeitCLAleitCQAQ . e’itCNAN. (A15>

Proof. For each t € R, we define an operator U(t) by

. N . . .
U(t) — ezt2 Zj<k ajijCk/Qelth[AleltCQAQ . e’ltCNAN_

By using (A.1), one can show that {U(t)}:cr is a strongly continuous one-parameter
unitary group. Hence, by the Stone theorem, there exists a unique self-adjoint operator
A on H such that

Ut)=¢e", teR.

By Proposition A.4-(i), U(t) leaves Dy invariant. In the same manner as in the proof of
Proposition A.4-(ii), (iii), one can show that, for all 1 € Dy, U(t)y is strongly differen-

tiable in ¢ and

dU () e
dt —0 =1 Z CjAj@b.
j=1
Hence Dy is a core of A (e.g., [13, Theorem VIII.10])and Ay = Zjvzl c;jA;p. Thus the
desired result follows. O

Finally we give a remark on irreducibility of the set {e®4i|t € R,j =1,---, N}. There
is a general fact on irreducibility of a set consisting of strongly continuous one-parameter

unitary groups:
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Proposition A.7 Let Sy,---, Sy be self-adjoint operators on a Hilbert space. Then the
set {e™Silt € R,j=1,---, N} is irreducible if and only if so is {S;|j=1,---,N}.

Proof. Suppose that {e®%i|t € R,j = 1,---, N} is irreducible. Let B € B(H) be an
operator such that BS; C S;B,j = 1,---,N. Then, by Lemma 4.1, we have ¢ B =
BeSi for all t € R and j = 1,--+,N. Hence B = cI with some ¢ € C. Thus {S;|j =
1,--+, N} is irreducible.

Conversely, suppose that {S;|j = 1,---,N} is irreducible. Let B € B(H) be an
operator such that e B = Be®*S for allt € R and j = 1,---, N. For each ¢ € H, we
put fu(t) := €™ By, g, (t) ;== Be™i). Then we have fy(t) = gy(t). Let 1 be in D(S;).
Then gy (t) is strongly differentiable in ¢ with dg,(t)/dt = iBS;e"it). Hence fy(t) also is
strongly differentiable in ¢, which implies that By € D(S;) and dfy(t)/dt = ie™%S; Bi.
Considering the case t = 0, we obtain BS; C S;B, j = 1,---,N. Hence B = cI with
some ¢ € C. Thus {¢®i|t € R,j =1,---, N} is irreducible. O

As a corollary of Proposition A.7, we have the following fact:

Corollary A.8 The set {ei|t € R,j = 1,---,N} is irreducible if and only if so is
{A]|]: 1)7N}
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