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Abstract

We present in this paper an approach to studying the topological entropy of
a class of billiard systems. In this class, any billiard table consists of strictly
convex domain in the plane and strictly convex inner scatterers. Combining the
concept of anti-integrable limit with the theory of Lyusternik-Shnirel’man, we
show that a billiard system in this class generically admits a set of non-degenerate
anti-integrable orbits which corresponds bijectively to a topological Markov chain
of arbitrarily large topological entropy. The anti-integrable limit is the singular
limit when scatterers shrink to points. In order to get around the singular limit and
so as to apply the implicit function theorem, on auxiliary circles encircling these
scatterers we define a length functional whose critical points are well-defined at
the anti-integrable limit and give rise to billiard orbits when the scatterers are not
points. Consequently, we prove the topological entropy of the first return map
to the scatterers can be made arbitrarily large provided the inner scatterers are
sufficiently small.
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1 Introduction and main results

Tracing back to 1970, Sinai [33] observed that parallel wavefront of rays diverges when
it reflects from concave boundary, thus billiards with concave boundary potentially ad-
mit hyperbolic structure. His seminal paper established a connection between Boltz-
mann’s ergodic hypothesis of statistical mechanics and the hyperbolicity and ergodicity
of semi-dispersing billiards. For the now so-called Sinai billiard system, he proved that
it has positive measure-theoretic (Kolmogorov-Sinai) entropy and is hyperbolic almost
everywhere. See also [11, 18, 32, 34] and also [14, 26, 29, 30, 31] for relevant and
recent results and references therein. In contrast, rays converge after reflecting from
convex boundaries. If the boundary of a billiard system is strictly convex and suffi-
ciently smooth (C6 is sufficient), Lazutkin’s result [24] on caustics showed that the
system cannot be ergodic and that not almost all orbits can have non-zero Lyapunov
exponents. Note that Bunimovich [6] constructed convex C 1-tables (the Bunimovich
stadium billiards) with non-zero Lyapunov exponents almost everywhere. Tradition-
ally, semi-dispersing billiards are investigated from the viewpoint of ergodic theory,
while billiards in smooth convex domains are studied by means of the twist maps (see,
e.g. [3, 22]).

Much less is known in the case that the boundaries of billiard tables are mixed
with both concave and convex curves, for example, strictly convex billiard tables with
circular inner scatterers. Foltin [15, 16] recently proved a nice result that billiard flows
on strictly convex C2-tables with sufficiently small inner disjoint circular scatterers
generically possess positive topological entropy. More precisely, his result may be
described as follows. Let M ⊂ R

2 be the domain of billiard table, ∂M the boundary of
the table, O1, O2, . . . , OK the centres of the circular scatterers B1, B2, . . . , BK located
in the interior of M . Let ∂M be parametrised as

∂M := {φ(θ) = (p(θ) cos θ, p(θ) sin θ) :

2ṗ2 − p(p̈− p) > 0, 0 ≤ θ < 2π}. (1)

Define

{(p, O) ∈ C2(R/(2πZ), R+) × R
2K : p satisfies (1),

O = (O1, . . . , OK), Oe ∈ interior(M) ∀ e = 1, . . . , K} (2)

to be the space of convex billiards having inner circular scatterers endowed with an
inherited product metric arising from the C2-metric and the usual metric on R

2.

Theorem 1.1 (Foltin [15, 16]). There is an open and dense subset of the billiard space
(2) with K ≥ 1 in which every billiard flow has positive topological entropy provided
the inner scatterers are small enough.

Remark 1.2. Even if there is no any inner scatterer, Cheng [10] later showed that the
topological entropy of a strictly convex C 3-table is generically positive. (But, for a C1-
map T : Z → Z of a compact Riemannian manifold, its topological entropy is at most
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dim(Z) ln supz∈Z ‖DT (z)‖ [22, 36].) When the number K of the convex scatterers is
greater than or equal to three, and when the so-called “no eclipse” condition is fulfilled,
the topological entropy of the billiard flow is between ln(K−1)/diam (B1∪ . . .∪BK)

and ln(K − 1)/mini�=j dist (Bi, Bj) even if ∂M is removed [29, 35].

The essential ideas of [15, 16] are to show, with sufficiently small inner discs, for a
generic billiard system in the space (2) there exist (at least) two period-2 orbits which
perpendicularly collide with the billiard boundary and with the inner scatterer, then
to show these two orbits admit the shift automorphism on two symbols. In a situation
when these two orbits lie on a line with the centre of one of the inner discs (e.g. see Fig-
ure 1 of [16] or Figure 2(a) of this paper), Foltin also showed there exists an additional
period-6 orbit, and these three orbits (two period-2, one period-6) admit a subshift of
finite type of positive topological entropy on four symbols.

One of the main aims of this article is to show that Foltin’s result on the positivity
of the topological entropy can alternatively be understood as a property that is inherited
from the anti-integrable limit [1, 2, 8, 9, 27]. Observe that the billiard systems consid-
ered by Foltin have a singular limit when the scatterers shrink to pointsO. This kind of
singular limit or called small-scatterer limit has drawn increasing attention to the study
of billiards, see e.g. [5, 8, 12, 13, 17, 19, 20, 28], also a study of small scatterer problem
about rotation sets [4]. In the spirit of [8], we call such a limit the anti-integrable limit.
In the limiting situation, we are interested in those orbits which start from and return
back to the set O, after several bounces on the boundary ∂M . Also we want to know
what happens to these orbits when a system is near the limit.

To elucidate what we mean, consider the instance in Figure 1(a). In the figure, M
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Figure 1: (a) Two 1-link basic AI-orbits Γ1 and Γ2 for O1. (b) Three basic AI-orbits
Γ3, Γ�

4 and Γ�
5 for O2 of respectively 1-link, 2-link and 3-link. (c) One 0-link and one

1-link basic AI-orbits connecting O1 and O2.

is a bounded domain whose boundary ∂M is a simple closed C 3-curve, and Γ1 :=

O1Ω1 · Ω1O1, Γ2 := O1Ω2 · Ω2O1 are product paths (or products of line segments).
Suppose O1Ω1, O1Ω2 intersect perpendicularly with ∂M , and suppose Ω1, O1, Ω2 are
not collinear. If now the point O1 is replaced by a small circular scatterer centred at
O1, then it is apparent that there will exist two period-2 orbits, one along Γ1, the other
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along Γ2. Moreover, using the approach of anti-integrable limit, we can show that, in
general, for any sequence {bi}i∈Z with bi ∈ {1, 2} there is a unique orbit “shadowing”
the product path · · ·Γb−1 · Γb0 · Γb1 · · · provided the circular scatterer is sufficiently
small. As a consequence, the positivity of the topological entropy of the system results
from the shift automorphism on two symbols. The product path · · ·Γb−1 ·Γb0 ·Γb1 · · · is
called an anti-integrable orbit (abbreviated AI-orbit) of the system. Hence, the entropy
of the system in this case is at least as that of the anti-integrable orbits.

We call piecewise straight paths like Γ1 and Γ2 1-link basic AI-orbits, which are
billiard orbit segments starting from and ending at a given point-scatterer (namely the
O1 in the case of Γ1 and Γ2) with one bounce with ∂M . More generally, we can define
n-link basic AI-orbits.

Definition 1.3. For an integer n ≥ 1 and for e1, e2 ∈ {1, . . . , K}, a piecewise straight
path Γ is called an n-link basic AI-orbit connecting two (not necessarily different)
point-scatterersOe1 andOe2 if it is a segment of billiard orbit starting from one of these
two scatterers and having exactly n number of consecutive bounces with the boundary
∂M before reaching the other one. In the case that Oe1 , Oe2 are different and Γ has no
bounce (i.e. a straight line segment), we call Γ a 0-link basic AI-orbit.

Remark 1.4. In this paper we regard point-scatterers as obstacles, thus no billiard orbits
can go straight through them.

Figure 1(b) illustrates examples of 2-link and 3-link basic AI-orbits. Γ�
4 is a 2-link

basic AI-orbit from point O2, bouncing off ∂M at Ω3, then at Ω4, then back to O2.
Having such a basic AI-orbit, we can construct another basic AI-orbit Γ�

4 which leaves
O2 for Ω4, then bounces off Ω3 before returning toO2. We call these two basic AI-orbits
Γ�

4 and Γ�
4 geometrically indistinct. Two basic AI-orbits which are not geometrically

indistinct are called geometrically distinct. It is possible that not all n-link basic AI-
orbits exist for some special shapes of the boundary ∂M . When ∂M is a circle and O1

is the only inner point scatterer and is located in the centre of the circle as depicted in
Figure 2(a), there is a continuous family of 1-link basic AI-orbits, but no other n-link
basic AI-orbits with n ≥ 2. Denote the Euclidean distance between two points x and y
by h(x, y):

h(x, y) = |y − x|, x, y ∈ R
2.

The existence of 1-link basic AI-orbits is obvious in general since the function h(Oe, ·) :

∂M → R, 1 ≤ e ≤ K, attains its global maximum and minimum. For multi-link case,
we invoke the Lyusternik-Shnirel’man theory (see Proposition 3.4 and Corollary 3.6)
to show the existence of n-link basic AI-orbits for all n ≥ 2.

In [8], the author obtained a lower bound estimate of the topological entropy of a
generalized Sinai billiard system. It is a Hamiltonian system on the two dimensional
torus with a steep Coulomb-type repulsive potential of the form V ρ(x, ε) = ε/(|x| −
ρ/2) with ρ, ε > 0, i.e. a soft scatterer, cf. [14, 30, 31]. The author showed that
the lower bound can be made arbitrarily large provided that ρ and ε are sufficiently
small. The reasons for this are because there exists a unique basic AI-orbit in the

4



O1

∂M

(a)

Ω2

O1

Ω3

Ω1 ∂M

(b)

Figure 2: (a) ∂M is a circle with centre O1. (b) O1Ω3 intersects perpendicularly with
∂M . Suppose Ω3, O1, Ω2 are collinear, then the product paths O1Ω1 ·Ω1Ω2 ·Ω2O1 and
O1Ω3 ·Ω3O1 are respectively 2-link and 1-link basic AI-orbits, butO1Ω1 ·Ω1Ω2 ·Ω2Ω3 ·
Ω3O1 is not a 3-link basic AI-orbit.

limits (ρ, ε) = (0, 0) in any homotopy class of loops based on the center of the torus
and because for sufficiently small (ρ, ε) there corresponds a unique Hamiltonian orbit
shadows a prescribed bi-infinite chain of basic AI-orbits. Since the fundamental group
of the torus is Z

2, the lower bound of the topological entropy of the first return map
of the Hamiltonian flow to a fixed cross-section in the phase space of the generalized
Sinai billiard can therefore be made as large as we wish. The hard scatterer case can
be modeled by considering the limit limε→0 V ρ(·, ε), cf. [30, 31]. This limiting case
describes the Sinai billiard on the two torus with a circular scatterer of diameter ρ, and
in this case the lower bound goes to infinity at the rate −2 ln ρ+O(1) as ρ goes to zero.
(See Remark 1.5.)) By the persistence of hyperbolic orbits under C1-perturbations, we
can conclude that the lower bound is of order −2 ln ρ for sufficiently small ρ and ε.

As pointed out in [33] that the Sinai billiard is equivalent to the billiard system of
square table with a circular scatterer placed in the center of the square. This naturally
motives us to achieve Foltin’s result by the ideas used in [8]. From the fact that the
system currently considered here (if having only one inner scatterer) differs from the
Sinai billiard (if having a square as its table) only in the shape of the boundary curves,
we actually are able to employ the method developed in [8] to the current system and
obtain a much stronger result than Foltin’s. (See one of the main results of this paper,
Theorem 1.6.)

Remark 1.5. As a matter of fact, Chernov [11] proved that the first return map to the
(hard) scatterer of the Sinai billiard has infinite topological entropy for any 0 < ρ < 1,
hence no asymptotic formulae can be correct. Notice that the entropy mentioned here
is for the first return map induced by the billiard flow, not the flow itself. For the flow,
if one considers the entropy as the one for the time-one map induced by the flow, then
the topological entropy converges to a constant ≈ 1.526 as ρ → 0 [7]. Note that the
following case is also discussed in [12]: Replace the circular scatterer by a convex
one of arbitrary shape, and homothetically compresses it with a scale factor of δ, then
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consider the limit δ → 0.

Let A1, A2, . . . , AK be strictly convex domains of R
2 depending C3 on their diam-

eters ρ1, ρ2, . . . , ρK and being contained inside the circular domains B1, B2, . . . , BK ,
respectively. Let their boundaries be parametrised by

∂Ae := {Oe + (ge(θ) cos θ, ge(θ) sin θ) :

2ġ2
e − ge(g̈e − ge) > 0, 0 ≤ θ < 2π},

where 1 ≤ e ≤ K and ge are positive real valued C3-functions. (Note that Oe is the
centre of the closed disc Be for each e, and that ge is required to depend C3 on ρe.)
Similar to the circular-scatterer case, we define by (M,O) the space of strictly convex
C3 billiard tables with strictly convex inner scatterers A1, . . . , AK :

(M,O) := {(p, O) ∈ C3(R/(2πZ),R+) × R
2K : p satisfies (1),

O = (O1, . . . , OK), Oe ∈ interior(M) ∀ e = 1, . . . , K}

endowed with an inherited product metric arising from the C 3-metric and the usual
metric on R

2. Because ∂M is determined by p, instead of (p, O) we shall use (M,O)

to represent an element of (M,O).
The billiard system induces a billiard collision map on the compact manifold ∂(M \

{A1, . . . , AK}) × [−π/2, π/2],

(ωi, λi) �→ (ωi+1, λi+1), i ∈ Z, (3)

where . . . , ω−1, ω0, ω1, . . . is a sequence of consecutive collision points on the bound-
ary ∂(M \ {A1, . . . , AK}), and λi ∈ [−π/2, π/2] is the incidence angle when the
particle collides with the boundary at ωi, measured from the particle’s velocity to
the outward normal of the boundary. Note that, except on a subset of measure zero
where singularity occurs (corresponding to the tangential collision of the billiard par-
ticle with the scatterers), the billiard map just defined by (3) is continuous, and that if
(ω, λ) ∈ ∂M×{±π/2} then the billiard orbit at ω is tangent to the outer boundary ∂M
and (ω, λ) is a fixed point of the billiard map.

By neglecting collisions occurred on the boundary ∂M of the billiard table, the
billiard system also induces a map, called the first return map to the scatterers, on the
compact manifold ∂(

�K
e=1Ae) × [−π/2, π/2],

(ψi, αi) �→ (ψi+1, αi+1), i ∈ Z, (4)

where . . . , ψ−1, ψ0, ψ1, . . . are consecutive collision points on the boundary ∂(
�k
e=1Ae)

of the scatterers, and every αi ∈ [−π/2, π/2] is the incidence angle when the billiard
particle first returns to and collides with the boundary at ψi, measured from the parti-
cle’s velocity to the outward normal of the boundary. One major difference between
the collision map (3) and the first return map (4) is that the first return map may not be
defined everywhere, since there may be points that never return. This also results in a
fact that the “return time” of some billiard orbits may be arbitrarily long.

Theorems 1.6 and 1.11 below are the main theorems of this paper.
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Theorem 1.6. For any positive real number χ, there exists an open and dense subset
of (M,O) with K ≥ 1 in which the first return map defined by (4) has topological
entropy at least χ provided the strictly convex inner scatterers are sufficiently small.

The tool that we measure the entropy in the above theorem basically relies on The-
orem 1.11.

Remark 1.7. In Theorem 1.6, how small the scatterers should be vary from system
to system. We do not have a uniform lower bound ρ0 so that if all of the diameters
ρ1, . . . , ρK of the inner scatterers are smaller than ρ0, then in the open and dense subset
every map defined by (4) has topological entropy at least χ. Think about the following
situation (cf. the paragraph below Theorem 4.1 in [16]): For a billiard system having
a circular domain of diameter one as its table and a disc of diameter ρ as its only inner
scatterer, can we fix a small enough ρ so that the topological entropy of the first return
map is not less than ln 100 no matter how close the scatterer to the boundary of the table
is?

Remark 1.8. Our proof of Theorem 1.6, which is located in Section 6, will not imply
the topological entropy of the billiard collision map (3) can be made arbitrarily large
even though the inner scatterers are small. (We prove this remark in Section 6.)

Given a billiard system (M,O), we let {U1, U2, . . . , UK} be the set of closed discs
of fixed diameter R centred at O1, O2, . . . , OK respectively such that Ae ⊆ Be ⊂ Ue
for all e = 1, . . . , K. We assume R is sufficiently small so that these discs Ue do not
overlap and are contained in the interior of M . Then the billiard orbits generated by
bouncing off the boundary of the inner scatterers Ae and the billiard table M may in-
duce a sequence of pairs on (

�K
e=1 ∂Ue)

2 in the following way. By neglecting collisions
occurred on the boundary ∂M , suppose a billiard orbit possesses successive collision
points . . . , ψ−1, ψ0, ψ1, . . . with ψi ∈ ∂Aei

and ei ∈ {1, . . . , K} for every integer i.
Then, travelling from ψi−1 to ψi, the orbit must leave the circular domain Uei−1

from
a unique point, say yi−1, on ∂Uei−1

, and must arrive at a unique point, say xi, on the
boundary ∂Uei

of Uei
before reaching ψi. In this way, we obtain a sequence of pairs on

(
�K
e=1 ∂Ue)

2 as
{. . . , (yi−1, xi), (yi, xi+1), . . .}, i ∈ Z. (5)

Remark 1.9. We explain the reason and purpose for considering and constructing the
sequence of pairs on the auxiliary circles ∂Ue (cf. the transparent walls used in [12,
25]). These are because the billiard system is no longer a dynamical system when
one or more of the inner scatterers shrink to points. Think about the question: What
direction will a billiard particle reflect to when it hits a scatterer of zero diameter? For
simplicity, let us assume that there is only one scatterer and the scatterer is a disc B of
diameter ρ. Then, for ρ �= 0, (3) is a symplectic map on (∂M ∪ ∂B) × [−π/2, π/2].
At the limit ρ → 0 (“the anti-integrable limit”), however, a severe problem occurs: ∂B
collapses to a point. Due to this, we instead concentrate on the behaviour about how the
billiard orbits intersect with the fixed concentric circle ∂U by considering sequences of

7



pairs defined by (5) on ∂U × ∂U . As anticipated, when ρ is zero, the billiard system
loses its dynamics and the sequences of pairs cannot be defined. However, since the
domain ∂U × ∂U is fixed, does not change as ρ does, we shall see in Theorem 2.4
that there exists a sub-domain in ∂U × ∂U on which the sequences of pairs have well
defined limiting behaviour as ρ→ 0.

What is a billiard orbit when ρ = 0?

Definition 1.10. Given a sequence of ni-link basic AI-orbits {Γbi} such that Γbi starts
from Oei−1

and ends at Oei
for every i, define

y†i−1 := Γbi � ∂Uei−1
,

x†i := Γbi � ∂Uei
,

where the symbol � means “perpendicular” intersection. See Figure 3(b). If x†
i , Oei

,
y†i are not collinear for all i and if supi∈Z

ni = N , we call the bi-infinite product
· · · · Γbi−1

· Γbi · Γbi+1
· · · · an N-AI-orbit. (An n-link basic AI-orbit or N-AI-orbit is

said to be non-degenerate if some non-degeneracy condition is satisfied, see Definition
3.2.)

Another way to define an N-AI-orbit is that it is an infinite path which joins point-
scatterers to point-scatterers with at most N number of bounces off ∂M between two
point-scatterers and forbids going straight through any point-scatterer (the path must
change direction when it meets with a point-scatterer).

Let C ≥ 1 be an integer and Σ2C be the space of bi-infinite sequences {wi} con-
sisting of 2C number of symbols wi ∈ {1, 2, . . . , C,−1,−2, . . . ,−C} and let �Σ2C be
the subspace �Σ2C := {{wi} ∈ Σ2C : wi+1 �= −wi ∀ i ∈ Z}. (6)

Theorem 1.11. Let N ≥ 1.
(i) There exists an open and dense subset of (M,O) in which every billiard system
possesses a set of non-degenerate N-AI-orbits which corresponds bijectively to �Σ2C

with C an integer satisfying [ 3N
2

] ≤ C ≤ 2N − 1. ([3N
2

] stands for the integer part of
3N
2

.)
(ii) If �z† = {. . . , (�y†i−1, �x†i ), . . .} and z† = {. . . , (y†i−1, x

†
i), . . .} �= �z† are determined

via Definition 1.10 by any two of these non-degenerate N-AI-orbits , then

sup
i∈Z

�
|�x†i − x†i |∂U , |�y†i − y†i |∂U

�
> c

for some positive constant c, independent of theseN-AI-orbits, where |·−·|∂U measures
the least arc length between two points on ∂Ue.
(iii) Let m ≥ 0. The maximum cardinality of subsets of these non-degenerate N-AI-
orbits from which

max
0≤i<m

�
|�y†i−1 − y†i−1|∂U , |�x†i − x†i |∂U

�
> c (7)

for any �z† and z† �= �z† and the same c in (ii) is 2C(2C − 1)m−1.
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Recall that the topological entropy htop of a continuous map T of a compact metric
space Z with metric d is given by the formula (see, e.g. [22, 36] for more details)

htop = lim
ε→0

lim sup
m→∞

1

m
ln #(m, ε), (8)

where #(m, ε) is the maximum of cardinalities of (m, ε)-separated sets for T . That is,
one is able to find at most #(m, ε) number of points z1, z2, . . . , z#(m,ε) in Z such that
max0≤n<m d(T n(zi), T n(zj)) > ε for any i �= j. In the case that a subshift of finite
type (or called topological Markov chain) can be embedded in Z , one can conclude the
topological entropy of the map T is at least as large as that of the subshift. If ΣC is
the space of bi-infinite sequences consisting of C number of symbols, then σ|ΣC has
topological entropy lnC, where σ is the shift automorphism; if Σ̂C ⊂ ΣC is a subshift
of finite type, then the topological entropy of σ|Σ̂C is equal to

lim sup
m→∞

1

m
ln #(m), (9)

where #(m) denotes the number of words of length m in Σ̂C . Easy calculation shows
that the number of words of length m in �Σ2C defined in (6) is

#(m) = 2C(2C − 1)m−1,

thus, by means of formula (9), the topological entropy of σ|�Σ2C is ln(2C − 1). In our
proof of Theorem 1.6, the above number #(m) will be used to achieve a lower bound
estimate of the maximal cardinality of (m, ε)-separated sets for the first return map (4).
Although the first return map is not everywhere continuous, it is valid to use formula
(8) in our discussion. This is because our concern is with a lower bound of the entropy
and we shall only apply the formula to neighbourhoods of certain orbits on which the
first return map is continuous.

This article is organised in the following way. In the next section, we define a
function F (·, ρ) in a Banach space which is jointly C1 in its variable and parameter
ρ = (ρ1, . . . , ρK) and the zeros of which will give rise to billiard orbits. In particu-
lar, all zeros correspond to AI-orbits when ρ = 0. Our exposition is to construct the
function F (·, ρ) by considering the case that the scatterers are discs rather than directly
considering the case of convex scatterers. The ideas, methods, and results in both cases
are the same, but the former is descriptively and intuitively simpler. In Section 3, we
prove that the zeros of F (·, 0) are generically non-degenerate, therefore, in Section 6
we can apply the implicit function theorem to find zeros of F (·, ρ) for small ρ. In sec-
tion 4, we show that the construction of the function F (·, ρ) in Section 2 is valid also in
the convex scatterer case. Section 5 is devoted to the details to be used to analyse the
function F (·, ρ).

2 Shadowing broken billiard orbits

Firstly let us assume that all the convex scatterers Ae, e = 1, . . . , K, are circular and of
diameters ρe, and use Be to represent them, namely, Ae ≡ Be. (Throughout this paper
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we always explicitly use Be instead of Ae to represent and so as to emphasize circular
scatterers.) Let Ue be concentric circular domains containing circular scatterersBe, and
let {Uei

}i∈Z be such a sequence that Uei
∈ {U1, . . . , UK} for every i ∈ Z. We assume

that each Ue has diameter R with

R > max
1≤e≤K

{ρe}.

Given sufficiently close two points xi and yi belonging to ∂Uei
, it is obvious that there

is a segment of a unique billiard orbit entering ∂Uei
at xi, bouncing off the scatterer

Bei
at Ψi, then leaving ∂Uei

at yi (see Figure 3(a)). The length of this orbit segment
is h(xi,Ψi) + h(Ψi, yi). Given another point xi+1 belonging to ∂Uei+1

, assume there
exists a segment of an orbit connecting up yi with xi+1 such that this segment has at
most N number of bounces with ∂M and does not hit B1, . . . , BK , see Figure 3(a).
Let the length of this segment be defined by h∗(yi, xi+1). Because the location of Ψi

depends on (xi, yi, ρei
), we can define another two functions h− and h+ by

h−(xi, yi, ρ) := h(Ψi, yi), (10)

h+(xi, yi, ρ) := h(xi,Ψi). (11)

Recall that ρ = (ρ1, . . . , ρK) and notice that ρei
∈ {ρ1, . . . , ρK} ∀ i ∈ Z.

y0
Ψ1

x0

y−1

x1
Ψ0

∂U0

∂U1

(a)

y†0 x†1

y†−1

x†0
β

O1
O2

(b)

Figure 3: (a) Broken orbits determined by xi and yi. (b) One 0-link basic AI-orbit
connecting O1 and O2, two 1-link basic AI-orbits (one connecting O1 to itself, the
other connecting to O2), and one 2-link basic AI-orbit connecting O1 to itself.

Suppose we have a sequence of pairs of points xi and yi, i ∈ Z, such that xi is
connected backwards to yi−1 and forwards to yi by segments of orbits as described
in the preceding paragraph. Gluing together these segments of orbits, we get a broken
billiard orbit with broken points xi and yi. If there is no velocity discontinuity occurring
at every broken point (i.e. the broken points are not broken), then the broken billiard
orbit is a true orbit. In what follows we define a map and show that if {(yi−1, xi)}i∈Z is
a zero of such map then all xi’s and yi’s are not broken.

Assume functions h−, h∗, h+ are sufficiently smooth and well-defined (i.e. single
valued) on small open subsets of ∂Uei

’s, then let us define a map F (·, ρ) on an open
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subset Z of
�
i∈Z(∂Uei−1

× ∂Uei
) by

F : Z × [0, R)K → l∞, (z, ρ) �→ {Fi(z, ρ)}i∈Z, (12)

where ρ = (ρ1, . . . , ρK),

z = {zi}i∈Z := {(yi−1, xi)}i∈Z,

Fi(z, ρ) := Dzi
(h+(xi−1, yi−1, ρei−1

) + h−(xi−1, yi−1, ρei−1
)

+ h∗(yi−1, xi) + h+(xi, yi, ρei
) + h−(xi, yi, ρei

)),

and l∞ is the subspace of (R2 × R
2)Z with the bounded sup norm. (We also endow the

Cartesian product space
�
i∈Z(∂Uei−1

× ∂Uei
) with the bounded sup norm.) A notewor-

thy fact is the following.

Proposition 2.1. Assume all ρ1, . . . , ρK are non-zero. Then a zero {(yi−1, xi)}i∈Z of
F (·, ρ) corresponds to a unique orbit connecting points in the order . . ., x0, Ψ0, y0, x1,
Ψ1, y1, . . ..

Proof. The proof of the proposition (and some other results in this paper) relies on the
very useful Lemma 2.2 below. Such xi’s and yi’s in the proposition mean for each i
that Fi({(yi−1, xi)}i, ρ) = 0. In other words,

Dyi−1
(h+(xi−1, yi−1, ρei−1

) + h−(xi−1, yi−1, ρei−1
) + h∗(yi−1, xi)) = 0, (13)

Dxi
(h∗(yi−1, xi) + h+(xi, yi, ρei

) + h−(xi, yi, ρei
)) = 0. (14)

By (10), we get

Dyi−1
h−(xi−1, yi−1, ρei−1

)

= Dyi−1
h(Ψi−1, yi−1) +DΨi−1

h(Ψi−1, yi−1)Dyi−1
Ψi−1(xi−1, yi−1, ρei−1

),

Dxi
h−(xi, yi, ρei

)

= DΨi
h(Ψi, yi)Dxi

Ψi(xi, yi, ρei
);

by (11), we have

Dyi−1
h+(xi−1, yi−1, ρei−1

)

= DΨi−1
h(xi−1,Ψi−1)Dyi−1

Ψi−1(xi−1, yi−1, ρei−1
),

Dxi
h+(xi, yi, ρei

)

= Dxi
h(xi,Ψi) +DΨi

h(xi,Ψi)Dxi
Ψi(xi, yi, ρei

).

Thus, Fi({(yi−1, xi)}i, ρ) = 0 if and only if

Dyi−1
h(Ψi−1, yi−1) +Dyi−1

h∗(yi−1, xi)

= −Dyi−1
Ψi−1(xi−1, yi−1, ρei−1

)
�
DΨi−1

(h(Ψi−1, yi−1) + h(xi−1,Ψi−1))
�
, (15)

Dxi
h∗(yi−1, xi) +Dxi

h(xi,Ψi)

= −Dxi
Ψi(xi, yi, ρei

) (DΨi
(h(xi,Ψi) + h(Ψi, yi))) . (16)

11



By Lemma 2.2 and by the law of reflection at Ψi, the right hand sides of both the equal-
ities vanish automatically. Thus the left hand sides also vanish. This means no velocity
discontinuity occurs at xi or yi for every i.

Lemma 2.2. Let x, φ ∈ R
n and h(x, φ) = |φ− x|. Then,

Dφh(x, φ) =
(φ− x)T

|φ− x| ,

D2
xφh(x, φ) = − 1

|φ− x|3 (φ− x)(φ− x)T − 1

|φ− x|I,

D2
φφh(x, φ) = − 1

|φ− x|3 (φ− x)(φ− x)T +
1

|φ− x|I

in which I is the n by n identity matrix, and (φ − x)T means the transpose of the
n-vector φ− x.

Hence, the problem of finding billiard orbits reduces to finding zeros of F (·, ρ). In
particular, we need to verify that F (·, ρ) is indeed well defined. Theorem 2.4 below
shows that there exist a subset Z of

�
i∈Z(∂Uei−1

× ∂Uei
) and a positive constant ρ0 so

that F is continuously differentiable on Z × [0, ρ0)
K .

Remark 2.3. Another angle to look at the map F (·, ρ) is to consider periodic orbits.
If a billiard orbit is periodic, it repeats the same orbit points after a certain number of
bounces, say m bounces (m ≥ 2), namely

Ψi+m = Ψi ∀i ∈ Z,

or
yi+m = yi and xi+m = xi ∀i.

In this case a zero z of F (·, ρ) in proposition 2.1 can be obtained by finding a critical
point of a length function:

Dz̃Wm(z̃, ρ) = 0

where Wm(z̃, ρ) is the sum

Wm(z̃, ρ) =
m	
i=1

h−(x̃i−1, ỹi−1, ρ) + h∗(ỹi−1, x̃i) + h+(x̃i, ỹi, ρ)

and z̃ ∈ Zm with Zm being the finite dimensional subspace of Z that zi+m = zi for all
i ∈ Z. See more related examples in [8, 22, 23, 34].

Now consider a special case. Suppose · · ·Γbi−1
·Γbi ·Γbi+1

· · · is such an AI-orbit that
x†i ≡ y†i for all i. Then when the point-scatterers are fatten to small circular scatterers,
it is apparent that there is a unique billiard orbit entering and leaving ∂Uei

both at x†i for
every i, with a perpendicular collision with Bei

. If Γbi is of ni-link, then it is also easy
to see that this orbit is of period-2(ni + 1) or of period-(ni + 1) and lies exactly on the
closure of Γbi \((Γbi ∩Bei−1

)∪(Γbi ∩Bei
)). Hence we conclude a fact that the sequence

{. . . , (x†i−1, x
†
i ), (x†i , x

†
i+1), . . .} is a solution of F (z, ρ) = 0 for every sufficiently small

given ρ. In fact, we have

12



Theorem 2.4. Suppose every n-link basic AI-orbit is non-degenerate for n ≤ N . Given
an N-AI-orbit determined by

z† = {(y†i−1, x
†
i)}i∈Z,

then on each ∂Uei
there exist subsets Δyi

containing y†i , Δxi
containing x†i , and exists

ρ0 > 0, independent of the N-AI-orbit, such that Δyi
and Δxi

are topologically open
intervals and that F is continuously differentiable on the subset

�
i∈Z(Δyi−1

× Δxi
) ×

[0, ρ0)
K . Moreover, F (·, ρ) has a unique simple zero on the subset. In particular,

F (z†, 0) = 0.

Remark 2.5. Because F (z†, 0) = 0 and F is C1, we can choose a constant C > 0

and sufficiently small Δyi
, Δxi

and ρ0 so that |Fi(z, ρ)| < C for every (z, ρ) ∈�
i∈Z(Δyi−1

× Δxi
) × [0, ρ0)

K and i ∈ Z. This means that F has uniformly bounded
components.

Remark 2.6. With the notation T (∂Ue) =
�
x∈∂Ue

Tx(R
2) for the tangent bundle, the

derivative DzF (·, ρ) is a tangent map from the subset
�
i∈Z(T (Δyi−1

) × T (Δxi
)) of�

i∈Z(T (∂Uei−1
) × T (∂Uei

)) into (T (R2) × T (R2))Z. Then, DzF (z, ρ) is a linear map
from

�
i∈Z(Tyi−1

(Δyi−1
)×Txi

(Δxi
)) to (R2 ×R

2)Z. Since Δyi
and Δxi

are homeomor-
phic to open intervals,DzF (z, ρ) can be treated as a continuous family (with respect to
both z and ρ) of linear maps from (R2 × R

2)Z to (R2 × R
2)Z.

In order to prove Theorem 2.4, in the next section we define and show the existence
of non-degenerate basic AI-orbits needed for the assumption of Theorem 2.4. In Sec-
tions 4, 5 and 6, we show the non-degeneracy of basic AI-orbits implies two facts: one
is the existence of such Δxi

and Δyi
, and the other one is that the zero z† is simple and

unique. These two facts are proved in Proposition 6.1 and Lemma 6.2. To see that z†’s
are solutions for F (z, 0) = 0, note by our construction that

Dxi
Ψi(xi, yi, 0) = Dyi

Ψi(xi, yi, 0) = 0 ∀ xi, yi

and that Ψi(xi, yi, 0) ≡ Oei
. Therefore, the right hand sides of equalities (15) and (16)

are both zero when ρ is zero. The left hand sides also vanish, because x†
i as well as y†i

come from basic AI-orbits and no velocity discontinuity occurs over there.
In consequence, the zero of F (·, ρ), denoted by

z∗(ρ) = {(y∗i−1, x
∗
i )}i,

forms a C1-family as ρ varies, also everyN-AI-orbit can be continued to an orbit which
intersects ∂Uei

at y∗i and x∗i . Because two different AI-orbits result in two different
z∗’s, the positiveness of the topological entropy is a corollary of the above theorem if
the considered system possesses a subset of AI-orbits which forms a Markov chain of
positive topological entropy. This is the issue handled in Theorem 1.11.

So far the results of Proposition 2.1 and Theorem 2.4 are for circular scatterers, but
actually they are still valid if we replace circular scatterers by strictly convex ones. In
Section 4, we give a detailed investigation in this regard.
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3 Generic existence of non-degenerate AI-orbits

In this section, we assume n ≥ 2 and assume the arc-length of ∂M is normolised to
one. Let

Qn := {(φ1, . . . , φn) ∈ (∂M)n : φj �= φj+1 ∀j = 1, . . . , n− 1}.

Definition 3.1. Let Oe1 andOe2 be two points insideM , define the function hn : Qn →
R by

hn(φ1, . . . , φn) := h(Oe1, φ1) +
n−1	
j=1

h(φj , φj+1) + h(φn, Oe2). (17)

It is easy to see that an n-link basic AI-orbit corresponds to a critical point of hn,
conversely, a critical point of hn gives rise to an n-link basic AI-orbit provided that line
segments φjφj+1 do not intersect points Oe for all j = 1, . . . , n − 1 and e = 1, . . . , K

and that Oe1φ1 ∩ {O1, . . . , OK} = Oe1 and Oe2φn ∩ {O1, . . . , OK} = Oe2 .

Definition 3.2. An n-link basic AI-orbit Γ = Oe1φ1 · φ1φ2 · · · · · φnOe2 is said to be
non-degenerate if (φ1, . . . , φn) is a non-degenerate critical point of hn. An AI-orbit
· · · · Γbi · Γbi+1

· · · · is called non-degenerate if Γbi is a non-degenerate basic AI-orbit
for every i.

In order to obtain a critical point, we utilise the method of proving the Poincaré-
Birkhoff theorem for billiards in [23], and define the following ε-conditions. (Notice
that our ε-conditions are different from the ones in [23].)

Definition 3.3. A point (φ1, . . . , φn) inQn is said to satisfy the ε-conditions if for every
j ∈ {1, . . . , n− 1}

• |φj+1 − φj|∂M > ε;

• |φj+2 − φj|∂M > 3ε if φj+1 lies on the least arc bounded by φj and φj+2;

• |φj+3 − φj|∂M > 32ε if φj+1, φj+2 lie on the least arc bounded by φj and φj+3 in the
order φj, φj+1, φj+2, φj+3 for one of the directions on the boundary ∂M;

...

• |φn − φj|∂M > 3n−j−1ε if φj+1, φj+2, . . ., φn−1 lie on the least arc bounded by φj
and φn in the order φj, φj+1, . . ., φn for one of the directions on ∂M .

In the definition, |φ′′ −φ′|∂M denotes the least arc-length bounded by the two points
φ

′′
and φ

′
on ∂M . Similar to what is performed in [23], we “trim” the domain Qn by

defining

Qn,ε := {(φ1, . . . , φn) ∈ Qn : (φ1, . . . , φn) satisfies the ε-conditions}.

It is not difficult to see that hn is C3 on Qn,ε and that Qn,ε is homeomorphic to the
product of the circle and the (n− 1)-dimensional open disc. The reason for the latter is
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because if arbitrarily choose a φ1 in ∂M then φ2 belongs to ∂M minus a small open arc
containing φ1, and φ3 belongs to ∂M minus a small open arc containing φ2, etc., and
φn belongs to ∂M minus a small open arc containing φn−1.

Proposition 3.4. The function hn attains at least two critical values on Qn,ε for suffi-
ciently small ε. At least one of the two critical values is a maximum, but not all of the
critical values of hn on Qn,ε are isolated maxima.

Proof. The proof relies on the following proposition.

Proposition 3.5 (Proposition 2.2 in [23]). Suppose φ0 lies on the least arc between φ
′

and φ
′′

on ∂M satisfying |φ′ − φ0|∂M = δ and |φ′′ − φ
′|∂M ≥ 3δ. Let t be the unit

tangent vector at φ0 in the direction from φ0 to φ
′′

along the least arc (see Figure 4).
Then there exists δ0 > 0 such that

〈Dφ0(h(φ
′
, φ0) + h(φ0, φ

′′
)), t〉 > 0

provided 0 < δ < δ0.

Oe1

Oe2

φ
′′

β ′′
φ0

φ
′
β ′

orientation of ∂M

t

∂M

Figure 4: |φ′ − φ0| + |φ0 − φ
′′| will become larger if φ0 shifts a bit in the direction to

φ
′′

along the boundary arc.

The reason for Proposition 3.5 is due to a fact that the angle β ′ between the tangent
vector of ∂M at φ0 with the vector φ0 −φ

′
is equal to δ/(2Rφ0)+ o(δ), while the angle

β ′′ between the tangent vector with the vector φ
′′ − φ0 is δ/(Rφ0) + o(δ), where Rφ0 is

the radius of curvature of ∂M at φ0. So for small δ, 〈Dφ0(h(φ
′
, φ0) + h(φ0, φ

′′
)), t〉 =

cosβ ′ − cosβ ′′ > 3δ2/(8R2
max) +O(δ3), withRmax the maximal radius of curvature of

∂M .
With the help of Proposition 3.5, we show the gradient vector of hn on the boundary

of Qn,ε is directed inwards for sufficiently small ε, subsequently the existence of the
two critical values and their extremality in Proposition 3.4 can be obtained by invoking
the Lyusternik-Shnirel’man theory [21]. The boundary of Qn,ε is characterised by the
conversion of some of the inequalities in the ε-conditions into equalities. When n = 2,
the boundary of Q2,ε is given by |φ2 − φ1|∂M = ε. Thus the derivative of h2 along the
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inward normal direction n = (t1/
√

2,−t2/
√

2) (the case n = (−t1/
√

2, t2/
√

2) can
be treated similarly) reads

〈Dnh2(φ1, φ2), t1〉 + 〈Dnh2(φ1, φ2), t2〉

=
1√
2

(〈Dφ1h2(φ1, φ2), t1〉 − 〈Dφ2h2(φ1, φ2), t2〉)

=
1√
2

(〈Dφ1 (h(Oe1, φ1) + h(φ1, φ2)) , t1〉 − 〈Dφ2 (h(φ1, φ2) + h(φ2, Oe2)) , t2〉) ,

where tj, j = 1 or 2, is the unit tangent vector at φj along ∂M . Let φ0 = φ1 and
φ

′
= φ2 in Proposition 3.5, then the angle between the tangent vector along ∂M at

φ1 with the vector Oe1 − φ1 has a positive lower bound, while β ′ is of order δ and
can be made as small as we wish. Therefore, 〈Dφ1h2(φ1, φ2), t1〉 > 0. Similarly,
〈−Dφ2h2(φ1, φ2), t2〉 > 0. In sum, the gradient vector of h2 points inwards. When
n ≥ 3, it follows exactly by the same proof as in [23] that the derivative of hn along
the inward normal n is positive if the computation does not involve term h(Oe1, φ1) or
h(φn, Oe2), namely, if Dnhn(φ1, . . . , φn) = Dn(


n−1
j=1 h(φj, φj+1)). If Dnhn involves

terms h(Oe1 , φ1) or h(φn, Oe2), then use the same argument as the n = 2 case.
This completes the proof of Proposition 3.4.

Corollary 3.6. Let n ≥ 1. There exists an open and dense subset of (M,O) such that
if (M,O) is a billiard system in that subset and {Oe1, Oe2} ⊂ O, then point scatterers
Oe1 and Oe2 can be connected by at least two geometrically distinct non-degenerate
n-link basic AI-orbits. (Oe1 and Oe2 may be the same point.)

Proof. Since the critical values of hn on Qn,ε cannot all be isolated maxima, we can
slightly perturb (M,O) in (M, O) by simultaneously changing the shape of ∂M and
the positions of O1, . . . , OK if necessary so that the two critical points obtained in
Proposition 3.4 are non-degenerate and have different indices and give rise to n-link
basic AI-orbits. Moreover, it is clear that there is an open subset containing (M,O)

in (M, O) for which there exist at least two non-degenerate critical points of hn with
distinct indices and any of the two critical points gives rise to an n-link basic AI-orbit.

Proof of Theorem 1.11.

(i) By Corollary 3.6, there are at least two non-degenerate n-link basic AI-orbits con-
necting O1 to O1 for any billiard system (M,O) lying in an open and dense subset of
(M,O). By taking intersection of these open and dense subsets for n ranging from 1

to N , we obtain another open and dense subset (M,O)N of (M,O) in which every
(M,O) has at least two non-degenerate n-link basic AI-orbits connecting O1 to O1 for
every 1 ≤ n ≤ N . So, there are 2N number of geometrically distinct non-degenerate
basic AI-orbits Γ1, Γ2, . . . ,Γ2N for O1 for the system (M,O). A Γb, 1 ≤ b ≤ 2N ,
can intersect perpendicularly with ∂U1 at only one or two points (corresponding to
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Γ� = Γ� or Γ� �= Γ�, respectively). Due to a symmetry of hn, the number of perpen-
dicular intersection of Γb with ∂U1 must be two if Γb is of even-link. This is because
if (φ1, φ2, . . . , φn) is a critical point of the function hn, so is (φn, . . . , φ2, φ1). If the
number of perpendicular intersection is one (like O2Ω5 · Ω5Ω6 · Ω6Ω5 · Ω5O2 in Figure
8), it must be φ1 = φn, φ2 = φn−1, . . . , φn = φ1. In case n is even, then it must be
φn/2 = φn/2+1, but this violates the ε-conditions in Definition 3.3. (If φn/2 = φn/2+1,
then the even-link basic AI-orbit becomes odd-link, a contradiction.) Thus, all even-
link basic AI-orbits come in pairs (corresponding to Γ� and Γ�). Since Γ1, . . . ,Γ2N are
all geometrically distinct, totally they perpendicularly intersect at least 3N points with
the circle ∂U1 when N is even, but 3N − 1 points when N is odd. In either even or odd
N case, the least total number of perpendicular intersection is even. Now, there are two
cases. If the actual number of perpendicular intersection is even, let the number be 2C

for some positive integerC. If the actual number is odd, then delete one whose intersec-
tion is due to an odd-link basic AI-orbit of the kind Γ� = Γ�, and consider the left even
number (also assumed to be 2C) of points. It is easy to see that [ 3N

2
] ≤ C ≤ 2N − 1.

Let the 2C number of intersection points on ∂U1 be labelled by w−C , w−C+1, . . . , w−1,
w1, . . . , wC−1, wC with a rule that if two points on ∂U1 form an antipodal pair then they
are labelled by w−j and wj for some 1 ≤ j ≤ C. See Figure 5. By Definition 1.10, a

O1 w1

w−3

w−2

w2

w3

w−1

∂U1

(a)

O1 w1

w−3

w2

w3

w−1

∂U1

w−2

(b)

Figure 5: N = 2, C = 3. Points w−j and wj are not necessarily antipodal points.

product of · · ··Γbi ·Γbi+1
· · · · with Γbi ∈ {Γ1, . . . ,Γ2N} for every i is anN-link AI-orbit

if x†i ∈ {w−C , . . . , w−1, w1, . . . , wC} and y†i ∈ {w−C , . . . , w−1, w1, . . . , wC} are not an-
tipodal points of each other. Since y†i can be anything in {w−C, . . . , w−1, w1, . . . , wC}
except a particular one associated with x†i , and since y†i will subsequently determine a
unique x†i+1, it follows that x†

i+1 can also be anything in {w−C, . . . , w−1, w1, . . . , wC}
except a particular one associated with x†i . Therefore, there is a set of N-AI-orbits in
(M,O)N which corresponds bijectively to �Σ2C .

(ii) Because the number of considered intersection points is finite, equal to 2C, the
least arc length of any two of these 2C points on ∂U1 is at least some positive constant
c. Therefore, we have the assertion (ii).

(iii) Since z† = {. . . , (y†i−1, x
†
i ), . . .} is uniquely determined by an AI-orbit, the
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inequality below holds

max
0≤i<m

�
|�y†i−1 − y†i−1|∂U , |�x†i − x†i |∂U

�
> c

if and only if the two words {(�y†−1, �x†0), . . . , (�y†m−2, �x†m−1)} and {(y†−1, x
†
0), . . . , (y

†
m−2, x

†
m−1)}

of length m are not identical. From the proof of assertion (i), we know that the set of
sequences z†’s determined byN-AI-orbits is also bijective to �Σ2C . Assertion (iii) there-
fore follows immediately.

The above proof is already enough for Theorem 1.11. Nonetheless, we analyse
one more case that all basic AI-orbits are connecting O1 with O2. Now there is an
open and dense subset of (M,O) in which every billiard system possesses 2N + 1

number of non-degenerate basic AI-orbits Γ1,Γ2, . . . ,Γ2N+1 connecting upO1 withO2

in which one is of 0-link, two are of 1-link, two are of 2-link, etc., and two are of N-
link. These 2N + 1 basic AI-orbits intersect perpendicularly with ∂U1 and ∂U2 both at
2N + 1 points. Label those 2N + 1 points on ∂U1 by w−N , . . . , w−1, w0, w1, . . . , wN
and by w̄−N , . . . , w̄−1, w̄0, w̄1, . . . , w̄N those 2N + 1 points on ∂U2 with a rule that if
two points form an antipodal pair on ∂U1 (resp. ∂U2) then they are labelled by w−j and
wj (resp. w̄−j and w̄j) for some 1 ≤ j ≤ N , see Figure 6. Now, · · · · Γbi · Γbi+1

· · · ·

O1

w−2

w−1

w1

w2 ∂U1

w0 O2

∂U2

w̄−1

w̄2

w̄1

w̄−2

w̄0

Figure 6: N = 2.

with Γbi ∈ {Γ1, . . . ,Γ2N+1} is an N-AI-orbit if x†i and y†i are not antipodal points.
By our construction in Definition 1.10, x†

i ∈ {w−N , . . . , w0, . . . , wN} if and only if
y†i ∈ {w−N , . . . , w0, . . . , wN}, also x†i ∈ {w̄−N , . . . , w̄0, . . . , w̄N} if and only if y†i ∈
{w̄−N , . . . , w̄0, . . . , w̄N}. Without loss of generality, we may assume x†

0 ∈ ∂U1 and
subsequently y†0 ∈ ∂U1. By our construction again, y†0 will uniquely determine the
point x†1 ∈ ∂U2, and subsequently we have y†1 ∈ ∂U2. Since y†1 will also uniquely
determine x†2 ∈ ∂U1 and so on, we obtain a subshift of finite type with 4N +2 symbols
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for x†i generated by the following diagram:

{w−N , . . . , w0, . . . , wN} �x†0 = wc0 : 2N + 1 number of choices

↓
{w−N , . . . , w0, . . . , wN} �y†0 �= w−c0 : 2N number of choices

↓
{w̄−N , . . . , w̄0, . . . , w̄N} �x†1 = w̄c1 : 1 choice (uniquely decided by y†0)

↓
{w̄−N , . . . , w̄0, . . . , w̄N} �y†1 �= w̄−c1 : 2N number of choices

↓
{w−N , . . . , w0, . . . , wN} �x†2 = wc2 : 1 choice (uniquely decided by y†1)

↓
....

Therefore, the number of words of lengthm for {x†0, . . . , x†m−1} in this subshift of finite
type is 2(2N + 1)(2N)m−1.

4 Dynamics near scatterers

For a given 1 ≤ e ≤ K, we deal with in this section how the billiard orbits behave
inside the domain Ue, which contains the scatterer Ae. Because the dynamics is local,
we drop the subscript e throughout this section, and use the notations O = Oe, ρ = ρe.
(Thus, O and ρ are scalars rather than vectors.) We assume Bρ and U are discs of
diameters, respectively, ρ and R centred at the origin O, and use x, y to indicate points
on the boundary of U ,

∂U := {y(θ) = (R/2 cos θ, R/2 sin θ) : 0 ≤ θ < 2π}, (18)

and use Ψ for points on ∂Bρ. Then, a point x in ∂U may be represented by (R/2 cos θx, R/2 sin θx),
likewise a point Ψ in ∂Bρ means Ψ = (ρ/2 cos θΨ, ρ/2 sin θΨ).

If there is no confusion with the definition of Ae (1 ≤ e ≤ K), we denote by Aρ
a C3-family of strictly convex C3-domains of R

2 such that Aρ is contained in Bρ for
every ρ and that Aρ = O when ρ = 0. (See Figure 7.)

A point y of the boundary ∂U is said to be ‘accessible’ by another point x lying in
the boundary if the chord xy does not intersect with the scatterer Aρ. Certainly, x is
accessible to y if and only if y is accessible to x. In Figure 7, those points located in the
least open arc between points x̂a and x̂c are not accessible by x in the case Aρ = Bρ.
The point x̂ indicates the antipode of x. Some planar geometry shows the following.

Proposition 4.1. A point y ∈ ∂U is accessible by another point x ∈ ∂U if

|θy − θx| < π − 2 sin−1 ρ

R
.
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Figure 7: Local orbits inside U . Dark-shaded domain is Aρ, while light-shaded domain
is Bρ.

Moreover, if x and y satisfy the above inequality when ρ = ρ0 then they remain mutually
accessible for 0 ≤ ρ < ρ0. In particular, all points are accessible to one another except
their antipodes when ρ = 0.

Proposition 4.2. Suppose points x and y in ∂U are accessible to each other if ρ is less
than some constant ρ0. Then there exists a unique local billiard orbit

−→
xψ ·−→ψy connecting

them with an only reflection point ψ = ψ(x, y, ρ) ∈ ∂Aρ. Moreover, h(x, ψ) and
h(ψ, y) depend C2 on (x, y, ρ). In particular, limρ→0 h(x, ψ) = limρ→0 h(ψ, y) = R/2.

Proof. ψ is equal to Ψ if Aρ is Bρ. From Figure 7, we know that θΨ = (θx + θy)/2, the
angle ∠xOΨ is (θy − θx)/2, and that

h(x,Ψ) = h(Ψ, y) =
1

2

�
R2 − 2Rρ cos

θy − θx
2

+ ρ2.

So the proposition follows. In the case Aρ �= Bρ, we assume

∂Aρ := {q(θ) = (gρ(θ) cos θ, gρ(θ) sin θ) :

2ġ2
ρ − gρ(g̈ρ − gρ) > 0, 0 ≤ θ < 2π} (19)

with gρ(θ) depending jointly C3 on θ and ρ. Condition (19) means ∂Aρ has strictly
positive curvature, or equivalently

〈q̈(θ),N(q)〉 > 0 ∀ q ∈ ∂Aρ, (20)

where N(q) is the inward normal of ∂Aρ at q. By the compactness of ∂Aρ, the length
function h(x, q) + h(q, y) for fixed x and y with q ∈ ∂Aρ has a global minimum at
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some point, ψxxρ say, when y = x. In other words,

〈Dqh(x, q) +Dqh(q, y), q̇〉 = 0 (21)

at q = ψxxρ. We have to show this minimum is unique and to show there is a unique
family ψ(x, ·; ρ) parametrised by ρ such that q = ψ(x, y; ρ) solves (21) for fixed x. The
second derivative of the length function reads

〈(D2
qqh(x, q) +D2

qqh(q, y))q̇, q̇〉 + 〈Dqh(x, q) +Dqh(q, y), q̈〉.

By Lemma 2.2, the first term is positive because it equals

|q̇|2 |q − x| + |q − y|
|q − x| |q − y| cos2 α (22)

and α = 0 when x = y. (Here, α is the angle between q − x and N(q). See Figure 7.)
The second term is positive too, because of the convexity condition (20). Thereby, the
implicit function theorem is applicable and such a function ψ(x, y; ρ) exists for y near
x, and ρ near ρ0. Since (22) is positive for every |α| < π/2 and for every ρ < ρ0, this
continuation can be carried on as long as the line segment xψ(x, y; ρ) is not tangent to
∂Aρ.

5 Dynamics away from scatterers

We show in this section that y†i−1 and x†i are not conjugate to each other if the AI-
orbits defined in Definition 1.10 are non-degenerate. Therefore, any point near y†i−1 can
locally be connected to any point near x†i by a unique orbit segment. (See proposition
6.1.)

Proposition 5.1. Suppose φ = φ(θφ) and y = y(θy) are points respectively in ∂M and
∂Ue as described in (1) and (18) with Oe the centre of the polar coordinate system. Let
the angle between φ− Oe and φ̇ be β (see Figure 3). Then
(i)

Dy(h(Oe, y) + h(y, φ)) ≡ 0 iff θy = θφ; (23)

〈Dy(h(Oe, y) + h(y, φ)), ẏ〉 = 0 if θy = θφ ± π.

(ii)

〈D2
φyh(y, φ)φ̇, ẏ〉 = −〈D2

yy(h(Oe, y) + h(y, φ))ẏ, ẏ〉 = −|φ− Oe| |y − Oe|
|φ− y|

at θy = θφ.
(iii)

sin β =
|φ− Oe|

|φ̇|
at θy = θφ.
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Proof. (i) By Lemma 2.2, the vector

y − Oe

|y − Oe|
− φ− y

|φ− y|

is identically zero if and only if Oe, y(θy) and φ(θφ) are collinear and θy = θφ. If
θy = θφ ± π, then the vector is perpendicular to the tangent vector ẏ.

(ii) The fact that (23) is true for every θy = θφ leads to

D2
yy(h(Oe, y) + h(y, φ))ẏ +D2

φy(h(Oe, y) + h(y, φ))φ̇ = 0

by taking derivative with respect to θy = θφ. Therefore,

〈D2
φyh(y, φ)φ̇, ẏ〉 = −〈D2

yy(h(y, Oe) + h(y, φ))ẏ, ẏ〉

=
〈y − Oe, ẏ〉2
|y −Oe|3

− |ẏ|2
|y −Oe|

+
〈φ− y, ẏ〉2
|φ− y|3 − |ẏ|2

|φ− y| (by Lemma 2.2)

= −|ẏ| |φ−Oe|
|φ− y| because φ− Oe ⊥ ẏ and |y −Oe| ≡ |ẏ|.

(iii) Direct calculation via Lemma 2.2 yields

〈D2
φyh(y, φ)φ̇, ẏ〉

=
−1

|φ− y|3 〈φ− y, φ̇〉〈φ− y, ẏ〉 − 1

|φ− y|〈φ̇, ẏ〉

= − |φ̇| |ẏ|
|φ− y| sin β (see Figure 3).

Comparing with (ii), we obtain the assertion.

Lemma 5.2. The function hn⊕2 : ∂Ue1 ×Qn,ε × ∂Ue2 → R, defined by

hn⊕2(y, φ1, . . . , φn, x) := h(Oe1, y)+h(y, φ1)+
n−1	
j=1

h(φj, φj+1)+h(φn, x)+h(x,Oe2)

has a critical value at (y,Ω1, . . . ,Ωn, x) with which Oe1y ∪ yΩ1 = Oe1Ω1 and Ωnx ∪
xOe2 = ΩnOe2 if and only if the function hn defined in (17) has a critical value at
(Ω1, . . . ,Ωn) with which Oe1Ω1 ∩ ∂Ue1 = y and ΩnOe2 ∩ ∂Ue2 = x. The former is
degenerate if and only if the latter is degenerate.

Proof. We remark first that

h1⊕2(y, φ1, x) := h(Oe1, y) + h(y, φ1) + h(φ1, x) + h(x,Oe2)

and that

h0⊕2(y, x) := h(Oe1, y) + h(y, x) + h(x,Oe2) (only when Oe1 �= Oe2).

The function hn⊕2 has a critical value at point (y,Ω1, . . . ,Ωn, x) if and only if

〈Dyhn⊕2, ẏ〉 = 〈Dφj
hn⊕2, Ω̇j〉 = 〈Dxhn⊕2, ẋ〉 = 0 ∀j = 1, . . . , n (24)
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at that point. (Here Ω̇j stands for φ̇(θ) evaluated at φ = Ωj . Similar notations are
used for ẏ and ẋ.) We know Dyhn⊕2(y,Ω1, . . . ,Ωn, x) = Dy(h(Oe1, y) + h(y,Ω1)),
Dxhn⊕2(y,Ω1, . . . ,Ωn, x) = Dx(h(Oe2, x) + h(x,Ωn)). Therefore by Proposition 5.1,
Oe1 , y and Ω1 are collinear as well as Oe2 , x and Ωn. The function hn has a critical
value at (Ω1, . . . ,Ωn) if and only if

〈Dφj
hn(Ω1, . . . ,Ωn), Ω̇j〉 = 0 ∀j = 1, . . . , n. (25)

Hence the first assertion of the lemma is true since both (24) and (25) imply that the
law of specular reflection is complied with at Ω1, . . . ,Ωn.

By definition, (y,Ω1, . . . ,Ωn, x) is a degenerate critical point if there exists non-
zero (δθy, δθ1, . . . , δθn, δθx) ∈ [0, 2π)n+2 such that

〈D2
yy(h(Oe1, y) + h(y,Ω1))ẏδθy +D2

φ1y
h(y,Ω1)Ω̇1δθ1, ẏ〉

+〈Dy(h(Oe1, y) + h(y,Ω1)), ÿδθy〉 = 0, (26)

〈D2
yφ1
h(y,Ω1)ẏδθy, Ω̇1〉 + 〈D2

φ1φ1
(h(y,Ω1) + h(Ω1,Ω2))Ω̇1δθ1, Ω̇1〉

+〈Dφ1(h(y,Ω1) + h(Ω1,Ω2)), Ω̈1δθ1〉 + 〈D2
φ2φ1

h(Ω1,Ω2)Ω̇2δθ2, Ω̇1〉
= 0, (27)

〈
j+1	

m=j−1

D2
φmφj

(h(Ωj−1,Ωj) + h(Ωj ,Ωj+1))Ω̇mδθm, Ω̇j〉

+〈Dφj
(h(Ωj−1,Ωj) + h(Ωj ,Ωj+1)), Ω̈jδθj〉 = 0 ∀j = 2, . . . , n− 1, (28)

〈D2
φn−1φn

h(Ωn−1,Ωn)Ω̇n−1δθn−1, Ω̇n〉
+ 〈D2

φnφn
(h(x,Ωn) + h(Ωn−1,Ωn))Ω̇nδθn, Ω̇n〉

+ 〈Dφn(h(x,Ωn) + h(Ωn−1,Ωn)), Ω̈nδθn〉 + 〈D2
xφn

h(x,Ωn)ẋδθx, Ω̇n〉
= 0, (29)

and

〈D2
xx(h(Oe2, x) + h(x,Ωn))ẋδθx +D2

φnxh(x,Ωn)Ω̇nδθn, ẋ〉
+〈Dx(h(Ωn, x) + h(x,Oe2)), ẍδθx〉 = 0. (30)

Equations (26) and (30) together with (i) and (ii) of Proposition 5.1 lead to

δθy = δθ1, δθx = δθn. (31)

By definition, (Ω1, . . . ,Ωn) is a degenerate critical point for hn if the following identi-
ties are fulfilled

〈D2
φ1φ1

(h(Oe1,Ω1) + h(Ω1,Ω2))Ω̇1dθ1, Ω̇1〉
+ 〈Dφ1(h(Oe1,Ω1) + h(Ω1,Ω2)), Ω̈1dθ1〉
+ 〈D2

φ2φ1
h(Ω1,Ω2)Ω̇2dθ2, Ω̇1〉 = 0, (32)
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〈
j+1	

m=j−1

D2
φmφj

(h(Ωj−1,Ωj) + h(Ωj ,Ωj+1))Ω̇mdθm, Ω̇j〉

+〈Dφj
(h(Ωj−1,Ωj) + h(Ωj ,Ωj+1)), Ω̈jdθj〉 = 0 ∀j = 2, . . . , n− 1, (33)

〈D2
φn−1φn

h(Ωn−1,Ωn)Ω̇n−1dθn−1, Ω̇n〉
+ 〈D2

φnφn
(h(Ωn−1,Ωn) + h(Ωn, Oe2))Ω̇ndθn, Ω̇n〉

+ 〈Dφn(h(Ωn−1,Ωn) + h(Ωn, Oe2)), Ω̈ndθn〉 = 0 (34)

for some non-zero (dθ1, . . . , dθn). Now take (dθ1, . . . , dθn) = (δθ1, . . . , δθn). Subse-
quently, (28) is identical to (33). We know from Lemma 2.2 that

Dφ1h(y,Ω1) =
Ω1 − y

|Ω1 − y| =
Ω1 − Oe1

|Ω1 − Oe1|
= Dφ1h(Oe1,Ω1),

thus identity (32) can be fulfilled if

〈D2
yφ1
h(y,Ω1)ẏ, Ω̇1〉 + 〈D2

φ1φ1
h(y,Ω1)Ω̇1, Ω̇1〉

= 〈D2
φ1φ1

h(Oe1,Ω1)Ω̇1, Ω̇1〉 (35)

in (27). Direct calculation shows, with the help of Lemma 2.2, that

〈D2
φ1φ1

h(y,Ω1)Ω̇1, Ω̇1〉

=
−1

|Ω1 − y|3 〈Ω1 − y, Ω̇1〉2 +
|Ω̇1|2

|Ω1 − y| ,

=
|Ω̇1|2

|Ω1 − y| sin2 β (see Figure 3), (36)

〈D2
φ1φ1

h(Oe1 ,Ω1)Ω̇1, Ω̇1〉

=
−1

|Ω1 − Oe1|3
〈Ω1 −Oe1, Ω̇1〉2 +

|Ω̇1|2
|Ω1 −Oe1|

,

=
|Ω̇1|2

|Ω1 − Oe1|
sin2 β (see Figure 3). (37)

Subtracting (36) from (37) and using Proposition 5.1, we arrive at

−|y − Oe1|
|Ω1 − y| |Ω1 − Oe1|

|Ω̇1|2 sin2 β

=
−|y − Oe1| |Ω1 − Oe1|

|Ω1 − y| = 〈D2
yφ1
h(y,Ω1)ẏ, Ω̇1〉.

Thus, (35) is fulfilled. Likewise, we have

〈D2
xφn

h(x,Ωn)ẋ, Ω̇n〉 + 〈D2
φnφn

h(x,Ωn)Ω̇n, Ω̇n〉
= 〈D2

φnφn
h(Oe2 ,Ωn)Ω̇n, Ω̇n〉 (38)

in (29), and (34) is fulfilled thereby. Hence we have proved the “only if” case.
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On the other hand, hn⊕2 can be regarded as hn if points Oe1 , y, Ω1 are collinear
withOe1y∪ yΩ1 = Oe1Ω1 and Oe2 , x, Ωn are collinear with Ωnx∪xOe2 = ΩnOe2 too.
Therefore if (Ω1, . . . ,Ωn) is a degenerate critical point of hn, then (y,Ω1, . . . ,Ωn, x)

with the mentioned collinearity constraints is a degenerate critical point of hn⊕2. More
precisely, suppose (32), (33) and (34) are satisfied for some non-zero (dθ1, . . . , dθn) =

(δθ1, . . . , δθn), then the collinearity constraints imply Proposition 5.1, (31), (35) and
(38). Hence hn⊕2 has a degenerate critical value at (y(θΩ1),Ω1, . . . ,Ωn, x(θΩn)) be-
cause (26)-(31) are fulfilled for δθy = δθ1 = dθ1, δθ2 = dθ2, . . . , δθn−1 = dθn−1,
δθn = δθx = dθn.

6 Anti-integrability

In this final section, we prove Theorems 1.6 and 2.4.

Proposition 6.1. Let {y†i−1, x
†
i}i∈Z be determined by a non-degenerateN-AI-orbit as in

Definitions 1.10 and 3.2. There exist ρ0 > 0 and neighbourhoods Δyi−1
� y†i−1, Δxi

�
x†i such that if 0 ≤ max1≤e≤K{ρe} < ρ0 then for any two points yi−1in Δyi−1

⊂ ∂Ui−1

and xi in Δxi
⊂ ∂Ui, the function h∗(yi−1, xi) is C2. Hence, the function F defined by

(12) is C1 on Z × [0, ρ0)
K with

Z :=
�
i∈Z

�
Δyi−1

× Δxi

�
.

Proof. Suppose (y†i−1,Ω1, . . . ,Ωn, x
†
i ) is a non-degenerate critical point for hn⊕2, then

(Ω1, . . . ,Ωn) is a non-degenerate critical point for the function hn⊕2(y
†
i−1, . . . , x

†
i ) with

fixed y†i−1 and x†i . Then, by the implicit function theorem, there are neighbourhoods
Δyi−1

� y†i−1 and Δxi
� x†i , also there exists ρ0 > 0 so that for 0 ≤ max1≤e≤K{ρe} <

ρ0 and for any pair of points (yi−1, xi) in Δyi−1
× Δxi

we have that (Ω∗
1, . . . ,Ω

∗
n) =

(ω1(yi−1, xi), . . . , ωn(yi−1, xi)) is the unique critical point for hn⊕2(yi−1, . . . , xi) with
fixed yi−1 and xi for some C2-functions ω1, . . . , ωn. Therefore, h∗ is C2. (Note that
Δyi−1

and Δxi
can be chosen small enough so that (yi−1,Ω

∗
1, . . . ,Ω

∗
n, xi) is a critical

point for hn⊕2 only when yi−1 = y†i−1 and xi = x†i .)
From Proposition 4.2, we also know h−(xi−1, yi−1, ρei−1

) and h+(xi, yi, ρei
) are

both C2 dependent on their variables for every i. Hence, together with the prescribed
numberN , we have thatDzi

h−(xi−1, yi−1, ρei−1
),Dzi

h∗(yi−1, xi) andDzi
h+(xi, yi, ρei

)

all depend C1 on their variables and uniformly with respect to i (because K and N are
finite, and because each ∂Ue is fixed and compact). From the definition of F , we know
DzF (z, ρ) = {Dzj

Fi(z, ρ)}i,j∈Z is a tri-diagonal infinite by infinite matrix, therefore F
is C1.

Lemma 6.2. Let {y†i−1, x
†
i}i∈Z be determined by an N-AI-orbit as in Definitions 1.10

and 3.2. The linear map DzF (z†, 0) : l∞ → l∞ is invertible with bounded inverse if
the N-AI-orbit is non-degenerate.
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Proof. Recall that zeros of the map F (z, ρ) are governed by (13) and (14) or equiv-
alently by (15) and (16). Now for all i, h−(xi, yi, 0) and h+(xi, yi, 0) are constant,
equal to R/2, thus DzF (z, 0) is diagonal, possessing diagonal terms Dzi

Fi(z, 0) equal
to D2

zi
h∗(yi−1, xi). Because h(Oei−1

, yi−1) = h(xi, Oei
) = R/2 for all i, we have

Dzi
Fi(z, 0) = D2

zi

�
h(Oei−1

, yi−1) + h∗(yi−1, xi) + h(xi, Oei
)
�
.

Note that, by our construction,

h∗(yi−1, xi) = h(yi−1,Ω
∗
1) +

n−1	
j=1

h(Ω∗
j ,Ω

∗
j+1) + h(Ω∗

n, xi),

where Ω∗
j , j = 1, . . . , n, are defined as those in the proof of Proposition 6.1. When

z = z† is determined by a non-degenerate N-AI-orbit, it turns out that (Ω∗
1, . . . ,Ω

∗
n) =

(ω1(y
†
i−1, x

†
i ), . . . , ωn(y

†
i−1, x

†
i)) is a non-degenerate critical point for hn(φ1, . . . , φn) =

h(Oei−1
, φi) +


n−1
j=1 h(φj, φj+1) + h(φn, Oei

) with prescribed Oei−1
and Oei

. Thus
(y†i−1,Ω

∗
1, . . . ,Ω

∗
n, x

†
i ) is a non-degenerate critical point of hn⊕2(y, φ1, . . . , φn, x) by

Lemma 5.2. Consequently, Dzi
Fi(z

†, 0) is an invertible linear map from R
2 × R

2 to
R

2 × R
2. Because this is true for every i, the map DzF (z†, 0) is invertible. Since M

and ∂M are compact and since the cardinality of the set O is the finite number K, the
supremum of the norm of the inverse Dzi

Fi(z
†, 0)−1 depends only on the number N

and in particular it is independent of i. This means DzF (z†, 0)−1 is bounded in the
space l∞.

Proof of Theorem 2.4.

The theorem is a corollary of Proposition 6.1 and Lemma 6.2.

Proof of Theorem 1.6.

Let N be an arbitrary positive integer. By Theorem 1.11, there is an open and dense
subset of (M,O) in which every billiard system (M,O) has a set X of non-degenerate
N-AI-orbits which corresponds bijectively to �Σ2C with [ 3N

2
] ≤ C ≤ 2N − 1. Every

such a non-degenerate N-AI-orbit in (M,O) determines a unique sequence of pairs
z† = {(y†i−1, x

†
i)}i∈Z ∈ �

i∈Z(∂Uei−1
× ∂Uei

) satisfying F (z†, 0) = 0. Then Theorem
2.4 says that, by the implicit function theorem, there exist a unique z ∗(ρ) in a small
neighbourhood of z† in the space

�
i∈Z(∂Uei−1

× ∂Uei
) and a positive constant ρ1, de-

pending on (M,O), such that F (z∗(ρ), ρ) = 0 provided 0 ≤ max1≤e≤K{ρe} < ρ1. By
Proposition 2.1, such a z∗(ρ) corresponds a unique billiard orbit.

Let �z† be determined by another non-degenerate N-AI-orbit from X satisfying
F (�z†, 0) = 0, then there is a unique �z∗(ρ) in a small neighbourhood of �z† such that
F (�z∗(ρ), ρ) = 0 provided 0 ≤ max1≤e≤K{ρe} < ρ1. By Theorems 1.11 and 2.4,
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we know two facts. One fact is that �z∗(ρ) = {. . . , (�y∗i−1(ρ), �x∗i (ρ)), . . .} and z∗(ρ) =

{. . . , (y∗i−1(ρ), x
∗
i (ρ)), . . .} satisfy

sup
i∈Z

{|�x∗i (ρ) − x∗i (ρ)|∂U , |�y∗i (ρ) − y∗i (ρ)|∂U} > c1

for some positive constant c1. Let Ym be such a subset of the set consisting of the zeros
of F (·, ρ) determined by applying the Implicit Function Theorem to all N-AI-orbits of
X that

max
0≤i<m

�
|�y∗i−1(ρ) − y∗i−1(ρ)|∂U , |�x∗i (ρ) − x∗i (ρ)|∂U

�
> c1 (39)

for any pair of {�z∗(ρ), z∗(ρ)} ⊂ Ym. Then, the other fact is that the cardinality of Ym

is exactly equal to 2C(2C − 1)m−1.
Since a billiard orbit is uniquely determined by one of its historical state, every

element z∗(ρ) in Ym determines an element in ∂(A1 ∪ . . . ∪ AK) × [−π/2, π/2] in an
obvious way via Figure 7:

{. . . , (y∗i−1(ρ), x
∗
i (ρ)), . . .} �→ {. . . , (ψ∗

i , α
∗
i ), . . .} �→ (ψ∗

−1, α
∗
−1),

where ψ∗
i ∈ Aei

if x∗i (ρ) and y∗i (ρ) ∈ ∂Uei
. Inequality (39) implies

max
−1≤i<m

{|�x∗i (ρ) − x∗i (ρ)|∂U , |�y∗i (ρ) − y∗i (ρ)|∂U} > c1,

and this further implies

max
−1≤i<m



|�ψ∗
i − ψ∗

i |∂A, |�α∗
i − α∗

i |
�
> c2

for some positive constant c2, where |�ψ∗
i −ψ∗

i |∂A stands for the least arc-length between�ψ∗
i and ψ∗

i on ∂Aei
. Therefore, for 0 ≤ max1≤e≤K{ρe} < ρ1, the topological entropy

of the first return map defined by (4) for the system (M,O) is at least ln(2C − 1).

Proof of Remark 1.8.

The proof actually is a more detailed analysis of the proofs of Theorems 1.6 and 1.11,
by taking the number of collisions occurred on the boundary ∂M into account.

As can readily be seen from the proof of Theorem 1.11 that the set X of non-
degenerate N-AI-orbits in the proof of Theorem 1.6 is comprised of 2N number of
geometrically distinct basic AI-orbits {Γ1, . . . ,Γ2N}, in which two is of 1-link, two is
of 2-link, . . ., and two is of N-link. These 2N basic AI-orbits determine 2C number
of points {(w−C, 0), . . . , (w−1, 0), (w1, 0), . . . , (wC, 0)} on ∂U1 × [−π/2, π/2], with
[3N

2
] ≤ C ≤ 2N − 1. If we distinguish the dynamical difference between Γ� and Γ�,

these 2N basic AI-orbits further give rise to P number of points on ∂M × [−π/2, π/2],
with 3N 2/2 + N − 1/2 ≤ P ≤ 2N2 + 2N − 2 for N ≥ 2. (Every n-link basic AI-
orbit contributes n points φ1, φ2, . . . , φn on ∂M with (φ1, . . . , φn) a critical point of the
length function hn. Thus, Γ� together with Γ� give 2n points if Γ� �= Γ�, but n points
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if Γ� = Γ�. The bundle [−π/2, π/2] corresponds to the incidence angles when Γ� or
Γ� collide with ∂M .) Because anN-AI-orbit has the form · · ··Γbi ·Γbi+1

·· · · , with Γbi ∈
{Γ1, . . . ,Γ2N} for every integer i, the dynamical behaviour of X on the 2C + P points
on (∂U1 ∪∂M)× [−π/2, π/2] is reminiscent of a topological Markov graph of 2C+P

vertices in the following way: Assume x†
i and y†i ∈ {w−C , . . . , w−1, w1, . . . , wC} are

formed by x†i = Γbi � ∂U1 and y†i = Γbi+1
� ∂U1 as described in Definition 1.10,

then y†i ∈ ∂U1 can be anything in {w−C , . . . , w−1, w1, . . . , wC} except a particular one
associated with x†i (e.g. y†i �= w−2 if x†i = w2), and along the basic AI-orbit Γbi+1

,
y†i will subsequently determine ni+1 number, ni+1 ≤ N , of points in ∂M (if Γbi+1

is
of ni+1-link) and a unique point x†

i+1 in ∂U1. In other words, we have the following
topological Markov chain:

∂U1 �x†0 = wc0 : 2C choices

↓
y†0 �= w−c0 : 2C − 1 choices

↓
∂M ⊃Γb1 ∩ ∂M : 1 choice (n1 points decided one by one along Γb1)

↓
∂U1 �x†1 = wc1 : 1 choice (uniquely decided by y†0 = Γb1 � ∂U1)

↓
y†1 �= w−c1 : 2C − 1 choices

↓
∂M ⊃Γb2 ∩ ∂M : 1 choice (n2 points decided one by one along Γb2)

↓
∂U1 �x†2 = wc2 : 1 choice (uniquely decided by y†1 = Γb2 � ∂U1)

↓
....

The essence of the Markov chain is the following:

· · · n0+1 steps−−−−−−→ x†0
n1+1 steps−−−−−−→ x†1

n2+1 steps−−−−−−→ x†2 −−−−→ · · · .

Let �H(m) denote the number of admissible words of length m in this (2C + P )-
vertex topological Markov graph. We shall show that

�H(m) < 2C(2C − 1)H(3m/2), ∀m ≥ 2, (40)

where H(m) stands for the number of different broken lines in R
2 which start at the

origin, have length at mostm, and have vertices at the integer points, such that the edges
do not intersect any integer points except for the vertices, and that no three pairwise
distinct consecutive vertices belong to one straight line, as described in [7]. Because
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lim supm→∞ lnH(m)/m is finite, as shown in [7], and because by (40)

lim sup
m→∞

ln�H(m)

m
≤ lim sup

m→∞
lnH(3m/2)

m
=

3

2
lim sup
m→∞

lnH(m)

m
,

we conclude that the topological entropy of the (2C+P )-vertex Markov graph is finite,
no matter how large C and P are. Then, following similar arguments in the proof of
Theorem 1.6, we see that the billiard orbits obtained as the zeros of F (·, ρ) determined
by applying the Implicit Function Theorem to all N-AI-orbits of X do not lead to an
arbitrarily large topological entropy of the billiard collision map (3), no matter how
large N is.

In the sequel, we devote to (40). If we count multiplicity by distinguishing Γ� and
Γ�, then the number of 1-link basic AI-orbits we are concerned with is 2, the number
of n-link basic AI-orbits is 4 if n is even, and the number is 2, 3 or 4 if n is odd and
at least three. Totally, we have 2C basic AI-orbits, with [ 3N

2
] ≤ C ≤ 2N − 1. Now,

consider line segments that connect the origin (0, 0) with the integer points of coor-
dinates (ni + 1,±1), (−ni − 1,±1), (±1, ni + 1), or (±1,−ni − 1) in R

2 satisfying
1 ≤ ni ≤ N for all i ∈ Z. Next, consider the products · · · · μ−1μ0 · μ0μ1 · μ1μ2 · · · ·
of these line segments and their translations, with a rule that μ0 = (0, 0), μi is an
integer point in R

2, μi−1μi · μiμi+1 is not a straight line segment, and that μi+1 has
coordinates (ni+1 + 1,±1), (−ni+1 − 1,±1), (±1, ni+1 + 1) or (±1,−ni+1 − 1) if
we translate the origin to μi. Subsequently, the number of admissible finite prod-
ucts μ0μ1 · μ1μ2 · · · · · μl−1μl is 8N(8N − 1)l−1, which is greater than the number
2C(2C−1)l−1 of admissible finite products of basic AI-orbits Γb1 ·Γb2 · · · · ·Γbl (count-
ing multiplicity Γ� and Γ�) that will form an N-AI-orbit if l → ∞. Moreover, an
easy observation shows two facts. The first is that any n-link basic AI-orbit consists of
n+ 1 pieces of oriented line segments (or oriented edges); the second is that the length
of every line segment μiμi+1 is

�
n2
i+1 + 2ni+1 + 2, which is strictly between ni+1 + 1

and ni+1 +2. These two facts imply that if an admissible finite product Γb1 ·Γb2 · · · · ·Γbl
of basic AI-orbits is a product of m1 number of consecutive oriented edges for some
m1 with 2l ≤ m1 = n1 + 1 + n2 + 1 + · · ·+ nl + 1 ≤ Nl + l, then we can associate it
with a unique admissible product μ0μ1 · · · · ·μl−1μl whose length is greater thanm1 but
less than m1 + l. As a result, H(m1) < 2CH(m1 + l) ≤ 2CH(3m1/2), where H(m1)

stands for the number of admissible words of length m1 starting from one of the 2C

points {(w−C , 0), . . . , (w−1, 0), (w1, 0), . . . , (wC, 0)} and ending at one of the same 2C

points on ∂U1× [−π/2, π/2] in the aforementioned (2C+P )-vertex Markov chain. On
the other hand, the number m of any admissible word of length m ≥ 2 in the Markov
chain must satisfy m = ǩ+n1 + 1 +n2 + 1 + · · ·+nl + 1 + k̂ = ǩ+m1 + k̂ for some
0 ≤ l ≤ m1/2, 0 ≤ m1 ≤ m, 0 ≤ ǩ ≤ n0 ≤ N , and 0 ≤ k̂ ≤ nl+1 ≤ N , for which
there exists an admissible finite product Γb0 ·Γb1 · · · · ·Γbl ·Γbl+1

with Γbi being of ni-link
for 0 ≤ i ≤ l + 1. As a result, �H(m) ≤ (2C − 1)H(m) < 2C(2C − 1)H(3m/2).

Remark 6.3. We finish this paper by demonstrating the capability of extending our
study to non-convex billiard tables. Figure 8 shows a billiard table whose boundary
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curve consists of two Jordan curves ∂M1 and ∂M2. In the figure, we assume that Γ1 is
a 1-link basic AI-orbit for point-scatterer O1, Γ2 = Γ+

2 or Γ−
2 is a 1-link basic AI-orbit

connecting point-scatterers from O1 to O2 or from O2 to O1, while Γ�
3 is a 2-link basic

AI-orbit for O2. We may assume all Γ1, Γ2 = Γ+
2 , Γ−2 = Γ−

2 , Γ3 = Γ�
3 , and Γ4 = Γ�

3

are non-degenerate basic AI-orbits by perturbing ∂M1 if necessary. For any sequence
{bi}i∈Z with bi belonging to {1,±2, 3, 4} and with (bi, bi+1) not equal to (1,−2), (1, 3),
(1, 4), (2, 1), (2, 2), (−2,−2), (−2, 3), (−2, 4), (3, 1), (3, 2), (4, 1), or (4, 2), we can
construct an AI-orbit as the product of paths · · ·Γbi−1

·Γbi ·Γbi+1
· · · . All such sequences

{bi}i∈Z form a Markov chain of positive topological entropy. Arguing similarly to the
proofs of Theorems 1.11 and 2.4, we can conclude that the system has positive topo-
logical entropy when O1 and O2 are fattened into small convex scatterers. Due to the
non-convexity,O3Ω7 ·Ω7O3 is not a 1-link basic AI-orbit. Similarly, although the func-
tion h3 : (φ1, φ2, φ3) �→ h(O2, φ1)+h(φ1, φ2)+h(φ2, φ3)+h(φ3, O2) attains a critical
value at (Ω5,Ω6,Ω5), it dose not give rise to a 3-link basic AI-orbit. Nevertheless, if
we remove M2, then M1 becomes a simply connected domain and is star-shaped with
respect to O2. In this situation, there are alway 1-link AI-orbits for O2.

O1

Γ1

Γ2

Γ�
3

Ω7

O3

Ω5

Ω2

Ω1

Ω6

M2

Ω4Ω3

O2

M1

Figure 8: A billiard of non-convex, non-simply-connected domain with three point-
scatterers.
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