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A system of 10 elastic polyspherical particles, initially falling freely in
the interior of a spherical cavity is simulated employing a time-stepping
method and a time-stepping rate which exhibit excellent conservation of to-
tal energy. The particles are initially at rest and placed mirror-symmetrically
with respect to a vertical plane that divides the spherical cavity into two
halves. From the equations of mechanics it follows that this initial mirror
symmetry also holds for all future states, despite the many collisions that
may have happened. Accumulation of rounding errors actually destroys
this behavior in a numerical simulation. This is shown by doing the com-
putation with numerical precision 16, 20, 30, and 40.

1 Introduction

In the predominant part of computational studies in physics the representation of real
numbers according to the 64-bit IEEE 754 standard is used. This standard reserves 52
binary digits (corresponding to ≈ 16 decimal digits) for representing the significand of a
number (the remaining 12 bits represent the sign and the exponent). In the context of
computing one usually refers to this circumstance by attributing the precision 16 (deci-
mal) or 52 (binary) to such numbers. The numbers of precision 16 define a sufficiently
fine lattice 1 within the mathematical continuum R that artifacts resulting from this
discretization (numerical noise) become important only in very special situations 2 .
This rather satisfactory status may be the reason why development of multiple precision
arithmetic (also known as arbitrary-precision arithmetic or even infinite-precision arithmetic)

∗www.ulrichmutze.de
1 the lattice spacing near a point r is ≈ |r| ·10−16

2 This is in remarkable contrast to the situation that one had when a 32-bit representation was prevailing
in scientific computing.
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[12], [11], was for a long time not carried to a point where the existing tools invited us-
age by non-specialists. In these days, however, convenient tools are available and the
present work was made possible by one such tool, named MPFRC++[13] 3 .

This tool defines within the programing language C++ the data type mpreal
(multiple precision real) which may replace the standard floating point type double
in any program. A statement, say,

mpreal:set_default_prec(200);

will then provide any mpreal- typed number to be defined in the sequel with a stor-
age area appropriate for a number of (binary, in this case) precision 200, or decimal 4

precision 60.
Arithmetic operations and transcendental functions will automatically be computed

with an internal precision which is needed to give the above specified numerical preci-
sion for the result. Since such computation with arbitrary precision can’t happen with-
out significant loss in speed (see Figure 10), it is highly desirable to organize programs
in a way that switching between fast native IEEE 754 arithmetic and arbitrary precision
arithmetic is possible. The C++ language offers many possibilities 5 to achieve this.

Recently I introduced such a scheme in my C++ class system Classes for Physics and
Mathematics (CPM, C+− ) [7],[6], after having implemented a similar scheme for the less
complex programing language Ruby [14]. With this augmentation, all CPM-programs
can be made to work with arbitrary-precision arithmetic with virtually no additional
effort. According to this scheme, switching between standard arithmetic and arbitrary
precision arithmetic needs recompilation (or switching between two different executa-
bles), whereas switching within arbitrary precision from one value of the default pre-
cision to another can be done at run time. When in the following a precision value 16
is mentioned it is understood to refer to a computation done in native IEEE 754 mode,
whereas all other values are realized by means of MPFRC++. This variability lets all
CPM-programs in effect be functions of the precision parameter. Especially the results
of program runs can then be considered as such functions. Then, the limit for precision
tending to infinity is a self-suggesting idealization 6 which would introduce the math-
ematical idealization R in the end, without having to cope with infinitary objects along
the way.

Having in mind how drastically the introduction of 64 bit floating point numbers
once reduced the ‘numerical problems’ which were omnipresent with 32 bit numbers,
one could expect that in all non-pathological problems the computational results would
become effectively independent of precision if we consider storage sizes as high as, say,
128 bit or 256 bit per number. A moment’s reflection shows, however, that computed

3 which is a C++ -wrapper for a library named MPFR which, in turn, builds on a library named GMP
4 In the following we always understand precision as decimal.
5 e.g. switching names by suitable preprocessing
6 Actual arbitrary precision systems assume that the number of digits can be represented as an integer of

fixed length (say 64 bit). This is neither a limit built into the definition of the programing language (
a well defined, well documented, and powerful formal language) nor in any way restricting practical
applications.
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trajectories of chaotic dynamical systems should always depend in the long term on the
precision used in the computation: each call to a mathematical function occurring in
the computation yields a result which differs from the correct value by some discretiza-
tion error. Thus any arbitrarily selected point on a computed trajectory deviates from
the exact one. When following the fate of the two points (computed and exact resp.)
according to the exact evolution, we see the discrepancy growing exponentially. The
computed trajectory is therefore expected to follow the exact trajectory rather closely
for a while and then to diverge from it forever. When increasing the precision of the
computation, we shift the point of divergence towards the future. Nevertheless, such
a divergence will occur somewhere, however large the precision is selected. For a vi-
sualization one need not to know the exact trajectory: in a common visualization of
the trajectories belonging to the same initial condition 7 but differing in computational
precision one will see the bundle of trajectories fan out, the one of lowest precision will
diverge from the common path first. The finally remaining path can be expected to
represent the exact path well till the last point of divergence. We can observe this be-
havior in Figures 4. Further, we will consider a phenomenon in which the influence of
limited precision can be seen and quantified in a single system trajectory (as opposed
to several trajectories differing in precision). This phenomenon works as follows: A
symmetry, actually a left-right mirror symmetry, which is obeyed by construction by
the initial condition, and which is conserved by the exact dynamical law, gets lost over
time as shown in Figure 8. A more explicit animated visualization of this phenomenon
(related to a similar, but not identical system) can be found in [5].

2 The system under consideration

A definite system suitable for studying these phenomena by means of actual compu-
tations can be constructed as consisting of a few asymmetric extended rigid bodies
(called particles) which move inside a spherical cavity. The interaction among particles
and between particles and the enclosing wall is repulsive, elastic (i. e. it conserves
total energy), and vanishes if the the subsets of space which are associated with the
rigid bodies don’t overlap. In addition to the elastic repulsive interaction we let the
homogeneous gravity field act on the particles.

We assume that the particles fill a substantial part of the cavity and nevertheless start
from a configuration in which there is no overlap between particles or particles and
wall. The particles then all fall freely towards the bottom of the cavity and become
engaged in collisions with other particles or with the wall. Since the particles are non-
spherical, each collisions drives the particles to change their rotational state as well
as their translational one. This lets the geometry of the next collision depend very
sensitively upon the geometry of the previous collision. Thus the collisions effect a

7 Practically, in more complex systems it is not easy to provide ‘bit-identical’ initial conditions for com-
puter runs which differ in precision. This is so since between the common numerical input from a
configuration file and the definition of the initial state there lies a computation (‘call of a constructor’ in
C++ parlance) the result of which will normally depend on the precision.
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cascaded amplification of small state variations. This mechanism is expected to bring
chaotic motion about.

A computational model of such a system has been built by suitably configuring the
CPM-program PaLa (for particle lab) [1], [9], [10], which has a focus on numerical exper-
iments with granular systems. It implements computational dynamics of polyspherical
particles as described in [1] and [2]. As the title of [1] says, polyspherical particles are
defined to be made of rigidly connected overlapping spherical particles.

All files that make up the program (apart from the support libraries opengl, glut,
mpfr, gmp) can be downloaded from [9]. Moreover, a listing of all code is available
as a single electronic document [8] which has an introductory chapter explaining the
program in more general terms. (Also an executable running under Windows XP can
be downloaded from [10].)

The model under consideration is very similar to the one which was used in [1] to
study conservation of total energy. In our case each particle is made of three, only
slightly overlapping, spheres. More spheres would increase the computational burden
and stronger overlap would make the particles more spherical and the effect of colli-
sions less dependent on the relative attitude of the collision partners. Mutual forces
and torques between such particles and between particles and the cavity surface are
defined in a natural manner from the mutual forces of the spherical components of the
particles, for which an ansatz according to the Hertz formulas for elastic spheres under
forced contact is made. All friction mechanism introduced in [1] are disabled.

The particles and their initial arrangement are shown in the stereo 8 image Figure 1.
From the spherical container only a slice is shown in order to increase the visibility of
the particles. As is obvious from these images there is a left-right mirror symmetry in
the placement of the particles and also in their velocities, since the particles are assumed
to be at rest (initially!). The same symmetry obviously holds for the container and also
for the gravity field, for which the natural direction (from top to bottom) is understood.

The physical properties of the system are given here in SI units: Young’s modulus of
the particles and of the enclosing wall is E = 1 MPa which corresponds to soft Silicon
rubber. The density of particles is ρ = 1250kgm−3 which also corresponds to Silicon rub-
ber. Each of the particles fills a part of space which is the set union of three overlapping
spheres. In our case these three spherical constituents of a particle all have the same ra-
dius. For n = 5 particles p1, . . . , pn the spatial arrangement of the spherical constituents
is determined by a stochastic procedure, and the x, y, z coordinates of their center-of-
mass position is given by an input list, which is given here exactly in the format in
which the program reads it from the basic configuration file symmetryLost.ini:

particle position list
//------------------------------------------------------------------------

B addMirrorImages=true
Z n=5
Rs p1=-0.35 -0.25 0.2
Rs p2=-0.55 -0.1 -0.1
Rs p3=-0.15 0.0 0.1

8 To be viewed with red/green or red/blue glasses (red for the left eye); this works also with a paper
print-out of the image.
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Figure 1: Initial configuration

Rs p4=-0.35 0.1 -0.2
Rs p5=-0.45 0.15 0.2

CPM configuration files organize input quantities by sections (here ‘particle position
list’) and associate a type (here ‘B,Z,Rs’) and a name (here ‘addMirrorImages, n, p1,...,p5’)
with each input quantity. The valid types are B (Boolean), Z (integer), R (real), W
(‘word’, character string), and Bs, Zs, Rs, Ws for arbitrarily long lists of those. The
input scheme is recursive since the full content of an arbitrarily complex configuration
file may be included by a line
F <name of file to be included>

in any configuration file. Further, comment lines (starting with ’/’) may be placed ev-
erywhere so that a configuration file may conveniently be used as a documentation of
the intents behind the program run which it defines. Since the program takes some
input quantities of type W as names of files for additional input and others for output,
there is much flexibility in defining a particular run of program PaLa.

Each particle determines a ‘mean radius’ as the radius of the single sphere which has
the same volume as the particle (which is determined by stochastic integration). The
mean radii of the particles are stochastically selected out of the interval [0.09 m,0.11 m].

The remaining five particles are made as mirror twins of the stochastically generated
ones: pn+i = Rpi, i = 1, . . . ,n. Here R is the reflection with respect to the plane x = 0.

The radius of the cavity is r = 0.829929 m and the strength of the gravity field is
a = 9.81 m s−2. The total span of model time of all simulation runs is 3 s.

The computation to be reported here consists of 12 independent runs in which the
precision and the total number of time-steps are varied independently over the follow-
ing values:
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• precisions: 16, 20, 30, 40

• time-steps: 30 000, 60 000, 120 000

These computations all have the same output: data are written to a file every 10−3s
of model time. Therefore we have 3000 data sets and the span between data captures
is covered by 10, 20, and 40 computational steps; these are the substeps to which the
legend of Figures 6, 7, and 9 refers. The data per capture are 33 numbers:

• time t

• relative energy change (E(t)−E(0))/E(0)

• log10(asymmetry measure) (see equation (1), we put log10(0) := 0)

• for each of the ten particles the coordinates x, y, z of the center-of-mass

Here, the asymmetry measure shown is defined as sum over the n = 5 mirror-pairs
of particles, where each pair pi, pk , k := i+n, gives a contribution

di :=

√
s2 +a2

ri + rk
, s := |Rxi− xk| , a := ϕ(ri + rk) , (1)

where ri is the radius of pi, xi its center-of-mass position, and ϕ is the angle of a rota-
tion that gives pk the same location in space (apart from a translation) as the mirrored
particle Rpi. It has obviously the value 0 whenever each particle pi coincides with the
mirror-image Rpk of its mirror-twin pk. It has an upper bound which is approximately
n times rcavity/rparticle.

3 Computational results

3.1 Trajectories of particle centers

An idea of the complex motion of the particles can be obtained from Figure 2 which
shows for each of the particles the trajectory of its center-of-mass, projected onto the
x-y-plane. This figure shows what was stated already: that the mirror symmetry which
was built into the initial condition is conserved by dynamical evolution. To see this in
spite of the detrimental influence of numerical noise one had to employ a precision of
40. (As Figure 8 shows in more detail asymmetry is also unnoticeable for precision 30,
and only noticeable at the very end of the evolution for precision 20.)

What one obtains with precision 16 can be seen in Figure 3. Here we see some tra-
jectories crossing the mirror plane x = 0 which violates mirror symmetry in an obvious
manner. Closer inspection of this busy diagram shows that it is only at the end of the
process that symmetry gets lost.

A closer look to how this asymmetry develops is hard to achieve for all particles
together. So in Figure 4 we look only to particle 1 and its mirror twin particle 6:
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Figure 2: Trajectories of the particle centers, projected onto the x-y-plane, precision 40
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Figure 3: Trajectories of the particle centers, projected onto the x-y-plane, precision 16
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Figure 4: Trajectories of particles 1 and 6 computed with various precisions
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Figure 5: y-coordinate of particle 1 computed with various precisions
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Figure 6: Trajectories of particles 1 and 6 computed with precision 40 and various time
steps

The time dependence of this successive departure of less accurate trajectories is rep-
resented in Figure 5. Here the graphical resolution does not allow us to discern the
curves for precision 30 and 40.

In the same format, Figure 6 shows how the variation of the time stepping rate makes
the computed trajectories with lower rate deviate from those with higher rate. What we
see here is that roughly the first third part of the trajectory can be expected to agree with
the exact trajectory.

Notice that the obvious departure from the exact trajectory does not entail asym-
metry. Actually, the time-stepping algorithm used here conserves mirror symmetry
exactly when considered in R-based arithmetic. So it is only the limited precision of the
arithmetic that brings about the observed symmetry breaking.

Again, the time dependence of this successive departure of less accurate trajectories
is represented in Figure 7.

3.2 Evolution of the asymmetry measure

From Figure 8 is is clear that extending the time span will finally show symmetry break-
ing also for precision 40. Actually, for any value of precision, there is a time span within
which symmetry will be broken. Since, as stated earlier, the exact trajectory remains
symmetric forever, any breakdown of symmetry shows that the computed trajectory

9



-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0  0.5  1  1.5  2  2.5  3

y

t

particle 1, 10 substeps
particle 1, 20 substeps
particle 1, 40 substeps

Figure 7: y-coordinate of particle 1 computed with precision 40 and various time steps
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Figure 8: Evolution of the asymmetry measure computed with 40 substeps
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Figure 9: Change of total energy computed with precision 40 for various time steps

now differs from the exact trajectory. The converse, however is not true: the com-
puted (time-discrete) trajectory may remain symmetric even if it shows no longer any
similarity with the exact trajectory. An interesting feature of these curves is that the
asymmetry measure, which starts with value 0 holds this value for a while till some
kind of ’numerical accident’ which gives a first value different from 0. It was observed
in other runs that in the early phase the curve returned several times back to 0 before it
turned to the normal behavior the pattern of which is obvious from the figure. When
doing the same computation with simple spherical particles, I found this initial phase
of vanishing asymmetry much longer, ≈ 230 s.

3.3 Evolution of total energy

The behavior of the total energy shown in Figure 9 indicates that the time-stepping
rates were chosen adequately: the local variations (for which a qualitative explanation
is proposed in [1]) are much larger than a hypothetical trend.

3.4 Computation time

Figure 10 shows the computation times (in seconds) needed to generate the data for
varying precision and the maximum value 120 000 of time steps (which corresponds to
40 substeps). The speed of multiple precision computations depends surprisingly little
on the precision but is much lower than the speed of precision 16 computation. The
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Figure 10: Computation time as a function of precision

latter needed 28.875 s and thus was by a factor 106 faster than the multiple precision
computation with precision 20. The test computation refers to the same system but to a
shorter total time span so that the total computation time remained moderate. Also the
file-writing activity was disabled in order to capture mainly the speed of the genuine
computation.

4 Outlook

Simulation of the dynamics of systems of irregularly shaped bodies, as a method of
studying the behavior of granular matter, does not pretend to produce reasonable ap-
proximations to exact solutions of the underlying equations of motion. For the solution
of engineering problems (e.g. [3], [4]) it is not the individual trajectory which counts but
statistical properties of a large collection of trajectories. The criteria according to which
simulation results are accepted as saying something useful about engineering systems
can normally not be formulated without reference to properties and behavior of these
systems. This implies that there is no need in such situations to compute the trajectories
with multiple precision: This would only waste computation time and provide a tiny
progress in an illusory direction (towards producing ’exact’ trajectories).

Nevertheless, from a sportive point of view, it is tempting to try ’compute the exact
trajectory’ over the full range of 3 seconds for our system. This would amount at find-
ing a realm of time-stepping rates and numerical precisions for which the computed
trajectory can be shown to be independent of these parameters when judged according
to the resolution of the present graphics. Notice that for the first second, as Figure 7
suggests, we probably have a solution to this problem already with the data reported
here. My experiments done so far show that a further duplication of the time-stepping
rate brings little progress (no noticeable difference between precisions 40 and 50), so
that one has probably to go to much smaller time steps and may soon transcend com-
fortable computation times. One doesn’t go into chaos comfortably!
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