
A Mathematical Theory for Vibrational Levels
Associated with Hydrogen Bonds
II : The Non–Symmetric Case

George A. Hagedorn∗

Department of Mathematics and
Center for Statistical Mechanics, Mathematical Physics, and Theoretical Chemistry

Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061–0123, U.S.A.

Alain Joye
Institut Fourier
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Abstract

We propose an alternative to the usual time–independent Born–Oppenheimer ap-
proximation that is specifically designed to describe molecules with non–symmetrical
hydrogen bonds. In our approach, the masses of the hydrogen nuclei are scaled dif-
ferently from those of the heavier nuclei, and we employ a specialized form for the
electron energy level surface. As a result, the different vibrational modes appear at
different orders of approximation.

Although we develop a general theory, our analysis is motivated by an examination
of the F H Cl− ion. We describe our results for it in detail.

We prove the existence of quasimodes and quasienergies for the nuclear vibrational
and rotational motion to arbitrary order in the Born–Oppenheimer parameter ε. When
the electronic motion is also included, we provide simple formulas for the quasienergies
up to order ε3 that compare well with experiment and numerical results.

∗Partially Supported by National Science Foundation Grant DMS–0600944.
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1 Introduction

This is the second in a series of articles devoted to the study of vibrational levels associated

with hydrogen bonds. The first paper [5] deals with stretching vibrations of the hydrogen

bond in the symmetric case in which the hydrogen binds two identical atoms or molecules.

Our prototypical example is FHF−, which displays strong anharmonic effects, coupling

between vibrational modes, and a low frequency for the vibration of the hydrogen along

the F–F axis. This second paper deals with all the vibrations and rotations in the non–

symmetric situation. Our canonical example is F H Cl−, which displays weaker anharmonic

effects and a high frequency for the vibration of the hydrogen along the F–Cl axis.

Both of our papers contain two main new ideas. The first is the same for both papers.

Standard Born–Oppenheimer approximations keep the electron masses fixed while all the

nuclear masses are taken proportional to ε−4. We take the hydrogen mass proportional to ε−3

while keeping the heavier atoms’ masses proportional to ε−4. This is physically appropriate

for many molecules of interest: If the mass of an electron is 1 and ε is defined so the mass

of a carbon C12 nucleus is ε−4, then ε = 0.0821,and the mass of a H1 nucleus is 1.015 ε−3.

The second novel idea is to exploit the smallness of certain derivatives of the electron

energy level surface for the molecule being studied. Here our two papers are completely

different, and they are motivated by examinations of numerically computed electron energy

level surfaces using Gaussian 2003 software [3]. In the symmetric case, the second derivative

associated with moving the H along the axis of AH A is small, and we could allow it to be

small and negative if the H nucleus felt a double well potential. In the non–symmetric case,

if the H is more weakly bound to the B in AH B, we assume all the derivatives associated

with moving the B relative to AH in AH B are small. We assume all derivatives associated

with stretching the distance between A and H not to be small.

To describe the smallness of the small derivatives, we could have introduced another

small parameter. Instead, we have elected to let ε play a second role. We take all the small

derivatives to be proportional to ε. For the choice of ε = 0.0821 indicated above, that is

again appropriate for our F H F− and F H Cl− examples. The small derivatives are on the

order of ε in units where the non–small derivatives are on the order of 1.

We shall now restrict our attention to triatomic non–symmetrical hydrogen bonded
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molecules AH B, and assume the H is more strongly bound to the A. We do an asymptotic

expansion for small ε, and our main results are the following:

1. To their respective leading orders, the vibrational levels are described by three inde-

pendent harmonic oscillators in appropriate Jacobi coordinates: two separate one–

dimensional harmonic oscillators and one two–dimensional isotropic harmonic oscilla-

tor. This is in contrast to the usual Born–Oppenheimer theory in which one obtains

one coupled four–dimensional harmonic oscillator. Our technique does not require go-

ing through the diagonalization process to separate the normal modes. The different

modes appear at different orders of the expansion, in contrast to the Born–Oppenheimer

situation, where all vibrations are of order ε2.

2. The highest frequency vibrational states have energy of order ε3/2. These are the stretch-

ing oscillations of the A–H bond with the B approximately sitting still.

3. The next highest frequency vibrations are the two degenerate bending modes. They are

of order ε2.

4. The lowest vibrational energies are of order ε5/2. They are the stretching oscillations of

the weak bond between the AH and the B.

For the specific case of F H Cl−, we have the following comparison of results, where

vibrational energies are measured in cm−1. The experimental results come from [2]. We

note that the experiments were not done in the “gas phase,” so they may not accurately

represent results for the isolated ions. All the Gaussian 2003 results presented in this paper

are obtained by using the MP2 technique with the aug-cc-pvdz basis set. The software

implements the standard Born–Oppenheimer approximation. The results for our model

come from approximating the ground state electron energy surface with Gaussian 2003 and

then applying our techniques.

Mode Experiment Gaussian ’03 Our Model

F − H stretch 2710 2960 2960

bends (degenerate) 843 875 871

FH − Cl stretch 275 246 251
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Remarks

1. It is not surprising that the results for our model are close to those obtained by Gaus-

sian since we have used the same electron energy surface. The Gaussian software deals

with the full 4–dimensional harmonic oscillator, whereas our technique deals with two

1–dimensional harmonic oscillators and one isotropic 2–dimensional harmonic oscilla-

tor. Evidently the Jacobi coordinates we have chosen are very close to the normal mode

coordinates for the 4–dimensional oscillator.

2. The results from Gaussian and our model are just leading order (harmonic) calcula-

tions. Including higher order terms from the expansions might bring these into better

agreement with experiment. Also, we again emphasize that the experimental results

were not obtained for isolated ions.

A recent chemistry article [9] contains data for vibrations of eighteen hydrogen bonded

molecules in the gas phase. It also contains an idea for quantifying how symmetric or non–

symmetric a hydrogen bond is. Its conclusions are consistent with the analysis in our two

papers. Figure 2 of that article plots the vibrational frequency of the A − H stretch versus

the difference in the “proton affinities” of A and B for a molecule AH B. When A and

B are identical, the frequency is low (800–1000 cm−1), and when they attract the proton

very differently, the frequency is high (1600–3500 cm−1). In our symmetric analysis, this

vibrational energy is of order ε2, whereas in our non–symmetric analysis, it is of order ε3/2,

which is roughly 3.5 times larger when ε = 0.0821.

Remarks

1. We assume that the ground state electron energy level we are considering is non–

degenerate for all nuclear configurations of interest. Thus, we do not consider situations

that exhibit the Renner–Teller effect [8, 10, 6].

2. Since our analysis includes rotations of the whole molecule, some small effects show up

in the calculations. For example, l–type doubling [7] occurs for terms that have non–

zero eigenvalues of the Lz′ operator at low order. (Lz′ is the nuclear angular momentum

around the A−B axis.) States corresponding to Lz′ eigenvalue ±k with k ≥ 1 generically

have their degeneracy in energy split at order ε2+3k in our model.
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The paper is organized as follows: In Section 2, we describe our model in detail. In

Section 3, we do the semiclassical expansion to all orders for the nuclei. In Section 4 we

include the electrons. However, when we include the electrons, we just show that the energy

expansion is valid through order ε3. Going to higher order is extremely complicated.

2 Semiclassical Analysis for the Effective Nuclear

Hamiltonian

In this section, we give a precise description of the Hamiltonian for the nuclei. As mentioned

above, we consider a molecular system AH B in which the hydrogen is much more tightly

bound to the A than to the B.

We construct the coordinate system we use in two steps, as illustrated in the figures

below. The first step is to choose a standard Jacobi coordinate system for the nuclei in their

center of mass frame of reference. The first three coordinates are the components X1, X2,

and X3 of the vector ~X from the A nucleus to the H nucleus. The fourth, fifth, and sixth

coordinates Y1, Y2, and Y3 are the components of the vector ~Y from the center of mass of

the A and H nuclei to the B nucleus.

B

A

z

x

H

yCM of AH

~X

~Y

Jacobi coordinates for the molecule
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We now change from these coordinates to new ones that we call (Y, θ, φ, R, γ, X). The

(Y, θ, φ) are spherical coordinates for the vector described by (Y1, Y2, Y3) in the original

center of mass frame of reference. The (R, γ, X) are cylindrical coordinates for the vector

(X1, X2, X3) in a frame of reference that rotates so that the axis for these coordinates is in

the direction of the vector described by (Y1, Y2, Y3). The precise definition is below.

B

A

z

y′

y

x′
x

z′

H

~X

~Y

θ

Jacobi coordinates fixed at the origin
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γ

γ

z

y′

y

x′
x

z′

~X

~Y

θ

φ

X

R

The final coordinate system

One reason for using these coordinates is that the potential energy surface depends only

on Y , X, and R. A second reason is that in these coordinates, we can separate the total

angular momentum J2 and its z component Jz from the other motions easily. Also, to low

order in perturbation theory, the angular momentum Lz′ conjugate to γ (which is the angular

momentum in the direction of (Y1, Y2, Y3), gives another convenient quantum number. Note

that Lz′ does not commute with the full Hamiltonian.

The drawback to using this coordinate system is that the kinetic energy expression is

quite messy. The complication comes from the Laplacian in the (Y, θ, φ) variables. The

Laplacian in (R, γ,X) is simply the usual cylindrical Laplacian.

These coordinates are closely related to ones used in [4] to deal with Born–Oppenheimer

approximations for diatomic Coulomb systems. There is a minus sign error in the expression

for L · J term on page 32 of that paper.

As mentioned above, (Y, θ, φ) are just standard spherical coordinates. To describe the
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other three coordinates precisely, we first define the rotation

R1(θ, φ) =




cos(θ) cos(φ) − sin(φ) sin(θ) cos(φ)

cos(θ) sin(φ) cos(φ) sin(θ) sin(φ)

− sin(θ) 0 cos(θ)


 .

It maps the vector


 0

0
1


 to the unit vector in the direction of


 Y1

Y2

Y3


. We then define

coordinates (ξ1, ξ2, ξ3) by 
 ξ1

ξ2

ξ3


 = [R1(θ, φ) ]−1


 X1

X2

X3


 .

Next, we define another rotation

R2(γ) =




cos(γ) − sin(γ) 0

sin(γ) cos(γ) 0

0 0 1


 ,

where, for generic vectors ξ, γ is defined by requiring the second component of [R2(γ) ]−1 ξ

to be 0 and its first component to be positive. We then define coordinates X and R by
 R

0
X


 = [R2(γ) ]−1


 ξ1

ξ2

ξ3


 .

Our Hamiltonian has kinetic energy

− ε3

2 µ1(ε)
∆(X1, X2, X3) − ε4

2 µ2(ε)
∆(Y1, Y2, Y3),

where µ1(ε) and µ2(ε) are modified reduced masses that we describe in detail below. Since

Laplacians are rotationally invariant, under our coordinate changes, the first term simply

becomes the usual cylindrical Laplacian

− ε3

2 µ1(ε)

(
∂2

∂R2
+

1

R

∂

∂R
+

1

R2

∂2

∂γ2
+

∂2

∂X2

)
.

By a very tedious calculation, the second term in the kinetic energy is

− ε4

2 µ2(ε)

(
∂2

∂Y 2
+

2

Y

∂

∂Y
− 1

Y 2

{
J2 − 2 L · J + L2

} )
,

where

J2 = − ∂2

∂θ2
− cot θ

∂

∂θ
− 1

sin2 θ

(
∂2

∂φ2
+

∂2

∂γ2

)
+

2 cos θ

sin2 θ

∂2

∂φ ∂γ
, (2.1)
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is the total angular momentum operator,

L · J =

(
R sin γ

∂

∂X
− X sin γ

∂

∂R
− X

R
cos γ

∂

∂γ

) (
1

sin θ

∂

∂φ
− cot θ

∂

∂γ

)

+

(
R cos γ

∂

∂X
− X cos γ

∂

∂R
+

X

R
sin γ

∂

∂γ

)
∂

∂θ

and

L2 = −R2 ∂2

∂X2
+ 2 X R

∂2

∂X ∂R
− X2 ∂2

∂R2
− X2

R2

∂2

∂γ2
+

(
R − X2

R

)
∂

∂R
+ 2 X

∂

∂X
+

∂2

∂γ2
.

The modified reduced masses are µ1(ε) = ε3 ε−4mA ε−3mH

ε−4mA + ε−3mH

and

µ2(ε) = ε4 (ε−4mA ε−3mH) ε−4mB

ε−4mA + ε−3mH + ε−4mB

, where the three nuclei have masses ε−4mA, ε−3mH ,

and ε−4mB. The modified reduced masses have limits as ε tends to zero. To isolate the leading

behavior, we abuse notation and define µ1 = lim
ε→0

µ1(ε) = mH and µ2 = lim
ε→0

µ2(ε) =
mA mB

mA + mB

. Then we have

ε3

2 µ1(ε)
=

ε3

2 µ1

+
ε4

2 mA

.

Similarly,
ε4

2 µ2(ε)
=

ε4

2 µ2

− ε5

2 mA (mA + 2 εmH)
.

We define the operator

ε4 D(ε) = − ε4

2 mA

∆(X1, X2, X3) +
ε5

2 mA (mA + 2 εmH)
∆(Y1, Y2, Y3),

written in the new variables, so that the kinetic energy can be expressed as

− ε3

2 µ1

∆(X1, X2, X3) − ε4

2 µ2

∆(Y1, Y2, Y3) + ε4 D(ε),

all written in terms of (Y, θ, φ, R, γ, X).

The quantum fluctuations of the nuclei around their equilibrium positions occur on short

length scales, so we now do the appropriate rescaling of variables. We assume the ground

state electron energy surface has a minimum at Y = Y0, R = 0 (because the Hydrogen bond

is linear), and X = X0. Under the rescaling, the angles θ, φ and γ remain unchanged, but

we replace Y , R, and X by

y = (Y − Y0)/ε
3/4, r = R/ε1/2, and x = (X − X0)/ε

3/4.
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Under this rescaling, the total kinetic energy operator becomes

− ε3/2

2 µ1

∂2

∂x2
− ε2

2 µ1

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂γ2

)
− ε5/2

2 µ2

∂2

∂y2
(2.2)

− ε13/4

µ2 (Y0 + ε3/4y)

∂

∂y
+

ε4

2 µ2 (Y0 + ε3/4y)2

{
J2 − 2 L · J + L2

}
+ ε4 D(ε),

where J2 is still given by (2.1), but L·J and L2 are now given by the ε–dependent expressions

L · J =

(
ε−1/4 r sin γ

∂

∂x
− ε−1/2(X0 + ε3/4x) sin γ

∂

∂r
− ε−1/2 X0 + ε3/4x

r
cos γ

∂

∂γ

)

×
(

1

sin θ

∂

∂φ
− cot θ

∂

∂γ

)

+

(
ε−1/4r cos γ

∂

∂x
− ε−1/2(X0 + ε3/4x) cos γ

∂

∂r
+ ε−1/2 X0 + ε3/4x

r
sin γ

∂

∂γ

)

× ∂

∂θ

and

L2 = − ε−1/2r2 ∂2

∂x2
+ 2 ε−3/4 (X0 + ε3/4x) r

∂2

∂x ∂r
− ε−1(X0 + ε3/4x)2 ∂2

∂r2

− ε−1 (X0 + ε3/4x)2

r2

∂2

∂γ2
+ ε−1

(
ε r − (X0 + ε3/4x)2

r

)
∂

∂r

+ 2 ε−3/4 (X0 + ε3/4x)
∂

∂x
+

∂2

∂γ2
.

Remarks

1. The operator L · J can be rewritten as

L · J = ε−1/4 r

2

∂

∂x

(
L+′ − L−′

)
− ε−1/2 X0 + ε3/4 x

2

∂

∂r

(
L+′ − L−′

)

− i ε−1/2 X0 + ε3/4 x

2 r

∂

∂γ

(
L+′ + L−′

)
, (2.3)

where

L±′ = e±iγ

(
± ∂

∂θ
+ i cot θ

∂

∂γ
− i

1

sin θ

∂

∂φ

)
.
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By explicit computation, one can verify that L+′ and L−′ commute with both J2 and

Jz. The operators L+′ and L−′ are raising and lowering operators for the eigenstates of

Lz′ .

2. The dominant order terms in the expressions in L ·J and L2 are the ones of order ε−1 in

L2. Because of the overall factor of ε4 that multiplies these operators in the Hamiltonian,

they are not relevant until the order ε3 perturbation calculations.

Motivated by numerical calculations for the FHCl− ion, we assume the ground state

electron energy surface near its minimum depends only weakly on R and Y . To exploit this,

we decompose the potential energy surface as

V1(X) + ε V2(X, R, Y ), (2.4)

where V1 and V2 have Taylor expansions of the forms

V1(X) ∼ a0 +
∞∑

j=2

aj (X − X0)
j, and (2.5)

V2(X, R, Y ) ∼
∑

j + k + l ≥ 2
k + l ≥ 1
k even

bj, k, l (X − X0)
j Rk (Y − Y0)

l. (2.6)

The restrictions on the indices in V2 are obtained requiring all pure X dependence to be V1

and by requiring V2 to be even in R (because of the symmetry).

We now can state our results for the semiclassical analysis of the bound states for the

nuclei.

Theorem 2.1 Consider the Hamiltonian

H(ε) = − ε3

2 µ1(ε)
∆(X1, X2, X3) − ε4

2 µ2(ε)
∆(Y1, Y2, Y3) + V1(X) + ε V2(X, R, Y ),

rewritten in terms of the variables (X, R, Y, θ, φ, γ). Assume V1 and V2 are C∞ functions

that satisfy (2.5) and (2.6). Assume V1 has a unique global minimum a0 at X = X0 > 0,

with a2 > 0 in (2.5), and that lim inf |X|→∞ V (X) > a0. Assume V2 has a unique global

minimum of 0 at X = X0, R = 0, and Y = Y0 > 0, with b0,2,0 > 0 and b0,0,2 > 0 in

(2.6). Given any integer N > 0, there exist a quasimode ΨN/4(ε) =
N∑

l=0

εl/4 ψl/4 and a
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quasienergy EN/4(ε) =
N∑

l=0

εl/4 El/4, such that ‖ψl/4‖ = O(1) for each l, El/4 = O(1) for

each l, and ∥∥∥(
H(ε) − EN/4(ε)

)
ΨN/4(ε)

∥∥∥ ≤ CN ε(N+1)/4,

for some CN that depends on the choices of n, k, m, and p below.

Furthermore,

E0 = a0, E1/4 = E2/4 = E3/4 = E4/4 = E5/4 = E7/4 = E9/4 = E11/4 = 0,

E6/4 =
√

2 a2/µ1

(
n +

1

2

)
, for n = 0, 1, · · · ,

E8/4 =
√

2 b0,2,0/µ1 (2 m + |k| + 1), for an integer k, and m = 0, 1, · · · ,

E10/4 =
√

2 b0,0,2/µ2

(
p +

1

2

)
, for p = 0, 1, · · · ,

and E12/4 is given by the expression (3.7). The rotational energy first appears in E16/4.

For fixed angular momentum quantum numbers j and jz, for order N ≥ 12, the states with

k = 0 are non-degenerate, and the states with |k| > 0 have multiplicity at most 2.

Remark Theorem 2.1 is stated with global hypotheses and without growth conditions on

the potential. When the electronic motion is also included, the potential energy surface may

only exist locally. The cutoff functions that are introduced in Proposition 3.2 allow us to

obtain analogous results with only local assumptions.

For the FHCl− ion, we have calculated values for the first few coefficients in the expansion

for V , based on numerically differentiating results from Gaussian 2003. Here distances are

measured in Angstroms, energies are in Hartrees, and we have used ε = 0.0821.

a0 = − 560.160
a2 = 0.567

b0,2,0 = 0.597
b1,0,1 = 0.853
b0,0,2 = 0.664

The ε in (2.4) reflects the weakness of the hydrogen bond, and also that the molecule can

bend easily. The FHCl− ion essentially looks like a slightly deformed FH molecule with a

12



Cl− ion quite a long way from the FH. Gaussian 2003 assigns charges associated with each

atom, and it obtains:
F −0.58
H 0.51
Cl −0.93

The calculated F–H distance is 0.98 Angstrom, and the H–Cl distance is 1.91 Angstroms.

(For HF alone, the charges are ±0.33, the H–F distance is 0.925 Angstrom, and the calcu-

lated vibrational frequency is 4083 cm−1.)

Experimental values [2] for the vibrational frequencies of FHCl− (in cm−1) are

275 FH oscillates relative to the Cl
843 bends (2 degenerate modes)

2710 FH oscillates

Gaussian 2003 calculates the harmonic vibrational frequencies (in cm−1) to be

246 FH oscillates relative to the Cl
875 bends (2 degenerate modes)

2960 FH oscillates

To leading order, our model has these frequencies proportional to ε3/2, ε2, and ε5/2 respec-

tively. The specific harmonic frequencies that we obtain for FHCl− are

251 FH moves relative to the Cl
871 bends (2 degenerate modes)

2960 FH oscillates

3 The Perturbation Expansion for the Nuclei

We now do the perturbation expansion for the semiclassical motion of the nuclei under

the global hypotheses of Theorem 2.1. When the hypotheses are satisfied only locally, see

Proposition 3.2.

The perturbation expansion describes the small ε dependence of the eigenvalue problem

for the following differential operator

− ε3/2

2 µ1

∂2

∂x2
− ε2

2 µ1

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂γ2

)
− ε5/2

2 µ2

∂2

∂y2
(3.1)

− ε13/4

µ2 (Y0 + ε3/4y)

∂

∂y
+

ε4

2 µ2 (Y0 + ε3/4y)2

{
J2 − 2 L · J + L2

}
,

+ a0 +
∞∑

j=2

aj ε3j/4 xj +
∑

j + k + l ≥ 2
k + l ≥ 1
k even

bj, k, l ε1+
3(j+l)+2k

4 xj rk yl.
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At this point we should make the Ansatz that the eigenvalue and eigenfunction have

expansions of the forms

E =
∞∑
l=0

νl(ε) Eql
and ψ(x, r, y, θ, φ, γ) =

∞∑
l=0

νl(ε) ψql
(x, r, y, θ, φ, γ).

Here, ν0(ε) = 1, ψ0 is non-trivial, and νl+1(ε)/νl(ε) → 0 as ε → 0.

However, one learns that every νl(ε) that occurs is some power of ε1/4, so it is somewhat

simpler just to take νl(ε) = εl/4, i.e.,

E =
∞∑
l=0

εl/4 El/4 and ψ(x, r, y, θ, φ, γ) =
∞∑
l=0

εj/4 ψl/4(x, r, y, θ, φ, γ).

Our Hamiltonian, J2, and Jz all commute with one another, so we can simultaneously

diagonalize these three operators. The eigenvalues of J2 are j(j + 1), where j = 0, 1, 2, . . .,

and for a given j, they have degeneracy (2j + 1)2. We henceforth use the specific basis for

the eigenspace for fixed j that is given in Section 4.7 of [1]:

{ | j, jz, k 〉 : jz = −j, −j + 1, . . . , j; k = −j, −j + 1, . . . , j },

where

Jz | j, jz, k 〉 = jz | j, jz, k 〉 and Lz′ | j, jz, k 〉 = k | j, jz, k 〉,

where Jz = − i
∂

∂φ
and Lz′ = − i

∂

∂γ
. Note that although J2, Jz, and Lz′ all commute with

one another, Lz′ does not commute with the Hamiltonian.

For future reference, we note also that the operators in (2.3) have

L+′ | j, jz, k 〉 = α+,j,jz ,k | j, jz, k + 1 〉 and L−′ | j, jz, k 〉 = α−,j,jz ,k | j, jz, k − 1 〉,

for some α±,j,jz ,k. When |k| = j, α+,j,jz ,j = 0 and α−,j,jz ,−j = 0.

By restricting attention to given values of j and jz, the wave functions in our expansion

can now be regarded (with some abuse of notation) as

ψl/4(x, r, y, θ, φ, γ) =

j∑
k=−j

ψl/4(x, r, y, k) | j, jz, k 〉.

We now substitute the Ansatz into the eigenvalue equation and equate terms order by

order. We do not worry about normalization, but produce a quasimode that is O(1) as ε
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tends to 0. To simplify some of the discussion, we take ψl/4 orthogonal to ψ0 for l > 0. The

results of these computations yield the formal expansions of Theorem 2.1.

Order ε0 These terms simply require a0 ψ0 = E0 ψ0. So,

E0 = a0.

Order εl/4 for 1 ≤ l ≤ 5 The terms of these orders successively require

a0 ψl/4 = E0 ψl/4 + El/4 ψ0. So,

El/4 = 0.

Order ε6/4 These terms require − 1

2µ1

∂2ψ0

∂x2
+ a2 x2 ψ0 = E6/4 ψ0.

This forces

E6/4 =

(
n +

1

2

) √
2 a2/µ1 for some n = 0, 1, · · · ,

and

ψ0(x, r, y, k) = f0(r, y, k) Φ1(x),

where

Φ1(x) = (2 a2 µ1)
1/8 π−1/4 2−n/2 (n!)−1/2 Hn(x′) e−x′2/2

with x′ = (2 a2 µ1)
1/4 x. The function f0 is not yet determined.

Order ε7/4 We introduce the notation

H0,x = − 1

2µ1

∂2

∂x2
+ a2 x2.

Then the ε7/4 terms require [H0,x − E6/4] ψ1/4 = E7/4 ψ0.

We first examine the components of this equation that are multiples of Φ1(x). These ‖x

components require

E7/4 = 0.

We then examine the components that are perpendicular to Φ1(x) in the x variables. These

⊥x components require

ψ1/4(x, r, y, k) = f1/4(r, y, k) Φ1(x),

15



where the function f1/4 is not yet determined.

Order ε8/4 These terms require

[H0,x − E6/4] ψ2/4 − 1

2µ1

(
∂2ψ0

∂r2
+

1

r

∂ψ0

∂r
+

1

r2

∂2ψ0

∂γ2

)
+ b0,2,0 r2 ψ0 = E8/4 ψ0.

The ‖x components of this equation require

H0,r,γ ψ0 = E8/4 ψ0,

where

H0,r,γ = − 1

2µ1

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂γ2

)
+ b0,2,0 r2.

This is a standard isotropic two dimensional Harmonic oscillator problem that one can solve

by separating variables. In our context, the angular operator Lz′ = − i
∂ψ0

∂γ
has eigenvalues

k = 0, ±1, ±2, · · · , ±j and eigenfunctions ei k γ. For each such k, the radial operator

− 1

2µ1

(
∂2

∂r2
+

1

r

∂

∂r
− k2

r2

)
+ b0,2,0 r2

has eigenvalues

E8/4 = ( 2m + |k| + 1 )
√

2 b0,2,0/µ1, where m = 0, 1, · · · .

The corresponding normalized eigenfunctions are√
2 (m!)

(m + |k|)! ( 2 b0,2,0 µ1 )1/4 (r′)|k| L|k|
m (r′2) e−r′2/2,

where, r′ = (2 b0,2,0 µ1)
1/4 r, m ≥ 0, and L

|k|
m is a Laguerre polynomial.

We permanently fix one such value of E8/4. Since different pairs (m, k) can occur, we

define

K = { k ∈ Z : |k| ≤ j, and m(k) ≥ 0 }.
where

m(k) =
1

2

(
E8/4

/√
2 b0,2,0/µ1 − |k| − 1

)
.

One can easily show that K is non-empty and has at most j + 1 elements.

For k ∈ K, we define the normalized wave functions

Φ2(|k|, r) =

√
2 (m(k)!)

(m(k) + |k|)! ( 2 b0,2,0 µ1 )1/4 (r′)|k| L
|k|
m(k)(r

′2) e−r′2/2

16



and take

f0(r, y, k) =

{
g0(y, k) Φ2(|k|, r) if k ∈ K

0 otherwise.

The functions g0(y, k) for k ∈ K are not yet determined. However, we now have

ψ0(x, r, y, θ, φ, γ) =
∑
k∈K

g0(y, k) Φ1(x) Φ2(|k|, r) | j, jz, k 〉.

For future reference, we let Z1 denote the subspace spanned by

{Φ1(x) Φ2(|k|, r) | j, jz, k 〉 : k ∈ K } .

The ⊥x terms at this order require [H0,x − E6/4] ψ2/4 = 0, which simply forces

ψ2/4 = f2/4(r, y, k) Φ1(x).

Order ε9/4 These terms require

[H0,x − E6/4] ψ3/4 + [H0,r,γ − E8/4] ψ1/4 + a3 x3 ψ0

= E9/4 ψ0. (3.2)

The ‖x components of this equation require

[H0,r,γ − E8/4] ψ1/4 = E9/4 ψ0. (3.3)

We first examine the components of this equation that belong to the subspace Z1. These

‖x ‖Z1 components require

E9/4 = 0.

Next, the ‖x ⊥Z1 components of (3.3) that are orthogonal to Z1 require [H0,r,γ −E8/4] ψ1/4 =

0. This forces us to choose

f1/4(r, y, k) =

{
g1/4(y, k) Φ2(|k|, r) if k ∈ K

0 otherwise.

The ⊥x components of (3.2) require [H0,x − E6/4] ψ3/4 + a3 x3 ψ0 = 0. We solve this

equation by applying the reduced resolvent operator [H0,x − E6/4]
−1
r . The result is

ψ3/4(x, r, y, k) = − a3

∑
k∈K

g0(y, k) Φ2(|k|, r) [H0,x − E6/4]
−1
r

(
x3 Φ1(x)

)

+ f3/4(r, y, k) Φ1(x). (3.4)

17



Order ε10/4

[H0,x − E6/4] ψ4/4 + [H0,r,γ − E8/4] ψ2/4

− 1

2µ2

∂2ψ0

∂y2
+ a3 x3ψ1/4 + b0,0,2 y2 ψ0 + b1,0,1 x y ψ0 = E10/4 ψ0. (3.5)

The ‖x ‖Z1 components require − 1

2µ2

∂2ψ0

∂y2
+ b0,0,2 y2 ψ0 = E10/4 ψ0. This forces us

to choose

E10/4 =

(
p +

1

2

) √
2 b0,0,2/µ2 where p = 0, 1, · · · ,

and

g0(y, k) = c0,k Φ3(y) if k ∈ K, (3.6)

where

Φ3(y) = (2 b0,0,2 µ2)
1/8 π−1/4 2−p/2 (p!)−1/2 Hp(y

′) e−y′2/2

with y′ = (2 b0,0,2 µ2)
1/4 y.

So far, the c0,k in (3.6) are arbitrary for k ∈ K, but we henceforth assume they satisfy

the normalization condition ∑
k∈K

| c0,k |2 = 1.

For future reference, we let Z2 denote the subspace spanned by

{Φ1(x) Φ2(|k|, r) Φ3(y) | j, jz, k 〉 : k ∈ K } .

The ‖x ⊥Z1 components require

f2/4(r, y, k) =

{
g2/4(y, k) Φ2(|k|, r) if k ∈ K

0 otherwise.

The ⊥x components require [H0,x − E6/4] ψ4/4 + a3 x3ψ1/4 + b1,0,1 x y ψ0 = 0.

We apply the reduced resolvent of H0,x to obtain

ψ4/4(x, r, y, k) = − a3 g1/4(y, k) Φ2(|k|, r) [H0,x − E6/4]
−1
r

(
x3 Φ1(x)

)
− b1,0,1 c0,k y Φ3(y) Φ2(|k|, r) [H0,x − E6/4]

−1
r

(
x Φ1(x)

)
+ f4/4(r, y, k) Φ1(x).

Note that the first two terms are zero if k /∈ K.
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Remarks

1. At this point, we have completely determined ψ0, except for the values of c0,k for k ∈ K.

Restoring the angular dependence in the notation, we have

ψ0 =
∑
k∈K

c0,k Φ1(x) Φ2(|k|, r) Φ3(y) | j, jz, k 〉.

Since j and jz are fixed, this is a linear combination of at most j+1 linearly independent

states.

2. As we shall see, the degeneracy generically partially splits at order ε12/4. At that point,

states with different values of |k| have different energy, but two states with k = ±λ for

λ > 0 have the same E12/4. In terms of the energy, the degeneracy of these two states

generically splits completely at order ε2+3λ. When λ = 1, this splitting has long been

observed in the spectra of linear polyatomic molecules. It is called l–type doubling [7].

3. We have determined the dominant terms for the eigenvalue:

E0 + ε3/2

(
n +

1

2

) √
2 a2/µ1 + ε2 (2m(k) + |k| + 1)

√
2 b0,2,0/µ1

+ ε5/2

(
p +

1

2

) √
2 b0,0,2/µ2.

This quantity does not depend on the quantum numbers j, jz, or k ∈ K.

The dominant contribution to the energy from the total angular momentum is
j(j + 1) ε4

2 µ2 Y 2
0

, so it enters at order 16/4.

4. Below we impose the condition that every ψl/4 with l > 0 be orthogonal to the subspace

Z2.

5. At the next order, the pattern emerges for how to do all higher order formal perturbation

calculations. For l ≥ 11, we have the following:

• the ‖x ‖Z1 ‖y terms determine El/4,

• the ‖x ‖Z1 ⊥y terms determine the y–dependence of g(l−10)/4(y, k)

• the ‖x ⊥Z1 terms determine the r and k dependence of f(l−8)/4(r, y, k), and

• the ⊥x terms determine the x–dependence of ψ(l−6)/4(x, r, y, k).

Since the general pattern occurs at the next order, we present full calculations for only

one more order explicitly.
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Order ε11/4

[H0,x − E6/4] ψ5/4 + [H0,r,γ − E8/4] ψ3/4 + [H0,y − E10/4] ψ1/4

+ a3 x3ψ2/4 + b1,0,1 x y ψ1/4 + b0,2,1 r2 y ψ0 + b1,2,0 x r2 ψ0

= E11/4 ψ0.

The ‖x ‖Z1 ‖y terms require

E11/4 = 0.

The ‖x ‖Z1 ⊥y terms require

g1/4(y, k) = − b0,2,1 c0,k

〈
Φ2(|k|, r), r2 Φ2(|k|, r)

〉
r

[H0,y − E10/4]
−1
r

(
y Φ3(y)

)
.

for k ∈ K. This is the first place in the perturbation calculations where different values of

|k| yield different results. Note that we could add c1/4,k Φ3(y) to g1/4(y, k) when k ∈ K, but

we have chosen c1/4,k = 0 to impose the condition that ψ1/4 be orthogonal to the subspace

Z2. See Remark 4 above.

The ‖x ⊥Z1 terms require

[H0,r,γ − E8/4] f3/4 + P⊥Z1
[H0,y − E10/4] f1/4 + b0,2,1 y P⊥Z1

r2 f0 = 0,

where P⊥Z1
denotes the projection onto functions orthogonal to the subspace Z1. We have

already seen that the non-zero f1/4(r, y, k) belong to the subspace Z1, so P⊥Z1
[H0,y −

E10/4] f1/4 = 0. Thus, applying the reduced resolvent of H0,r,γ (which is zero on Z1), we

obtain

f3/4(r, y, k) = − b0,2,1 c0,k y Φ3(y) [H0,r(|k|) − E8/4]
−1
r P⊥Z1

r2 Φ2(|k|, r)

+ g3/4(y, k) Φ2(|k|, r) if k ∈ K, and

f3/4(r, y, k) = 0 if k /∈ K.

Here, we have used the notation

H0,r(|k|) = − 1

2

∂2

∂r2
− 1

2 r

∂

∂r
+

k2

2 r2

and the direct sum decomposition

[H0,r,γ − E8/4]
−1
r =

⊕
|k|≤j

[H0,r(|k|) − E8/4]
−1
r
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which results from H0,r,γ commuting with Lz′ .

The ⊥x terms require

[H0,x − E6/4] ψ5/4 + [H0,r,γ − E8/4] ψ⊥x

3/4

+ a3 x3 ψ2/4 + b1,0,1 x y ψ1/4 + b1,2,0 x r2 ψ0 = 0,

where ψ⊥x

3/4 denotes the component of ψ3/4 orthogonal to Φ1(x) in the x variables. By com-

bining this with (3.4) and (3.6), we have

ψ⊥x

3/4(x, r, y, k) =

{ − a3 c0,k Φ3(y) Φ2(|k|, r) [H0,x − E6/4]
−1
r ( x3 Φ1(x) ) if k ∈ K

0 if k /∈ K.

So, we see that [H0,r − E8/4] ψ⊥x

3/4 = 0. Thus, we have

ψ5/4(x, r, y, k) = − a3 g2/4(y, k) Φ2(|k|, r)
(
[H0,x − E6/4]

−1
r

(
x3 Φ1(x)

) )
− b1,0,1 y g1/4(y, k) Φ2(|k|, r)

(
[ H0,x − E6/4]

−1
r ( x Φ1(x) )

)
− b1,2,0 c0,k Φ3(y) r2 Φ2(|k|, r)

(
[H0,x − E6/4]

−1
r (x Φ1(x))

)
+ f5/4(r, y, k) Φ1(x) if k ∈ K.

For k /∈ K,

ψ5/4(x, r, y, k) = f5/4(r, y, k) Φ1(x).

Note that only g2/4(y, k) (for k ∈ K) and f5/4(r, y, k) in these expressions have not yet been

determined.

Remarks

1. Amazingly, ψ1/4 6= 0. This component of the wave function involves an anharmonic

correction related to the bending and AH–B stretching modes. Restoring the angular

dependence to the notation, we have

ψ1/4(x, r, y, θ, φ, γ)

= − b0,2,1

∑
k∈K

c0,k

〈
Φ2(|k|, r), r2 Φ2(|k|, r)

〉
r

× Φ1(x) Φ2(|k|, r) [H0,y − E10/4]
−1
r

(
y Φ3(y)

) | j, jz, k 〉.
2. Although we do not present the full calculations at order ε12/4, we do calculate E12/4

explicitly. It is generically contains non-zero anharmonic corrections.
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Before going further with the expansion, we present a summary of what has been deter-

mined so far.

E = E0 + ε3/2

(
n +

1

2

) √
2 a2/µ1 + ε2 (2m(k) + |k| + 1)

√
2 b0,2,0/µ1

+ ε5/2

(
p +

1

2

) √
2 b0,0,2/µ2 + O(ε12/4).

The last information for E came from order 11/4, ‖x ‖Z1 ‖y.

ψ0 =
∑
k∈K

c0,k Φ1(x) Φ2(|k|, r) Φ3(y) | j, jz, k 〉.

This was completely determined at order 10/4, ‖x ‖Z1 .

ψ1/4 = − b0,2,1

∑
k∈K

c0,k

〈
Φ2(|k|, r), r2 Φ2(|k|, r)

〉
r

× Φ1(x) Φ2(r) [H0,y − E10/4]
−1
r

(
y Φ3(y)

) | j, jz, k 〉

This was completely determined at order 11/4, ‖x ‖Z1 ⊥y.

ψ2/4 =
∑
k∈K

g2/4(y, k) Φ1(x) Φ2(|k|, r) | j, jz, k 〉.

The last information came from order 10/4, ‖x ⊥Z1 .

ψ3/4 = − b0,2,1

∑
k∈K

c0,k Φ1(x) (y Φ3(y))

× [H0,r(|k|) − E8/4]
−1
r

(
P⊥Z1

r2 Φ2(|k|, r)
) | j, jz, k 〉

+
∑
k∈K

g3/4(y, k) Φ1(x) Φ2(|k|, r) | j, jz, k 〉.

The last information came from order 11/4, ‖x ⊥Z1 .
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ψ4/4 = a3 b0,2,1 [H0,y − E10/4]
−1
r

(
y Φ3(y)

)
[H0,x − E6/4]

−1
r

(
x3 Φ1(x)

)
×

∑
k∈K

c0,k

〈
Φ2(|k|, r), r2 Φ2(|k|, r)

〉
r

Φ2(|k|, r)| j, jz, k 〉

− b1,0,1 ( y Φ3(y) ) [H0,x − E6/4]
−1
r

(
x Φ1(x)

) ∑
k∈K

c0,k Φ2(|k|, r) | j, jz, k 〉

+

j∑
k=−j

f4/4(r, y, k) Φ1(x) | j, jz, k 〉.

The last information came from order 10/4, ⊥x

(coupled with 11/4, ‖x ‖Z1 ⊥y, because of g1/4).

ψ5/4 = − a3

∑
k∈K

g2/4(y, k) Φ2(|k|, r)
(
[H0,x − E6/4]

−1
r

(
x3 Φ1(x)

) ) | j, jz, k 〉

− b1,0,1 b0,2,1

∑
k∈K

c0,k

〈
Φ2(|k|, r), r2 Φ2(|k|, r)

〉
r

(
[H0,x − E6/4]

−1
r (x Φ1(x))

)
× Φ2(|k|, r)

(
y [H0,y − E10/4]

−1
r

(
y Φ3(y)

)) | j, jz, k 〉

− b1,2,0

∑
k∈K

c0,k Φ3(y) r2 Φ2(|k|, r)
(
[H0,x − E6/4]

−1
r (x Φ1(x))

) | j, jz, k 〉

+

j∑
k=−j

f5/4(r, y, k) Φ1(x) | j, jz, k 〉.

The last information came from order 11/4, ⊥x.

We now return to describing higher orders of the perturbation expansion. We determine

E12/4, and explicitly write the equations that must be solved through order ε16/4. That is the

order at which the angular momentum quantum number j appears, and the degeneracy due

to rotations is split.
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Order ε12/4

[H0,x − E6/4] ψ6/4 + [H0,r,γ − E8/4] ψ4/4 + [H0,y − E10/4] ψ2/4 + a3 x3 ψ3/4

+ a4 x4 ψ0 + b1,0,1 x y ψ2/4 + b0,2,1 r2 y ψ1/4 + b1,2,0 x r2 ψ1/4

+ b0,4,0 r4 ψ0 +
X2

0

2 µ2 Y 2
0

H0,r,γ ψ0

= E12/4 ψ0.

From the ‖x ‖Z1 ‖γ terms, we can easily solve for E12/4.

E12/4 = − a2
3 〈Φ1(x), x3 [H0,x − E6/4]

−1
r x3 Φ1(x) 〉x

+ a4 〈Φ1(x), x4 Φ1(x) 〉x

− b2
0,2,1 〈Φ2(|k|, r), r2 Φ2(|k|, r) 〉2r 〈Φ3(y), y [H0,y − E10/4]

−1
r y Φ3(y) 〉y

+ b0,4,0 〈Φ2(|k|, r), r4 Φ2(|k|, r) 〉r

+
X0

2 µ2 Y 2
0

√
2 b0,2,0/µ1 (2m(k) + |k| + 1)

As long as b0,4,0 6= 0, this expression yields different values for different |k|. To see this,

first note that the factor

〈Φ2(|k|, r), r2 Φ2(|k|, r) 〉2r =

(
2m(k) + |k| + 1√

2 b0,2,0 µ1

)2

does not depend on k, and the term

X0

2 µ2 Y 2
0

√
2 b0,2,0/µ1 (2m(k) + |k| + 1)

does not depend on k. In fact, the only term that has non-trivial dependence on k in E12/4

is

〈Φ2(|k|, r), r4 Φ2(|k|, r) 〉r =
(2 + 3|k| + k2) + 6 (|k| + 1) m(k) + 6 m(k)2

2 b0,2,0 µ1

We now show that different values of k yield different values of this quantity.

Let k1 ≥ 0 and k2 ≥ 0 be two different values of |k| that yield the same result. Simulta-

neously solving

(2 + 3k1 + k2
1) + 6(k1 + 1)m(k1) + 6m(k1)

2 = (2 + 3k2 + k2
2) + 6(k2 + 1)m(k2) + 6m(k2)

2
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and

2m(k1) + k1 + 1 = 2m(k2) + k2 + 1

forces

m(k1) = (−3 − 5 k1 + k2)/6

m(k2) = (−3 + k1 − 5k2)/6.

However, m(k1) and m(k2) must both be non-negative. There are no simultaneous non-

negative solutions to

k2 > 3 + 5 k1

k2 < (−3 + k1)/5

since this would require 3 + 5 k1 < −3/5 + k1/5, which requires 24k1 < −18 or k1 < −3/4.

This contradicts k1 ≥ 0, so different values of |k| must yield different values for E12/4.

Therefore, at this level of perturbation, the eigenvalues generically have multiplicity 1

when k = 0 and multiplicity 2 when k ≥ 1.

Explicitly,

E12/4 = − 1

32 µ1

(
a3

a2

)2 (
11 + 30n + 30n2

)
+

3 a4

8 a2 µ1

(
1 + 2n + 2 n2

)

− b2
0,2,1

8 b0,2,0 b0,0,2 µ1

(
2 m(k) + |k| + 1

)2

+
b0,4,0

2 b0,2,0 µ1

(
( 2 + 3 |k| + k2 ) + 6 ( |k| + 1 ) m(k) + 6 m(k)2

)

+
X0

µ2 Y 2
0

√
b0,2,0

2 µ1

( 2 m(k) + |k| + 1 ). (3.7)
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Order ε13/4

[H0,x − E6/4] ψ7/4 + [H0,r,γ − E8/4] ψ5/4 + [H0,y − E10/4] ψ3/4

− 1

2 µ2 Y0

∂ψ0

∂y
+ a3 x3 ψ4/4 + a4 x4 ψ1/4 + b1,0,1 x y ψ3/4 + b0,2,1 r2 y ψ2/4

+ b1,2,0 x r2 ψ2/4 + b0,4,0 r4 ψ1/4 + b0,0,3 y3 ψ0 + b1,0,2 x y2 ψ0 + b2,0,1 x2 y ψ0

+
X2

0

2 µ2 Y 2
0

H0,r,γ ψ1/4 +
X0

µ2 Y 2
0

(
r

∂2

∂x ∂r
+

∂

∂x

)
ψ0

= E13/4 ψ0 + E12/4 ψ1/4.

Order ε14/4

[H0,x − E6/4] ψ8/4 + [H0,r,γ − E8/4] ψ6/4 + [H0,y − E10/4] ψ4/4

− 1

2 µ2 Y0

∂ψ1/4

∂y
+ a3 x3 ψ5/4 + a4 x4 ψ2/4 + b1,0,1 x y ψ4/4 + b2,0,1 x2 y ψ1/4

+ b0,2,1 r2 y ψ3/4 + b1,2,0 x r2 ψ3/4 + b0,4,0 r4 ψ2/4 + b0,0,3 y3 ψ1/4

+ b1,0,2 x y2 ψ1/4 + b0,2,2 r2 y2 ψ0 + b1,2,1 x r2 y ψ0 + b2,2,0 x2 r2 ψ0

+
X2

0

2 µ2 Y 2
0

H0,r,γ ψ2/4 +
X0

µ2 Y 2
0

(
r

∂2

∂x ∂r
+

∂

∂x

)
ψ1/4 − r2

2 µ2 Y 2
0

∂2

∂x2
ψ0

+
1

µ2 Y 2
0

[ (
X0 sin γ

∂

∂r
+

X0

r
cos γ

∂

∂γ

) (
1

sin θ

∂

∂φ
− cot θ

∂

∂γ

)

+

(
X0 cos γ

∂

∂r
− X0

r
sin γ

∂

∂γ

)
∂

∂θ

]
ψ0

= E14/4 ψ0 + E13/4 ψ1/4 + E12/4 ψ2/4.

Note: This is where we first encounter operators that mix the various different values of

k. If we use (2.3) in the above expression and take ψ0 to be a linear combination of the two

degenerate states with |k| = λ, we see that the last term on the left hand side of the equation

contains L±′ | j, jz, λ 〉 and L±′ | j, jz, −λ 〉, which are linear combinations of | j, jz, λ ± 1 〉
and L±′ | j, jz, −λ ± 1 〉, respectively. Thus, ψ6/4 is the lowest order term that involves

k 6= ±λ.
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Order ε15/4

[H0,x − E6/4] ψ9/4 + [H0,r,γ − E8/4] ψ7/4 + [H0,y − E10/4] ψ5/4

− 1

2 µ2 Y0

∂ψ2/4

∂y
+ a3 x3 ψ6/4 + a4 x4 ψ3/4 + a5 x5 ψ0 + b1,0,1 x y ψ5/4

+ b0,2,1 r2 y ψ4/4 + b1,2,0 x r2 ψ4/4 + b0,4,0 r4 ψ3/4 + b0,0,3 y3 ψ2/4

+ b2,0,1 x2 y ψ2/4 + b1,0,2 x y2 ψ2/4 + b0,2,2 r2 y2 ψ1/4 + b1,2,1 x r2 y ψ1/4

+ b2,2,0 x2 r2 ψ1/4 + b0,4,1 r4 y ψ0 + b1,4,0 x r4 ψ0

+
X2

0

2 µ2 Y 2
0

H0,r,γ ψ3/4 +
X0

µ2 Y 2
0

(
r

∂2

∂x ∂r
+

∂

∂x

)
ψ2/4 − r2

2 µ2 Y 2
0

∂2

∂x2
ψ1/4

+
1

µ2 Y 2
0

[ (
X0 sin γ

∂

∂r
+

X0

r
cos γ

∂

∂γ

)(
1

sin θ

∂

∂φ
− cot θ

∂

∂γ

)

+

(
X0 cos γ

∂

∂r
− X0

r
sin γ

∂

∂γ

)
∂

∂θ

]
ψ1/4

+
X0

µ2 Y 2
0

(
x − X0 y

Y0

) (
− ∂2

∂r2
− 1

r

∂

∂r
+

1

r2
L2

z′

)
ψ0

+
1

µ2 Y 2
0

[ (
− r sin γ

∂

∂x

) (
1

sin θ

∂

∂φ
− cot θ

∂

∂γ

)

− r cos γ
∂2

∂x ∂θ

]
ψ0

= E15/4 ψ0 + E14/4 ψ1/4 + E13/4 ψ2/4 + E12/4 ψ3/4.

27



Order ε16/4

[H0,x − E6/4] ψ10/4 + [H0,r,γ − E8/4] ψ8/4 + [H0,y − E10/4] ψ6/4

− 1

2 µ2 Y0

∂ψ3/4

∂y
+ a3 x3 ψ7/4 + a4 x4 ψ4/4 + a5 x5 ψ1/4 + b1,0,1 x y ψ6/4

+ b0,2,1 r2 y ψ5/4 + b1,2,0 x r2 ψ5/4 + b0,4,0 r4 ψ4/4 + b2,0,1 x2 y ψ3/4

+ b0,0,3 y3 ψ3/4 + b1,0,2 x y2 ψ3/4 + b0,2,2 r2 y2 ψ2/4 + b1,2,1 x r2 y ψ2/4

+ b2,2,0 x2 r2 ψ2/4 + b0,4,1 r4 y ψ1/4 + b1,4,0 x r4 ψ1/4 + b0,6,0 r6 ψ0

+ b0,0,4 y4 ψ0 + b1,0,3 x y3 ψ0 + b2,0,2 x2 y2 ψ0 + b3,0,1 x3 y ψ0

+
X2

0

2 µ2 Y 2
0

H0,r,γ ψ4/4 +
X0

µ2 Y 2
0

(
r

∂2

∂x ∂r
+

∂

∂x

)
ψ3/4 − r2

2 µ2 Y 2
0

∂2

∂x2
ψ2/4

+
1

µ2 Y 2
0

[ (
X0 sin γ

∂

∂r
+

X0

r
cos γ

∂

∂γ

)(
1

sin θ

∂

∂φ
− cot θ

∂

∂γ

)

+

(
X0 cos γ

∂

∂r
− X0

r
sin γ

∂

∂γ

)
∂

∂θ

]
ψ2/4

+
X0

µ2 Y 2
0

(
x − X0 y

Y0

)
H0,r,γ ψ1/4

+
1

µ2 Y 2
0

[ (
− r sin γ

∂

∂x

) (
1

sin θ

∂

∂φ
− cot θ

∂

∂γ

)

− r cos γ
∂2

∂x ∂θ

]
ψ1/4

+

[
− 2 X0 y

µ2 Y 3
0

(
∂

∂x
+ r

∂2

∂x ∂r

)

+
1

2 µ2 Y 2
0

(
2 x r

∂2

∂x ∂r
+ r

∂

∂r
+ 2 x

∂

∂x
− L2

z′

) ]
ψ0

+
j(j + 1)

2 µ2 Y 2
0

ψ0 +
1

µ2 Y 2
0

y
∂ψ0

∂y
+ D(0) ψ0

= E16/4 ψ0 + E15/4 ψ1/4 + E14/4 ψ2/4 + E13/4 ψ3/4 + E12/4 ψ4/4.
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3.1 The Complete Asymptotic Expansion

We now prove the existence of a complete expansion in powers of ε1/4 for the quasienergies

and the corresponding quasimodes under suitable hypotheses. The following proposition

completes the proof of Theorem 2.1.

Proposition 3.1 We assume the potential energy surface (2.4) is smooth, with Taylor series

given by (2.5) and (2.6). Then, the eigenvalue problem for (3.1) can be solved by formal

asymptotic expansions of the form

E =
N∑

l=0

εl/4 El/4 + O(ε(N+1)/4),

ψ(x, r, y, θ, φ, γ) =
N∑

l=0

εl/4 ψl/4(x, r, y, θ, φ, γ) + O(ε(N+1)/4),

for any N ∈ N.

Proof

Keeping the original variables (X,R, Y ), we first make use of the invariant subspace L gen-

erated by the basis {|k〉}k=−j,···,j of eigenvectors of Lz′ , where we have dropped the fixed

parameters j and jz from the notation. In this basis, the operator J2 − 2L · J + L2 can be

represented by a matrix. Let I denote the identity matrix, A denote the matrix represen-

tation of i sin(γ)
sin(θ)

(
−i ∂

∂φ
+ i cos(θ) ∂

∂γ

)
+ cos(γ) ∂

∂θ
, and B denote the matrix representation of

i cos(γ)
sin(θ)

(
−i ∂

∂φ
+ i cos(θ) ∂

∂γ

)
+sin(γ) ∂

∂θ
. Note that these angular differential operators can be

written as linear combinations of L′
+ and L′

−, which ensures that they leave L invariant.

With these definitions, we can write

J2 − 2L · J + L2

=

(
j(j + 1) +

(
−R2 ∂2

∂X2
+ 2XR

∂2

∂RX
− X2 ∂2

∂R2
+

(
R − X2

R

)
∂

∂R
+ 2X

∂

∂X

))
I

+

(
X2

R2
− 1

)
L2

z′ − 2

(
R

∂

∂X
− X

∂

∂R

)
A − 2

X

R
B.

Then, going to the rescaled variables and dropping the symbol I, the differential operator

(3.1) takes the form

− ε6/4

2 µ1(ε)

∂2

∂x2
− ε8/4

2 µ1(ε)

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2
L2

z′

)
− ε10/4

2 µ2(ε)

∂2

∂y2
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− ε13/4

µ2(ε) (Y0 + ε3/4y)

∂

∂y
− ε12/4(X0 + ε3/4x)2

2 µ2(ε) (Y0 + ε3/4y)2

{
∂2

∂r2
+

1

r

∂

∂r
− 1

r2
L2

z′

}

+
ε13/4(X0 + ε3/4x)

µ2(ε) (Y0 + ε3/4y)2

{
r

∂2

∂x∂r
+

∂

∂x

}

+
ε14/4(X0 + ε3/4x)

µ2(ε) (Y0 + ε3/4y)2

{
∂

∂r
A − 1

r
B

}
− ε14/4

2 µ2(ε) (Y0 + ε3/4y)2

{
r2 ∂2

∂x2

}

− ε15/4

µ2(ε) (Y0 + ε3/4y)2

{
r

∂

∂x
A

}
+

ε16/4

2 µ2(ε) (Y0 + ε3/4y)2

{
j(j + 1) + r

∂

∂r
− L2

z′

}

+ a0 +
∞∑

j=2

aj ε3j/4 xj +
∑

j + k + l ≥ 2
k + l ≥ 1
k even

bj, k, l ε1+
3(j+l)+2k

4 xj rk yl.

We get a matrix valued differential operator given as a formal infinite series in powers of

ε1/4 by expanding the reduced masses µj(ε) and the denominators (Y0 +ε3/4) and (Y0 +ε3/4)2.

Observe that in each term of the resulting expansion, the differential operators are at most

of order two.

The r dependence of these operators is explicit, which will allow us to check that that the

factors 1/r and 1/r2 do not cause divergences in the expressions that we encounter below.

The measure in the r variable is r dr, so the only term that might yield a vector not in L2

is the Lz′/r
2. In the eigenspace where Lz′ multiplies by zero, there is no problem. In the

eigenspaces where Lz′ multiplies by something non-zero, the wave functions contain factors

of r, so again, there is no problem.

We introduce the notation

Ψl/4(x, r, y) =

j∑
k=−j

ψl/4(x, r, y, k) |k〉 ≡




ψl/4(x, r, y,−j)

ψl/4(x, r, y,−j + 1)
...

ψl/4(x, r, y, j)


 .

We have already explicitly presented perturbation theory through order εl/4 for l ≤ 11.

The equation we must solve at order εl/4 with l ≥ 12 now can be expressed as

(H0,x − E6/4) Ψ(l−6)/4 + (H0,r,γ − E8/4) Ψ(l−8)/4 + (H0,y − E10/4) Ψ(l−10)/4

+ a3 x3 Ψ(l−9)/4 + b1,0,1 x y Ψ(l−10)/4 +
l∑

q=11

Dq Ψ(l−q)/4
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= El/4 Ψ0/4 + · · · + E12/4 Ψ(l−12)/4, (3.8)

where the symbols Dq denote at most second order differential operators in x, r, y with

matrix valued coefficients whose entries are polynomials in these variables divided by rp,

with p = 0, 1, 2. We note also that H0,r,γ is now matrix–valued, because of the centrifugal

term L2
z′/r

2, whereas H0,x and H0,y are scalar differential operators multiplied by the identity

matrix.

The point of this decomposition is to separate the vectors Ψq/4 of order less than or equal

to (l − 11)/4 from those of order (l − 10)/4 to (l − 6)/4.

Let Px, Py and Pr,γ be the orthogonal projectors on the eigenstates Φ1(x), Φ3(y) and

on the subspace Z0 = span{Φ2(r, |k|) |k〉}k∈K , respectively. We abuse notation and use

the same symbols to denote the corresponding projectors when considered on L2(Rx, dx) ⊗
L2(R+

r , rdr) ⊗ L2(Ry, dy) ⊗ L. Note that these operators commute with one another and

that the following identity holds for any q ∈ N :

Px x2q+1 = Px x2q+1 P⊥
x , where P⊥

x = I − Px. (3.9)

Also, we have constructed Ψl/4 so that

Ψ0 = Px Pr,γ Py Ψ0 and Px Pr,γ Py Ψl/4 = 0, for all l ≥ 1. (3.10)

Hence, for l ≥ 1,

Ψl/4 = P⊥
x Ψl/4 + Px P⊥

r,γ Ψl/4 + Px Pr,γ P⊥
y Ψl/4. (3.11)

In terms of the quantities introduced in the explicit computations of the lower orders, we

have in particular

Px Ψl/4 =
l∑

k=−l

Φ1(x) fl/4(r, y, k) |k〉 (3.12)

Px Pr,γ Ψl/4 =
∑
k∈K

Φ1(x) Φ2(r, |k|) gl/4(y, k) |k〉

Px Pr,γ Py Ψ0 =
∑
k∈K

Φ1(x) Φ2(r, |k|) Φ3(y) ck,0 |k〉,

where ck,0 ∈ C and
∑

k∈K |ck,0|2 = 1. Note that by virtue of (3.10),

gl/4(y, k) = P⊥
y gl/4(y, k), for any k ∈ K and any l > 0. (3.13)

31



We solve (3.8) by two independent steps. The first consists of determining the vectors Ψl/4

for any set of coefficients {c0,k}k∈K , and the other consists of solving an eigenvalue equation

for Ej/4 in IC#(K) which may reduce the set of free coeffcients {c0,k}k∈K . It is only when we

construct the actual quasimode that we restrict the values of the coefficients {c0,k}k∈K to

those given by the determination of the the El/4’s.

We now formulate our induction hypothesis for l ≥ 12.

IH: After solving equation (3.8) through order ε(l−1)/4 for vectors satisfying (3.10), we have:

• The following vectors are determined completely in terms of the coefficients {c0,k}k∈K

and depend linearly on {c0,k}k∈K :

Ψq/4, for q = 0, 1, · · · , l − 11,

(I − PxPr,γ) Ψ(l−10)/4,

(I − Px Pr,γ) Ψ(l−9)/4,

(I − Px) Ψ(l−8)/4, and

(I − Px − P⊥
x Pr,γ) Ψ(l−7)/4.

(3.14)

• The x dependence of the vector P⊥
x Pr,γ Ψ(l−7)/4 is determined and has the form

P⊥
x Pr,γ Ψ(l−7)/4 = P⊥

x Pr,γ Ψ(l−7)/4({g(l−10)/4}), (3.15)

with linear dependence on {g(l−10)/4(y, k)}k∈K , the set of functions {g(l−10)/4} entailing

the unknown y dependence.

• There exist vector spaces Wq ⊆ IC#(K) satisfying

IC#(K) = W0 ⊇ W1 ⊇ · · · ⊇ Wl−1 (3.16)

such that Eq/4 is determined by an eigenvalue equation in Wq, for q = 0, 1, · · · , l − 1.

Our explicit computations show that these properties are satisfied for l = 12, with Wq =

IC#(K), for q = 0, · · · , 11. We now show that the induction hypothesis holds at order εl/4.

Using (3.9) and (3.10) and applying Px Pr,γPy to equation (3.8) yields

El/4 Ψ0 = Px Pr,γ Py

(
a3x

3P⊥
x Ψ(l−9)/4 + b1,0,1xyP⊥

x Ψ(l−10)/4 +
l∑

q=11

DqΨ(l−q)/4

)
.
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We note that for s = 9, 10, the vectors P⊥
x Ψ(l−s)/4 = P⊥

x (I−PxPr,γ) Ψ(l−s)/4 are completely

determined by IH. By IH again, the right hand side depends linearly on the set {c0,k}k∈K .

Expressing the equation in the basis {Φ1(x)Φ2(|k|, r)Φ3(y)}k∈K of Z2, we get a finite di-

mensional eigenvalue equation. Restricting attention to the subspace Wl−1 ⊆ C
#(K) of free

coefficients, we get an eigenvalue equation in Wl−1 which we solve to yield El/4 and the

subspace Wl ⊆ Wl−1 of free coefficients.

We now turn to the computation of the vectors. Application of Px Pr,γ P⊥
y to equation

(3.8) yields

Px Pr,γ P⊥
y Ψ(l−10)/4 (3.17)

= − (H0,y − E10/4)
−1
r PxPr,γP

⊥
y

(
a3x

3P⊥
x Ψ(l−9)/4 + b1,0,1xyP⊥

x Ψ(l−10)/4 +
l∑

q=11

D̃qΨ(l−q)/4

)

where D̃q = Dq −Eq/4. The right hand side is known by IH, and since Px Pr,γ P⊥
y Ψ(l−10)/4 =

Px Pr,γ Ψ(l−10)/4, (see (3.12), (3.13)), (3.11) implies that Ψ(l−10)/4 is fully determined up to

the coefficients {c0,k}k∈K . Since the dependence of Px Pr,γ Ψ(l−10)/4 is linear in the previ-

ously determined quantities, we get by IH that Ψ(l−10)/4 depends linearly in the coefficients

{c0,k}k∈K . Hence, the vector P⊥
x Pr,γ Ψ(l−7)/4 ({g(l−10)/4}) in IH is, in turn, fully determined,

and it depends linearly on the {c0,k}k∈K ’s. Thus, the same is true for (I − Px) Ψ(l−7)/4.

Application of Px P⊥
r,γ to equation (3.8) yields

Px P⊥
r,γ Ψ(l−8)/4 = − (H0,r,γ − E8/4)

−1
r Px P⊥

r,γ × (3.18)(
(H0,y − E10/4)Ψ(l−8)/4 + a3x

3P⊥
x Ψ(l−9)/4 + b1,0,1xyP⊥

x Ψ(l−10)/4 +
l∑

q=11

D̃qΨl−q

)
,

where, by the same arguments, the right hand side is fully determined up to the coefficients

{c0,k}k∈K , on which it depends linearly. Now, from IH and the identity

Px Ψ(l−8)/4 = Px Pr,γ Ψ(l−8)/4 + Px P⊥
r,γ Ψ(l−8)/4

we see that (I − PxPr,γ) Ψ(l−8)/4 is fully determined and depends linearly on the coefficients

{c0,k}k∈K .

Finally, application of P⊥
x to equation (3.8) yields

P⊥
x Ψ(l−6)/4 = − (H0,x − E6/4)

−1
r P⊥

x

(
(H0,r,γ − E8/4) P⊥

x Ψ(l−8)/4+ (3.19)

(H0,y − E10/4) P⊥
x Ψ(l−10)/4 + a3x

3Ψ(l−9)/4 + b1,0,1xyΨ(l−10)/4 +
l∑

q=11

D̃q Ψl−q

)
,
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where, this time, the right hand side is not fully determined since there is no projector P⊥
x

acting on Ψ(l−9)/4. However, at this step, Ψ(l−10)/4 and P⊥
x Ψ(l−8)/4 = P⊥

x (I − PxPr,γ)Ψ(l−8)/4

are fully determined and linear in the {c0,k}k∈K , so that from IH we see that the only

undetermined part comes from

Px Pr,γ Ψ(l−9)/4 =
∑
k∈K

Φ1(x) Φ2(r, |k|) g(l−9)/4(y, k) ck,0 |k〉.

We conclude that the x dependence of the vector P⊥
x Ψ(l−6)/4 is determined, and that the

undetermined part of this vector depends on the set of functions {g(l−9)/4(y, k)}k∈K purely

linearly.

Thus, we have reproduced the all the requirements of the induction hypothesis, which

ends the proof.

3.2 The Expansion Around a Local Minimum

We now describe the construction of quasimodes of arbitrarily high order under assumptions

that are only local. This construction uses the formal expansions of Proposition 3.1 and the

insertion of cutoff functions. The construction is quite similar to that given in [5], so we

refrain from presenting all details.

Let N ≥ 0 be fixed and set

Ψ(N)(x, r, y, θ, φ, γ) =
N∑

l=0

εl/4 ψl/4(x, r, y, θ, φ, γ),

E (N) =
N∑

l=0

εl/4 El/4, (3.20)

V (N)(X,Y,R) =
∑

l≤(N+1)/3

al(X − X0)
l + ε

∑
j + k + l ≥ 2

k + l ≥ 1
k even

4 + 3(j + l) + 2k ≤ N

bj, k, l(X − X0)
j Rk (Y − Y0)

l,

where the vectors ψl/4 and the scalars El/4 are defined in Proposition 3.1.

Then we introduce a cutoff function. Let F : IR → [0, 1] be C∞ and such that supp F ⊂
[−2, 2] with F(t) = 1 for t ∈ [−1, 1]. We set

Fε(X,R, Y ) = F((X − X0)/ε
δ1) F(R/εδ2) F((Y − Y0)/ε

δ3),

where 0 < δ1 < 3/4, 0 < δ2 < 1/2 and 0 < δ3 < 3/4.
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The quasimode Ψ
(N)
Q is defined as

Ψ
(N)
Q (X,R, Y, θ, φ, γ) (3.21)

= ε−5/4 Fε(X,R, Y ) Ψ(N)((X − X0)/ε
3/4, R/ε1/2, (Y − Y0)/ε

3/4, θ, φ, γ).

The factor of ε−5/4 in this expression ensures asymptotic normalization of the quasimode

because of the Jacobian factor in the integral for the L2 norm.

Proposition 3.2 Let

H(ε) = − ε3

2 µ1(ε)
∆(X1, X2, X3) − ε4

2 µ2(ε)
∆(Y1, Y2, Y3) + V1(X) + ε V2(X, R, Y ),

satisfy the hypotheses of Proposition 3.1. Then, for any N ∈ N, there exists a constant CN ,

such that the vector (3.21) and the scalar (3.20) satisfy ‖Ψ(N)
Q ‖ = 1 + O(ε1/4) and∥∥∥H(ε)Ψ

(N)
Q − E (N)Ψ

(N)
Q

∥∥∥∥∥∥Ψ
(N)
Q

∥∥∥ ≤ CN ε(N+1)/4, as ε → 0.

Proof

We begin by computing the norm of Ψ
(N)
Q . The vectors ψl/4, for l = 0, · · · , N , are given as

a finite linear combinations of angular functions |k, jz, j〉, (k = −j, · · · , j), multiplied by

Gaussians in x, r, y, times polynomials in these variables. Thus, they all belong to L2.

In particular, by our choices for ψ0, we have∫
|ε−5/4 ψ0((X − X0)/ε

3/4, R/ε1/2, (Y − Y0)/ε
3/4, θ, φ, γ)|2 R dR dX dY dΩ

=

∫
|ψ0(x, r, y, θ, φ, γ)|2 r dr dx dy dΩ

= 1,

where dΩ denotes the solid angle element in the angular variables. The norms of the other

ψl/4 are similarly O(1).

Hence ‖Ψ(N)
Q ‖2 = ‖Ψ(N) + (F2

ε − 1)Ψ(N)‖2, where,

∥∥(1 −F2
ε ) Ψ(N)

∥∥2
(3.22)

≤
∫

|X − X0| ≥ εδ1

R ≥ εδ2

|Y − Y0| ≥ εδ3

|Ψ(N)((X − X0)/ε
3/4, R/ε1/2, (Y − Y0)/ε

3/4, θ, φ, γ)|2 R dR dX dY dΩ.
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The choice of exponents δj and the exponential decay of Ψ(N) imply that (3.22) is of order

ε∞, and we finally see that ∥∥∥Ψ
(N)
Q

∥∥∥ = 1 + O(ε1/4).

By construction, there exist C > 0 and D > 0, independent of ε, such that

R(N)(X,R, Y ) = V1(X) + ε V2(X,R, Y ) − V (N)(X,Y,R)

satisfies

|R(N)(X,R, Y )| ≤ C(|X − X0|(N+1)/3 + ε|X − X0|aRb|Y − Y0|c), (3.23)

where 4 + 3(a + c) + 2c ≥ N + 1, if (|X − X0| + R + |Y − Y0|) < D. Consider now

V Ψ
(N)
Q = V (N) Ψ

(N)
Q + R(N) Ψ

(N)
Q

= V (N) Fε Ψ(N) + R(N) Fε Ψ(N).

Due to the support conditions imposed by the cutoff, we can estimate FεR(N) by means of

(3.23), and, after passing to the rescaled variables x, r, y, we obtain

Fε(X,R, Y ) |R(N)(X,R, Y )| ≤ Fε(X,R, Y ) ε(N+1)/4 C
(|x|(N+1)/3 + |x|arb|y|c) .

Once again using the Gaussian decay of Ψ(N), we finally get the L2 estimate

∥∥∥R(N) Ψ
(N)
Q

∥∥∥ = O
(
ε(N+1)/4

)
.

We now have estimated everything except the terms in which the kinetic energy acts on

the cutoffs. First note that derivatives with respect to angular variables do not affect the

cutoffs. Next, by the Leibniz formula, the first and second derivatives with respect to x, y,

or r acting on Fε Ψ(N) yield supplementary terms given by first and second derivatives of Fε

multiplied by Ψ(N) or first derivatives of Ψ(N). By construction of the cutoff, the successive

derivatives of Fε are supported away of the origin in at least one of the variables x, y, or

r. Since Ψ(N) and its derivatives are Gaussian times polynomials in these variables, these

supplementary terms are all of order ε∞.

Finally, taking into account the formal expansions of Theorem 3.1, and the definition

H(N)(ε) = − ε3

2 µ1(ε)
∆(X1, X2, X3) − ε4

2 µ2(ε)
∆(Y1, Y2, Y3) + V (N)(X, R, Y, ),
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we get the L2 norm estimate∥∥∥H(ε)Ψ
(N)
Q − E (N)Ψ

(N)
Q

∥∥∥
=

∥∥∥H(N)(ε)Ψ
(N)
Q − E (N)Ψ

(N)
Q

∥∥∥ + O
(
ε(N+1)/4

)
=

∥∥Fε(H
(N)(ε)Ψ(N) − E (N)Ψ(N))

∥∥ + O
(
ε(N+1)/4

)
+ O (ε∞)

= O
(
ε(N+1)/4

)
.

4 Inclusion of the Electrons

In this section we show that including the quantum mechanical treatment of the electrons

does not change the expression for the energy up to an error of order ε3.

We decompose the Hamiltonian for all the particles in the molecule as the sum of the

nuclear kinetic energy plus a self-adjoint electron Hamiltonian h1(Y, θ, φ, R, γ, X). The

electron Hamiltonian depends parametrically on (Y, θ, φ, R, γ, X) and acts on functions of

all of the electron variables, that we describe jointly with the single symbol Z. To avoid

questions about Berry phases, we assume h1(Y, θ, φ, R, γ, X) commutes with complex con-

jugation, i.e., it is a real symmetric operator.

Because of rotational symmetries, the electron Hamiltonian can be written as

h1(Y, θ, φ, R, γ, X) = U(θ, φ, γ) h2(X, R, Y ) U(θ, φ, γ)−1,

where U(θ, φ, γ) is unitary on the electron Hilbert space and depends smoothly on θ, φ, and γ.

As a consequence, discrete eigenvalues of h1(Y, θ, φ, R, γ, X) do not depend on θ, φ, or γ.

We assume that the resolvent of h2(X, R, Y ) depends smoothly on (X, R, Y ). As a

result, all discrete eigenvalues of h1(Y, θ, φ, R, γ, X) depend smoothly on the nuclear con-

figurations.

We assume further that the ground state eigenvalue V (X, R, Y ) of h(Y, θ, φ, R, γ, X) is

discrete and non-degenerate for each fixed value of (Y, θ, φ, R, γ, X). We also assume that

V (X, R, Y ) has a global minimum at (X0, 0, Y0) with a strictly positive Hessian at that

minimum. To ensure that we are approximating discrete eigenvalues for the full molecular

Hamiltonian, we assume that the V (X0, 0, Y0) is strictly below the bottom of the spectrum

of h2(X, R, Y ) for all (X, R, Y ) outside a small neighborhood of (X0, 0, Y0).
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We now introduce ε–dependence in h2, and hence h1. We choose functions V1(X) and

V2(X, R, Y ) that satisfy

V (X, R, Y ) = V1(X) + ε0 V2(X, R, Y )

and the restrictions imposed after expression (2.4). Here ε0 is a fixed value of ε that we

take to be the fourth root of the electron mass divided by the carbon C12 nuclear mass. We

then define h(ε, Y, θ, φ, R, γ, X) by replacing V (X, R, Y ) by V1(X) + ε V2(X, R, Y ) in

the spectral decomposition of h1(Y, θ, φ, R, γ, X). Thus, we only introduce ε–dependence

in this single eigenvalue and alter none of the eigenfunctions.

Remark To minimize technicalities, we have made assumptions for all (X, R, Y ). At the

expense of inserting cut off functions, our assumptions need only be imposed for (X, R, Y )

in a neighborhood of (X0, 0, Y0).

We shall write down an explicit quasimode with an O(ε12/4) energy error for the Schrö-

dinger operator

H(ε) = − ε3

2µ1(ε)
∆(X1,X2,X3) − ε4

2µ2(ε)
∆(Y1,Y2,Y3) + h(ε, X1, X2, X3, Y1, Y2, Y3),

rewritten in terms of the variables (Y, θ, φ, R, γ, X, Z).

The quasienergy will be

E(ε) = E0 + ε6/4 E6/4 + ε8/4 E8/4 + ε10/4 E10/4, (4.1)

but the quasimode will be somewhat complicated.

To specify the quasimode, we first let χ(Y, θ, φ, R, γ, X, Z) denote a normalized real

ground state eigenfunction of h(ε, Y, θ, φ, R, γ, X) that depends continuously on its vari-

ables. Next, we let

ζ(ε, Y, θ, φ, R, γ, X) = ε−5/4

5∑
l=0

εl/4 ψl/4

(
X − X0

ε3/4
,

R

ε1/2
,

Y − Y0

ε3/4
, θ, φ, γ

)
,

where the ψl/4 are the wave functions from Section 3 with g2/4(y, ±λ) = g3/4(y, ±λ) =

f4/4(r, y, k) = f5/4(r, y, k) = 0. Note that when λ = 0 there is one linearly independent

choice for ζ. When λ > 0, we have two linearly independent choices corresponding to

k = ±λ.
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The quasimode is

Ψ(ε, Y, θ, φ, R, γ, X, Z)

= Fε(X, R, Y ) ζ(ε, Y, θ, φ, R, γ, X) χ(Y, θ, φ, R, γ, X, Z)

+
ε3

2 µ1

Fε(X, R, Y )
[
h(ε, Y, θ, φ, R, γ, X) − V (ε, X, R, Y )

]−1

r
(4.2)

×
(

∂ζ

∂X
(ε, Y, θ, φ, R, γ, X)

∂χ

∂X
(Y, θ, φ, R, γ, X, Z)

+
∂ζ

∂R
(ε, Y, θ, φ, R, γ, X)

∂χ

∂R
(Y, θ, φ, R, γ, X, Z)

)
.

Theorem 4.1 There exists a constant C, such that the function Ψ(ε) given by (4.2) and

quasienergy E(ε) given by (4.1) satisfy

‖Ψ(ε) ‖ = 1 + O
(
ε1/2

)
and ∥∥∥(

H(ε) − E(ε)
)

Ψ(ε, ·)
∥∥∥ ≤ C ε3 (4.3)

Proof The function Ψ(ε, · ) equals the normalized vector ψ0 χ plus terms that are

orthogonal to ψ0 χ. Since the largest of these orthogonal terms is ε1/4 ψ1/4 χ, we see

that Ψ(ε) has norm 1 + O(ε1/2).

To prove the second estimate of the theorem, we begin by noting that the electronic

eigenfunction χ has the form

χ(Y, θ, φ, R, γ, X, Z) = U(θ, φ, γ) χ0(Y, R, X, Z),

where U(θ, φ, γ) is unitary.

We next compute(
H(ε) − E(ε)

)
Fε(X, R, Y ) ζ(ε, ·) χ(·), (4.4)

where H(ε) is decomposed as

H(ε) = − ε3

2µ1(ε)
∆(X1,X2,X3) − ε4

2µ2(ε)
∆(Y1,Y2,Y3)

+
[
h(ε, X1, X2, X3, Y1, Y2, Y3) − V1(X) − ε V2(X, R, Y )

]
+ V1(X) + ε V2(X, R, Y ),
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with the two final terms expanded in their Taylor series of appropriate orders. We write the

resulting expression in the variables (Y, θ, φ, R, γ, X, Z). When the all the derivatives in

H(ε) act on ζ, all terms that are larger than order ε3 cancel because of Taylor series estimates

and the choices of the ψl/4. When all the derivatives act on χ, all terms are O(ε3) or smaller

because χ is smooth and the cutoffs are zero the singularity at Y = 0. When any derivatives

act on Fε, we obtain terms of order O(εq), for any q, due to the rapid fall off of the functions

in ζ. The term that arises from [h(ε)− V1 − ε V2] yields zero because it acts only on the χ.

The remaining terms in (4.4) contain terms in which a partial derivative acts on ζ and

the same partial derivative acts on χ. All of these terms are O(ε3) or smaller, except for

∂ζ

∂X
(ε, Y, θ, φ, R, γ, X)

∂χ

∂X
(Y, θ, φ, R, γ, X, Z) (4.5)

+
∂ζ

∂R
(ε, Y, θ, φ, R, γ, X)

∂χ

∂R
(Y, θ, φ, R, γ, X, Z).

Thus, (4.4) yields (4.5) plus O(ε3). However, when the [h(ε) − V1 − ε V2] acts on the second

term in (4.2), the terms that arise from (4.5) cancel, leaving us with O(ε3) errors plus the

kinetic energy and potential terms acting on the second term in (4.1). Because of the cutoff,

the potential terms yield bounded operators times O(ε3) terms. When the kinetic energy

acts on these terms, we obtain terms of order ε9/2 or smaller, since everything is smooth,

and the largest terms come from ε6 and two X–derivatives acting on ζ.

Note that when computing the norm in (4.3), it is essential that χ be orthogonal to
∂χ

∂X

and
∂χ

∂R
, or cross terms would yield terms of order greater than ε3. This orthogonality is

guaranteed by our hypothesis that the electron Hamiltonian h(ε, · ) be real symmetric and

that we choose χ to be real.
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