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Abstract. We construct a family of integrable volume-preserving maps in R
3 with a bi-

dimensional heteroclinic connection of spherical shape between two fixed points of saddle-focus type.
In other contexts, such structures are called Hill’s spherical vortices or spheromaks. We study the
splitting of the separatrix under volume-preserving perturbations using a discrete version of the
Melnikov method.

Firstly, we establish several properties under general perturbations. For instance, we bound
the topological complexity of the primary heteroclinic set in terms of the degree of some polynomial
perturbations. We also give a sufficient condition for the splitting of the separatrix under some entire
perturbations. A broad range of polynomial perturbations verify this sufficient condition. Finally,
we describe the shape and bifurcations of the primary heteroclinic set for a specific perturbation.
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1. Introduction. A fundamental question in dynamical systems is the effect
that small perturbations of a dynamical system cause on its unperturbed invariant
sets. The most studied unperturbed invariant sets are tori and stable/unstable in-
variant manifolds of hyperbolic sets. Usually, the unperturbed dynamical system is
integrable and has separatrices; that is, its stable and unstable invariant manifolds
overlap. After a generic perturbation, the perturbed stable and unstable invariant
manifolds intersect transversely, which give rise to the onset of chaos, through the
creation of Smale horseshoes. This phenomenon is known as the problem of split-
ting of separatrices. A widely used technique for detecting such intersections is the
Melnikov method.

Our goal is to apply the Melnikov method to the splitting of separatrices in the
discrete volume-preserving framework. Similar questions have been considered before.
However, we believe this is the first time that detailed analytical results about the
structure of the primary heteroclinic set and its bifurcations are established for specific
maps. This represents a step forward with respect to previous works [22, 23], in which
once written down a formula for the Melnikov function in terms of an infinite series,
the approach becomes mainly numerical, because of the technical difficulties that
obstruct the analytical one. Here, we have overcome some of these difficulties using
basic tools: complex variable theory, quasielliptic functions, homology, and several
algebraic tricks. Nevertheless, we have not been able to find an explicit expression of
the Melnikov function in terms of elementary functions for any specific perturbation.
In opposition, such explicit expressions (in terms of elliptic functions) are known for
almost twenty years in the discrete area-preserving setting [17, 13].

This study is interesting because volume-preserving maps are the simplest, and
most natural higher-dimensional versions of the much-studied class of area-preserving
maps. The infinite dimensional group of volume-preserving diffeomorphisms on R3
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is at the core of the ambitious program to reformulate hydrodynamics [3]. Volume-
preserving maps arise in a number of applications such as the study of the motion
of Lagrangian tracers in incompressible fluids or of the structure of magnetic field
lines [18, 19, 32, 29]. Experimental methods have only recently been developed that
allow the visualization of particle trajectories in spatial fluids [27, 31].

Given a system with a heteroclinic connection between two hyperbolic fixed
points, the Melnikov function computes the rate at which the distance between the
manifolds changes with a perturbation. After the introduction of the Melnikov method
for periodic perturbations of one-degree-of-freedom Hamiltonian systems, many dif-
ferent versions appeared, most of them in continuous settings (flows). For instance,
there are versions for three-dimensional incompressible flows in [28, 5, 6].

There exist also discrete versions, in which the Melnikov function is no longer
an integral, but an infinite sum whose domain is the unperturbed connection. The
first steps towards a discrete Melnikov theory were performed for area-preserving
maps [16, 17, 13, 20], and next, for symplectic maps [14], for twist maps [21], for
general n-dimension diffeomorphisms [8, 24], and for spatial billiard maps [12]. Finally,
volume-preserving maps have been considered in [22, 23]. These papers deal with
codimension-one heteroclinic connections between fixed points of saddle-focus type
and between hyperbolic invariant circles, respectively. The current paper is a natural
continuation and uses some of their ideas.

We shall construct a family of integrable volume-preserving maps f : R3 → R3

with a bi-dimensional heteroclinic connection between two fixed points. This family
is derived from another family of integrable planar maps introduced by McMillan [26].
The same construction can be found in [22], but we have decided to study a completely
new family to minimize the overlap with previous works. Besides, the new family has a
purely rational character, whereas the previous one contains trigonometric terms. This
can be important for numerical computations using a multiple-precision arithmetic.

The bi-dimensional separatrix has a spherical shape and the fixed points are
its “north pole” p+ and its “south pole” p−. Our integrable maps depend on two
parameters: a characteristic exponent h > 0 and a frequency ω ∈ T. These names
refer to the fact that

spec[Df(p±)] =
{

e±2h, e∓h+iω, e∓h−iω
}

.

Thus, the fixed points are of saddle-focus type, the characteristic exponent measures
the hyperbolicity of the map, and the frequency quantifies the rotation speed of the
trajectories on the separatrix. There exists also an one-dimensional straight het-
eroclinic connection between the fixed points. The same configuration appears in
fluid dynamics under the name of Hill’s spherical vortex or bubble-type vortex break-
down [32], and as a model for the magnetic field of stars, in which case it is called
spheromak [25]. From a more theoretical point of view, we note that the integrable
normal forms associated to families of volume-preserving flows with a Hopf-zero sin-
gularity have the same structure in the phase space [11].

In general, volume-preserving perturbations split the separatrix, but the per-
turbed stable and unstable manifold still intersect along one-dimensional heteroclinic
curves, which can be vertical, equatorial or bubble-type ones. This terminology is
borrowed from [22]. Vertical curves are those heteroclinic intersections whose end-
points are both fixed points. Due to the rotational dynamics of the unperturbed map,
these curves look like spirals connecting both poles when there is swirl ; that is, when
ω 6= 0. On the contrary, equatorial and bubble-type curves are closed curves that do
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Fig. 1. In this figure we illustrate two possible intersections that appear as heteroclinic inter-
sections of the stable and unstable manifolds that we will be considering. On the left, we have an
equatorial intersection. On the right a vertical intersection.

not approach the poles; in particular, they can not appear in autonomous flows. The
difference between equatorial curves and bubble-type ones is that the portions of the
stable and unstable manifolds delimited by a bubble-type curve encircle a contractible
region in R3; that is, a “bubble”. See remark 7 and figure 1 for more details.

We shall describe the structure of the set of primary intersections under some
perturbations. Roughly speaking, primary intersections are the sets of points where
the stable and unstable manifolds “first” meet. In fact, primary intersections are the
only intersections that can be followed by the perturbation. In the limit, as ǫ → 0,
they appear as zeroes of the Melnikov function. Therefore, non-primary intersections
are missed by standard Melnikov methods. See [22] for details.

Firstly, we bound the topological complexity of the primary heteroclinic set in
terms of the degree of volume-preserving polynomial perturbations of the form

fǫ = (Id + ǫκ) ◦ f, κ(x, y, z) = (0, α(x), β(x, y)).

In particular, it turns out that the primary heteroclinic set contains at most 2n vertical
curves when α(x) ∈ Rn−1[x] and β(x, y) ∈ Rn[x, y].

Next, we shall give a sufficient condition for the splitting of the separatrix under
some entire perturbations. A broad range of polynomial perturbations verify this con-
dition. For instance, the ones with κ(x, y, z) = (0, 0, β(x, y)) for some even polynomial
β(x, y) of degree 4l + 2, provided that e4kωi 6= −1 for k = 1, . . . , 2l + 1. In particu-
lar, nonresonant frequencies guarantee the breakdown of the unperturbed structure,
which is in sharp contrast with some known principles in KAM theory.

Finally, we shall consider the perturbation with κ(x, y, z) = (0, x, 0). The primary
heteroclinic set under this perturbation consists in four vertical curves for ω 6= ±π/2,
whereas some heteroclinic bifurcations take place at ω = ±π/2. Unfortunately, we
have found a complete proof of these facts only for h ≥ h0 ≈ 2.28, but we conjecture,
based on numerical experiments, that this picture holds for any h > 0. The previous
upper bound on the number of vertical curves is optimal for this perturbation.
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The proof of each analytical result is based on different tools. The bounds on
the topological complexity follow from basic homology theory. The splitting result is
obtained through the study of the complex singularities of the Melnikov function, an
idea that goes back to Ziglin [34]. The part about bifurcations relies strongly on the
fact that the Melnikov function can be expressed in terms of a quasielliptic function
of order two. Besides, each part has its own algebraic tricks.

We complete this introduction with a note on the organization of the paper.
In §2, we recall the Melnikov theory for volume-preserving maps. In §3, we construct
the family of integrable volume-preserving maps. Afterwards, we derive an explicit
expression for the Melnikov function associated to some volume-preserving perturba-
tions in §4. The next sections are devoted to bound the topological complexity of the
primary heteroclinic set and to establish some sufficient conditions for the splitting.
The study about the bifurcations of the primary heteroclinic set under the sample
perturbation is contained in §7. Some analytical details and numerical experiments
are relegated to appendix A and appendix B, respectively.

2. The Melnikov theory for volume-preserving maps. In this section we
shall briefly describe the Melnikov theory for volume-preserving maps developed in [22,
23, 24].

Let fǫ : R3 → R3 be a family of smooth volume-preserving maps such that the
unperturbed map f = f0 has two hyperbolic fixed points a and b whose stable and
unstable invariant manifolds coincide giving rise to a bi-dimensional saddle connection
Σ = W u(a, f)\{a} = W s(b, f)\{b}, whereW u(a, f) andW s(b, f) denote the unstable
invariant manifold of the point a and the stable invariant manifold of the point b,
respectively. Both fixed points persist and remain hyperbolic for small ǫ. We want to
study how the perturbed invariant manifolds W u(aǫ, fǫ) and W s(bǫ, fǫ) intersect.

Our goal is to describe the topology of the set of primary intersections Pǫ ⊂
W u(aǫ, fǫ) ∩ W s(bǫ, fǫ). We also pursue to elucidate when the separatrix Σ splits
under the perturbation; that is, when there is no smooth family of saddle connections
Σǫ ⊂ W u(aǫ, fǫ) ∩W s(bǫ, fǫ) such that Σ0 = Σ.

We collect in the following theorem the basic Melnikov-like results about this
setup. See [22, 24]

Theorem 1. Under the previous assumptions, there exists a smooth function
M : Σ → R, called the Melnikov function, with the following properties.

(i) If ξ0 is a nondegenerate zero of M , then W u(aǫ, fǫ) and W s(bǫ, fǫ) intersect
transversely, for ǫ small enough, at a point ξǫ = ξ0 + O(ǫ) ∈ Pǫ.

(ii) If 0 is a regular value of M , then the set of primary intersections Pǫ is, for ǫ
small enough, an one-dimensional submanifold of R3 such that Pǫ = M−1(0) + O(ǫ).

(iii) It is invariant by the unperturbed map: M ◦ f = M .
(iv) If fǫ has a smooth family of:
1. Symmetries Sǫ : R3 → R3 such that S0(Σ) = Σ, then M ◦ S0 = M .
2. Reversors Rǫ : R3 → R3 such that R0(Σ) = Σ, then M ◦R0 = −M .
3. Saddle connections Σǫ ⊂W u(aǫ, fǫ) ∩W s(bǫ, fǫ) with Σ0 = Σ, then M ≡ 0.

The Melnikov function is constructed in such a way that it measures the distance
between the perturbed invariant manifolds W u(aǫ, fǫ) and W s(bǫ, fǫ) in first-order.
Because of this, the zero-level set M−1(0) ⊂ Σ is strongly related to the primary
intersection set Pǫ and any change in its topology gives rise to some heteroclinic
bifurcation, mainly to some tangency between the perturbed invariant manifolds.
Besides, a sufficient condition for the splitting of the separatrix is that the Melnikov
function is not identically zero.
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We recall some concepts that appear in the theorem above. A point ξ of a
manifold Σ is a regular point of a smooth function M : Σ → R when the differential
form dM does not vanish at ξ, whereas r ∈ R is a regular value of M if every point in
M−1(r) is a regular point. A zero of M is called nondegenerate when it is a regular
point. If r is a regular value of M , then M−1(r) is an one-dimensional submanifold
of Σ. On the contrary, M−1(r) can be much more complicated if 0 is a singular
value, although its subset of regular points is also an one-dimensional submanifold
of Σ. A diffeomorphism f is symmetric when there exists a diffeomorphism S such
that f ◦ S = S ◦ f , and then S is called a symmetry of the map f . Analogously, f is
reversible when there exists a diffeomorphism R such that f ◦R = R ◦ f−1, and then
R is called a reversor of the map f and we denote by FixR = {ξ ∈ R3 : R(ξ) = ξ}
the set of its fixed points. These fixed points are called symmetric in the literature.

Symmetries, reversors and symmetric heteroclinic points play an important rôle in
the study of (primary) heteroclinic intersections, see [15]. For instance, the set of pri-
mary intersections is invariant by symmetries and reversors. Besides, symmetric hete-
roclinic points persist under reversible perturbations. Concretely, if fǫ is Rǫ-reversible
and FixR0 is a smooth curve that intersects transversely the saddle connection Σ at
some point ξ0, then there exists a unique point ξǫ = ξ0 + O(ǫ) ∈ Pǫ ∩ FixRǫ.

Remark 1. If fǫ is not Rǫ-reversible, but fǫ◦Rǫ−Rǫ◦f−1
ǫ = O(ǫ2) and R0(Σ) = Σ,

then M ◦ R0 = −M . This has to do with the fact that the Melnikov function only
measures first-order behaviours. We present an explicit example of this situation in
proposition 4.

In order to apply this theory, we must compute the Melnikov function. This is
easier when the unperturbed map has a nondegenerate first integral I : R3 → R and
fǫ = (Id + ǫκ) ◦ f for some map κ : R3 → R3. Under these assumptions, it is proved
in [22, Lemma 8] that the Melnikov function is the absolutely convergent series

M =
∑

k∈Z

〈∇I, κ〉 ◦ fk.(1)

This is the formula for Melnikov functions that we shall use in this paper.

We are only interested in perturbations that do not destroy the volume-preserving
character of the unperturbed map f . This question has a simple answer: fǫ = (Id +
ǫκ)◦f preserves volume if and only if the differential of the perturbation κ is nilpotent
everywhere, see [22, Lemma 3]. This allows us to create simple examples of volume-
preserving perturbations. For instance, we could take κ(x, y, z) = (0, α(x), β(x, y)) or
κ(x, y, z) = (γ(y, z), δ(z), 0) for any smooth functions α, δ : R → R and β, γ : R2 → R.

3. The maps. In this section we shall construct, following a methodology devel-
oped in [22], the perturbed volume-preserving maps fǫ that will be studied along the
rest of the paper. As a starting point, we shall describe the unperturbed maps f = f0
that form a family of integrable volume-preserving maps with a bi-dimensional hete-
roclinic connection between a couple of hyperbolic fixed points. This integrable family
is derived from another family of integrable planar standard-like maps introduced by
McMillan [26].

Let h > 0 be the parameter of the family of planar standard-like maps. Then we
consider the quantities c = cosh(h/2) and s = sinh(h/2), the rational transformation

z 7→ φ(z) =
cz + s

c+ sz
(2)
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Fig. 2. The phase portrait of the area-preserving map (3) for h = 2. The solid squares denote
the hyperbolic fixed points q±. The thick lines denote the heteroclinic connections Γ0 and Γ. The
arrows denote the dynamics of the map on the connections

and the area-preserving map

g(r, z) =
(

φ
(

r + φ−1(z)
)

− z, r + φ−1(z)
)

,(3)

where φ−1(z) = (cz− s)/(c− sz) = −φ(−z) is the inverse transformation of (2). The
phase portrait of this map is sketched in figure 2. Its main dynamical properties are
described in the next lemma.

Lemma 2. The area-preserving map (3) verifies the following properties:
(i) The points q± = (0,±1) are hyperbolic fixed points of g and

spec[Dg(q±)] =
{

eh, e−h
}

.

(ii) The function J(r, z) = (c2 − s2z2)r2 +2cs(z2 − 1)r is a first integral and the
level J−1(0) contains two heteroclinic connections between the hyperbolic fixed points.

(iii) These heteroclinic connections are Γ0 =
{

(r, z) ∈ R2 : r = 0, |z| < 1
}

and

Γ =

{

(r, z) ∈ R2 : r = φ(z) − φ−1(z) =
2cs(1 − z2)

c2 − s2z2
, |z| < 1

}

.

(iv) The diffeomorphism γ = (r, z) : R → Γ, z(t) = tanh(t/2) , r(t) = z(t+ h)−
z(t− h), is a natural parametrization of the connection Γ; that is, g(γ(t)) = γ(t+ h).

(v) The map g is R-reversible and R(γ(t)) = γ(−t), where R(r, z) = (r,−z).
Proof. It is a direct computation, so it is more enlightening to explain how these

formulae are guessed. The canonical change of variables (r, z) 7→
(

z,w = r + φ−1(z)
)
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transforms (3) into the planar standard-like map

ḡ(z,w) = (w,ψ(w) − z), ψ(w) = φ(w) + φ−1(w) =
2w

c2 − s2w2

introduced by McMillan, which has similar properties [26, page 232]. For instance,

J̄(z,w) = s2(z2 − 1)(w2 − 1) − (z − w)2

is a known first integral of the McMillan map and its zero-level set J̄−1(0) contains
two heteroclinic connections between the hyperbolic fixed points q̄− = (−1,−1) and
q̄+ = (1, 1). From the relation ψ(z) = φ(z) + φ−1(z), we get that

ḡk(z, φ±1(z)) =
(

φ±k(z), φ±(k+1)(z)
)

for all k ∈ Z. Thus, using that φ : (−1, 1) → (−1, 1) is a diffeomorphism such that
limk→±∞ φk(z) = ±1 for all z ∈ (−1, 1), we see that the heteroclinic connections are

Γ̄0 = {w = φ−1(z)}, Γ̄ = {w = φ(z)}.

The change (z,w) 7→
(

r = w − φ−1(z), z
)

transforms Γ̄0 into Γ0 = {r = 0} and Γ̄
into Γ = {r = φ(z) − φ−1(z)}. Finally, the natural parametrization follows from the
relations φ(z(t)) = z(t+h) and r(t) = φ(z(t))−φ−1(z(t)) = z(t+h)−z(t−h).

Next, we construct a volume-preserving map using the area-preserving map (3).
The methodology consists, roughly speaking, in “to rotate” the right half-plane {r >
0} of figure 2 around the vertical axis, using “canonical” cylindrical coordinates [22].
The map becomes fully three-dimensional if we introduce any non-trivial dynamics
in the cylindrical angular variable θ ∈ T := R/2πZ. For instance, a rigid rotation
θ 7→ Θ = θ+ω suffices. See also remark 2. The surface of revolution Σ obtained from
the curve Γ is the bi-dimensional heteroclinic connection we were looking for.

The construction would be a little obscure if we use directly the Cartesian co-
ordinates (x, y, z). Hence, as an intermediate step, it is convenient to introduce the
cylindrical angle θ ∈ T and the cylindrical radius

√
2r > 0. That is, we will work with

the “canonical” cylindrical coordinates (r, θ, z) defined by the relations

x =
√

2r cos θ, y =
√

2r sin θ, z = z.(4)

The term “canonical” means that dx ∧ dy ∧ dz = dr ∧ dθ ∧ dz. Consider the map
(r, θ, z) 7→ (R,Θ, Z), given by

Θ = θ + ω, (R,Z) = g(r, z)(5)

where g is the area-preserving map (3). This map preserves volume, since

dX ∧ dY ∧ dZ = −dR ∧ dZ ∧ dΘ = −dr ∧ dz ∧ dθ = dx ∧ dy ∧ dz.

Let

ρ(r, z) =







√

(φ(r + φ−1(z)) − z) /r, r 6= 0,

√

φ′(φ−1(z)), r = 0.
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This function ρ(r, z) is analytic at r = 0 for |z| < c/s. Using coordinates (4) in the
map defined by (5), we get that, in Cartesian coordinates, the map that we want is





X
Y
Z



 = f





x
y
z



 =





cosω − sinω 0
sinω cosω 0

0 0 1









ρ(r, z)x
ρ(r, z)y

r + φ−1(z)



(6)

where r = (x2 + y2)/2. We check, using formulation (6), that the map is well-defined
and analytic on {(0, 0, z) ∈ R3 : |z| < c/s}. This was not immediately clear from (4),
since the change to cylindrical coordinates is singular at r = 0.

The map (6) is our unperturbed volume-preserving model. It depends on the
characteristic exponent h > 0 and the frequency ω ∈ T. The characteristic exponent
measures the hyperbolicity of the problem. In particular, numerical computations or
analytical studies about separatrix splittings for small values of h will be hard, due
to their exponentially smallness. For instance, we have only been able to prove a
conjecture presented in §7 for h ≥ log 16 − log(

√
113 − 9) ≈ 2.282.

The main dynamical properties of the integrable volume-preserving map (6) are
described in the following lemma.

Lemma 3. The volume-preserving map (6) verifies the following properties:
(i) The points p± = (0, 0,±1) are hyperbolic fixed points of f such that

spec[Df(p±)] =
{

e±2h, e∓h+iω, e∓h−iω
}

.

(ii) The function I(x, y, z) = J
(

(x2 + y2)/2, z
)

is a first integral of f and the
level I−1(0) contains two heteroclinic connections between the hyperbolic fixed points.

(iii) The heteroclinic connections are Σ0 =
{

(0, 0, z) ∈ R3 : |z| < 1
}

and

Σ =

{

(x, y, z) ∈ R3 : x2 + y2 =
4cs(1 − z2)

c2 − s2z2
, |z| < 1

}

.

(iv) The diffeomorphism σ : T × R → Σ, σ(θ, t) = (x(θ, t), y(θ, t), z(t)), given by

z(t) = tanh(t/2)
r(t) = z(t+ h) − z(t− h)

x(θ, t) =
√

2r(t) cos θ

y(θ, t) =
√

2r(t) sin θ















(7)

is a natural parametrization of Σ; that is, f(σ(θ, t)) = σ(θ + ω, t+ h).
(v) The map f has the linear symmetry S(x, y, z) = (−x,−y, z) and the invo-

lutive linear reversors R(x, y, z) = (x,−y,−z) and T (x, y, z) = (−x, y,−z). Besides,
S(σ(θ, t)) = σ(θ + π, t), R(σ(θ, t)) = σ(−θ,−t), and T (σ(θ, t)) = σ(π − θ,−t).

Proof. In the cylindrical coordinates (r, θ, z), the map f acts in the form described
in (5). Therefore, these properties follow directly from the properties of the map g
described in lemma 2 and the fact that the involutions θ 7→ −θ and θ 7→ π − θ are
reversors of the rigid rotations θ 7→ θ + ω.

Remark 2. We could have considered that the frequency is not constant, but it
depends on the first integral: ω = ω(I). In that case, since the expression of the
Melnikov function only needs the values of the dynamics on the saddle connection Σ,
only the value ω0 = ω(0) appears in the Melnikov computations.

The fixed sets of the reversors R and T are smooth curves. In fact, FixR is
the x-axis and FixT is the y-axis. Besides, each fixed set intersects transversely the
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saddle connection at a couple of opposite points, namely

Σ ∩ FixR = {ξ+, ξ−}, Σ ∩ FixT = {ζ+, ζ−}

where ξ± = (±η, 0, 0), ζ± = (0,±η, 0), and η = 2
√

s/c. Besides, ξ+ = σ(0, 0),
ξ− = σ(π, 0), ζ+ = σ(π/2, 0), and ζ− = σ(3π/2, 0). The question about when these
symmetric heteroclinic points persist is answered in the following proposition.

Proposition 4. Let S, R and T be the symmetry and the reversors introduced
in lemma 3. Let ξ± and ζ± be the symmetric heteroclinic points of the map (6) on the
x-axis and y-axis, respectively. Let Pǫ be the set of primary heteroclinic intersections
of the perturbed map fǫ = pǫ ◦f , where pǫ = Id+ ǫκ and κ(x, y, z) = (0, α(x), β(x, y)).

(i) If α(x) is odd and β(x, y) is even, then fǫ is S-symmetric and S(Pǫ) = Pǫ.
(ii) If β(x, y) is even in y, then fǫ ◦Rǫ −Rǫ ◦ f−1

ǫ = O(ǫ2), where Rǫ = pǫ ◦R.
If, in addition, α(0) = 0 and β(0, α(x)) = 0, then fǫ is Rǫ-reversible, Rǫ(Pǫ) = Pǫ,
and there exists points ξ±ǫ = ξ± + O(ǫ) ∈ Pǫ ∩ FixRǫ.

(iii) If α(x) is odd and β(x, y) is even in x, then fǫ ◦Tǫ−Tǫ ◦f−1
ǫ = O(ǫ2), where

Tǫ = pǫ ◦ T . If, in addition, α(0) = 0 and β(0, α(x)) = 0, then fǫ is Tǫ-reversible,
Tǫ(Pǫ) = Pǫ, and there exists points ζ±ǫ = ζ± + O(ǫ) ∈ Pǫ ∩ FixTǫ.

Proof. (i) If α(x) is odd and β(x, y) is even, then κ ◦ S = S ◦ κ and

pǫ ◦ S = (Id + ǫκ) ◦ S = S + ǫS ◦ κ = S ◦ (Id + ǫκ) = S ◦ pǫ.

Therefore, fǫ ◦ S = pǫ ◦ f ◦ S = pǫ ◦ S ◦ f = S ◦ pǫ ◦ f = S ◦ fǫ.
(ii) If β(x, y) is even in y, then κ ◦R = −R ◦ κ. Besides, p−1

ǫ = Id − ǫκ + O(ǫ2).
Therefore, Rǫ = (Id + ǫκ) ◦ R = R − ǫR ◦ κ = R ◦ (Id − ǫκ) = R ◦ p−1

ǫ + O(ǫ2) and
fǫ ◦Rǫ = pǫ ◦ f ◦R ◦ p−1

ǫ + O(ǫ2) = pǫ ◦R ◦ f−1 ◦ p−1
ǫ + O(ǫ2) = Rǫ ◦ f−1

ǫ + O(ǫ2).
If α(0) = 0 and β(0, α(x)) = 0, then κ2(x, y, z) = (0, α(0), β(0, α(x))) = 0 and

p−1
ǫ = Id − ǫκ, so all the O(ǫ2) terms above vanish.

(iii) If α(x) is odd and β(x, y) is even in x, then κ ◦ T = −T ◦ κ, so it suffices to
replace R with T in the previous item.

When Rǫ and Tǫ are true reversors, their fixed sets are

FixRǫ = {(x, y, z) ∈ R3 : y = ǫα(x)/2, z = ǫβ(x, ǫα(x)/2)/2},
FixTǫ = {(x, y, z) ∈ R3 : x = 0, z = ǫβ(0, y)/2}

which are O(ǫ)-close to the x-axis and y-axis. (We have used that α(0) = 0.)

4. The Melnikov function. Next, we want to derive an explicit expression for
the Melnikov function associated to the volume-preserving perturbations

fǫ = (Id + ǫκ) ◦ f, κ(x, y, z) = (0, α(x), β(x, y)).(8)

Other perturbations can also be studied. We do not aspire to be exhaustive.
If α(0) = β(0, 0) = 0, then fǫ(0, 0, z) = f(0, 0, z) and the one-dimensional hete-

roclinic connection Σ0 is preserved under the perturbation (8). There is no similar
persistence result for the two-dimensional heteroclinic connection Σ.

The first integral given in lemma 3 is I(x, y, z) = J(r, z), where r = (x2 + y2)/2
and J(r, z) = (c2 − s2z2)r2 +2cs(z2− 1)r. Besides, r = 2cs(1− z2)/(c2− s2z2) on the
saddle connection Σ. Finally, if the perturbation has the form (8), then the Melnikov
function (1) can be written as

M : Σ → R, M(x, y, z) =
∑

k∈Z

m(xk, yk, zk)(9)
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where (xk, yk, zk) = fk(x, y, z) and

m(x, y, z) = 〈∇I(x, y, z), κ(x, y, z)〉
= ∂yI(x, y, z)α(x) + ∂zI(x, y, z)β(x, y)

= y∂rJ(r, z)α(x) + ∂zJ(r, z)β(x, y)

= 2csy(1− z2)α(x) + 2szr(2c− sr)β(x, y).

On the other hand, the natural parametrization σ = (x, y, z) : T × R → Σ given
in (7) provides a diffeomorphism between the saddle connection Σ an the cylinder
T × R, so that objects defined over Σ can be considered as depending on an angular
variable θ ∈ T and a hyperbolic variable t ∈ R. Henceforth, we will abuse the notation
by not giving these objects new names. Thus, the Melnikov function (9) becomes

M : T × R → R, M(θ, t) =
∑

k∈Z

m(θ + kω, t+ kh)(10)

where

m(θ, t) = λ(t)y(θ, t)α(x(θ, t)) + µ(t)β(x(θ, t), y(θ, t))
(11)

= ρ(t)λ(t)α
(

ρ(t) cos θ
)

sin θ + µ(t)β
(

ρ(t) cos θ, ρ(t) sin θ
)

and

r(t) = z(t+ h) − z(t− h) =
2cs

cosh ((t+ h)/2) cosh ((t− h)/2)
,

ρ(t) =
√

2r(t),
(12)

λ(t) = 2cs
(

1 − z(t)2
)

= 4csz′(t) =
2cs

cosh2(t/2)
,

µ(t) = 2sz(t)r(t) (2c− sr(t)) = −4csr′(t).

The rest of the paper deals with the computation and description of the zero-level set

Z = M−1(0) = {(θ, t) ∈ T × R : M(θ, t) = 0}

for several simple perturbations (8). In order to make easier that, we recall that the
Melnikov function was invariant by the unperturbed map. In the current context, this
implies that the Melnikov function M satisfies

M(θ + ω, t+ h) = M(θ, t) = M(θ + 2π, t)(13)

and therefore the zero-set Z is (2π, 0) and (ω, h)-periodic. This is, if (θ∗, t∗) ∈ Z then
(θ∗ + ω, t∗ + h) ∈ Z and (θ∗ + 2π, t∗) ∈ Z.

A tilde will always denote the projection of a periodic object to the quotient torus

τ̃(ω, h) = τ̃ := (T × R)/(ω, h)Z = R2/ ((2π, 0)Z + (ω, h)Z)(14)

which is diffeomorphic to the quotient of the saddle connection by the unperturbed
map. The study of the projected set Z̃ = M̃−1(0) ⊂ τ̃ is easier, because τ̃ is compact.

The torus is represented in figure 3 as the rectangle [0, 2π] × [0, h] with the ap-
propriate identifications. We have not chosen the parallelogram shown in thin lines in
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◦
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Fig. 3. A rectangular representation of the torus τ̃ and the symmetric points described in
lemma 5 for ω = π/3. Opposites sides of the rectangle are identified, although the identification of
the horizontal ones is shifted by an amount equal to ω.

that figure as the representation of the torus, because its shape changes in ω, hindering
posterior comparisons and the study of bifurcations that take place in ω.

Remark 3. Sometimes we will restrict ourselves to the case ω = 0, which is called
no-swirl in fluid dynamics. This is the simplest one, because then the quotient torus
is a product: τ̃ (0, h) = (R/2πZ) × (R/hZ), and the variable t is defined modulo h.
Although the unperturbed map has just a bi-dimensional dynamics for ω = 0, it is still
an interesting case —the perturbation will create a real three-dimensional dynamics.

Let us check that Z̃ contains at least eight symmetric points and has some useful
symmetries and more periodicities when the perturbation preserves the symmetry and
reversors of the unperturbed map. The symmetric points are shown in figure 3.

Lemma 5. Let Z̃ be the projection onto the torus (14) of the zero-level set of the
Melnikov function (10).

(i) If α(x) is odd and β(x, y) is even, then Z̃ is (π, 0)-periodic: Z̃ = Z̃ + (π, 0).
(ii) If α(x) is even and β(x, y) is odd, then Z̃ is (π, 0)-periodic: Z̃ = Z̃ + (π, 0).
(iii) If β(x, y) is even in y, then Z̃ contains (and is symmetric with regard to)

the points ξ̃+ = (0, 0), ξ̃− = (π, 0), ξ̃+ = (ω/2, h/2), and ξ̃− = (π + ω/2, h/2).
(iv) If α(x) is odd and β(x, y) is even in x, then Z̃ contains (and is symmetric

with regard to) the points ζ̃+ = (π/2, 0), ζ̃− = (3π/2, 0), ζ̃+ = (π/2 + ω/2, h/2), and
ζ̃− = (3π/2 + ω/2, h/2).

Proof. We could write a geometric proof based on the geometric properties es-
tablished in proposition 4, but instead, we give a shorter analytic proof.

We consider the Melnikov function M as a function defined on the plane R2 with
periods (2π, 0) and (ω, h). Assume that M is odd with regard to a point (θ0, t0) ∈ R2.
Then M−1(0) contains (and is symmetric with regard to) the point (θ0, t0). But
M−1(0) also contains (and is symmetric with regard to) the points (θ0 + p, t0 + q) for
any semi-period (p, q) of M , because

M(θ0 + p, t0 + q) = −M(θ0 − p, t0 − q) = −M(θ0 + p, t0 + q).

Hence, it suffices to check that:
(i) If α(x) is odd and β(x, y) is even, then M(θ, t) is π-periodic in θ;
(ii) If α(x) is even and β(x, y) is odd, then M(θ, t) is π-antiperiodic in θ;
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(iii) If β(x, y) is even in y, then M(θ, t) is odd with regard to (0, 0); and
(iv) If α(x) is odd and β(x, y) is even in x, M(θ, t) is odd with regard to (π/2, 0).

The functions r(t), ρ(t), and λ(t) given in (12) are even, whereas µ(t) is odd. Hence,
the function (11) and the Melnikov function (10) verify (i)–(iv).

Remark 4. One can obtain more symmetries or periodicities under more restric-
tive hypotheses. For instance, using basic trigonometric properties, one checks that
Z is (π/2, 0)-periodic when κ(x, y, z) = (0, x, 0), or when κ(x, y, z) = (0, 0, β(x, y)) for
some β(x, y) such that β(x, y) = β(−y, x) or β(x, y) = −β(−y, x).

Remark 5. It turns out that Z̃ 6= ∅, even if the volume-preserving perturbation (8)
has no symmetries. This has to do with the existence of an area form η̃ over the torus τ̃
such that the integral of the two-form M̃ η̃ vanishes. Therefore, the Melnikov function
has to be zero at some points. This idea was used in [23]. We skip the details.

5. Bounds on the complexity of the primary heteroclinic set. First, we
shall establish an upper bound on the cardinality of the horizontal sections of the
zero-level set Z under polynomial perturbations of the form (8). These horizontal
sections are defined as

Zt0 = {θ ∈ T : M(θ, t0) = 0} = {θ ∈ T : (θ, t0) ∈ Z}, t0 ∈ R.

Proposition 6. If α(x) ∈ Rn−1[x] and β(x, y) ∈ Rn[x, y] for some integer n ≥ 1,
then either Zt0 = T or #Zt0 ≤ 2n.

Proof. The function m(θ, t) given in (11) has the following simple forms un-
der monomial perturbations. If α(x) = xi−1 and β(x, y) = 0, then m(θ, t) =
(2r(t))i/2λ(t) cosi−1 θ sin θ, whereas if α(x) = 0 and β(x, y) = xiyj , then m(θ, t) =
(2r(t))(i+j)/2µ(t) cosi θ sinj θ. Therefore, the Fourier expansion ofm(θ, t) when α(x) ∈
Rn−1[x] and β(x, y) ∈ Rn[x, y] has only the central 2n + 1 harmonics. That is,
m(θ, t) =

∑

|j|≤nmj(t)e
ijθ for some coefficients mj(t). Thus the Fourier expansion of

the Melnikov function (10) has the same form, since

M(θ, t) =
∑

k∈Z

m(θ + kω, t+ kh)

=
∑

|j|≤n

∑

k∈Z

mj(t+ kh)eij(θ+kω)

=
∑

|j|≤n

Mj(t)e
ijθ,

where Mj(t) =
∑

k∈Z
eijkωmj(t + kh). To end the proof, it suffices to note that any

non-zero trigonometric polynomial like Mt0(θ) := M(θ, t0) =
∑

|j|≤nMj(t0)e
ijθ has

at most 2n different roots in T.

If ω = 0, there exists a similar bound for the cardinal of the vertical sections.
This new bound is obtained by using some elementary facts of the theory of elliptic
functions. We recall that a function is elliptic when it is meromorphic in the whole
complex plane and has two complex periods that are independent over the reals. The
order of a non-constant elliptic function is the number of its poles (or zeros), counted
with multiplicity, that lie in a cell. A cell of an elliptic function with periods p1 and
p2 is a parallelogram with vertexes s, s+ p1, s+ p1 + p2, and s+ p2 such that its sides
do not contain neither zeros nor poles. For a general background on elliptic functions,
we refer to [33].
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We realized in remark 3 that the Melnikov function M(θ, t) is h-periodic in the
vertical coordinate t when the frequency ω is zero. In that case, the vertical sections
of the projected zero-level set Z̃ = M̃−1(0) ⊂ τ̃ defined as

Z̃θ0 = {t ∈ R/hZ : M̃(θ0, t) = 0} = {t ∈ R/hZ : (θ0, t) ∈ Z̃}

are subsets of the quotient space R/hZ.
Proposition 7. Assume that the perturbation (8) is polynomial and ω = 0. Let

Z̃θ0 be any vertical section which does not cover the whole set R/hZ. Let l, n ∈ N.
(i) If α(x) ∈ R2l−1[x] is odd and β(x, y) = 0, then #Z̃θ0 ≤ l.
(ii) If α(x) = 0 and β(x, y) ∈ R2n[x, y] is even, then #Z̃θ0 ≤ n+ 1.
(iii) If α(x) ∈ R2l−1[x] is odd and β(x, y) ∈ R2n[x, y] is even, then #Z̃θ0 ≤

max(l, n+ 2).
Proof. These three items a based on the following formulae. If α(x) = x2j−1

and β(x, y) = 0, then m(θ, t) = (2r(t))jλ(t) cos2j−1 θ sin θ. If α(x) = 0 and β(x, y) =
xiy2j−i, then m(θ, t) = (2r(t))jµ(t) cosi θ sin2j−i θ. Hence, if the polynomial α(x) ∈
R2l−1[x] is odd and the polynomial β(x, y) ∈ R2n[x, y] is even, the function m(θ, t)
has the form

m(θ, t) = λ(t)

l
∑

j=1

aj(θ)(r(t))
j + µ(t)

n
∑

j=1

bj(θ)(r(t))
j

for some trigonometric polynomials aj(θ) and bj(θ). Since ω = 0, we get that

M̃θ0(t) := M̃(θ0, t) =
l
∑

j=1

aj(θ0)Aj(t) +
n
∑

j=1

bj(θ0)Bj(t)(15)

where Aj(t) =
∑

k∈Z
λ(t+ kh)(r(t+ kh))j and Bj(t) =

∑

k∈Z
µ(t+ kh)(r(t+ kh))j.

The functions z(t), r(t), λ(t), and µ(t) are 2πi-periodic and meromorphic in C.
On the one hand, the poles of z(t) are the points in the set πi + 2πiZ, all of them
simple, and so λ(t) = 4csz′(t) has the same poles, but they are double ones. On the
other hand, the poles of r(t) are the points in the sets ±h + πi + 2πiZ, all of them
simple, and so µ(t) = −4csr′(t) has the same poles, but they are double ones.

Thus, Aj(t), Bj(t), and M̃θ0(t) are elliptic functions with periods h and 2πi. Their
poles are the points in the set πi + hZ + 2πiZ. Their orders are at most max(j, 2),
j + 2, and max(l, n+ 2), respectively. To end the common part of the proof, we note
that M̃θ0(t) is non-constant, because Z̃θ0 6= R/hZ.

(i) If β(x, y) = 0, the elliptic function (15) becomes M̃θ0(t) =
∑l

j=1 aj(θ0)Aj(t)
and its order is at most max(l, 2), so that it has at most max(l, 2) roots in a cell
and #Z̃θ0 ≤ max(l, 2). We can substitute this last bound by #Z̃θ0 ≤ l because if
α(x) = x and ω = 0, then either Z̃θ0 = R/hZ or Z̃θ0 = ∅, see item (iv) of theorem 17.

(ii) If α(x) = 0, the elliptic function (15) becomes M̃θ0(t) =
∑n

j=1 bj(θ0)Bj(t)
and is odd, because µ(t) is odd and r(t) is even. Its order is at most n + 2, but
the rough bound #Z̃θ0 ≤ n + 2 can be improved using the symmetry. We get that
M̃θ0(h/2 + πi) = 0, because

M̃θ0(h/2 + πi) = M̃θ0(−h/2 + πi) = M̃θ0(−h/2 − πi) = −M̃θ0(h/2 + πi).

This means that M̃θ0(t) has at most n+ 1 real roots modulo h.
(iii) In this case, the bound #Z̃θ0 ≤ max(l, n+ 2) can not be improved.
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Remark 6. Proposition 6 also holds for the integrable trigonometric family of
volume-preserving maps introduced in [22]. The proof does not requires any change.
On the contrary, proposition 7 can not be directly translated into the trigonomet-
ric setting, because the complex singularities of the natural parametrization of the
separatrix in that setting are more complicated.

Recall that in the introduction we had a brief discussion of the type of primary
heteroclinic intersection that appear. In our case, it is enough to remember that
primary intersections are the intersections that arise as the continuation of the non-
degenerate zeroes of the Melnikov function.

Any vertical curve intersects the horizontal line {t = t0} in at least one point, so
the number of vertical curves can not be larger than the cardinal of the horizontal
sections of the zero-level set. Therefore, as a by-product of proposition 6, we get that
there are at most 2n vertical curves when α(x) ∈ Rn−1[x] and β(x, y) ∈ Rn[x, y].
In fact, propositions 6 and 7 have stronger consequences on the homology/homotopy
classes of the heteroclinic intersections of the invariant manifolds.

We recall that Z̃ is the projection of the zero-level set Z = M−1(0) onto the
torus τ̃ defined in (14). Assume that 0 is a regular value of the Melnikov function.
Then Z̃ is a submanifold of the torus and its connected components are closed smooth
curves. Therefore, once fixed an induced orientation on the torus, we can assign to
each connected component γ̃ of Z̃ its homology class [γ̃] ∈ H1(T

2) = Z2.

In the case of the torus τ̃ , we will identify horizontal lines with the class (1, 0)
and vertical lines, generated by the vector (ω, h), with the class (0, 1). Thus, [γ̃] =
(p, q) ∈ Z2 means that γ̃ is a closed curve that wraps around the torus |p| times in the
horizontal direction and |q| times in the vertical one. For instance, the set Z̃ has four
connected components with homology class (0, 1) or (0,−1) in the subfigures 4(a)–
4(d), whereas it has just two connected components with homology class (1,−2) or
(−1, 2) in the subfigures 4(f)–4(i). Subfigure 4(e) is excluded because then 0 is a
singular value of the Melnikov function.

Remark 7. With regard to the three types of heteroclinic curves mentioned in
the introduction, we note that a connected component γ̃ such that [γ̃] = (p, q) gives
rise for ǫ small enough to vertical (resp., equatorial) (resp., bubble-type) curves when
q 6= 0 (resp., q = 0 but p 6= 0) (resp., p = q = 0).

Remark 8. The first homology group and the first homotopy group (that is, the
fundamental group) of a torus coincide: H1(T

2) = Z2 = π1(T
2). Hence, we could use

homotopy instead of singular homology along this digression.

We need the following result from Morse theory.

Lemma 8. If a ∈ R is a regular value of a smooth function f : X → R defined
over a compact manifold X, the homology class of the level set La = f−1(a) is trivial.

Proof. It suffices to prove this for Morse functions, because Morse functions
are dense and the homology class of a closed curve does not change under small
perturbations.

Let a and b be two regular values of f such that a < b. Then La and Lb are
the borders of the smooth manifold f−1([a, b]), and so, they have the same homology
class. Let c be the maximum value of f . Since f is Morse, there exists a unique point
x ∈ X such that f(x) = c. This point is a nondegenerate maximum, and so, if δ > 0
is small enough, c− δ is a regular value and Lc−δ is just a small closed curve around
x. Hence, Lc−δ is contractible and its homology class is equal to zero.

The homology classes of the connected components of the projected zero-level
set Z̃ are bounded in the following theorem. These bounds restrict the topological
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complexity of the primary heteroclinic set Pǫ = Z + O(ǫ) for small values of ǫ.
Theorem 9. Assume that 0 is a regular value of the Melnikov function associated

to the perturbation (8). Let γ̃1, . . . , γ̃r be connected components of the projected zero-
level set Z̃ = M̃−1(0). Let [γ̃1] = (p1, q1), . . . , [γ̃r] = (pr, qr) be their homology classes.

(i) The homology of Z̃ is trivial:
∑

j [γ̃j ] =
∑

j(pj , qj) = (0, 0).
(ii) If α(x) ∈ Rn−1[x] and β(x, y) ∈ Rn[x, y], then 2 |qj | ≤

∑

j |qj | ≤ 2n.
(iii) Assume that ω = 0. Let l, n ∈ N. Then:
1. If α(x) ∈ R2l−1[x] is odd and β(x, y) = 0, then 2 |pj | ≤

∑

j |pj | ≤ l.
2. If α(x) = 0 and β(x, y) ∈ R2n[x, y] is even, then 2 |pj | ≤

∑

j |pj | ≤ n+ 1.
3. If α(x) ∈ R2l−1[x] is odd and β(x, y) ∈ R2n[x, y] is even, then 2 |pj | ≤

∑

j |pj | ≤ max(l, n+ 2).

Proof. (i) It suffices to apply lemma 8 to the projected function M̃ : T2 → R.
(ii) We are under the hypotheses of proposition 6 and 0 is a regular value of the

Melnikov function, so there exists some t∗ ∈ R such that #Zt∗ ≤ 2n. On the contrary,
Zt0 = T for all t0 ∈ R, and the Melnikov function should be identically zero.

Using that Z̃ = γ̃1∐· · ·∐ γ̃r and that each curve γ̃j wraps |qj | times in the vertical
direction, we get that

∑

j |qj | ≤ ∑

j #(γ̃j ∩ (T × {t∗})) = #Zt∗ ≤ 2n. Next, we

obtain the bound 2 |qj | = |qj |+
∣

∣

∣

∑

i 6=j qi

∣

∣

∣ ≤
∑

i |qi| ≤ 2n from the identity
∑

j qj = 0.

(iii) It follows in a similar way, but from proposition 7.

6. Splitting of separatrices. In this section we shall present two theorems
about the splitting of our separatrix. In the first one, we shall establish a sufficient
condition for the splitting of the separatrix under some entire perturbations, whereas
in the second one we find a broad class of polynomial perturbations that split the
separatrix. The sufficient condition is obtained through the study of the complex
singularities of the Melnikov function. To be more precise, if the Melnikov function
can be analytically extended for complex values of its variables and this extension
has some nonremovable singularity, then the original Melnikov function can not be
identically zero and the separatrix splits.

For simplicity, we have restricted our study to the perturbations of the form

fǫ = (Id + ǫκ) ◦ f, κ(x, y, z) = (0, 0, β(x, y))(16)

for some non-zero even entire function β(x, y). The study is a bit more cumbersome
when the entire perturbation has the more general form (8) with α(x) odd and β(x, y)
even. If α(x) is not odd or β(x, y) is not even, our current technique should be restated,
because ramified singularities are harder to deal with than isolated ones.

Theorem 10. Let Bθ : C → C be the entire function

Bθ(r) =

∫ r

0

β(
√

2s cos θ,
√

2s sin θ)ds.(17)

Let r(t) = z(t+ h) − z(t− h) with z(t) = tanh(t/2). If the function

δθ(t) = δ+θ (t) + δ−θ (t), δ±θ (t) = Bθ±ω(r(t± h))(18)

has a nonremovable singularity at t = πi for some θ ∈ T, then the separatrix splits.
We note that z(t) is meromorphic and its poles are the points in the set πi+2πiZ.

Hence, since the function Bθ(r) is entire and non-zero, the compositions δ+θ (t) and
δ−θ (t) always have a nonremovable singularity at the point t = πi. Our sufficient
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condition for the splitting is that the sum δ+θ (t) + δ−θ (t) be still singular at t = πi,
which is generic.

Proof. The function Bθ(r) is entire because the parity of the perturbation β(x, y)
cancels the square roots that appear in (17).

The first step is to rewrite the Melnikov function in a more convenient form.
Using that α(x) = 0 and the relation µ(t) = −4csr′(t), the Melnikov function (10)
has the form M(θ, t) = −4cs(∆θ)

′(t), where

∆θ(t) =
∑

k∈Z

δ
[k]
θ (t), δ

[k]
θ (t) = Bθ+kω(r(t+ kh)).

Using that δθ(t) = δ
[1]
θ (t) + δ

[−1]
θ (t), we shall prove that the series ∆θ(t) —and hence,

the Melnikov function— has a nonremovable singularity at t = πi for some θ ∈ T.

Since the function Bθ(r) is entire, the composition δ
[k]
θ (t) = Bθ+kω(r(t+ kh)) is

analytic but at the poles of the meromorphic function r(t+ kh), which are the points
in the sets ±h− kh+ πi + 2πiZ. Thus, the difference

∆θ(t) − δθ(t) =
∑

k 6=±1

δ
[k]
θ (t)

is analytic at t = πi for any θ ∈ T. On the other hand, by hypothesis, δθ(t) has a
nonremovable singularity at t = πi for some θ ∈ T.

Next, we find some concrete perturbations of the form (16) that split the separa-
trix. For simplicity, we shall deal with perturbations such that the computation of the
singular parts of the functions δ±θ (t) defined in (18) around their singularity t = πi
can be easily analyzed. Polynomial perturbations are a natural choice. We need the
following notations for the statement of the result. Given any β(x, y) ∈ Rn[x, y], we
shall denote by

∑n
l=0 βl(x, y) its decomposition as a sum of homogeneous polynomials.

That is, βl(ρx, ρy) = ρlβl(x, y) for all ρ ∈ R. Let Rϕ : R2 → R2 be the rotation

Rϕ(x, y) = (x cosϕ− y sinϕ, x sinϕ+ y cosϕ).(19)

Proposition 11. If β(x, y) ∈ R2n[x, y] is even and β2n ◦R2ω 6= (−1)nβ2n, then
the separatrix splits under the polynomial perturbation (16).

Proof. The decomposition of the polynomial β(x, y) ∈ R2n[x, y] only has even
terms: β(x, y) =

∑n
l=0 β2l(x, y). Then the entire function Bθ : C → C defined in (17)

is the (not necessarily even) polynomial

Bθ(r) =
n
∑

l=0

B̂l(θ)r
l+1, B̂l(θ) =

2lβ2l(cos θ, sin θ)

l + 1
.

The point t = πi is a simple pole of the meromorphic function z(t) = tanh(t/2), and
so it becomes a pole of order n+1 of the functions δ+θ (t) = Bθ+ω(z(t+2h)−z(t)) and
δ−θ (t) = Bθ−ω(z(t) − z(t − 2h)). In particular, there exist some Laurent coefficients

δ̂±1 (θ), . . . , δ̂±n+1(θ) such that

δ±θ (t) =
δ̂±n+1(θ)

(t− πi)n+1
+ · · · + δ̂±1 (θ)

t− πi
+ (some analytic function at t = πi).

For instance, using that the residue of z(t) at its poles is equal to 2, we get that the

dominant Laurent coefficients are δ̂±n+1(θ) = (∓2)n+1B̂n(θ ± ω).
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Finally, we note that if there exists some θ ∈ T and some index j = 1, . . . , n + 1
such that δ̂+j (θ)+δ̂−j (θ) 6= 0, then δθ(t) = δ+θ (t)+δ−θ (t) has a nonremovable singularity
at t = πi and the separatrix splits. The functional condition β2n ◦R2ω 6= (−1)nβ2n is
equivalent to the existence of some angle θ ∈ T such that

β2n(cos(θ + 2ω), sin(θ + 2ω)) 6= (−1)nβ2n(cos θ, sin θ)

which is equivalent to the existence of θ such that δ̂+n+1(θ) + δ̂−n+1(θ) 6= 0.
Using this proposition, we shall obtain many polynomial perturbations that split

the separatrix. To explain this, we introduce the complexified variables

z = x+ yi, z̄ = x− yi.(20)

In these variables, the functional equation β2n ◦R2ω = (−1)nβ2n reads as β̃2n ◦ R̃2ω =
(−1)nβ̃2n. Here, R̃ϕ(z, z̄) =

(

eϕiz, e−ϕiz̄
)

and

β̃2n(z, z̄) =
n
∑

k=−n

β̃
[k]
2nz

n+k z̄n−k

stand for the rotation (19) and the homogeneous polynomial β2n(x, y) in the com-
plexified variables, respectively. The transformed polynomial β̃2n(z, z̄) is still a ho-
mogeneous polynomial of degree 2n because the change (20) is linear.

Lemma 12. The functional equation β2n ◦R2ω = (−1)nβ2n holds if and only if

β̃
[k]
2n

(

e4ωki − (−1)n
)

= 0, ∀k = −n, . . . , n.(21)

Proof. R̃2ω(z, z̄) = (e2ωiz, e−2ωiz̄) maps zn+kz̄n−k onto e4kωizn+kz̄n−k.
Now we are ready to give precise statements about the splitting of the separatrix

under polynomial perturbations of the form (16). For instance, we shall see that both
nonresonant frequencies and high-order resonant frequencies —that is, ω/π 6∈ Q or
ω/π is an irreducible fraction with a high denominator—, are strong obstructions for
the persistence of the separatrix. A homogeneous polynomial β2n(x, y) of degree 2n
is rotationally invariant when it has the form

β2n(x, y) = β̃
[0]
2nz

nz̄n = β̃
[0]
2n|z|2n = β̃

[0]
2n(x2 + y2)n

for some constant β̃
[0]
2n ∈ R. These polynomials are the only homogeneous ones that

remain invariant under the action of the continuous group of rotations Rϕ : R2 → R2.
Theorem 13. If β(x, y) is an even polynomial of degree 2n, then the perturba-

tion (16) splits the separatrix in any of the following two cases:
(i) n odd and e4kωi 6= −1 for k = 1, . . . , n; or
(ii) n even, β2n(x, y) not rotationally invariant, and e4kωi 6= 1 for k = 1, . . . , n.

Proof. From proposition 11 and lemma 12, we know that (21) is a necessary
condition for the persistence of the separatrix. Let us check that this condition is
incompatible with the two listed cases.

(i) If n is odd and e4kωi 6= −1 for k = 1, . . . , n, condition (21) implies that β̃
[k]
2n = 0

for all k = −n, . . . , n. Therefore, the homogeneous polynomial β2n(x, y) is zero, which
contradicts the fact that β(x, y) has degree 2n.

(ii) If n is even and e4kωi 6= 1 for k = 1, . . . , n, then condition (21) implies that

β̃
[k]
2n = 0 for all k 6= 0, which contradicts the fact that β(x, y) has degree 2n and
β2n(x, y) is not rotationally invariant.
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(a) ω = 0 (b) ω = π/3 (c) ω = 9π/20

(d) ω = π/2 − 10−3 (e) ω = π/2 (f) ω = π/2 + 10−3

(g) ω = 11π/20 (h) ω = 2π/3 (i) ω = π

Fig. 4. The only bifurcation of Z̃ in the range 0 ≤ ω ≤ π under the perturbation κ(x, y, z) =
(0, x, 0) takes place at the singular frequency ω = π/2. These pictures show this bifurcation for
h = 1. The symmetric points move as the frequency ω varies.

It would be interesting to know whether there exist some entire perturbations
of the form (16) that preserve the separatrix. Of course, such perturbations can not
verify the sufficient condition for splitting given in theorem 10. We have not found any
perturbation of this kind, which is not so strange because in similar contexts, related
with other McMillan maps, they simply do not exist. An area-preserving example of
this situation can be found in [13], and a high-dimensional symplectic one in [14].

7. Bifurcations of the zero-level set in an example. In this section, we shall
study the bifurcations in ω ∈ T of the topological shape of the zero-set Z ⊂ T × R

for the perturbation κ(x, y, z) = (0, x, 0). We note that, according to lemma 5 and
remark 4, Z contains (and is symmetric with regard to) the eight symmetric points
shown in figure 3 and it is also (π/2, 0)-periodic.

Based on detailed numerical computations and several analytical arguments, we
conjecture that 0 is a singular value of the Melnikov function if and only if ω = ±π/2,
and so the only bifurcations of Z = M−1(0) take place at those values. For instance,
we show in figure 4 the numerically computed shape of Z̃ for several values of the
frequency in the range 0 ≤ ω ≤ π.

We give a dynamical interpretation of these Melnikov-like results. If ω 6= ±π/2,
the set of primary intersections Pǫ = Z + O(ǫ) consists in four vertical curves for ǫ
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small enough, see theorem 1. Each curve has a symmetric twin, because Pǫ is invariant
under the axial symmetry S(x, y, z) = (−x,−y, z). The fixed sets of the reversors are

FixRǫ = {(x, y, z) ∈ R3 : y = ǫx/2, z = 0},
FixTǫ = {(x, y, z) ∈ R3 : x = 0, z = 0}.

Hence, two heteroclinic vertical curves cross a curve O(ǫ)-close to the x-axis and
the other pair of heteroclinic curves cross the y-axis. The rotation number of these
vertical curves is equal to ω in the range −π/2 < ω < π/2, but it jumps to ω ∓ π
when the bifurcation values ω = ±π/2 are crossed. The shape of the primary set
when ω = ±π/2 it is not completely clear, because then 0 is a singular value of the
Melnikov function and theorem 1 can not be applied. This is an open question.

The rest of the section is devoted to present some rigorous results supporting the
previous conjecture, although we have found a complete proof only for h ≥ h0 ≈ 2.28.
Nevertheless, we have been able to prove the following results. If ω is a regular
frequency (that is, if 0 is a regular value of the Melnikov function), then Z contains
just four vertical curves. Otherwise, we say that ω is a singular frequency and Z
contains the four vertical curves jointly with the images and pre-images of exactly one
horizontal straight line, in which case the degenerate zeros of the Melnikov function
are just the points in the intersections between the horizontal and vertical curves. The
number of singular frequencies is finite. The frequencies ω = 0 and ω = π are regular,
whereas ω = ±π/2 are singular and, in addition, they are the only singular ones when
the characteristic exponent is big enough: h ≥ h0 := log 16 − log(

√
113 − 9) ≈ 2.28.

In order to lighten the computations, we write the Melnikov function in its sim-
plest form. Let χ : R → R be the function

χ(t) =
4c2s2

cosh((t+ h)/2) cosh2(t/2) cosh((t− h)/2)
.(22)

Then, using that α(x) = x and β(x, y) = 0, the Melnikov function (10) becomes

M(θ, t) = a(t) sin 2θ + b(t) cos 2θ(23)

where a(t) and b(t) are given by the absolutely convergent series

a(t) =
∑

k∈Z

cos(2kω)χ(t+ kh), b(t) =
∑

k∈Z

sin(2kω)χ(t+ kh).

We also introduce the complex-valued function

E(t) = Eω(t) =
∑

k∈Z

e2kωiχ(t+ kh) = a(t) + b(t)i(24)

which plays a crucial rôle in the digression because of the relation

∂θM(θ, t)/2 +M(θ, t)i = E(t)e2θi.(25)

This relation has interesting consequences. For instance, if (θ0, t0) ∈ T × R is a
degenerate zero of the Melnikov function, E(t0) must be zero. In particular, 0 is a
regular value of the Melnikov function when E(t) has no real zeros. Therefore, we are
naturally led to the study of the sets

Ω = Ωh = {ω ∈ T : Eω(t) has some real zero}, h > 0.(26)
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Their main properties are addressed in the following lemma, whose proof is deferred
to appendix A. The proof is based on some nice properties of quasielliptic functions
that can be deduced from elementary facts of complex variable theory contained in
any basic textbook like, for instance, [33].

Lemma 14. Given any h > 0, the set (26) is finite, π-periodic, and symmetric:
Ω = −Ω. If the function (24) has some real zero, all of them are simple and the set
of its real zeros is either hZ or h/2 + hZ, so Ω is the disjoint union of the sets

Ω0 = {ω ∈ T : Eω(0) = 0}, Ω1 = {ω ∈ T : Eω(h/2) = 0}.

Besides, ±π/2 ∈ Ω1, 0 6∈ Ω, and π 6∈ Ω. Finally, Ω1 = {±π/2} for h ≥ h1 :=
2 log 20

9
≈ 1.60 and Ω0 = ∅ for h ≥ h0 := log 16 − log(

√
113 − 9) ≈ 2.28.

Conjecture 15. Ω = Ω1 = {±π/2} and Ω0 = ∅ for all h > 0.
We present in appendix B a strong numerical evidence on this conjecture.
Lemma 16. Let E : R → C be an analytic function such that E(−t) = E(t).

(i) If E(t) has no real zeros, then there exists a unique odd analytic function
ϕ : R → R and an integer n ∈ {0, 1} such that E(t) = |E(t)| e(ϕ(t)+πn)i for all t ∈ R.

(ii) If E(t) has no real multiple zeros, then there exists a unique odd analytic
function ϕ : R → R and a function n : R → {0, 1} such that E(t) = |E(t)| e(ϕ(t)+πn(t))i

for all t ∈ R. The function n(t) is constant, but at the zeros of E(t).
Proof. (i) If a function is analytic and never zero on a convex subset of the

complex plane, then it has an analytic argument on that convex subset. This is an
elementary result in complex variable theory, see [4, §2.1]. Let ϕ(t) be an analytic
argument of E(t)/E(0); that is, any analytic function ϕ : R → R such that

E(t) = E(0) |E(t)/E(0)| eϕ(t)i = |E(t)| e(ϕ(t)+πn)i.

Obviously, n = 0 if E(0) > 0 and n = 1 if E(0) < 0. The argument is not unique, but it
is determined up to a multiple of 2π; that is, it is determined once we choose the value
of ϕ(0) from the set 2πZ. The condition E(−t) = E(t) implies that ϕ(−t) + ϕ(t) =
2ϕ(0) for all real t. If we want an odd argument, ϕ(0) = 0 in the only possible choice.

(ii) It suffices to realize that, at any simple zero, the argument undergoes a jump
by a multiple of π. When these jumps are stored in the discrete-valued function n(t),
the function ϕ(t) remains analytic.

These two lemmas are the basis for the next theorem, in which the shape and
bifurcations of the zero-level set Z = M−1(0) ⊂ T × R are described.

Theorem 17. Let Z be the zero-level set of the Melnikov function (23). Let
Ω = Ω0 ∪ Ω1 be the decomposition of the set (26) given in lemma 14. Let ω ∈ T.
There exist a unique odd analytic function θ̄ω : R → R such that

(i) If ω 6∈ Ω, then Z = {θ = θ̄ω(t) (mod π/2)} and ω is a regular frequency.
(ii) If ω ∈ Ωj, then Z = {t = jh/2 (mod h)} ∪ {θ = θ̄ω(t) (mod π/2)} and

ω is a singular frequency. The degenerate zeros of the Melnikov function are just the
points in the intersections between the horizontal lines and the vertical curves.

(iii) The function Θ̄(t, ω) := θ̄ω(t) is analytic on R × (T \ Ω).
(iv) If ω = 0 (mod π/2), then θ̄ω(t) ≡ 0.
(v) θ̄ω(t+ h) = θ̄ω(t) + ω (mod π/2).
(vi) θ̄ω(h/2 − t) + θ̄ω(h/2 + t) = ω (mod π/2).
(vii) θ̄−ω(t) = −θ̄ω(t) and θ̄ω+π(t) = θ̄ω(t).
Proof. Sometimes, we do not write explicitly the dependence on the frequency.

Using that a(t) is even and b(t) is odd, we see that the function (24) verifies the
relation E(−t) = E(t) . This is important, because it was a hypothesis in lemma 16
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(i) If ω 6∈ Ω, then E(t) has no real zeros, so ω is a regular frequency. It remains to
prove that Z is composed by four vertical curves of the form {θ = θ̄(t) (mod π/2)}
for some function θ̄(t). Let θ̄ : R → R be the odd analytic function θ̄(t) = −ϕ(t)/2,
where ϕ(t) = arg(E(t)/E(0)) is the argument introduced in lemma 16. Let n be the
integer mentioned in the same lemma. Using that E(t) has no real zeros jointly with
relation (25), we have

Z = M−1(0) = {(θ, t) ∈ T × R : E(t)e2θi ∈ R}
= {(θ, t) ∈ T × R : sin(ϕ(t) + πn+ 2θ) = 0}
= {(θ, t) ∈ T × R : θ = θ̄(t) (mod π/2)}.

(ii) We know that E(t) has no real multiple zeros. Let ϕ(t) and n(t) be the
functions given in lemma 16. Let θ̄(t) = −ϕ(t)/2. Then

Z = {(θ, t) ∈ T × R : E(t)e2θi ∈ R}
= {(θ, t) : E(t) = 0} ∪ {(θ, t) : sin(ϕ(t) + πn(t) + 2θ) = 0}
= {t = jh/2 (mod h)} ∪ {θ = θ̄(t) (mod π/2)}.

Therefore, Z = M−1(0) contains four vertical curves that intersect infinitely many
horizontal straight lines. Obviously, these intersections are degenerate zeros of the
Melnikov function. Next, we shall prove that the other zeros are nondegenerate.

Let (θ0, t0) be a zero of the Melnikov function not contained in any horizontal
line: M(θ0, t0) = 0 and E(t0) 6= 0. Then ∂θM(θ0, t0) = 2E(t0)e

2θ0i 6= 0, see (25).
On the other hand, let (θ, t1) a point contained in some horizontal line: M(θ, t1) =

0, E(t1) = 0 and E′(t1) 6= 0. Again from relation (25), we get ∂θM(θ, t1) = 0 and
∂tM(θ, t1) = ℑE′(t1)e

2θi, where ℑ denotes imaginary part. Hence, the degenerate
zeros on the horizontal line {t = t1} are just the ones that verify the condition
ℑE′(t1)e

2θi = 0. But, since E′(t1) 6= 0, there are exactly four of such angles θ ∈ T.
These four angles are the ones corresponding to the four intersections of the horizontal
line {t = t1} with the four vertical curves {θ = θ̄(t) (mod π/2)}.

(iii) Level sets associated to regular values of analytic functions vary in an analytic
way under analytic perturbations.

(iv) If ω = 0 (mod π/2), then sin(2kω) = 0 for all k, and b(t) = ℑE(t) ≡ 0.
(v) This has to do with the fact that the zero-level set Z is (ω, h)-periodic. Given

any t ∈ R, we consider the slice Zt = {θ ∈ T : (θ, t) ∈ Z}. If E(t) 6= 0, then

Zt+h = {θ ∈ T : θ = θ̄(t+ h) (mod π/2)},
Zt + ω = {θ ∈ T : θ = θ̄(t) + ω (mod π/2)}.

But these two sets coincide, due to the (ω, h)-periodicity of Z, and so we obtain that
θ̄(t+h) = θ̄(t)+ω (mod π/2) for any real t such that E(t) 6= 0. Indeed, by analytic
continuation, this equality holds for any real t.

(vi) It follows directly from the previous item and the odd character of θ̄(t):
θ̄(h/2 − t) + θ̄(h/2 + t) = −θ̄(t− h/2) + θ̄(t− h/2) + ω = ω (mod π/2).

(vii) Firstly, θ̄−ω(t) = − 1
2 argE−ω(t) = − 1

2 argEω(t) = 1
2 argEω(t) = −θ̄ω(t).

Secondly, θ̄ω+π(t) = − 1
2

argEω+π(t) = − 1
2

argEω(t) = θ̄ω(t).
Remark 9. The numerical computations show that θ̄ω(t + h) = θ̄ω(t) + ω only

holds in the range −π/2 < ω < π/2, see figure 4. This does not contradict item (v)
in theorem 17.
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Remark 10. Similar results hold for the perturbation κ(x, y, z) = (0, 0, y2). In
that case, it turns out that the Melnikov function has the form

M(θ, t) = â(t) sin 2θ + b̂(t) cos 2θ + ĉ(t)

for some absolutely convergent series â(t), b̂(t), and ĉ(t). The analytical study is
harder because of the additional third term —compare with (23). We have nu-
merically checked that the only bifurcations take place at the singular frequencies
ω ∈ {0,±π/2, π}, whereas the zero-level set still contains just four vertical curves for
regular frequencies.

8. Conclusion and open problems. In this paper, we have obtained several
analytical results about the splitting of separatrices under perturbations of some in-
tegrable volume-preserving maps using a discrete version of the Melnikov method.
The integrable maps have a bi-dimensional heteroclinic connection of spherical shape
between two fixed points of saddle-focus type. We have bounded the topological
complexity of the primary heteroclinic set under some polynomial perturbations. We
have also given a sufficient condition for the splitting of the separatrices under some
entire perturbations. Finally, we have obtained a complete picture of the bifurcations
that take place under a simple perturbation. In spite of these results, many unsolved
questions remain. We indicate three.

We conjecture that the separatrix splitting studied in this paper is exponentially
small in the characteristic exponent, but the rôle of the frequency is still unclear.
Several examples of the effect that resonant frequencies can have in the dynamics
of 3D maps near Hopf-saddle-node bifurcations can be found in [9, 10], although not
related to a problem about the splitting of separatrices. One could guest an asymptotic
exponentially small formula for the splitting using a multiple-precision arithmetic, like
in [30]. Such formulae for the splitting of one-dimensional heteroclinic connections
between saddle-focus fixed points of volume-preserving systems have already been
found in [2] (for maps) and [7] (for flows), but we do not know any similar formula
for the bi-dimensional case.

Another question is: what about Šil’nikov-like bifurcations in the discrete setting?
The perturbation of a spheromak structure in 3D flows is a classical setup to study
Šil’nikov bifurcations. Some results about the volume-preserving case are contained
in [11]. It is natural to consider the discrete version of this problem, although the
problem seems qualitatively more complicated.

Finally, it would be interesting to study some questions about transport. As a
first step, we should compute the geometric flux through the perturbed separatrices.
The O(ǫ)-term of this flux can be computed by integrating certain Melnikov two-form
over a suitable region, see [23]. Next, we could follow the ideas introduced in [25],
although we must take into account that the scenario for maps is richer than the one
for flows. For instance, we recall that equatorial and bubble-type heteroclinic curves
can not appear in autonomous flows.
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Appendix A. Proof of lemma 14.

Here, we study the existence of real zeros of the function (24). This function has
many properties similar to the ones of elliptic functions and so we shall study its zeros
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using tools typical in the theory of elliptic functions.
We list in the next lemma some basic properties of the function E(t), including

that E(t) is meromorphic, 2πi-periodic and h-quasiperiodic, and so quasielliptic.
Lemma 18. The function E(t) = Eω(t) =

∑

k∈Z
e2kωiχ(t+ kh) verifies that:

(i) It is meromorphic in the complex plane and its poles are the points in the
set P = πi + hZ + 2πiZ (double ones).

(ii) E(t+ 2πi) = E(t) and E(t+ h) = e−2ωiE(t) for all complex t.
(iii) E(−t) = E(t) for all complex t.
(iv) If ω = π/2 (mod π), the points t = h/2 (mod h) are the only real zeros

of E(t), all of them being simple ones.
(v) If ω = 0 (mod π), then E(t) has no real zeros.

(vi) E−ω(t) = Eω(t) and Eω+π(t) = Eω(t).
Proof. (i) The function χ(t) is meromorphic in the complex plane and its poles

are the points in πi + 2πiZ (double ones) and πi ± h+ 2πiZ (simple ones).
(ii) The function E(t) is 2πi-periodic because so is χ(t). On the other hand,

E(t+ h) =
∑

k∈Z

e2kωiχ(t+ kh+ h) =
∑

k∈Z

e2(k−1)ωiχ(t+ kh) = e−2ωiE(t).

(iii) We recall that E(t) = a(t) + b(t)i, where a(t) and b(t) are real analytic
functions such that a(t) is even and b(t) is odd. Hence, E(−t) = a(−t) + b(−t)i =
a(t) − b(t)i = a(t) − b(t)i = E(t).

(iv) In this case, e2kωi = −1, and so E(t + h) = −E(t). Thus, E(t) becomes an
elliptic function with periods 2h and 2πi. Besides, E(t) has order four, because it has
just four poles (counted with multiplicity) on any cell with periods 2h and 2πi, see (i).

Using that the elliptic function

E(t) =
∑

k∈Z

(−1)kχ(t+ kh)

is even, h-antiperiodic and 2πi-periodic, we get that E(t) vanishes at the four points
h/2, 3h/2, h/2 + πi, and 3h/2 + πi. For instance, E(h/2) = E(−h/2) = −E(h/2), so
E(h/2) = 0. But we know that E(t) has exactly four zeros (counted with multiplicity)
on each cell with periods 2h and 2πi. Since the previous four zeros belong to the same
cell, they are the only ones (modulo periodicities), and they are simple.

(v) χ(t) > 0 in R. Thus, if e2ωi = 1, E(t) =
∑

k∈Z
χ(t+ kh) > 0 for any real t.

(vi) Firstly, E−ω(t) =
∑

k∈Z
e2kωiχ(t+ kh) =

∑

k∈Z
e2kωiχ(t+ kh) = Eω(t), be-

cause χ(t) is real analytic. The second property is trivial.
Next, we gain some insight on the structure of the complex zeros of the quasiel-

liptic function E(t). Roughly speaking, we state in the following lemma that E(t) has
order two and its zeros look like in figure 5. The proof is adapted from similar proofs
about elliptic functions.

Lemma 19. The quasielliptic function E(t) has order two; that is, it has two
zeros in any cell with periods h and 2πi. Let t1 and t2 be the zeros in any cell. Then

t1 + t2 ∈ 2ωi + hZ + 2πiZ.(27)

Besides, the set

T = {t1, t2} + hZ + 2πiZ
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ℜt = h/2

ℑt = 0

•

• •

•

⋆ t1

⋆ t2

⋄ t1 ⋄ t2

∗ t1

∗t2

◦ t0

−πi h − πi

πi h + πi

Fig. 5. The three scenarios for the set of zeros of the quasielliptic function E(t). First (⋆):
The zeros are on the lines {ℜt = h/2 (mod h)}. Second (⋄): The zeros have the same imaginary
part modulo 2πi. Third (∗): The zeros are on the lines {ℜt = 0 (mod h)}. The double poles
are marked with the symbol •. The middle point is t0 = h/2 + ωi in the three cases, because
t1 + t2 ∈ 2ωi + hZ + 2πiZ.

formed by the complex zeros of E(t) is symmetric with regard to the vertical lines
{ℜt = 0 (mod h)} and {ℜt = h/2 (mod h)}.

Proof. We recall the following version of the Argument Principle [33, §6.3]. Let
C be a contour in the complex plane, let f(t) be a function analytic inside and on C,
let g(t) be a meromorphic function without zeros or poles on C, and let t1, . . . , tJ and
p1, . . . , pK be the zeros and poles of g(t) in the interior of C, repeated as many times
as their multiplicities and orders, respectively. Then

1

2πi

∮

C

f(t)
g′(t)

g(t)
dt =

∑

j

f(tj) −
∑

k

f(pk).(28)

This version of the principle assumes that the contour has no self-intersections, and
that it is oriented counter-clockwise.

If we choose any cell of periods h and 2πi as the contour C, and put f(t) = 1,
g(t) = E(t) in (28), we get that E(t) has J = K = 2 zeros in the cell, because the
integrals of the quotient E′(t)/E(t) over opposites sides of the cell cancel out. (We
recall that E(t) has exactly one double pole on each cell.)

Let t1 and t2 be the zeros and p be the double pole of E(t) in a cell C. Let the
corners of the cell be s, s+ h, s+ h+ 2πi, s+ 2πi. Now, if we keep the same contour,
but take f(t) = t and g(t) = E(t), we get that

t1 + t2 − 2p =
1

2πi

(

∫ s+h

s

+

∫ s+h+2πi

s+h

+

∫ s+2πi

s+h+2πi

+

∫ s

s+2πi

)

tE′(t)

E(t)
dt

=
1

2πi

(

h

∫ s+2πi

s

E′(t)

E(t)
dt− 2πi

∫ s+h

s

E′(t)

E(t)
dt

)

=
h

2πi
logE(t)|s+2πi

s + logE(t)|ss+h

on making use of the quasiperiodic properties of E(t).
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Using again the quasiperiodicities E(s+ 2πi) = E(s) and E(s+ h) = e−2ωiE(s),

we see that logE(t)
]s+2πi

s
∈ 2πiZ and logE(t)

]s

s+h
∈ 2ωi + 2πiZ. Therefore,

t1 + t2 ∈ 2ωi + 2p+ hZ + 2πiZ.

Now, relation (27) follows because we know that the double pole p ∈ πi + hZ + 2πiZ.
Finally, the specular symmetries with regard to the vertical lines are a direct

consequence of the relations E(−t) = E(t) and E(t+ h) = e−2ωiE(t).
Using this lemma, we realize that there are just three possible scenarios for the

set of complex zeros of the quasielliptic function E(t), which are listed in the caption
of figure 5. We have numerically checked that only the first scenario takes place, but
we have not found a proof. Therefore, in the following lemma we can only deduce
that the set of real zeros of E(t) is either hZ or h/2 + hZ, although we suspect that
the case hZ is a mirage.

Lemma 20. If E(t) has some real zero, all of them are simple and the set of its
real zeros is either hZ or h/2 + hZ.

Proof. We note that E(t) can not have neither a double real zero nor two different
real zeros modulo h. On the contrary, we could take t1, t2 ∈ R in lemma 19, so that
R ∋ t1 + t2 ∈ 2ωi + hZ + 2πiZ. But this would imply that ω = 0 (mod π), and then
E(t) has no real zeros, see lemma 18. Therefore, the set of real zeros has the form
t∗ + hZ for some single real zero t∗ ∈ [0, h). But, since t∗ + hZ must be symmetric
with regard to the points 0 and h/2, there are only two possibilities: either t∗ = 0 or
t∗ = h/2.

As a by-product of this lemma, the set defined in (26) can also be defined as

Ω = Ωh = {ω ∈ T : Eω(0)Eω(h/2) = 0}.

To prove lemma 14, it suffices to check that: 1) Ω is finite; 2) Eω(0) 6= 0 for all h ≥ h0

and all ω ∈ T; and 3) Eω(h/2) 6= 0 for all h ≥ h1 and all ω 6= ±π/2.
Lemma 21. The set Ω = {ω ∈ T : Eω(0)Eω(h/2) = 0} is finite.
Proof. It follows from the fact that, once fixed any h > 0, the function

T ∋ ω 7→ Eω(0)Eω(h/2) ∈ C

is analytic, but not identically zero since the series E0(t) =
∑

k∈Z
χ(t+kh) is positive

for all real t.
Lemma 22. If h ≥ h0 := log 16 − log(

√
113 − 9), then Eω(0) > 0 for all ω ∈ T.

Proof. We introduce the positive quantities

χk = χk(h) := χ(kh) =
4 cosh2(h/2) sinh2(h/2)

cosh((k + 1)h/2) cosh2(kh/2) cosh((k − 1)h/2)

where χ(t) is the function given in (22). Our goal is to prove that

Eω(0) =
∑

k∈Z

e2kωiχk = χ0 + 2
∑

k≥1

cos(2kω)χk > 0

for all h ≥ h0 and ω ∈ T. Here, we have used the symmetry χ−k = χk. Since
maxω∈T |cos(2kω)| = 1, in order to prove the lemma it suffices to establish that

2
∑

k≥1

χk(h) < χ0(h), ∀h ≥ h0 := log 16 − log(
√

113 − 9).(29)
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The rest of the proof is devoted to obtain this bound. If we work with the multiplica-
tive variable x = e−h ∈ (0, 1), then χ0 = χ0(x) = (1 − x)2/x and

χk = χk(x) =
4(1 − x2)2x2k−2

(1 + xk+1)(1 + xk)2(1 + xk−1)
< 4(1 − x2)2x2k−2

for any k ≥ 1 and x ∈ (0, 1). In particular,

∑

k≥1

χk(x) < 4(1 − x2)2
∑

k≥1

x2k−2 = 4(1 + x)(1 − x), ∀x ∈ (0, 1).

Let x0 := (
√

113−9)/16 < 1 and h0 := log(1/x0) > 0. If h ≥ h0, then x = eh ∈ (0, x0]
and 8x2 + 9x− 1 ≤ 0. In particular, we conclude that the bound (29) holds.

Lemma 23. If h ≥ h1 := 2 log 20
9
, then Eω(h/2) 6= 0 for all ω 6= ±π/2.

Proof. It is similar to the previous one. We introduce the positive quantities

χ̃k = χ̃k(h) := χ(kh+ h/2) =
4 cosh2(h/2) sinh2(h/2)

cosh
(

(k
2

+ 3
4
)h
)

cosh2
(

(k
2

+ 1
4
)h
)

cosh
(

(k
2
− 1

4
)h
) .

Our goal is to prove that if h ≥ h1 and ω 6= ±π/2, then

eωiEω(h/2) = 2
∑

k≥0

cos((2k + 1)ω)χ̃k = 2



χ̃0 +
∑

k≥1

akχ̃k



 cosω 6= 0.

Here, we have used the symmetry χ̃−(k+1) = χ̃k and we have introduced the notation

ak = ak(ω) :=
cos(2k + 1)ω

cosω
.

That is, ak(ω) = T2k+1(cosω)/ cosω, where Tn(x) denotes the Chebyshev polynomial
of first kind and degree n defined by relation Tn(cosω) = cosnω. Now, using some
standard properties of Chebyshev polynomials contained in [1, 22.5.29 & 22.14.1],
we realize that maxω∈T |ak(ω)| = 2k + 1. Therefore, in order to prove the lemma it
suffices to establish that

∑

k≥1

(2k + 1)χ̃k(h) < χ̃0(h), ∀h ≥ h1 := 2 log(20/9).(30)

The rest of the proof is devoted to prove this bound. If we work with the multiplicative
variable x = e−h/2 ∈ (0, 1), then χ̃0 = χ̃0(x) = 4(1 − x4)2/x(1 + x3)(1 + x)3 and

χ̃k = χ̃k(x) =
4(1 − x4)2x4k−2

(1 + x2k+3)(1 + x2k+1)2(1 + x2k−1)
< 4(1 − x4)2x4k−2

for any k ≥ 1 and x ∈ (0, 1). In particular,

∑

k≥1

(2k + 1)χ̃k(x) < 4(1 − x4)2
∑

k≥1

(2k + 1)x4k−2 = 12x2(1 − x4/3)

for all x ∈ (0, 1). Hence, if there exists some x1 ∈ (0, 1) such that

(1 − x4)2

1 − x4/3
=: f(x) ≥ g(x) := 3x3(1 + x3)(1 + x)3, ∀x ∈ (0, x1]
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Fig. 6. Graphs of the functions m0(h) = min{M0(ω, h) : ω ∈ T} (full curves) and m1(h) =
min{M1(ω, h) : ω ∈ T} (broken curves) in two different vertical scales.

then (30) holds for any h ≥ h1 := 2 log(1/x1). The function f(x) is increasing in the
interval (0, 1), whereas g(x) is decreasing in the same interval. On the other hand,

f(9/20) =
23543526721

25250080000
>

465593887647

512000000000
= g(9/20).

Therefore, we can take x1 := 9/20.

Appendix B. Numerical evidence on conjecture 15.

In the proofs of the lemmas 22 and 23, we have shown that the analytic functions
Mj : T × R+ → R defined by

M0(ω, h) = Eω(0), M1(ω, h) =
eωiEω(h/2)

2 cosω

are positive when h ≥ h0 and h ≥ h1, respectively. We conjecture that, in fact, they
are positive everywhere, which is equivalent to conjecture 15.

We have displayed in figure 6 a strong numerical evidence about this conjecture.
Concretely, we have numerically checked that the functions

mj : R+ → R, mj(h) = min{Mj(ω, h) : ω ∈ T}

are positive in the range 1/10 ≤ h ≤ 3. Greater values of h are already covered by our
analytical results. Smaller values of h represent a computational challenge, because
the functions mj(h) are exponentially small in h as h→ 0+, see subfigure 6(b). This
is a typical behaviour for splitting problems in weakly hyperbolic settings. The com-
putation of such exponentially small splittings requires the use of a multiple precision
arithmetic to mitigate the strong cancellations that take place in such problems. For
instance, to compute the functions mj(h) at h = 1/10 it is necessary to work with at
least 50 digits.
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