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Abstract. In the present paper we consider the case of a general C"+2 perturbation,
for r large enough, of an a priori unstable Hamiltonian system of 2 + 1/2 degrees of
freedom, and we provide explicit conditions on it, which turn out to be C? generic and
are verifiable in concrete examples, which guarantee the existence of Arnold diffusion.

This is a generalization of the result in Delshams et al., Mem. Amer. Math.
Soc., 2006, where it was considered the case of a perturbation with a finite number of
harmonics in the angular variables.

The method of proof is based on a careful analysis of the geography of resonances
created by a generic perturbation and it contains a deep quantitative description of
the invariant objects generated by the resonances therein. The scattering map is used
as an essential tool to construct transition chains of objects of different topology. The
combination of quantitative expressions for both the geography of resonances and the
scattering map provides, in a natural way, explicit computable conditions for instability.
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1. Introduction

The goal of this paper is to present a generalization of the geometric mechanism for
global instability (popularly known as Arnold diffusion) in a priori unstable Hamiltonian
systems introduced in [DLS06a]. That paper developed an argument to prove the
existence of global instability in a-priori unstable nearly integrable Hamiltonian systems
(the unperturbed Hamiltonian presents hyperbolicity, so that it can not be expressed
globally in action-angle variables) and applied it to a model which presented the so
called large gap problem. However, in that case, the perturbation was assumed to be a
trigonometric polynomial in the angular variables. In this paper we perform an accurate
process of truncation of the Fourier series of the perturbation and we present a deeper
study of the geography of resonances. Using this, we are able to extend and simplify
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some of the results in [DLS06a] and apply them to an a priori unstable Hamiltonian
system with a generic perturbation.

The phenomenon of global instability in Hamiltonian systems has attracted the
attention of both mathematicians and physicists in the last years due to its remarkable
importance for the applications. It deals, essentially, with the question of what is the
effect on the dynamics when an autonomous mechanical system is submitted to a small
periodic perturbation. More precisely, whether these perturbations accumulate over
time giving rise to a long term effect or whether these effects average out.

The instability problem was formulated first by Arnold in 1964. In his celebrated
paper [Arn64], Arnold constructed an example for which he proved the existence of
trajectories that avoided the obstacles of KAM tori and performed long excursions.
The mechanism is based on the existence of transition chains of whiskered tori, that is,
sequences of tori such that the unstable manifold (whisker) of one of these tori intersects
transversally the stable manifold (whisker) of the next one. By an obstruction argument,
there is an orbit that follows this transition chain, giving rise to an unstable orbit.

The example proposed in [Arn64] turns out to be rather artificial because the
perturbation was chosen in such a way that it preserved exactly the complete foliation
of invariant tori existing in the unperturbed system. However, a generic perturbation of
size € creates gaps at most of size /¢ in the foliation of persisting primary KAM tori,
whereas it moves the whiskers only by an amount €. These gaps are centered around
resonances, that is, resonant tori that are destroyed by the perturbation. This is what
is known in the literature as the large gap problem (see, for instance, [Moe96] for a
discussion about the large gap problem and, indeed, of the problem of diffusion).

In the last ten years there has been a notable progress in the comprehension
of the mechanisms that give rise to the phenomenon of instability and a variety of
methods has been suggested. As an example of this, we will mention that the large gap
problem has been solved simultaneously by a variety of techniques: different geometrical
methods [DLS00, DLS06a, DLS06b] (scattering map) and [Tre04, PT07] (separatrix
map); topological methods [GL0O6b, GL06a] and variational methods [CY04a, CY04b].
For more information regarding the problem of Arnold diffusion in the absence of gaps
as well as time estimates, the reader is referred to [DGLSO08].

Of particular interest for the present paper are [DLS00, DLS06a, DLS06b]. The
strategy in the mentioned papers is based on the incorporation of new invariant objects,
created by the resonances, like secondary KAM tori and the stable and unstable
manifolds of lower dimensional tori in the transition chain, together with the primary
KAM tori. The scattering map, introduced by the same authors (see [DLS08] for a
geometric study) is the essential tool for the heteroclinic connections between invariant
objects of different topology.

In this paper we extend the geometric mechanism introduced in the mentioned
papers to a wider class of model systems for which the perturbation does not need to have
a finite number of harmonics in the angular variables. In particular, the Hamiltonian
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studied in this paper has the following form

1 1
H.(p,q,1,¢,t)==% (5192 + V(q)) + 512 +eh(p,q. 1, ¢, t;€), (1)

where p € (—po,po) CR, I € (I_,I,) CR and (q,p,t) € T3.
The main result of this paper is Theorem 2.1, stated in section 2.2 with the concrete
hypotheses for Hamiltonian (1), from which we can deduce the following short version:

Theorem 1.1. Consider the Hamiltonian (1) and assume that V and h are C™2
functions which are C* generic, with r > o, large enough. Then there is €* > 0 such
that for 0 < |e| < €* and for any interval [I*,I7] € (I_,1;), there exists a trajectory
z(t) of the system with Hamiltonian (1) such that for some T > 0

IEO) <155 IET) > I

Remark 1.2. A value of ry which follows from our argument is ro = 242 (see Remark
2.2).

Our strategy for the proof follows the geometric mechanism proposed in [DLS06a].
Indeed, in order to organize the different invariant objects that we will use to construct
a transition chain, we will first identify the normally hyperbolic invariant manifold
(NHIM) present in the system. This NHIM will have associated stable and unstable
invariant manifolds that, generically, intersect transversally. Therefore, we can associate
to this object two types of dynamics: the inner and the outer. The outer dynamics takes
into account the asymptotic motions to the NHIM and is described by the scattering
map. The inner dynamics is the one restricted to the NHIM and contains Cantor
families of primary and secondary KAM tori. Since generically these families of KAM
tori, invariant for the inner dynamics, are not invariant for the outer dynamics, the
combination of both dynamics will allow us to construct a transition chain.

The results in [DLS06a] can be applied straightforwardly for the persistence of
the NHIM and the transversality of its associated stable and unstable manifolds. The
arguments presented in this paper focus on the inner dynamics and the study of the
invariant objects present in the NHIM.

For Hamiltonian (1), resonances correspond to the places where the frequency
I = —1/k for (k,l) € Z?* is rational and the associated Fourier coefficient hy; of the
perturbation A is nonzero. On these resonances, the foliation of KAM tori in the NHIM
is destroyed and gaps between the Cantor family of invariant tori in the NHIM of size
O(eY?|hgy 1o |'?) are created, for (ko,lo) such that [/k = ly/ko and ged(ko,ly) = 1 (see
equation (86)). For a perturbation h which is a C"™ function and C? generic, when
we restrict it to the NHIM and we write it in adequate coordinates we are left with
a C" perturbation (see the subsection “restriction to NHIM” in Section 2.3.3), so that
|hga| ~ |(k,1)|7", and therefore the above gaps are of size O(c'/2|(ko, ly)|~"/?). Moreover,
other invariant objects, like secondary tori and lower dimensional tori, are created inside
the gap. They correspond to invariant objects of different topology that were not present
in the unperturbed system but are generated by the resonances.
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In order to study their existence and give an approximate expression for them we
will combine m steps of averaging plus a KAM Theorem. Notice that in our case, since
the perturbation is generic, we will have an infinite number of resonances. Our approach
for this study will be to consider an adequate truncation up to some order M, depending
on ¢, of the Fourier series of the perturbation A in such a way that we deal only with a
finite number of harmonics |(k,[)] < M and therefore of resonances.

Another remarkable difference with respect to the results obtained in [DLS06a] is
that in that case the size of the gaps created in the foliation of invariant tori was uniform,
whereas in our case, since the size is O('/2|(ko, lo)|7"/?), we have a heterogeneous sea
of gaps of different sizes. Among them, we will distinguish between small gaps and big
gaps, which are strongly related to the mentioned large gap problem. Indeed, big gaps
are those of size bigger or equal than ¢ and therefore they are generated by resonances
—1ly/ko of order one, such that |(ko,ly)| < e~'/" or, equivalently, |(ko,lo)|""/? > £'/? (see
Section 3.3.3 for precise results).

From a more technical point of view (see Section 3.2 for details), we would like to
remark that the main difficulties arise from the fact that in order to perform a resonant
averaging procedure, we need to isolate resonances corresponding to |(k,l)| < M,
for M depending on ¢. Consequently, the width L of the resonant domain can not
be chosen independently of ¢, as it was the case in [DLS06a]. Moreover, along the
averaging procedure we need to keep track of the C* norms of the averaged terms and
the remainders, and these blow up as a negative power of L. Hence, we will see that a
good choice for L around a resonance I = —[/k will be L = L;, ~ /" /|k| (see hypotheses
of Theorem 3.11), where n is the required regularity to apply KAM Theorem after the
averaging procedure. Notice that L is not uniform along the resonances but depends on
the value |k| of the resonance.

Finally, after m steps of averaging, we will show that the remainder tail, that is, the
Fourier coefficients hy; such that |(k,l)| > M can be neglected. This will be ensured by
a fast enough decreasing rate of the coefficients and therefore a large enough regularity
r of the perturbation. Thus, the required regularity r» will be determined according to
the number m of steps of averaging performed, as well as the needed regularity n to
apply KAM Theorem after the averaging procedure.

We are using a version of the KAM theorem that requires to have the Hamiltonian
system written in action angle variables. Since near the resonances we approximate
the system by one which is close to a pendulum, the action variable becomes singular
on the separatrix. This fact, together with the requirement to have the invariant
objects close enough (at a distance smaller than ¢) implies that the perturbation of
the averaged Hamiltonian has to be extremely small in the resonant regions. The
immediate consequence of this fact is that, in the case we are studying, one has to
perform at least m = 10 steps of averaging (see Theorem 3.28). The needed regularity
n to apply KAM Theorem after m averaging steps is n = 2m+6 (see Proposition 3.24).
Since the regularity r required to ensure that the remainder tail is smaller than the
averaging remainder turns out to be r > (n — 2)m + 2, see Remark 3.20, one has to
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impose r > rg = 242.

We do not claim that this is an optimal result. Actually, another version of the
KAM theorem that allowed us to avoid the change into action-angle variables like
[LGJVO05, FLS07] could improve the results in terms of the needed regularity (see
also [LHSO8| for a numerical implementation). However, it is worth mentioning that
we managed to decrease the required steps of averaging in the resonant domains with
respect to the results in [DLS06al. Since in the resonances the behavior of KAM tori is
different depending on how close they are to the separatrix (tori are flatter as they are
further from the separatrix), we consider different regions where we perform different
scalings. This strategy, which was already introduced in [DLS06a], has been improved
in this paper introducing a new sequence of domains in Theorem 3.30. When applied
to the case with a finite number of resonances as in [DLS06a], m = 9 steps of averaging
and 7 > 26 are enough (see Remark 3.32). This clearly improves the needed regularity
r which was r > 60 in [DLS06a] because m was chosen m = 26.

Sections 3.3.3, 3.3.4 and 3.3.5 contain a quantitative description of the geography
of resonances and a detailed study of the invariant objects generated by the resonances.
The effect of the resonances in a system constitutes a fundamental problem not
only for diffusion but also for many other physical applications and it has been an
important object of study in the physical literature, see for instance [Chi79, Ten82].
The study performed in this paper contributes to understand better the different types
of resonances and the geometric objects that one can find therein and can be very helpful
in many physical problems.

Moreover, we think that this study can be extended to a class of models that present
multiple resonances, see [DLS07].

We would like to emphasize that in our case, and this is different from the results
in [DLS06al, only the resonances of order 1, that is, the ones that appear at the first
step of averaging, create big gaps; whereas in [DLS06a], both resonances of order 1 and
2 could generate big gaps. This is because we are dealing with a perturbation that
generically will have all the harmonics different from zero. This means that the effect
of the resonances associated to the biggest Fourier coefficients (low frequencies) will be
detected at the first step of averaging. Since the size of the gap depends on both the
order of the resonance and the size of the Fourier coefficient associated to that resonance,
the ones that appear at the second step of averaging already correspond to small Fourier
coefficients and the size of their gap will be smaller than €. The immediate consequence
of this fact it that in the forthcoming Theorem 2.1, we can give all conditions explicitly
in terms of the original perturbation h.

The paper is organized in the following way. In Section 2 we state Theorem 2.1,
which establishes the existence of diffusing orbits for the model considered under precise
conditions. Since the required hypotheses are checked to be C? generic, Theorem 1.1
follows straightforwardly. The proof of Theorem 2.1 is given in Section 2, except for
two technical results, Theorem 3.1 and Proposition 4.1, which are postponed to the
following sections.
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Thus, in Section 3, we prove Theorem 3.1, which provides a quantitative existence
of invariant objects for the inner dynamics in the NHIM following the steps indicated
in Section 2. In Section 4, we use the scattering map to prove Proposition 4.1 about
the existence of heteroclinic connections between the invariant objects obtained in the
previous section.

We would like to remark that, in contrast to [DLS06a], and thanks to the new
results about the scattering map obtained in [DLS08], we use the Hamiltonian function
generating the deformation of the scattering map instead of the scattering map itself,
in order to compute the images of the leaves of a certain foliation under the scattering
map.

Finally, in Section 5 we have included for illustration a concrete example, for which
we sketch how the hypotheses of Theorem 2.1 can be checked. We plan to come back
to this example in a future paper for a more detailed description of the mechanism. In
the Appendix, we have brought some technical results used in the paper.

2. Statement of results

Before stating the main result in this paper we need to introduce some notation.

2.1. Notation and preliminaries

Let r be a positive integer and D C R™ a compact set with nonempty interior D. We
will denote the set of C™ functions from D to R™ and continuous on D by C"(D,R™).
When m = 1, we simply write C"(D) instead of C"(D,R™). Given f € C"(D,R™), we
consider the standard C” norm,

Flero Zzzsup‘D Sil@)], (2)

i=1 (=0 |a|=¢“€P

where f; denotes the i-th component of the function f, for i = 1,...,m. We omit the
domain in the notation when it does not lead to confusion.

We use the standard multi-index notation: if @ = (ay,...,q,) € N" and z =
(x1,...,2,) € R™ one sets

lal =a1+ -+ ay,

al = arlasg! -,

olal

D=
o
Ox(" ... 0xon

In the case that the function f depends only on a few of the variables, we will
denote it in the same way, that is | f|c, = [f|cr(p), and consider it as a function of more
variables defined in the appropriate domain.
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Note that we denote |f|.o = sup,cp |f(x)], which is the standard supremum norm,
so the | - |cr(py norm can be expressed, equivalently, as

Y\ [ D fileo)
| fler) = E E E Yl
=1 £=0 |a|=¢ ’
The space of C"(D) functions endowed with the C" norm is a Banach algebra (see

[Con90]), that is, it is a Banach space with the property that given any two functions
f,g in C"(D), they satisfy

|f9|cl < |f|cl |9|cZ .

Since we will also deal with C” functions defined on a compact domain D =7 x T",
where Z C R” is a compact set with non empty interior, we can also consider the
following seminorm, that takes into account the different regularities and the estimates

for the derivatives in each type of variable:
6ot

fon=>3 % L

oqlos!
m1=0 mo=0 ay,a2€N™ 162 (I’@)GD
|1 |[=ma,|az|=m2

omEm f(I,¢)
01102

: (3)

for 0 < /ly + 4y <.

Note that | flee = 320 o [ flime—m, for 0 < <.

We will use the following notation, which is rather usual. Given a = a(e) and
8 = B(e), we will write @ < [ and also « = O(f) if there exists €y and a constant
C independent of ¢, such that |a(e)] < C|5(¢)|, for |e| < . When we have o < 3
and # =X a we will write a ~ 3. However, in some informal discussions we will abuse
notation and we will say that « is of order e < « ~ &P,

We will say that a function f = Ocrpy() when

|f|cr(p) =0

2.2. Set up and main result

We consider a 2m-periodic in time perturbation of a pendulum and a rotor described by
the non-autonomous Hamiltonian (1),

He(p,g,l’(p,t) = HO(pvqal)+€h(p7q717¢7t;8)

1
= Pi(p.q)+ 512 +eh(p,q,1,p,t€),

(4)
where

Pi(p,q) =+ (%pz + V(Q)) (5)

and V' (q) is a 2m-periodic function. We will refer to Py(p, q) as the pendulum.

The term %I 2 describes a rotor and the final term eh is the perturbation term and
depends periodically on time, so that A can be expressed via its Fourier series in the
variables (¢, t)

h(p,a. 1o tie) = D hiu(p, g, [;6)e ™+, (6)
(k,l)ez?
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It will be convenient to consider the autonomous system by introducing the extra
variables (A, s):

He(p7q7 ]7907147 8) = A+ HO(p7q7[) +€h’(p7q7la 8078;6)

1 7
= A+Pi(p,q)+§I2+6h(p,q,f,so,8;€) ")

where the pairs (p,q) € R x T, (I,p) € R x T and (A4, s) € R x T are symplectically
conjugate.

The extra variable A does not play any dynamical role; it is symplectically conjugate
to the variable s and simply makes the system autonomous. So, we are only interested
in studying the dynamics of variables (p, ¢, I, ¢, s), given by the system of equations:

) , oh
p= ¢V(p)—€a—q(p,q,1,s@,s;6)

oh
g= £p +6a—p(p,q,f,<p,8;6)

. oh

I = _6%(p7q7]79075;8) (8)
oh

@ +68[(p,q, L, 5;€)

The domain of definition we consider is a compact set of type
D=8 x [I_,1;] x T? x [—eo, &0],
where S C R x T is a neighborhood of the separatrix (P£'(0)) of the pendulum.

Then, the main Theorem of this paper is:

Theorem 2.1. Consider a Hamiltonian of the form (1) where V and h are C"** in D,
with v > rq, sufficiently large. Assume also that,

H1 The potential V : T — R has a unique global mazimum, say at ¢ = 0, which is non-
degenerate (i.e. V"(0) < 0). We denote by (po(t), qo(t)) an orbit of the pendulum
Pi(p,q) in (1), homoclinic to (0,0).

H2 Consider the Poincaré function, also called Melnikov potential, associated to h (and
to the homoclinic orbit (po, qo)):

Ligs) = = [ @il L+ Tos o) o

[e.e]

—h(0,0,1,p+ Ilo,s+ 0;0))do
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H2’ Given real numbers I_ < I, assume that, for any value of I € (I_,1,), there
exists an open set J; € T2, with the property that when (I, p,s) € H,, where
H.o= |J {}xTcd_ L)xT, (10)
Ie(I_Iy)
the map
TeER— LI, p—IT,s—7)
has a mon-degenerate critical point T which is locally given by the implicit
function theorem in the form T = 7*(1,p, s), with T* a smooth function.
H2” Introduce the reduced Poincaré function £* defined by

‘C*(Ia(p) = ‘C(Ia(p_IT*([>§070)a_T*(Ia¢aO))> (11)
on
Hy ={(I,0):0=¢—1Is,(I,p,s) e H }= |J {I}xJ7, (12)
Te(I_I1y)
and assume that

0— —(1,0
86( )

for 0= © —Is € J} is non-constant and positive (respectively negative).
H3 Fiz 1/(r/6 — 1) < v < 1/16, for any 0 < & < 1 and for any (ko,lo) € Z?
with ged(ko,lo) = 1 and |(ko,lo)| < Mpg, where |(ko,lo)] = max(|ko|, |lo]) and
Mg = e~/ introduce the 2r-periodic function

Uko’lo (9) = Z htko,tlo (07 07 _ZO/k(b O)eite7

teZ—{0},
[t]] (ko,lo) | <M

where 0 = kop + los and M = e~ 240 for § small, for which we assume:

H3’ The function U has a non-degenerate global mazimum.
H3” For |(ko,ly)| < €Y7, we assume that the 2wky-periodic function f given by

"ko,l aL* (=l 0 ko,l 2L (=lg 6
koU"00(6) 2= (5o, ) + 2000 ()2 (5, £

0) = ) 13
) oy Eney (13)
062 ko 7 ko
18 non-constant.

H3”’ For |(ko,lo)| ~ e/, we assume the non-degeneracy condition stated explicitly
in equation (152).

Then, there exists €* > 0 such that for 0 < |e| < &* and for any interval
[[*,17] € (I-,1), there exists a trajectory x(t) of the system (1) such that for some
T>0

IGO) < I I@ED) > I
(respectively:
1(@(0)) = I; 1(z(T)) < I7).
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Remark 2.2. ry depends on the number m of some averaging steps performed in the
proof: ro = 2(m + 1)? and m > 10 (see hypotheses of Theorem 3.1 in Section 3). If we
take just m = 10 then rq = 242 is enough.

Remark 2.3. The truncation order M in hypotheses H3 depends on the regularity n
required for the application of the KAM Theorem along the proof: M = ¢~/ (49 for
n=2m+6 and 0 < 0 < 1/m, where m is the number of averaging steps performed
in the proof and is such that m > 10 (see hypotheses of Theorems 3.11 and 3.1 and
Remark 3.20). Hence, we choose m = 10 and therefore M = ¢~/(26+9) in hypotheses
H3.

Remark 2.4. Notice that for every fixed € we have one condition H3 for every (ko, o)
such that |(ko,lp)] < Mpg, that depends explicitly on (ko,ly). Hence, the number of
non-degeneracy conditions H3 is finite but grows with e.

Remark 2.5. Notice that by the definition of 7*(1, ¢, s), the function
f([,QO,S) = ‘C([>Q0_ [T*(I,QP,S),S—’T*([,QO,S))

satisfies the equation

Iagof(],@, S) _'_asf(lu ()07 8) = 0
Therefore it is of the form f(I, ¢, s) = L*(I,p — Is), so we can alternatively define

,C*(I,(p—IS) = ,C([,QO—[T*([,QO,S),S—’T*([,QO,S)).

Remark 2.6. The main feature of Theorem 2.1, as already said in the Introduction, is
that h is not required to be a trigonometric polynomial in the variables (¢, s), which is
a non-generic assumption, as it was the case in [DLS06a].

Before proving Theorem 2.1 let us see that Theorem 1.1 stated in the Introduction
is just a consequence of Theorem 2.1. Indeed, for every fixed ¢, conditions H1 and H2
are open and dense, that is they hold for an open and dense set of Hamiltonians in the
C? topology.

For every fixed ¢, the number of non-degeneracy conditions H3 is finite but grows
with € (the number of conditions depends on (kq, ly) € Z* such that ged(ko, lp) = 1 and
|(ko,lo)| = €7%/"). When ¢ tends to 0 we have a countable number of conditions in terms
of the functions

UK (0) = " hukyus (0,0, —lo/ ko3 0)e”
teZ—{0}

which are the same as those in hypotheses H3 but without any truncation. This
countable number of conditions involve only derivatives up to order 2 of the Hamiltonian,
hence the set of Hamiltonians satisfying them is a residual set in the C? topology, that
is, a countable intersection of open and dense sets in the C? topology.

Therefore the hypotheses of the Theorem are C? generic in the set of C"*2
Hamiltonians of the form (1). So, the short version of Theorem 2.1 stated in Theorem
1.1 in the Introduction follows straightforwardly.
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2.3. Proof of Theorem 2.1

The proof of this theorem follows the geometric mechanism stated in [DLS06a] and it
is organized in four parts that we first sketch now:

Part 1 The first part deals with the existence of a Normally Hyperbolic Invariant Manifold
(NHIM), which jointly with its associated stable and unstable manifolds, organizes
all the dynamics, and is a consequence of hypothesis H1. By hypothesis H2’,
its associated stable and unstable manifolds will intersect transversally, so we can
associate to this object two types of dynamics: the inner and the outer.

Part 2 The outer dynamics, which is the one that takes into account the asymptotic
motions to the NHIM, is studied in the second part. We will see that we can
associate a scattering map to the NHIM and give formulas for the Hamiltonian
function which determines the deformation of this scattering map.

Part 3 The third part of the proof consists of studying the inner dynamics, that is the one
restricted to the NHIM. The goal is to show that, by hypotheses H3’, there exists
a discrete foliation of invariant tori, which are closely spaced. Among these tori,
some of them are primary, so they are just a continuation of the ones that existed
for the integrable system (¢ = 0), and some of them are secondary, these ones are
contractible to a periodic orbit, so they correspond to motions with topologies
that were not present in the unperturbed system but they are created by the
resonances. The method of proof will be a combination of an averaging procedure
and a quantitative version of KAM Theorem, which requires the Hamiltonian to be
differentiable enough.

Part 4 The last part of the proof consists of showing that the combination of both types
of dynamics give rise to a construction of a transition chain, that is, a sequence
of whiskered tori in which the stable manifold of one torus intersects transversally
the unstable manifold of the next one. To this end, one needs to show that the
discrete foliation of whiskered tori which are invariant under the (inner) flow is not
invariant under the scattering map or outer map. This is ensured by hypotheses
H2”, H3” and H3”’ in Theorem 2.1, which indeed provide the transversality of
this discrete foliation to the scattering map. Finally we prove, using a standard
obstruction property, that there is an orbit that follows this transition chain.

Next we give a proof of Theorem 2.1 organized in the four parts that we have
mentioned. The first two parts follow readily from [DLS06a] and Theorems stated in
[DLS06a] apply straightforwardly because hypotheses H1 and H2’ required for the proof
of the mentioned results are the same as in our case. Moreover, for the second part we
use the symplectic properties developed in [DLS08] to generalize the computation of
the scattering map using its Hamiltonian function. So, for these parts, we only refer in
Section 2.3.1 and 2.3.2, to the results in [DLS06a| and [DLS08] that we are using.

However, for the third part, the results obtained in [DLS06a] do not apply directly
because in the present paper we are not assuming that the perturbation has a finite
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number of harmonics. Therefore, it has been necessary to develop a new methodology
in order to prove that when we have a C"*? perturbation h, with r large enough,
and hypotheses H3’ are fulfilled, for every £ we can truncate adequately its Fourier
series and deal only with a finite number of harmonics and therefore a finite number
of resonances to get a discrete foliation of tori closely spaced. Moreover, explicit
approximate expressions for these tori are obtained as the level sets of a certain function.
The mentioned results are stated and proved rigorously in Section 3, giving rise to
Theorem 3.1 and they constitute the essential result of this paper. In Section 2.3.3 we
just refer to the results in Section 3 needed to prove part 3 of Theorem 2.1.

Once we have fixed in part 3, for every e, the number of resonances, part 4
follows readily from the finite hypotheses H2”, H3” and H3”’ as in [DLS06a]. The
main difference is that, in contrast to [DLS06a] and thanks to the new results about
the symplectic properties of the scattering map obtained in [DLS08], we can use the
Hamiltonian function generating the deformation of the scattering map instead of the
scattering map itself, in order to compute the images of the leaves of a certain foliation
under the scattering map. The results with their proof are stated in Section 4. In
Section 2.3.4 we just refer to the results in Section 4 needed to prove part 4 of Theorem
2.1.

2.3.1. First Part: Fxistence of a NHIM and its associated stable and unstable manifolds
The method of proof is based on the existence of an invariant object, a NHIM (see, for
instance, [HPS77, Fen74, Fen77, Fen79, L1a00, Wig90] for the standard theory of NHIMs
used in this paper), which jointly with its associated stable and unstable manifolds,
organizes all the dynamics around it.

We start by discussing the geometric features of the unperturbed case which will
survive under the perturbation. For the case ¢ = 0, Hamiltonian (1) is integrable and
consists of two uncoupled systems: a rotor and a pendulum. So, the cartesian product
of invariant objects of each of these subsystems will give an invariant object of the full
system. Then, by hypothesis H1, if we consider the product of the hyperbolic fixed
point (p, q) = (0,0) of the pendulum P (p, q) in (5) with all the other variables, we have
that for the values I_, I, given in Theorem 2.1, the set

A={Z=0qIl,0s)cRXT?xT:p=q=0,1¢c[l_ I,]} (14)

is a 3-dimensional invariant manifold and normally hyperbolic for the flow of the
Hamiltonian system (8) for ¢ = 0. The associated stable and unstable invariant
manifolds of A are the ones inherited from the separatrices of the pendulum (stable
and unstable manifolds of the hyperbolic fixed point) and they agree:

WA = WA = {(po(7), q0(7), [, p,8) : T € R, T € [I_, 1], (p, s) € T} (15)

where (po(7), go(7)) is the chosen orbit of the pendulum Py, provided by hypothesis H1,
which is homoclinic to the hyperbolic fixed point (0, 0).
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The Hamiltonian system (8) for e = 0 restricted to the manifold A is given simply
by

=0, ¢o=1I s=1

The dynamics on this manifold is very simple: all the solutions lie on a 2-dimensional
invariant torus I = cte. Therefore, the normally hyperbolic invariant manifold is foliated
by a one-parameter family of 2-dimensional invariant tori indexed by I, with associated
frequency (7,1).

For 0 < |¢] < 1, by the theory of NHIM (see the references above), the
manifold A persists, giving rise to another manifold /L with associated local stable
and unstable manifolds W*!°°A_ and W“’IOCKE, which can be prolonged to WeA,. and
W“/L, respectively. Both /L and its local stable and unstable manifolds, VVS’IOCK€ and
W“’IOCKE, are e-close in the C" sense to the unperturbed ones:

A=A+ Ocr(e); WHCN = WA + Opr(e): WA, = WA + Opr (). (16)

The result of the persistence of the NHIM /L and its stable and unstable manifolds
is formulated in Theorem 7.1 of [DLS06a], where the perturbation A in (1) was assumed
to be a trigonometric polynomial. However, the only assumption required for the proof
was the fact that the perturbation h and the potential V were C"*2, so Theorem 7.1 can
be applied straightforwardly in our case.

2.83.2. Second Part: Outer Dynamics The outer dynamics, which is the one that takes
into account the asymptotic motion to the NHIM /L, is described by the scattering
map. It is possible to construct a scattering map associated to the NHIM Ka, as long
as its stable and unstable manifolds intersect transversally.

In Proposition 9.2 in [DLS06a] it is proved that if hypothesis H2” in Theorem 2.1 is
satisfied, then the stable and unstable manifolds WSK€ and W“KE of the NHIM intersect
transversally along a homoclinic manifold I';, which is also called a homoclinic channel
(see [DLSO08| for more details, in particular for the definition of the wave operators,
needed for the construction of the scattering map). So, we will be able to locally define
the scattering map associated to I'. and compute it in first order perturbation theory
using the results in [DLS08]. Again, hypothesis H2’ required for Proposition 9.2 in
[DLS08] does not depend on the number of harmonics of the perturbation h, so the
results stated also hold for the case we are considering in this paper.

Therefore, the manifold A. defined in (14) has a scattering map associated to a
homoclinic manifold I'., defined in the following way

S.: H, C Ka — Ka
T_ = Ty
such that z; = S(z_) < 3 z € I'. such that

dist(Py . (2), Pye(z1)) — 0 fort — +o0,

(17)

where @, . is the flow of Hamiltonian (1). Indeed,

D (2) — Bye(ws)| < ctee 2 fort — +o0,
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where p = 1/—V"(0) > 0 is the characteristic exponent of the saddle point (0,0) of the
pendulum Py (p,q) in (5).

Heuristically, the scattering map maps points of the manifold A. to points of the
manifold A., such that the motion of z synchronizes with that of z_ (and z) in the
past (and in the future).

Moreover, in Proposition 9.2 in [DLS06a] it is given a perturbative formula for the
difference of the actions I of the points ;. = S.(z_) and z_. Concretely, expressing the
points z in terms of the parametrization of A., given in Theorem 7.1 in [DLS06a] we
have that

I(x:t) =1+ 0Oxn (5)7 QO(ZL':t) =p+ 001(5)7 S(I:I:) =S,

and

I(xy)—I(z_) = 5%(], 0) + Oci(c?), (18)

for 6 = @ — Is, where L* is the reduced Poincaré function defined in hypothesis H2”.
Remark 2.7. Notice that there is a wrong sign in formula (9.9) in [DLS06a].

The method used in [DLS06a], based on the fact that I is a slow variable, allowed
only to compute the leading term of the action component of the scattering map, but
not the ¢ component since it is not a slow variable.

In a more recent paper [DLS08] the authors showed that the scattering map is exact
symplectic and introduced geometric methods that allow to compute perturbatively an
expression for both fast and slow variables.

Thus, using the method proposed in Section 5 in [DLS08], we can give perturbative
formulas for the Hamiltonian S, generating the deformation of the scattering map S..

It follows straightforwardly from Theorem 31 in [DLS08] that the reduced Poincaré
function £* introduced in (11) is equal to the Hamiltonian —S&y, so that we obtain

S.(I,p,A,8)=—-L"(1,0)+ O(¢e), (19)
with 6 = ©—1Is.
Hence, the first order perturbative term of the scattering map is given by
S0, A,8) = (I p, A, s) +eIVS (1, 9, A, 5) + O(e?), (20)

where J is the canonical matrix of the symplectic form w = dI A dp + dA A ds and
V = (0r,0,,04,05). The extra variable A, conjugated to the angle s, was introduced to
make apparent the symplectic character of the scattering map.

Notice that equation (18) is just the I component of equation (20).

We would like to remark that S, = Id+ O(e). In particular, one iteration of S. can
only jump distances of order ¢ in the action direction 1.

Remark 2.8. For the mechanism of diffusion we are interested in comparing the inner
dynamics in A. with the outer dynamics provided by the scattering map S.. Although
the computation up to first order of the scattering map for the I component is enough
for our purposes, it is more natural to study the action of the scattering map in terms
of the Hamiltonian S..
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2.83.83. Third Part: Inner Dynamics In this section we study the inner dynamics, that
is, the dynamics of the flow of Hamiltonian (1) restricted to the NHIM A.. The main
result is Theorem 3.1, which states that there exists a discrete sequence of invariant
tori 7; in the NHIM A., which are distributed along the actions in the interval (I_, I, )
introduced in Theorem 2.1 and which are O(e'™)-closely spaced in terms of the action
variable, for some n > 0. Moreover, Theorem 3.1 provides explicit approximate
expressions for the invariant tori, which are of two types depending on the region of
the phase of space where invariant tori lie: the big gaps region and the flat tori region.
The big gaps region is defined as

Do = {(Ip.8) € (I_, ;) x T : [T +1/k| < L/|k],|(k,0)] < Mac} (21)

where L is defined in (54) and is going to be introduced precisely along this third Part
and Mpg was introduced in hypothesis H3 of Theorem 2.1. For the purpose of this
exposition it is enough to know now that L = O(¢'/") and Mpg = O(e~/"), where n is
the regularity of the Hamiltonian required for the application of KAM Theorem (n = 26
will be enough, see hypotheses of Theorem 3.1) and r (r > n) is the regularity of the
Hamiltonian required for Theorem 2.1. The flat tori region is the complementary region
of the big gaps region.

In the flat tori region, there exists a Cantorian foliation of primary KAM tori,
which are just a continuation of invariant tori I = cte present in KO for the unperturbed
Hamiltonian (1) for ¢ = 0.

The big gaps region is formed by gaps of size bigger or equal than ¢ in the Cantorian
foliation of primary KAM tori. These gaps are bigger than the size ¢ of the heteroclinic
jumps provided by the scattering map (20). This is what is known in the literature as
the large gap problem. Inside these regions, apart from primary KAM tori which are
bent, there appear other invariant objects, which were not present in the unperturbed
case, like secondary KAM tori and lower-dimensional tori, which are not detected by a
direct application of KAM Theorem, but require a more careful analysis based on an
averaging procedure.

In order to prove Theorem 3.1 we will restrict Hamiltonian (1) to the NHIM A.
and perform an averaging procedure before applying a quantitative version of KAM
Theorem. The fundamental difference with respect to [DLS06a] is that for every fixed ¢
it will be necessary to truncate adequately the perturbation in order to deal with a finite
number of harmonics depending on . The phase space of the truncated Hamiltonian
possesses an heterogeneous sea of a finite number of big gaps of different sizes, depending
on the size of the harmonics of the perturbation.

Restriction to the NHIM Ka

Following the same arguments given in Sections 8.1 and 8.2 in [DLS06a], we have that
the flow restricted to A, is Hamiltonian. More precisely, by Proposition 8.2 of [DLS06a/,
we can construct a C" system of coordinates (J, ¢, s) on [L, where

J =TI, ¢,88) =1+ Ocrr(e), (22)
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such that the symplectic form on any Af = {(J', ¢/, s') € A, : &' = s} has the standard
expression wjps = dJ Adp. Since A, = A for ¢ = 0 according to equation (16), by
Proposition 8.4 in [DLS06al, the restriction of the Hamiltonian H. in (1) to A, expressed

in these action angle coordinates (J, ¢, s) has the form

k(J, @,s:6) =Z(J)+eR(J, p,s;¢) (23)
with

Z(J)=J?/2 and R(J,p,s;0) = h(0,0,J,¢,s;0), (24)
where h is the perturbation in H. given in (6) and R is Ocr(1).
Remark 2.9. Notice that, by expression (24), Ry (J;0) = hy (0,0, J;0), where hy; and

Ry are the Fourier coefficients in the angle variables (¢, s) of the perturbation h and
its restriction R to A., respectively.

Averaging procedure

We start performing an averaging procedure to the restricted Hamiltonian (23), as it
was done in [DLS06al], which follows the argument used in the proof of KAM theorem
in [Arn63], but paying attention to resonant regions. In [DLS06a] the perturbation
was assumed to be a trigonometric polynomial, so there was only a finite number of
resonances. However, in Hamiltonian (1) the perturbation h has an infinite number of
harmonics, in the same way as R in equation (23), which give rise to an infinite number
of resonances, so the results in [DLS06a] do not apply directly.

The main result for the implementation of an averaging procedure for a generic
perturbation will be Theorem 3.11 in Section 3.2. This theorem makes precise the
hypotheses required to truncate the Fourier series of the perturbation R in (23) with
respect to the angle variables and develop a global averaging procedure that casts the
Hamiltonian (23) into a global normal form that has different expressions in the non-
resonant and resonant regions. The main property of the normal form is that it is almost
ready to apply on it a quantitative version of KAM Theorem.

The precise statement and rigorous proof of Theorem 3.11 are postponed to Section
3.2. In the following we only describe its main features and the results needed to apply
KAM Theorem.

There are three parameters that play an important role in the averaging procedure
of Theorem 3.11. One is the number of steps of averaging m to be performed, which
imposes a restriction on the differentiability r of the perturbation: 7 > 2(m + 1)2. This
number of averaging steps is chosen later in the application of KAM Theorem. The
other two are M, which is the order of truncation of the Fourier series and L, which
determines the size of the resonant regions. Both of them are chosen to depend on ¢
in the following way: M ~ 7 and L ~ &% where p,a > 0 are going to be chosen
conveniently during this averaging procedure.

For every fixed e, we truncate the Fourier series of the perturbation R in equation
(23) with respect to the angle variables (¢, s) up to order M in the following way

R = RISMI 4 pBM]
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where

REMI(J o s:¢) = Z Ry (J; e)elthetts)) (25)

(k,1)€Z?,
k| +[1| <M

and

REMI(J g, s6) = > Ryy(J;e)eltetts), (26)
(k,)eZ?,
|k|+[1]>M
and we deal only with RIM!| which is the trigonometric polynomial of degree M, as a
perturbation. The error introduced in Hamiltonian (23) coming from the neglected tail
of the Fourier series will have to be estimated later on.

Since the truncated Hamiltonian RISM! has a finite number of harmonics, an
averaging procedure of m steps has to take into account a finite number of resonances,
which are the set of rational numbers J = —I/k with |I| 4+ |k| < mM (see Definitions
3.6 and 3.4).

This averaging procedure divides the phase space (J, p, s) in two types of domains.

m
nr’

On the one hand, the non-resonant regions up to order m D], which are the set of
points (J, p, s) such that its action variable J is at a distance greater than 2L, of any
resonance J = —[/k, where Ly = L/|k|. On the other hand, the resonant regions up
to order m D!, which are the set of points (J, ¢, s) such that its action variable J is
at a distance smaller than Ly of any resonance J = —[/k (see Definitions 3.7 and 3.9).

To avoid overlapping between all the resonant domains, the distance between a
resonance —ly/ky and any other —[/k must be greater than 2(Ly, + Li). Since the
resonances considered satisfy |k| < mM we need to impose 4L < 1/mM, which requires
p < «a in terms of exponents of € and this corresponds to the left hand side inequality
of hypothesis (55) in Theorem 3.11.

Along the averaging procedure, one needs to control the C* norms of the averaged
terms and the remainders, for 0 < ¢ < n and 2m < n < r, where n is the regularity
which will be needed for the KAM Theorem and r is the regularity of the perturbation
R in Hamiltonian (23). It turns out that the estimates for the C* norm blow up as a
negative power of L ~ £%. Since the averaged terms and the remainder contain a power
of € in front of them, bounds for them can be kept small provided that « is small enough,
that is for a < 1/n. This corresponds to the right hand side inequality of hypothesis
(55) in Theorem 3.11 and also implies p < 1/n, which is formula (51) in the hypotheses
of Theorem 3.11.

In all this averaging procedure, there was an initial error coming from the neglected
tail of the truncation of order M of the perturbation R in Hamiltonian (23), whose C*
norm can be bounded by ¢/M" ‘=2 where r is the regularity of the perturbation R.
To keep it smaller than the C* norm of the remainder after m steps of averaging, one
has to impose a lower bound on p, which implies » > (1/p — 2)m + 2 in order to make
compatible lower and upper bounds for p, and this is hypothesis (52) in Theorem 3.11.
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These conditions on m, p, @« and r are stated in the hypotheses of Theorem 3.11.
In it, it is proved that one can develop a global averaging procedure that casts the
Hamiltonian (23) into a global normal form (56), that has different expressions in the
non-resonant and resonant regions (these correspond to expressions (57) and (58) in
theses of Theorem 3.11). In the non-resonant regions one can perform non resonant
averaging transformations in such a way that the averaged Hamiltonian is very close to
a rotor. On the other hand, near the resonances, the resonant averaging transformations
cast the system to a one d.o.f. Hamiltonian, which is close to an integrable pendulum,
provided that the perturbation satisfies some non-degeneracy conditions like H3’.

Summing up, we end up with a Hamiltonian (56) that consists of an integrable part
Z™ (the averaged Hamiltonian) plus a perturbation €™ R™ which is Op¢ (g™ -o(+2m)),
for £ =0,...,n — 2m, where m is the number of steps of averaging performed. Recall
that the integrable Hamiltonian Z™ has different expressions in resonant regions and
non-resonant regions.

The integrable part of Hamiltonian (56) gives us an approximate equation Z™ = cte
for the invariant tori. The next step is to show which tori survive and what is the distance
between them when we add the perturbation term e™*!R™ in equation (56).

Quantitative version of KAM Theorem

The main tool for this section will be KAM Theorem 3.22, which is a result about
the existence of invariant tori of a periodic perturbation of a Hamiltonian expressed in
action-angle variables. It is a direct adaptation of Theorem 8.12 in [DLS06a]. We will
use Theorem 3.22 to show that there exists a discrete foliation of invariant tori which
are O(e'*)-closely spaced, for some n > 0, and give approximate explicit expressions
for them.

Since the integrable Hamiltonian (56) after m steps of averaging has different
expressions in resonant and non-resonant regions (up to order m) introduced along the
averaging procedure, we perform this study separately. In the end, we will show that
all these regions can be grouped in two according to the expressions for the invariant
tori obtained in each one, which are the big gaps region (21) and its complementary
the flat tori region, already mentioned at the beginning of this subsection. Notice
that the big gaps region (21) is formed by the resonances J = —[/k of order 1, such
that |(k,1)| < Mgq, whereas flat tori region is composed by the non resonant regions
up to order m and the resonant regions up to order m such that J = —[/k and
|(k,1)| > Mpg, where Mpq is explicitly chosen in hypotheses H3 as Mpg = e~ (H)/7,
for any 1/(r/6 — 1) < v < 1/16.

Non-resonant regions are studied in Section 3.3.2. In Proposition 3.24, we apply
Theorem 3.22 directly to Hamiltonian (56)-(57), which is already written in action-angle
variables, and we conclude that for these regions there exist flat primary KAM tori given
in (79) as the level sets of a flat function F' = I + O(¢'*"), which are O(e'™)-closely
spaced, for some n > 0, provided that m > 2 and n > 2m + 6.

Resonant regions are studied in Section 3.3.3. As we already said, for these regions
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Hamiltonian (56)-(58) is not written in action angle variables but it is close to an
integrable pendulum (58) provided that hypotheses H3’ are satisfied. The integrable
pendulum has rotational and librational orbits as well as separatrices, which separate
these two types of motion. Rotational orbits have the same topology as the primary tori
in the integrable Hamiltonian Z(J) = J2/2 in Hamiltonian (23) and librational orbits
are contractible to a periodic orbit, so they correspond to motions with topologies that
were not present in the unperturbed Hamiltonian Z(J) and they are called secondary
tori. Librational orbits cover all the region inside the separatrix loop of Hamiltonian
(58), giving rise to a gap between primary tori, and the size of this gap depends on the
order of the corresponding resonance and the size of the Fourier coefficient associated
to it.

When gaps are of size smaller than e, which is the size of the heteroclinic jumps
provided by the scattering map (17), they are called small gaps. In section 3.3.4, we
study the resonant regions with small gaps Dgg and in Proposition 3.26 we show that
we can apply the same argument as in the case of non resonant regions to conclude that
for these regions there exist flat primary KAM tori given in (87) as the level sets of a
flat function F' = I + O(e'*7), which is the same as in the non-resonant case, and which
are O(g'™)-closely spaced, for some 7 > 0, provided that m > 2 and n > 2m + 6.

Notice that tori in the non resonant regions and resonant regions with small gaps
are given by the level sets of the same function F' = I + O(¢!'*") and they are flat up to
O(e'*™M), for some n > 0. Both regions form the flat tori region.

Resonant regions with big gaps Dgq are studied in Section 3.3.5. They correspond
to resonances J = —I/k such that |(k,l1)] < Mgg, where Mg = e (+/7 for
1/(r/6 —1) < v < 1/16. The size of the gap for these resonances is Ce'/2|(k,1)|7"/2,
where C' is a constant independent of ¢ and (k,[). Note that there is no uniform size
of the gaps since it runs from order /2 for resonances with low |(k,1)| to '**/2 for
resonances with |(k,1)| ~ Mpg.

Our criterium for the choice of the big gaps has been motivated by the size of the
heteroclinic jumps provided by the scattering map (20): small gaps are of size smaller
than e, so they can always be traversed just connecting two primary tori by the scattering
map, whereas this is not the case for big gaps. For these big gaps, we will show that we
can find other invariant objects, like secondary tori, which fill the region inside the gaps
and they get rather close to the frontier of the gaps among the primary KAM tori.

Remark 2.10. We would like to remark that our result about resonances that create big
gaps is remarkably different of the one obtained in [DLS06a], where it was considered
the case of a perturbation h with a finite number of harmonics. In that case there
was a uniform size for the gaps created by the resonances of order 1 which was Ce!/2.
Moreover, for resonances of order 2 the uniform size of the associated gap was Ce.

Hence, both resonances of order 1 and 2 were considered as big gaps.

In the case of resonances with big gaps, we will need to write the integrable
pendulum Z™ given in (58) into action-angle variables before applying KAM Theorem
3.22. Since this change of coordinates becomes singular on the separatrix of the
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pendulum, we will need to define different action-angle variables inside and outside
the separatrix, and we will exclude a thin neighborhood of the separatrix.

Moreover, since the behavior of the tori outside is different depending on their
distance to the separatrix (tori are flatter as they are further from the separatrix)
we consider different regions in the outside part of the separatrix, where we perform
different scalings. This strategy, which was already introduced in [DLS06al, has been
improved introducing a new sequence of domains in Theorem 3.30, which reduce the
differentiability requirements.

The main result for the implementation of the above strategy for resonances with
big gaps is Theorem 3.30 jointly with Corollary 3.31 which make explicit the relationship
between the minimum distance between the surviving tori and the number m of steps
of averaging performed.

In Theorem 3.28 we use both Theorem 3.30 and Corollary 3.31 to show that many of
the invariant tori (both primary and secondary) of the integrable averaged Hamiltonian
persist under the perturbation forming a sequence of tori given in (94) as the level sets
of a function F, close to the averaged Hamiltonian with a distance between consecutive
tori of order ', for some 1 > 0, in terms of the action variable, provided that m > 10
and n > 2m + 6.

Propositions 3.24 and 3.26 and Theorem 3.28 can be joined in a unique result about
the existence of nearby invariant tori for the inner dynamics, which is Theorem 3.1. This
Theorem also gives explicit approximate expressions for the invariant tori, which are of
two types depending on the region of the phase of space where invariant tori lie: the
big gaps region and the flat tori region.

We refer to Sections 3.2 and 3.3 for the referenced theorems where one can find the
complete proof.

2.8.4. Fourth Part: Construction of a transition chain and obstruction property In
order to finish the proof, it remains to check that the finite sequence of invariant tori
provided by Theorem 3.1 form a transition chain along the NHIM KE, traversing both
big gaps and flat tori regions, and to show that there are orbits that follow it closely.
These are the orbits claimed in Theorem 2.1.

The scattering map S, associated to the homoclinic channel I';; defined in (17), is
the main tool to detect that there exist transverse heteroclinic connections between these
tori, which are objects of different topology. Indeed, by Lemma 10.4 in [DLS06a], we
know that two submanifolds, like the invariant tori 7;, of a NHIM /L, have a transverse
heteroclinic intersection if they are transversal under the scattering map as submanifolds
of /L.

The main result of this section is Proposition 4.1 where it is proved the existence of
transition chains, that is chains of invariant tori 7;, both primary and secondary, such
that their image under the scattering map S. in (20) intersects transversally 7;,; on Ka,
that is

S.(T) g, Tipa. (27)

1
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In Section 2.3.2 we have obtained an explicit expression (20) up to first order for
the scattering map S, using the first order calculation of the Hamiltonian function S..
In Section 2.3.3 we have shown that on the NHIM KE there exists a discrete foliation
of KAM tori 7; (primary and secondary) which are O(g'™)-closely spaced, for some
n > 0. Moreover, we have obtained explicit expressions for tori 7;, both primary and
secondary, and we have seen that these invariant objects are given approximately by
the level sets of the averaged Hamiltonian.

In Lemma 4.2 in Section 4.1, we give an expression for the action of the scattering
map S. on a foliation given by the level sets of a given function F', using the expression
for the Hamiltonian function S. generating the deformation of the scattering map,
introduced in Section 2.3.2. Moreover, we give conditions to assure transversality
between the foliation in A. and its image under the scattering map S..

As we have seen in the previous section, the different types of tori that appear in
our problem have different quantitative properties and therefore the dominant terms
in the expression of these invariant objects as the level sets of a certain function are
different whether they lie in a flat tori region or a big gaps region. Lemma 4.2 is applied
in Lemma 4.5 for the case of the flat tori region, and in Lemma 4.7 for the case of
the big gaps region. In these Lemmas it is shown that the sufficient conditions on the
perturbation of the Hamiltonian (1) for the transversality are hypotheses H2” K H3”
and H3”’ in Theorem 2.1.

Putting all these results together in Proposition 4.1, we have that, by hypothesis
H2” and the non-degeneracy conditions H3” and H3”’, the scattering map S. maps
pieces of these tori transversally in A, to other tori at a distance O(e), that is S.(7;) rh
7T;11, where 7; and 7;,, are invariant tori at a distance smaller than . Therefore, by
Lemma 10.4 in [DLS06a] we have that Wz m Wz and we have constructed a transition
chain.

Finally, we use the well known result that given a transition chain {Z;}Y,, we can
find an orbit visiting all the elements of the chain. In our case, as it was the case in
[DLS06a] we have incorporated in the chain objects with different topologies, so applying
Lemma 11.1 in [DLS06a] to the transition chain obtained, we get that there is €* > 0
such that for 0 < |e] < €*, and for any interval [I*, I7] € (I_, 1), z(t) satisfies that, for
some 1" > ()

1x(0) <1t I(@(T) > 1I:
(respectively:
1(z(0) > I3 I(z(T)) < I7)

as we wanted to prove.

3. Inner Dynamics

The main goal of this section is to prove Theorem 3.1 about the existence of a sequence
of invariant tori 7; in the NHIM A., which are distributed along all the actions in the
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interval (I_,I;) and are O(g'*")-closely spaced, for some n > 0. The method of proof
will consist of the combination of two parts: averaging methods and KAM Theorem.

In Section 3.2 we will consider the restricted Hamiltonian (23) and perform, in
Theorem 3.11, a global averaging procedure that casts the Hamiltonian into a global
normal form, which has different expressions in the non-resonant and resonant regions.
In the non-resonant regions, averaging transformations cast the system to close to a
rotor and, in general, in the non-resonant regions to close to an integrable pendulum.

In Section 3.3 we will use KAM Theorem 3.22 to show that many of the invariant
tori of the averaged Hamiltonian persist when we add the error terms of the normal
form and they are close enough in terms of the action variables. For the flat tori region,
which consists of non-resonant regions and resonant regions with small gaps, we can
apply KAM Theorem 3.22 almost straightforwardly and this is done in Propositions
3.24 and 3.26, respectively. For the big gaps region, we will show in Theorem 3.28 that
we can apply KAM Theorem after we have written the Hamiltonian in action-angle
coordinates.

3.1. Main result

The main result about the existence of invariant tori in the NHIM Ka is stated in the
following Theorem:

Theorem 3.1. Consider a Hamiltonian of the form (1) and assume that r > 2(m+1)?,
with m > 10 and n = 2m + 6, as well as hypothesis H3’. Choose n = min((m — 1 —
an)/2,v/2 = 3(1 +v)/r), where « < 1/n and 1/(r/6 — 1) < v < 1/16. Then, for ¢
small enough, there erists a finite sequence of invariant tori {T;}Nq in Ka which are
distributed along all the actions in the interval (1_,1,), such that

1. They are defined by the equation F(I,¢,s;e) = E;, where F is a C*~¢ function,
for any o > 0, which has the form (87) and (94) depending on the region where
the invariant tori lie: the flat tori region or a connected component of the big gaps
region defined in (82), respectively. In the flat tori region, the invariant tori are
primary whereas in the big gaps region invariant tori can be primary or secondary.
In the big gaps region, for values of E; > 0 equation (94) provides two primary tori
TE{?, whereas for E; < 0 it gives a secondary tori T, .

2. They can be also written as a graph of the variable I over the angle variables (@, s):
I = Mg(p, s;e) with g given in (88) for the flat tori region. In the case of the
big gaps region, the equations for them are given for two different invariant tori
T.% (two different components in the case of secondary KAM tori) in the form
I = )5(p, s;¢€), with \z given in (95).

3. These tori are O(e'™")-closely spaced in terms of the action variable I. In the
connected component (82) of the big gaps region associated to the resonance —ly/ko,
they are O(e3247|(ko, lo)|~"/**)-closely spaced in terms of energies E;, where
—lo/ko is the associated resonance.
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4. Ty and Ty are Op2(e')-close to I_ and I, respectively.

The proof of Theorem 3.1 is a combination of an averaging procedure (Section 3.2)
and a KAM Theorem (Section 3.3). In Section 3.4 we put the results obtained in the
previous sections together to give a proof of Theorem 3.1.

3.2. Averaging procedure

In this section we proceed to obtain a suitable global normal form of the restricted
Hamiltonian (23), according to the procedure described in Section 2.3.3. We use
the standard formalism of Lie Series, so we are considering canonical transformations
obtained as the time-one map of the flow of a Hamiltonian. A very pedagogical treatment
of this method can be found in [LMS88]. As we have already mentioned, we consider
a truncation of the Fourier Series of the perturbation and we deal with trigonometric
polynomials of a finite order. We first introduce a Banach space with a suitable norm,
which allows an efficient study of the estimates for the different terms that appear in
the averaging procedure.

3.2.1. Preliminaries. Functional Spaces We consider the space of functions defined on
T x T?, T C R compact set, which consists of trigonometric polynomials of order M on
(p,s) € T2, and C" with respect to J € Z C R. We denote this space 73;(Z x T?). A
function u € Ty (Z x T?) is of the form

u(Jyp,s) = Y (), (28)

(k,1)eZ?,
k|l <M

Remark 3.2. Note that the product of two elements u € Ty (Z x T?) and v € Ty (Z x T?)
is another trigonometric polynomial in the variables (¢, s) € T? but of degree M + N,
that is, uv € Ty n(Z x T?).

Clearly, the space Ty (Z x T?) is a closed subset of C"(Z x T?). Therefore, Ty (Z x T?)
is a Banach space with the C" norm introduced in (2).

Moreover, since the functions u are trigonometric polynomials in (¢, s), we can
consider the expression (28) and deal with the Fourier norm:

14 m
(= N S R [

m=0n=0  (kl)eZ?,
||+l <M

where |ug,|en(z) is defined in (2) and |(k,[)| = max(|k|, |l|), and |-| denotes the standard
modulo. When there is no possibility of confusion about M we will abreviate it as ||-|| .
On the other hand, to understand better the behavior of the function v with respect

eny|(k, D™ (29)

to the variable J when it gets closer to the resonances, we will use the Fourier norm
with a weight L < 1:

A m
M m—n
lulli iy = 2 902" D ukdlen,l (b, D) (30)

m=0n=0  (k,)ez?,
||+l <M
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where |(k, )| is as before and
i D ukl 0
|ukl\cn(1 L= ZL | |C 1 %E,LCO(T) .

As before, when there is no confus1on about M we will abbreviate these norms as ||-|¢c 1
and | - |¢n 1, respectively.

Note that when L = 1, we recover the Fourier norm (29).

The basic properties of these norms are collected in Appendix B. In particular they
are related by

Lfulee < |ulleer < CMP|ulee, (31)

where C' is a constant that depends on ¢ but it is independent of M and 0 < L < 1.
For the seminorm |- | o deﬁned in (3) one has that for all 0 < 7 </,

L ulj,; < IIUIlceL (32)

Note that in the case that the function u € Ty (Z x T?) does not depend on the
action variable J, we have that

Jil—J

|ulee = [uo,,
therefore by equation (32),
|ulee < ||u||cl,L- (33)

Moreover, given u € Ty (Z x T?) and v € Ty(Z x T?), we have that uv €
Tusn(Z xT* and for 0< L<land 0 </ <,
<

M+N
ol <l ol (34)

We will say that a function f is Ocr (1) when || f|[;. , = 7.

3.2.2. The homological equation In this section, we will use the standard formalism
of Lie series to perform a resonant averaging procedure. We first start discussing
the infinitesimal equations for averaging, which will serve as a motivation for the
phenomenon of resonances and therefore for the resonant averaging.

We begin with a Hamiltonian K(J, A, p,s) = Ko(J, A) + eK1(J, A, ¢, s), where
(J,A,0,8) € R? x T? and Ko(J,A) = A+ J?/2. We start looking for a canonical
transformation g, given by the time-one map of the flow of a Hamiltonian eG(J, A, ¢, s)
(generating function), that eliminates, when it is possible, the dependence on the angle
variables (¢, s) up to order e. Therefore,

Kog=K+{K,G} + %{{K,aG},aG}Jr...
= K() + €(K1 + {K(), G}) + 0(52)

where {, } denotes the Poisson bracket in the canonical coordinates (J, A, ¢, s):

ofdg 0fdg 9fdg 9fdg

U9t =5,07 " 9504 " 979,  0A0s
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We seek for a solution G of the infinitesimal equation
Ky +{Ky, G} =K,

which produces a K as simple as possible. In Fourier coefficients this equation has the
form

Kia(J) —i(w(J) - (k,1)Gra(J) = Kiy(J) (35)

where Kj(J), Gri(J) and Kj;(J) are the Fourier coefficients of K;, G and K,
respectively, for (k,[) € Z?, and w(J) € R? is of the form
0Ky 0K,y
w(J) = (W, 8—A) = (J,1).

This vector w(J) is called resonant when (J,1) - (k,1) = Jk +1 = 0, for
(k,1) # (0,0); and the values J = —I/k, with k # 0, for which this equation vanishes
and Ky (—[/k) # 0 are called resonances. Looking at equation (35) it is clear that these
are the places where we can not choose Gy ;(J) in order to have Kj,;(J) = 0. So, for
these values of J and, in order to keep smoothness, the ones in a neighborhood around
them, we will choose Kj;(J) to be the Fourier term Kj,;(—{/k). Note that we cannot
have Koo(J) = 0 for any J either, so we will also keep the Fourier coefficient K (/).

The precise result with the estimates for the functions is formulated in the following
Lemma:

Lemma 3.3. Let K(J,,s) be a Hamiltonian defined on T x T?, T C R compact set,
which is a C"™1 function with respect to J and a trigonometric polynomial in (o, s) of
degree M, so it can be expressed in the following way

J 0, S Z Kkl 1(kg0+ls
(k,)eN
with N = {(k,1) € Z?,|k| + |l| < M}. We refer to resonances as the elements of the
finite set of rational numbers
R={-l/keQ: (k1) eN,k#0,Ky,(-l/k) # 0} (36)

For any (k,1) € N, we consider (k,1) € Z* such that —1/k = —1/k and ged(k, 1) = 1
and we define L, = Ly = L/ﬁ%\, being L < 1 some constant small enough such that for
all =l/k € R, the real intervals [—1/k — 2Ly, —l/k + 2Ly| are all disjoint.

Then, there exist a function G = GI=M! of class C" with respect to J and K = KISV
of class C™™Y, which are both trigonometric polynomials in (p,s), such that they solve
the homological equation

K+ {Ky, G} =K, (37)
and verify:
1. If|J +1/k| > 2Ly, for any (k,1) € N, then
K(J,¢,5) = Koo(J). (38)
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2. If |J + lo/ko| < Li, for some (kq,ly) € N, then

K(J,¢,8) = KoolJ)+ Z Ky o (—lo/ o)tk +109)
kel oh<M (39)
= Koo(J) + Ukg,io (ko + 1os).
3. The function K wverifies
HKHCZ,L < Cy ||K||cl,L> (40)
for¢=0,...,7r+ 1, where Cy is a constant independent of L, M.

4. The function G verifies

&
1Gllge , < ||K||cl+1 9 (41)

for£=0,...,r, where Cg s a constant independent of L, M.

Proof. We want to solve for each (k,l) € N the equation (35)
Kia(J) = i(Jk + D)Gra(J) = Kia(J), (42)

where the unknowns are the Fourier coefficients of the generating function G and the
averaged Hamiltonian K.
So, we first choose:

1. Koo(J) = Koo(J),
2. if (0,1) e N, 1 #0, Ko, (J) =0,
3. if (k,1) € N, k # 0, we choose Ky (J) as

Rauld) = K100 (-0 +1/D) (13)

where 9(z) is a fixed C* function such that: ¢ (z) =1, if x € [-1,1], and ¢(z) =
if z ¢ [~2,2]. With this choice we have that K}, verifies:

(a) If |J—|— l/k‘| < L; then Kk,l(J) = K]M(—l/k‘),

Once we have defined K as above, it is clear that it is a C"*' function, and its
Fourier coefficients satisfy:

}K’f’l}C",L ZLZ

_ Z L' | K( l/k)\ [D"%leo

k

D)l .o
< |Ktloo IR]" Z Pen (44)

}D K’“}CO

= | Kk ileo [K[" |¢|cn~
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Using this inequality for the Fourier coefficients it is easy to see that K verifies the
desired bound (40). More precisely,

¢ m
HKHC‘,L - ZZ2£ Z ‘K’f’l‘cnl‘(kvl”m_n

m=0 n=0 (k,1)€Z2,
||+l <M

l m
<Y N2 D [len | Kalgo K" (B, D

m=0n=0  (k,)ez2,
R|-Hl <M

S\WZZ% Y Koo (kD)™

m=0 n=0 (k,0)eZ?,
||+l <M

< (1) [Wlee 1T lee

for ¢ =0,...,7+ 1, so choosing Cp = (¢ + 1) ||, which is independent of L, we get
the desired bound.
Now, we choose G to verify equation (42) so we get:

1. Gop = 0 and Gpi(J) = 0 if (k,1) ¢ N,

2. i (0,1) € N, 1 40, Gou(.J) = Kou(J)/il,

3. if (k,1) € N, k # 0, we choose Gy (/) a;

Kkl(J) — Ky(J)

(a) If J # —1/k then Gy, (J) = ) JkHK (,l/k>
o Kea()) = Ki(J) _ ea(—
(b) Gra(=/k) = lim | kli(sz;l - =5

Then G(J, ¢, s) is a trigonometric polynomial in (¢, s) of degree M, and of class

C" with respect to J. To bound the function G, we first need to bound its Fourier
coefficients in terms of |-|o, ; norm for 0 < ¢ < 7. Given a fixed (ko,lo) € N, by the
definition of K and G, we have:

1. VJ, |Goy

enp S |KOZC7LL/|Z| for £ =0,.

|Kk0,l0‘cn+1,[,

2. It [J +lo/ko| < Liy, then |Gy iqlen , < (R +1) Lk
0

This estimate comes from
G L1|D Gk?() lO|C0
‘ ko,lo|cn, L

E |DH_ Kk(),lo |CO
i! | Kol

yform=0,...,r

=0

(n+ ]_) n Li+1 ]
< Dz-i—lK
= TRl 2 e e

co

|Kk0,l0‘cn+1,[,
Llko|

IA

(n+1)
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n4 1<
= Js Z|K’f07lo‘ci7L|k0|n_Z, for n =

=0

3. If ‘J + lo/k?o| > 2Lko then ‘Gko,lo‘cn

0,...,7+ 1.
This estimate is obtained using Leibniz rule for derivatives in the following way:

DG
‘Gko,lo|cn,L _ ZLZ| ko lo|C0
_ ZE D —j kol Kkolo
— 7! Jko + g
SEs ()2 i
pr il j=0 (2L )=+ ol

Z Z |D Kkolo|co‘k ‘2 j

IA

IA

n+1 i‘DKk,l|0 n—i
< mrt e plD sl
=0
n+ 1 - n—i
< I ‘Kko,lo Ci,L ‘]{70‘ .
=0

4. If Lko < ‘J+lo/l€0| < 2Lk0, then

n+1g
‘Gko,lo|cn,L < I Z |Kko7lo

=0

e o™+ (0 4 1) [ Keal o [ K1 [
forn=0,...,r and C' is a constant independent of L.

This estimate can be obtained in the same way as the previous one using the
estimate obtained for K}, in (44), in the following way

DG
Gy, = Y12t
< £ Di (i Kot ) +Z£ Di( . Koo )
=0 7! Jk’o+l0 co i—o 1! Jk?o+l0
< 7|Kkl|c0|k| |?/)|<:n Z|Kko,lo|ci,L|k0| :

1=0

In order to finish the proof, we will use these estimates for the Fourier coefficients
of G to bound the function G.

First we concentrate on the set Z' C Z formed by J € R, such that |J+1y/ko| < Ly,
for some —ly/ky € R. Notice that if J € 7', for any other (k,1) € N, such that
(k,1) # (tko, tly) for t € Z, J satisfies that |J+1/k| > 2L;. Therefore, we will distinguish
three types of Fourier coefficients G; of GG, which are the ones described in points 1,2
and 3 in this proof. Using their corresponding bounds we have
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l m
||G||cZ (Z'xT?), ZZQZ

m=0 n=0

DY

tez\{0}

M
Z |G0,l|cn7L |l|m_n + Z |Gk7l|cn,L |(k7 l)|m_n
I=—M

(k,l)eN
(k,D)#t(ko,lo)

|Gtk0,tlo |C",L |t(k0> ZO) |m—n

[t ([ko|+|lo]) <M
l m M ‘KO l‘
HIC™ Ly im—n
< 3o3 (3 ey
m=0 n=0 I=—M
(7’L—|—1) - n—i m—n
+ 2 ( > Kilesp K" ) 1R, 0)
(k,1)eN =0
(k,l)#t(ko,lo)
(n+1) -
+ Z m |Ktk0¢10‘cn+l,L \t(k:o, ZO)‘
teZ\{0}
[t](|1kol+lo[) <M
l m
<> 26(2 [Kolen 11"
m=0 n= I=—M
Y e O Kkl |k D)
(k,1)eN =0
(k,l)#t(ko,lo)
(n+1)

DS

t€Z\{0}
[t|(|ko|+lo]) <M

Y/
-y 2@(2 Kotlon 1

m=0 n=0

|Ktk20,tlo |Cn+l7L |t(k07 lO) |Tn_n_1

+

n+1
_'_

< (1K lge , +
Co

(n 1)L(m+1) S

enp (B D™
(k,D)eN
(k,0)#t(ko,lo)

Z ‘Ktk(),tlo‘an,L |t<k07 lo)‘m_n_l

teZ\{0}
[tI(Ikol+[lo[)<M

(

(41
D+ I e+ 1 )

< 7 I Elleen p

29
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for £ =0,...,r, where Cy = 3(¢£ + 1)? is a constant independent of L.

Analogously, for the set 7" C 7 formed by J € R such that Ly, < |J+41o/ko| < 2Lk,
for some —ly/ko € R, we notice that if J € Z” then for any other (k,l) € N such that
(k,1) # (tko,tly), t € Z, J satisfies that |J +1/k| > 2Ly. In this case, we will distinguish
three types of Fourier coefficients G; of G, which are the ones described in points 1,3
and 4 in this proof. Using the same argument as in the previous case, jointly with the
bounds for the Fourier coefficients, we have that
(0+1)°

L

G lesgrnre < K lee, + (1K et + [er 1K e + 1K e 1)

Cy
< K er,

for £ =0,...,r, where Cy = 4(¢ + 1)? is a constant independent of L.

And finally, for the remaining set 7" C 7 formed by J € R, such that |J+1/k| > 2L,
for any (k,1) € N, the Fourier coefficients Gy, of G are just the ones described in points
1 and 3. Arguing as before we have
(0 +1)*

L
for £ =0,...,r, where C;, = 2(¢ + 1)? is a constant independent of L.
So putting all these estimates together we get the desired bound (41) for the whole

Ce
HG||C‘3(I”’><’]T2),L < ||KHC‘3,L + ||K||CZ,L < f ||K||C‘,L )

domain. 0

3.2.3. The main averaging result In this section we apply repeatedly the procedure
stated in the previous section to the truncated Fourier series of the perturbation R[S
in (25), to get a suitable normal form.

We start the averaging procedure with the Hamiltonian (23) truncated up to order
M

ko(J, ¢, 8;6) = Z°(J, p,8;€) + eR°(J, ¢, s;€),

where Z°(J, p, s;¢) = J?/2 and R°(J, ¢, s;¢) = RISMI(J, ¢, s;€), which is a trigonometric
polynomial of degree M in the angle variables (¢, s).

We will search for a canonical transformation gy, given by the time-one map of the
flow of Hamiltonian €G, provided by Lemma 3.3 that eliminates, when it is possible,
the dependence on the angle variables (¢, s) at order e.

According to expression (36), we will refer to resonances of order 1 as the elements
of

where R}, are the Fourier coefficients of R”. For each resonance —I/k in Ry we will define
a strip of size 2L/|k|, for L ~ ¢* and «a > 0, centered on the resonance. We will call
resonant region of order 1 the union of these strips, where the averaging transformation
go can not eliminate the dependence on the angle variables, and non resonant region up
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to order 1 the complementary region in /L, where kg o go reduces to contain only the
harmonic R ,(J;0) at order e.
Hence, the Hamiltonian k; = kg o gg is now of the form

ki(J,p,858) = ZH(J, ¢, 576) + 2R, i, 55 ),

where the normal form Z' is a C" function, which has different expressions in the resonant
and non resonant regions, and the remainder e?R! is a C"~? function.

Proceeding by induction, we obtain a sequence of Hamiltonians k,_,, for ¢ > 1,
which are normalized up to order 97!, that is, in adequate symplectic coordinates
Hamiltonian k,_; takes the form

kg1(J 0, 576) = Z9 (T, ¢, s3€) + R, 0, 87 €), (45)

where, as before, the normal form Z¢ ! is a C"2@=2 function, which has different
expressions in the resonant and non resonant regions up to order ¢—1, and the remainder
g9RI71 is a C"24= 1 function.

The set of resonances of order ¢ and its associated resonant and non resonant regions
up to order ¢, are defined recursively in the following way:

Resonances. Resonant and non resonant regions.

Definition 3.4. The set of resonances of order ¢ > 1 is the set of rational numbers
r e RANRLU---UR,1), where R, is the set of rational numbers r € QN (I_,1;)
which admit a representation r = —l/k for some integers k.l satisfying |l| + |k| < q¢M,
such that R, (—1/k;0) # 0; in symbols,

k

where RZ;l are the Fourier coefficients of the remainder RT™' in (45).

Ry =Ry(M)= {_E ceQNU_,Iy) k| 4+ 1] <qM,Ek # O,RZ;l(—l/k;O) #+ O}, (46)

Roughly speaking, we call resonances of order g the places in J where the ¢-th order
averaging can not eliminate the dependence on the angles at order q.

Remark 3.5. Notice that, by hypotheses H3’ in Theorem 2.1, for all
—lo/ko € QN (I_,I,) such that |(ko,ly)] < Mpc there exists t* € Z? such that
his ko 11, (0,0, —=lo/ko; 0) # 0 and therefore, by equation (24), Rk, 1,(—lo/ko;0) # 0.
Hence, by definition 3.4 for resonances of order 1, as long as Mg < M, all the rational
numbers —I/k with |(k,[)| < Mpg are resonant of order 1.

Definition 3.6. The set Ri<q(M) of resonances up to order q is the union of sets of

resonances of order i, fori=1,...,q; in symbols,
Ri<g = Ri<g(M) = | Ri(M) c Q. (47)
i=1,...,q

For this set of resonances we define different strips in /L of a width depending on
a parameter L, which is L ~ %, with a > 0. This divides the phase space in two types
of regions:
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Definition 3.7. The non-resonant region up to order q DI is the set of points
(J,p,8) € A which are at a distance greater than 2Ly in terms of the J wvariable of
any resonance —l/k € Ri<q, where L, = L/|k|; in symbols,

l l
DI =D (M, L) = {(J,go,s) € (I_,1,)x T2 ‘J+ E‘ > 2Ly, for — € R[Sq]}. (48)

Definition 3.8. The resonant region of order q D, , is the set of points (J,p,s) € A,
which are at a distance smaller than Ly = L/|k| in terms of the J wvariable from any
resonance —l/k € R,\(R1 U ... URy_1); in symbols,

Dyg =DM, L) = {(J,¢,s) € (I_,1y) xT?: |J + £| < Ly,
for some — L € R\(R1U...URy_1)}.

The union of resonant regions of order ¢, for i = 1, ..., g gives us the resonant region
up to order ¢, which can be defined in the following way:

(49)

Definition 3.9. The resonant region up to order q¢ DI is the set of points (J, ¢, s) € A,
which are at a distance smaller than Ly = L/|k| in terms of the J wvariable from any
resonance —l/k € Ri<q; in symbols,

DI = DI, 1) = {(Jprs) € (. L) x T

l l
J+ E‘ < Ly, for some — 7 € R[Sq]} (50)

The dependence of these domains on M and L: DI = DI (M, L), D,, =D, (M, L)
and DI = DI(M, L), will be suppressed to simplify notation.
Remark 3.10. Note that, by Remark 3.5, the big gaps region Dp¢ introduced in (21) is
contained in the resonant region of order 1 D,.;.

The precise result to obtain a global normal form for the reduced Hamiltonian by
applying repeatedly the averaging procedure, jointly with the estimates for the bounds
of the normal form terms and the expression of the order of truncation M and the
constant L as functions of € are stated in the following Theorem 3.11:

Theorem 3.11. Let n,m be any given integers satisfying 1 < 2m < n. Given p a real
number satisfying

1
< — 51
P (51)
and r an integer verifying
r>(1/p—2)m+2, (52)

consider a C" Hamiltonian of the form (23):
2

J
k(T p,512) = o +el(J ¢, 53¢), (53)
satisfying eR(J, , s;e) = Ocr(e).
Introduce M ~ €77, for any —l/k € Ri<m (M), introduced in (47), consider
Ly = L/|k|, where

L =Ce" (54)
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with

p<a<l/n (55)
and C a constant independent of €, such that for —l/k € Ri<m, the real intervals
Ty = [=l/k = 2Ly, l/k + 2L;] are disjoint. Then, there exists a symplectic change
of variables, depending on time, (J, p,s) = g(B, ¢, s), periodic in ¢ and s, and of class
Cr=2m  which is e-close to the identity in the C">™~1 sense, such that transforms the
Hamiltonian system associated to k(J, p, s;€) into a Hamiltonian system of Hamiltonian

E™(B, ¢,s;¢) = Z™(B, ¢, s;¢) + ™ R™(B, ¢, 5;¢), (56)

where the function Z™ is of class C"~2™+2 and R™ is of class C"~2™ and they verify:
1. IfB ¢ U—l/kGR[Sm] I—l/k; then
_ 1 ~
Z™(B, ¢, s;¢) = 582 +eZ™(B;e), (57)

for any (B, ¢, s) € Dt (D was introduced in (48)).
2. If B € I /i, for some —ly/ko € R; \ (R1U...R;_1), for some 1 <i < m, then

_ 1 ~ .
Z™(B, ¢, s;¢) = 582 +eZ™(B;e) + ' UM (koo + lys; €), (58)
for any (B, ¢,s) € Dy, (D,,; was introduced in (49)).

In a particular case of a resonance —ly/ko of order 1, Uk (koo + lys; 0) does not
depend on m and is given by

Une(0:0)= U700 = 3 Ruguy(—lo/ko:0)™  (59)

teZ—{0}
[t](|1kol+lo) <M

where 8 = koo + los and Ry (J;€) are the Fourier coefficients of the perturbation
R(J, , s;0) with respect to (p, s).

3. The function eZ™(B;e) in (57) and (58) is a polynomial of degree m in e,
whose term of order q + 1 is of class C""2% and of size Ope(e9t1—2U+20))  for
(=0,....,n—2q and ¢ =0,...,m — 1. The function U (kyp + lys;¢) in (58)
s a polynomial of degree m in € and a trigonometric polynomial in 0 = kop + lys,
which is Oce g(e77220V|(ko, lo)| 7" +20=D), for £ =0,...,n—2(i — 1). The function
e R(B, ¢, 5;€) in (56) is Ope(e™T1=E+2m) for ¢ = 0,...,n — 2m. Finally,
the change of variables (J,,s) = g(B, ¢, s) satisfies g — Id = Oge(e'=2E+2), for
(=0,...,n—2m.

Remark 3.12. We always will consider that Hamiltonian (53) is Hamiltonian (23) and
therefore, by equation (24) and Remark 2.9, the function UFo given in (59) for a
resonance —ly/ky € Ry is equal to the function U in hypothesis H3':

UTI%O’IO (97 O) = Uko’lo (9) = Z htko,tlo (07 Oa —lo/ko; O)eiw' (60)
tezZ—{0},
[¢]1(ko,lo)|<M

By the same reason Z™(B;0) in formulae (57) and (58) is equal to (0,0, B;0).
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Remark 3.13. Note that the bound on the trigonometric polynomial !U*o:(0; ¢), where
0 = koo + lps, is more precise because it incorporates the size of its Fourier coefficients.
We use the notation Ogcy to emphasize that we are bounding the derivatives with
respect to the variable 6.

Remark 3.14. Notice that although the remainder term e™ ! R™ is C"~2™, it is bounded

in the supremum norm |-|,, for £ only up to n — 2m, for n < r, which is enough for the
future application of KAM Theorem.

3.2.4. Proof of Theorem 3.11 The proof of this theorem will follow by the repeated
application of the inductive Lemma 3.18 m times. Before stating it, we need two previous
Lemmas that we will use to prove Lemma 3.18 and finally Theorem 3.11.

Lemma 3.15. Let G(J,¢,s) a Hamiltonian and assume that G is C" trigonometric
polynomial of order M defined in a compact domain T x T?, with T C R, such that
Sup,crxy2 |¢| < D. Consider the C™™' change of variables defined on T x T?,

(Jv 2 5) = gt(Bv ¢7 8)7

given by the time-t map of the flow of Hamiltonian e?G(J, ¢, s), for somep € N. Assume
that G is Ope(e™), ny being some positive number. Then,

max |gile < Dp, - max |g, — ld|ee < Dje™* (61)
fort=0,...,7—1, Dy and Dy, being some constants, which depend on the domain and

¢, but not on €. In terms of the notation introduced in Section 2.1, the above inequalities
read gy = Ope(1) and g, — Id = Ope(e"+1), for £ =10,...,r—1 and 0 <t < 1.

Proof. By the fundamental theorem of calculus we can write

t t
gi(r) =z + 99 (r)dr =2 + / JVG o g, (x)dr,
o OT 0

where z = (B,¢,s) € T x T? and J is the canonical matrix of the symplectic form
w=dJAdp+dAAds. The extra variable A, conjugated to the angle s, was introduced
to make apparent the symplectic character of the change of variables.

Using formula (C.5) in Appendix C we obtain

1
wler < Ml [ PVGog L dr
o . (62)
< e+ Co [ (1996ler locler + PV G bl ) dr
0

for ¢ =2,...,r — 1, where (Y is a constant depending on ¢; and

1
gelor < 11dJa + / IVGlor 19 dr.
0

Let us define a; = max |g;|ce. Then,
0<t<1

aq S D + 51a1,
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and
Ay < D + (51(Lg + Cgégag_l, for ¢ > 2,
with 0; = |G|e41. Hence,
D + §,a!
ag < 2 0% for ¢ > 2.
1—96;

Since §; ~ €™ < 1 and §p ~ €™+ <« 1, it is easy to check by induction that
ap < Dy, for £ > 1, D, being some constant independent of ¢.
Denoting by by = max |g: — 1d|ce, one has

by < d1a4,
and
by < d1ap + C’g(sgaﬁ_l, for ¢ > 2.
So that,
by < Dby + CyDi_ 6 < D6 = D+,
for ¢ > 1, D} being some constant independent of . O

Since the averaging procedure is based on the method of Lie transforms, the
transformed Hamiltonian will be expressed in terms of Poisson brackets. In the following
Lemma 3.16 we give an estimate for the bound of the Poisson bracket of two functions,
where the second one is a generating function, in terms of the bounds on the norm (30)
of each one.

Lemma 3.16. Let p, « be two positive real numbers, such that p < o and M ~ 7° and
L = Ce*. Given FP(J,@,s) and GU(J,p,s) two trigonometric polynomials in (v, s),
assume that FP(J,p,s) is a C"*, n > 0, function in J and a trigonometric polynomial
of degree M,, = (p + 1)M and G9(J,p,s) is a C™, m > 0, function in J and a
trigonometric polynomial of degree My = (q+1)M, that satisfy ||e" T F?|| o, < ePT=oCP)
and [|e97 G| e, = eTTITOCHY for £ = 0,...,n, with e > 0. Then {F?,G%} is a
C" function in J, for r = min(n,m) — 1 and a trigonometric polynomial of degree
Mz = (p+1)M in (p,s), where p=p+q+ 1, and P FP = {ePTLFP c1+1Ga} satisfies

}|€ﬁ+1FﬁHcf,L < €§+1—a(2@’

fort=0,...,r.
Proof. From
(F?, G} — OFP 0GY  OF? 0G1

dp 0J  0J By’
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we have

q
PGy = S B ()t Y Mgivﬁewﬂs)

(k,)eZ2, (k,)eZ2?,
K|+ 1 <My K|+l <Mq

p
_ Z 8Fk7l(']> ei(kap+ls) Z ikGZ7l(J>ei(k<p+ls)

(k,0)eZ?, (k,)eZ?,
|k[+I|<Mp |k[+I|<Mq

It is clear from this expression that {7, G?} is a trigonometric polynomial of degree
M, +M;=(p+q+2)M.
On the other hand, using equation (34), it follows that

H{ngrle> €q+1Gq}HCZ,L <

ghtl Z ikFlf,l (J) ei(kgo—l—ls) gat1 Z aGéll]( J) ei(kgo—l—ls)
(k,1)ez?, (k,1)ez?,
K|+ [0 < Mp clr K|+ 1| <Mq ctL
+ Ban Z ang,f](J) el(ketls) g+l Z iszl(J)ei(kcpHs)
(k,1)ez?, (k1)ez?,
K|+ 1 < Mp clL k|41 <Mq Ct.L

. 1 .
< €p+1 FP (J)el(kcp-i-ls) - Eq-i—l G4 (J)el(kgo—i-ls)
k.l 7 k.l
(k,)eZ?, (k,)ez?,
|k‘+|l|§Mp CZ+1,L |k‘+|l|§Mq CZ‘H,L
1 . .
— ||spt1 D i(ko+ls) q+1 q i(kp+ls)
—l—L 3 E FY i (J)e € G, (J)e
(k,)ez?, (k,1)ez?,
||+l <Mp 1L |k[+]I|<Mq 1L
2
Z || sp+1 e q+1g
< I Hg F Hc“l,L Hg G Hc“l,L‘

Using now the hypotheses on 9™ FP and PGP in this Lemma and the fact that
L = Ce®, where C is a constant independent of ¢, we have
H{Ep-"_lF, €q+1G}H . = €—a€p+1—a(2p)Eq+l—a(2q+l)
e —
_ €p+q+2—a(2(p+Q+1))

— gPt1-a(2p)

O

Remark 3.17. This Lemma will be applied a certain number of times and expresses the
fact that given two functions eP*'FP and €97'G?, which are trigonometric polynomials
in (¢,s) of degree M, = (p+ 1)M and M, = (¢ + 1)M, respectively, with bounds
[ePH ||, = ePTICP) and [|eTHGY|o, . < ettt it Poisson bracket is a
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function eP ' FP with p = p+q+1, that is, P FP = {ePH1FP 29+1(G9} is a trigonometric
polynomial in (¢, s) of degree M; = (p + 1)M with a bound Hé‘p“FpH = gPti—alp)

Notice that this process of “c4T1GY Poisson-bracketing” can be 1terated. ePH [P —
{ePHLFP ca+1Ga) | with p = p + ¢ + 1, is a trigonometric polynomial in (¢, s) of degree
M; = (p+ 1)M with a bound Hap“FpH < gPtl=a(2),

We state and prove now the 1terat1ve Lemma 3.18 for averaging, which we will
apply a finite number of times ¢ = 1, ..., m in the proof of Theorem 3.11 and m will be
chosen m < 10 in Theorem 3.28. It basically tells us that given a Hamiltonian already
in normal form up to some order €9, we can produce another Hamiltonian which is
normalized up to order €71, The averaged Hamiltonian is given rather explicitly both
in the resonant regions and in the non-resonant ones, which are redefined at every step
according to the new resonances that will come up.

Lemma 3.18. Letr > n > 1 and 0 < 2g < n be any given integers. Consider a
Hamiltonian of the form

ko( L@, s:2) = ZU(J, @, 8:) + €T RY(J, 0, 7€),
satisfying the following hypotheses:

1. Z°%(J, @, 8;¢) = J; and, for q > 1, Z9(J, @, s;¢) is a C"~24%2 function that verifies:

There exist finite sets R; C Q, 1 = 1,...,q, depending on M ~ €= where p is
a positive number satisfying p < %, and a number L = Ce® > 0, which satisfy

hypothesis (55), that is, p < a < % and C' a constant independent of €, such that:

la For a resonance —l/k up to order q, that is —l/k € Ri<q = U,y ,Ri (see
(47)), the intervals T_;), = [—1/k — 2Ly, —=1/k + 2Ly), with L, = L/|k|, are
disjoint.
1b [fJ ¢ U—l/kE’R[Sq] I—l/k; then
2

Z(J, 0, s;€) = Jg +eZ9(Jse),

for any (J,p,s) € DL (DL was introduced in (48)), where eZ9(J;€) is a
polynomial of degree q in & whose term of order p+ 1 is Oce r(ePT~ p)) " for
(=0,....t—=2pandp=0,...,q— 1.

Ic If J € I_yky, for some resonance —ly/ko of order q, that is —ly/ko €

Ri\R1U---UR;_; for some 1 <i<q, then
2 .
ZUJ,p, 85¢) = 5 +eZU(Jse) + U (ko + los; €)

for any (J,¢,s) € D,; (D:; was introduced in (49)), where eZ(J;€) is a
polynomial of degree q in e and U*'(0;¢) is a polynomial of degree q—1i in e
and a trigonometric polynomaial in 8 = kop + lops. The term of order p+ 1 in

e of Z% is Ope (P17 for £ =0,...,r —2p andp=0,...,q — 1.
2. eTIRI(J, @, 5;¢) is a C" function and is Ope(e9172+20) for £ =0,...,n—2q.
For the particular case of the first iteration (q = 0), eR® is Oy(¢), for { = 0, )
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The term of order i+1 of the Taylor expansion with respect to € of €7 RI(J, ¢, s;€)

is a trigonometric polynomial in (p,s) of degree M; = (i + 1)M and is

Oce (172D for £ =0,....,r —q—i and fori=q,...,r —q.

Denote K = R(J,p,s;0), which is the term of the perturbation of order exactly
q+ 1 in e. Following Definition 3.4, introduce the set

Ryir = {=1/k € QN (I_, I,), [k|+]I| < My, k # 0, RS (~1/k;0) # 0},(63)

where My, = (q+1)M and R, are the Fourier coefficients of R?.

Choose a new value of C, independent of €, in L = Ce®, such that the intervals
T k= [=l/k = 2Ly, =1k + 2Ly), with Ly = L/|k|, are disjoint for —1/k € Ri<q41)-

Let G(J,0,8) = Gy(J,p,) be the C"2171 trigonometric polynomial of order M,
given by Lemma 3.3, verifying (37) with K = R(J, ¢, s;0).

Then, the C"=2472 change of variables

(J,¢,8) = g4(B, ¢, 5),
given by the time-one map of the flow of Hamiltonian ™™ 'G (B, ¢,s), transforms the
Hamiltonian ky(J, @, s;€) into a Hamiltonian k,y1 = k, 0 g4 of the form
kgr1(B, 6, s16) = Z77H(B, ¢, 5:¢) + e RN (B, ¢, 55 ),
with
ZYN B, ¢, s;¢) = Z9(B, ¢, s;¢) + 1T RYB, ¢, 5, 0)
where RY(B, ¢, 5,0) = K (B, ¢,s) given in Lemma 3.3, is a C"~24 function, such that

1. IfB ¢ U—l/keR[qu] I—l/k; then
RI(B, ¢,5;0) = R{(B;0),
for any (B, ¢,s) € DI and e R is Ope 1 (e77179CRD) for £ =0,...,r — 2q.
. If B €I 1k, for some —ly/ko € R\ R1U---UR;_1 for some 1 <i < q+1, then

RY(B,¢,s) = Rio(B:0)+ > R& . (—lo/ko;0)e™,  (64)
teZ—{0},
[t|(|ko|+|lo]) <My

for any (B, ¢, s) € D, where R}, (J;¢) are the Fourier coefficients of the function
RY(J, ¢, s;€) with respect to (p,s). Moreover, e7™ R is Ope (71 72CD)  for
{=0,...,7r—2q.

Moreover, the Hamiltonian Z7(B, ¢, s; €) verifies properties 1b and 1c up to order
q+1, and R (B, ¢, s; ) verifies property 2 replacing q by q + 1.

Remark 3.19. Note that all the terms of order p+ 1, for p > 0, in the Taylor expansion
in € that appear in Lemma 3.18 are C"~?? functions in J and trigonometric polynomials
in the variables (i, s) and they are bounded independently of ¢ in the Fourier weighted
norm ||-[|o. ; defined in (30) for £ up to r — 2p. However, the whole remainder term
g2 R9™1 is not a trigonometric polynomial in the variables (¢, ), so we can not use the
Fourier weighted norm. In this case we estimate their supremum norm ||, defined in
(2), but only for ¢ up to n — 2¢, as in Theorem 3.11 (see Remark 3.14).
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Proof. We will apply Lemma 3.3 with K = R9(J, ¢, s;0), which is a C"~2¢ function, as
well as a trigonometric polynomial in (¢, s) of degree M, = (¢ + 1)M. Accordingly,
by Definition 3.4, resonances of order ¢ + 1 correspond to the set of rational numbers
’/’GRq+1\(R1U...URq).

Let us see first that taking L = Ce®, with « satisfying o < 1/n and C = (|
chosen adequately, the real intervals Z_;/, = [—I/k — 2Ly, —1/k +2Ly;], with L, = L/|k|,
for —l/k € Ri<g41) are disjoint. Indeed, the distance dj , between any two resonances
—lo/ko, —l/k € Ri<q41) is greater or equal than 1/(|ko||k|). In order to avoid overlapping
between all these intervals, the distance dj, 5, must be greater than 2L, + 2L;. Taking
into account that we only consider resonances with denominators |k|, |ko| < (¢ + 1)M,
the condition that ensures that these intervals are separated is 1/((¢ + 1)M) > 4L,
which requires p < « in terms of exponents of . This is guaranteed by the hypothesis
on « and p in this Lemma.

Hence, we can apply Lemma 3.3, obtaining a C"~2~! function G,(J, ¢, s) and a
C™~% function K = R%(J, ¢, s), which are also trigonometric polynomials in (y,s) of
degree M,.

Under the canonical change of variables (J, ¢, s) = g,(B, ¢, s), where g, is the time-
one map of the flow of Hamiltonian £77'G,, the extended autonomous Hamiltonian
A + k4 becomes

A+ kg1 = (A+kg)og,
= (A+Z7+ ™R oy,
= A+ 79+ e ({A+ Z° Gy} + R(-,0))
+ (27— 2" 0g,— (27 - Z°)
+(A+2%0g,— (A+ 2% —{A+2°"'G,}
+ e (R0 g, — RY) + e (R? — RY(-,0))
= A+ Z9+ " R4 TP RIT
where
Rt ={A+Z° G} + R(-,0), (65)
and
g2RIM = (29— 7% 0 g, — (27— Z°)
+(A+2%0g,—(A+ 2% —{A+2° MG}
+e (R0 gy — RY) + (R — RY(-,0)). (66)
We first see that the the normal form term "' R? is bounded in the ||-||,, , norm
by e9t1-29) for ¢ =0,...,n— 2g.
Indeed, using (38) and (39) from Lemma 3.3 we have:
i. If B ¢ U—l/kER[§q+1] I—l/k> then
RY(B,p,s) = R o(B;0) (67)
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1i.

for any (B, ¢,s) € DI and, by formula (40) and the second part of hypothesis 2
for i = ¢ of Lemma 3.18, we have

| Ry <l RS
for ¢ =0,...,r—2q.
If B €I ik, for some —ly/ko € R; \ R1U---UR;_; for some 1 <i < g+ 1, then,
by equation (39) in Lemma 3.3,

R(B,¢,5) = R§o(B;0)+ Y Ri o (=lo/ko;0)e™  (69)

tez2—{0},
[£|(|kol+lo]) <Mq

< grtl-o(0) (68)

ce,L Hce L—

for any (B, ¢, s) € D, ;, where It} ;(.J;0) are the Fourier coefficients of the function
R(J, p, s;0) with respect to (¢, s).

As before, by formula (40) from Lemma 3.3 and the second part of hypothesis 2 of
this Lemma for ¢ = ¢, we have

H54+1Rq < ng-l-qu

for ¢ =0,...,r—2q.

< gati—a(2g) (70)

Hcf,L HC‘ZL

Note that, since & < 1/n and 2¢ < n, the power of ¢ in the bounds obtained in

(68) and (70), is a positive number greater than g.

To finish the proof, we only need to estimate the remainder term 7"2R*! in (66)

and its Taylor expansion coefficients with respect to e.

We will first estimate the the remainder term £9T2RI*! in (66). Since it is not

a trigonometric polynomial we will estimate it in terms of the supremum norm |-|.,.
Using the integral bound for the Taylor remainder and definitions (65) and (66) of RY
and 972 RI*L | respectively, we have

1
e R, < / {29 = 2°,e"' Gy} © ggu| e dt
0
1
* / }(1 —t)({{A+ Z°, 5q+1Gq}a 5q+1Gq} © gqvt)‘cZ dt
0

1
+/ [{e9™' RY, "G} qu,t}cz dt
0
4 }6q+1(Rq Rq }c‘f

1
= / }{Zq — 707G} o gqﬂce dt
/ } {5q+1 — R1(;0)), 5q+1Gq} o gq,t}ce dt

_|_/0 HEIH-qu’ng-le} qu,t}cg dt

+ }5‘”1(3‘1 Rq }cf ’

for {=0,...,n—2(qg+1).
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Using Faa-di Bruno formulae (C.4) we obtain

1
}Eq-i-2Rq—|-1}CZ < }{Zq _ Z0,5q+1Gchz/ |gq7t|£5 dt
0
1
+ ‘{6‘”1(];"1 — RY(; O)),€q+1GqHCe / (1—1) \gmt\él dt
0

1
4 }{eqHRq,eq*le}\y / (el (71)

+ [e9 (R = RY(+50))] .

for £=0,...,n—2(qg+1).
By formula (41) from Lemma 3.3, the second part of hypothesis 2 for i = ¢ of this
Lemma, and using that L ~ %, we get that

HEqHG Hcf LS ¢ H’SqHRq HcHl L2 gitimaltatl),

for ¢ =0,...,7—2q— 1. Hence, using the equivalence relation (31) between ||-||c. , and
||ce norms, e?'G, satisfies
‘5q+1Gq‘Cz =< 8q+1—a(€+2q+1)7 (72)

for ¢ =0,...,n—2q—1, and the power of e, )y = q+1—a(l+2¢+1) >qg+1—an
in equation (72) is positive. So, we can apply Lemma 3.15 with G = £7"'G, in
D = (I_,I;) x T? and we have that gg; = O¢¢(1) and g, — Id = Qpe (g2 -2 +D))
fort€[0,1)and £ =0,...,n—2(q+1).

In the expression (71), the terms Z9 — Z° G,, R? and R4(-;0) are trigonometric
polynomials in the variables (¢,s). In order to bound their corresponding Poisson
brackets in the ||, norm, we will first estimate their [|-[|o, ;, norm and apply Lemma
3.16. Finally, using the equivalence relation (31) between ||. and ||-||c. , norms, we
will bound their corresponding Poisson bracket in the |-|,, norm. On the other hand,
the terms R? and therefore R? — R(-;0) are not trigonometric polynomials, so we can
not use the [|-[|; ; norm. For this reason we will bound the [-|.; norm for the Poisson
brackets directly.

The terms 7' R?(+;0) and €7*'R? in (71) are both bounded in the ||-[|c , norm by
git1=eQa) for ¢ = 0,...,7 — 2q, because of the second part of hypothesis 2 for i = ¢
and points (i) and (ii) already proved, respectively. Note that both terms are of type
g9t 4 according to Remark 3.17.

The term Z9—7° = e R +e?R' +. . ., is a polynomial with respect to ¢, so it can be
bounded by its main term eR°. Hence, using the bound for the term of order 1 (p = 0)
of Z4 given in hypotheses 1b and lc, we have

|27 ~ Hcf L= HgROHCf,L = (73)

for £ =0,...,7 —2(q—1). Note that R is of type eF°, according to Remark 3.17.
The estimate for the |-|,, norm of the term (R? — R?(-;0)) can be obtained from
the bound for the Taylor remainder and the first part of hypothesis 2. More precisely,

}€q+1(Rq Rq }c < ca+2 |Rq|ce+1 < €q+2—a(€+1+2q), (74)
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for{ =0,...,n—2q— 1.
Moreover using the bounds for e9*'R? and ¢9*'G, in the |-|,; norm, and Leibniz
rule for derivatives we have

‘{gq—l-qu’ gq—l—le} ‘Ce

()
. 9
1=0 t

¢ ‘6q+1Rq
i=0 ’

Hence, using that |R%|¢er1 < 1 and |Goleerr < e7+2) from (72), we have

‘{5R075G0}‘Ce =< 881—04(@-4-2) =< 62—0{(5—1—2)’

OR1

q+1

Dy

OR1

g+1

oG
q+1 q
c 0

oG
_ 4 q+1 q
0 c

Do

M-

Cli)

Ci cL—i Ci

I A
~ |l

q+1
ci+1 ‘6 Gq‘clfz#l .

otherwise,

¢
/ . .
}{€q+1Rq75q+1Gq}}cg < E ( ) ) 6q+1—a(z+1+2q)8q+1—a(£—2+1+2q+1)
=0

< g2(g+1)—a(t+2(2¢+1)+1)

)

for t=0,...,n—2(q¢—1).
Putting together in (71) the estimates in (72), (73) and (74), as well as the estimate
for {e7"1 R4, e9H1G,, } and €971 RY (these last two not relevant for ¢ # 0), and using Lemma

3.16 and the equivalence relation (31) one gets the following bound for (66):

} £4+2 Rq“} , < gdt2malti2Aetl)
C —

)

for £=0,...,n—2(qg+1).

Finally, all the terms in the Taylor expansion of ™2 RI*1(B, ¢, s, €) with respect to
g, are obtained from a finite number of algebraic operations and a process of “c?™'G,
Poisson bracketing”, as stated in Remark 3.17, to the Taylor coefficients in € of Z¢ and
of €71 R9, which are all of them of the form e?*'F?. Applying Lemma 3.16 iteratively,
we conclude that the Taylor expansion coefficient of order i + 1 of e7™2RI™Y(B, ¢, s,¢)
with respect to € is of the type e F'* according to Remark 3.17, that is a trigonometric
polynomial of order M; = (i+1)M in the angle variables, satisfying O¢e 1 (£7F17%(29) for
¢=0,...,r—qg—1iandfori=gq,...,r —q. Again, by condition o < 1/n, the power of
€ is a positive number greater than . 0

Proof of Theorem 3.11

The proof is by induction in ¢g. To begin induction process, we consider RI=M! which is
the truncated Fourier series of the perturbation R up to some order My = M as in (25).
The order of truncation M is M ~ e~”, with p satisfying hypothesis (51). We want to
apply Lemma 3.18 for ¢ = 0 to the Hamiltonian

ko(J, 0, 5:6) = Z°(J, ¢, 556) + eR%(J, 0, 5: ),
where Z°(J, p, s;¢) = J?/2 and R°(J, p, s;¢) = RISMI(J 0, s;¢).
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We introduce the finite set
Ry = {—1/k € QN (I, I,), k| + [I] < M.k # 0, B (<1/k;0) # 0},

where R}, are the Fourier coefficients of R”. According to Definition 3.4 we will refer
to resonances of order 1 the elements of the set R.

Since Z° = J?/2 and R satisfy trivially hypothesis 1 and 2 of Lemma 3.18
and hypothesis (55) holds, we can apply Lemma 3.18 for ¢ = 0, which provides a
symplectic change of variables (B, ¢, s) — (J, p,s) = go(B, ¢, s) of class C"~? and we get
a Hamiltonian of the form

ki(J, 0, 856) = ZHT, ¢, 85) + 2R (T, ¢, 85 €),

where Z! is a C" function and ¢2R! is a C"~? function, verifying properties 1b,1c and 2
of Lemma 3.18 with ¢ = 1.

In particular, in the resonant regions of order 1 D, ; defined in (49), expression (64)
in Lemma 3.18 for ¢ = 0 provides that Z! has the form (58) for i = m = 1, that is

ZNB, ¢, s;¢) = %132 + eZNB) 4 UM (koo + lys: €),

where U is given by expression (59).

Proceeding by induction, we assume that we have applied Lemma 3.18 up to order
q, for 0 < ¢ < m, so that in adequate symplectic coordinates, the Hamiltonian k, of this
Theorem takes the form

ko(J, 0, 856) = ZU(J, 0, 8;6) + e RY(J, ¢, 57 ¢),

and satisfies hypotheses 1 and 2 of Lemma 3.18, so that it can be applied again to the
Hamiltonian k,, providing a Hamiltonian

kgr1(J @, 556) = ZT(J, @, s7¢) + 12 RI(J, ¢, 53 €)

satisfying properties 1 and 2 of Lemma 3.18 replacing ¢ by ¢ + 1 and a new constant
C =Cyin L = Ce® to accommodate new resonances.
Applying the inductive Lemma m times, we get a Hamiltonian k,,

km(J, 0, 858) = Z™(J, 0, 8;€) + e™TIR™(J, ¢, 57 €),

that consists of an integrable Hamiltonian Z™, which already satisfies thesis 1 and 2 of
Theorem 3.11 for Z™ = Z™, plus a perturbation ™' R™ of order Qpe(e™1—-t+2m)),
0</l<n-—2m.

Moreover, Lemma 3.18 gives us estimates for the terms of the integrable part Z™
of the Hamiltonian k;, in the Fourier weighted norm ||-||c. ; defined in (30). More
precisely, we know that Z™ is a polynomial of degree m in e, whose term of order ¢+ 1
is OCZ,L(»S‘]“_O‘@‘])), for ¢ =0,...,r—2¢ and ¢ = 0,...,m — 1. By the equivalence
relation (31) we immediately also have that this term of order ¢+ 1 is Qg (e7+1-a(+20),
for{=0,...,.n—2gand ¢ =0,...,m— 1.

It remains to prove the estimates of thesis 3 of Theorem 3.11 on Z™ and R™ in the
supremum norm | - |ce.
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The estimation for Z™ follows from the ones obtained for Z™ and we will
concentrate on the ones for Ukolo,

In particular, in D, ;, we can obtain a better estimate for the |- | norm of the term
g!Ukolo(9; ) in expression (64), which is the one claimed in point 3 of the Theorem. In
order to check this, we first notice that the function U (9; ) in expression (58) is a
polynomial of degree m — ¢ in € and a trigonometric polynomial in 6 = ky¢p + lps. So,
glUkolo(f; ) can be bounded by its main term £'U*(0;0), which is a trigonometric
polynomial in the variable 8 = ky¢+lys and independent of the action variable B. Using
that

_ < gimel2(i-1))

Y

vtz s0)

cr—2(i-1) J,
and the definition of the Fourier weighted norm in (30), we have

HgiUr]j?’lo('; O) cr—2(i-1) [, = 8i Z ‘Utkoilo‘coﬁ(k(]v lO)|T_2(i_1) = 62‘—(1(2(@'—1))7

teZ—{0}
[tl([kol+]lo]) <Mq

where Uy, are the Fourier coefficients of the function Uk (6;0), M, = (¢ + 1)M and

|(k,1)| = max(|k|, |I|). From this expression it is clear that

Ui t1o|co < Ce™= D) /[ (kg 1) |20,

for some constant C' independent of €. Hence, bounding derivatives with respect to the
variable 6 we have

UeGles = D Ualeo I
teZ—{0}
[tl([kol+]lo]) <Mq
Z i—a(2(i-1))
r—2(i—1
1e7—{0} |t(k07 l(])‘
[t](Jko|+|lo|) <Mq

. 8i—oz(2(i—1)) Z 1
= 1 (ko, o) 726D |21~

te2—{0}
It|(Iko|+]lo]) <Mq

A

el

ci—a(2(i-1))
= (Ko, lo)|7~26=D)"
for £ =0,...,n—2(i — 1), as claimed in point 3 of Theorem 3.11.

Finally, it remains to prove that the tail eR>M! of the Fourier series of the
perturbation e R that we have truncated at order M ~ ¢7” at the beginning of this proof
is Qg (emT1=al+2m)) for 0 < £ < n—2m. Since the perturbation R in Hamiltonian (53)
of Theorem 3.11 is a Oc¢-(1) function, the Fourier coefficients Ry ;(.J,€) of R(J, ¢, s,¢)
decrease at a rate of order 1/|(k,l)|", for (k,l) — oo. So, by equation (A.2) in
Proposition A.2 we have the following bound for e R>M!

e REMer <

< €1+p(r—£—2)

€
Mr—¢-2 — ) (75)

for ¢ =0,...,n—2m.



Geography of resonances and Arnold diffusion 45

From Lemma 3.18 and equation (61), we know that the changes of coordinates
gq satisfy, for ¢ = 0,...,m — 1, g, = Op(1) and g, — Id = Op(gt+!1-oEH+2a+1)) " for
¢ =0,...,n—2(q+1). Therefore, the total change of coordinates of Theorem 3.11
(J,p,8) = g(B,¢,s) where g = ¢,,_1 0 -+ 0 gy, satisfies g = Oy(1) and g — Id =
Op(e=2+2) for £ = 0,...,n — 2m. Then, using this fact and formula (75), by Faadi-
Bruno formula (C.4) we have

|R[>M} 0 glee =X gitelr=t=2),

To get |eRPM o gloe < emH1=al42m) wye need e!+P(r—(-2) < gmtl=alt+2m) hat ig
m — a(l + 2m
r= (r—(£j2) g
for ¢ =0,...,n—2m. In order that bounds (55) and (76) were compatible, we need to
choose r > <% — 2) m + 2, which is condition (52) in the hypotheses of this Theorem.
Finally the choice Z = Z™ and R = R™ + RPM o g, with g = g, 0 -+ - 0 go, gives
the desired averaged Hamiltonian (56) which satisfies theses 1,2 and 3. 4
Remark 3.20. Choosing p = 1/(n + J), with 0 < § < 1/m, so that condition (55) is
fulfilled for any « between p and 1/n, we have that r must satisfy

(76)

r>(m—2+4+48§m+2,

where m is the number of steps of averaging performed. So, as long as the regularity r
of the Hamiltonian satisfies

> T = (0 —2)m + 2, (77)

there exist p,a satisfying condition (55) and therefore (51) of Theorem 3.11 and
henceforth, m steps of averaging can be performed to provide estimates of class C"~2™,
contained in the theses of Theorem 3.11.

Remark 3.21. It is important to note that the averaging procedure is valid in the full
domain (I_,I;) x T? C A.. Indeed, we have performed an averaging procedure to the
Hamiltonian k(J, ¢, s;€) in all (I_, I,) x T?, except at the subsets D;(L), where

Dy(L) = {(J,,58) € (I_, 1) x T* Ly, < |J +1/k| < 2Ly, for —1/k € Ri<m}-

To provide an averaging procedure in the full domain (/_,I;) x T2, we apply again
Theorem 3.11 with Ly, = L/|k|, where L = L/2. The region Dy(L) is now contained in
the non resonant region corresponding to Ly, D (M, E) defined in Definition 3.7. So
the averaged Hamiltonian in Dy is also given by Theorem 3.11, with slightly different
constants.

3.3. KAM theorem

Up to this point, once we choose m, by Theorem 3.11 we can perform m steps of

averaging and we obtain a C"~?™ Hamiltonian (56) which consists of an integrable

Cn—2m

Hamiltonian Z™ plus a perturbation ¢™*'R™ which is small, more precisely



Geography of resonances and Arnold diffusion 46

it is Oge(emt1=al+2m)y for ¢ = 0,...,n — 2m. Notice that n > 2m is required as well
as a large r and that the integrable Hamiltonian has different expressions in resonant
regions and non-resonant regions as specified in Theorem 3.11.

The integrable part of the Hamiltonian gives us an approximate equation Z™ = cte
for the invariant tori in A.. To finish the proof of Theorem 3.1 it remains to determine
which tori survive and what is the distance between them when we add the perturbation
term €™t R™. By choosing an adequate m large enough the goal is to show that we can
cover the whole region (I_,1,) x T2 C A, with invariant tori which are O(+7)-closely
spaced, for some n > 0, and obtain an approximate expression for them.

To that end, we will use KAM Theorem 3.22 stated in Section 3.3.1, which is a
result about the existence of invariant tori for a periodic perturbation of a Hamiltonian
expressed in action-angle variables. It is a direct adaptation of Theorem 8.12 in
[DLS06a].

Since the integrable Hamiltonian (56) has different expressions in the resonant and
non-resonant regions, we perform this study separately.

Non-resonant regions are studied in Section 3.3.2. In Proposition 3.24, we apply
Theorem 3.22 directly to Hamiltonian (56) for m > 2 and we conclude that for these
regions there exist primary KAM tori which are O(e!*")-closely spaced, for some 7 > 0.

Resonant regions are studied in Section 3.3.3. As it has been described in Section
2.3.3, we will see that for these regions, gaps of different sizes are created in the foliation
of primary KAM tori. According to the size of the gaps, we will distinguish two types
of resonant regions: the resonant regions with big gaps, where gaps are of size greater
or equal than e, which is the size of the heteroclinic jumps provided by the scattering
map, and the resonant regions with small gaps, where gaps are of size smaller than .

In the referred Section 3.3.3, we will see that the resonant regions with big gaps
introduced in (21) correspond to the resonances J = —[/k of order 1 such that
\(k,1)] < Mpg = e 0+/" for 1/(r/6 — 1) < v < 1/16, whereas resonant regions
with small gaps correspond to the rest of the resonances.

The case of resonant regions with small gaps is studied in Section 3.3.4. It will not be
different from the non-resonant case and it will be enough to apply KAM Theorem 3.22
to Hamiltonian (56) for m > 2 to obtain primary tori O(e!™)-closely spaced, for some
1 > 0. This is done in Proposition 3.26. Resonant regions with small gaps constitute,
jointly with the non resonant regions, what we call the flat tori region introduced in
Section 2.3.3.

The case of resonant regions with big gaps is significantly different and it will be
studied in Section 3.3.5. In this case the integrable Hamiltonian Z™ is like a pendulum,
and we will need to write it first in action-angle variables before applying KAM Theorem
3.22 to Hamiltonian (56) for m > 10. We will see that in these regions we can find other
invariant objects, the secondary tori, which fill the region inside the gaps and they get
rather close to the frontier of the gaps among the primary KAM tori. The precise result,
jointly with the approximate equations for the invariant tori is given in Proposition 3.28.

Finally, Theorem 3.1 follows directly from Propositions 3.24, 3.26 and Theorem
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3.28.

3.3.1. The KAM Theorem The following result is about the existence of invariant tori
for a periodic perturbation 27ky-periodic in the variable ¢ and 27-periodic in the variable
s, of a Hamiltonian system expressed in action-angle variables and it is standard in KAM
theory (see [Lla01] for a tutorial on this theory). We skip its proof since it is simply an
adaptation of Theorem 8.12 in [DLS06a], where the explicit dependence of the constants
on ky is given, since ko will be chosen depending on e. It relies on a quantitative KAM
Theorem of Herman [Her83, Theorem 5.4, p. 198] for exact symplectic mappings of the
annulus.

Theorem 3.22. Let K(I, ¢, s;e) be Hamiltonian of the form
K(L‘PaS?E):KO([§5)+K1(L9075§5)’ (78)
for (I,p,8) € T x (R/2rkoZ) x T, for some kg € N. Assume that

i. K is a C"%P function of the variables (I,¢,s), withng >5 and 0 < § < 1,

i. For any s € T, |Ki(-,8;€)|onots < 6 and }Kg(ga)}co > M >0, where § = () and
M = M (e) depend on ¢.

Then, for e sufficiently small and fized, there exists a constant C(ko) =
cte |ko| ™A/ and a finite set of values I; € I, such that the Hamiltonian K(I, ¢, s;¢)
has invariant tori 7T;, such that:

a. The torus T; can be written as a graph of the variable I over the angle variables
(¢, 5):

Ti={(I,p,s) €I xT*: I =L+ ¥i(p,s:¢)},

where W;(ip, s3€) is a C =2 function and |W;(+;€)|ong-21s < C (ko) M~15Y2.

b. The motion on the torus is C~**# conjugate to a rigid translation of frequency
(w(I;),1), where w(l;) is a Diophantine number of constant type and Markov
constant x = C(ko)6/2, that is

w(I)k =171 < O™ (kD] V(K1) € 2%\ {(0,0)}.

c. The union of neighborhoods of size C(ko)M™16'2 of these tori cover all the region

T x (R/27kZ) x T.

Remark 3.23. This version of KAM Theorem requires to have the system written in
action angle variables. We would like to mention that recently there have appeared
some quantitative results on KAM theory without action angle variables (see [LGJV05]
and [FLS07]) for analytic maps, which could be adapted but some extra work is required.
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3.3.2.  Non-resonant region In this section we apply directly Theorem 3.22 to the
averaged Hamiltonian (56) in the non-resonant region up to order m D! introduced in
(48). According to Remark 3.21, we use L/2 instead of L, so that

DI =DM, L/2) = {(J,,5) € (I_, ) x T2 : |.J + 1/k| > Ly, for — I/k € Ricm},

where Ly, = L/|k|, with L = Ce® and a < 1/n, as required in Theorem 3.11.

Going back to the original variables (I, ¢, s), using the changes given by Theorem
3.11 and equation (22), we obtain the following result about the existence of invariant
tori of Hamiltonian (1):

Proposition 3.24 (Invariant tori in the non-resonant region). Assume that m > 2,
n>2m+6 andr > (n—2)m+2. Choose any0 <n < (m—1—an)/2, where « < 1/n
as required in Theorem 3.11. Then, for € small enough, in any connected component of

m
nr’

the non resonant region up to order m DI, there exists a finite set of values E; such

that:

i. For any E; there exists a torus T; invariant by the flow of Hamiltonian (1) contained
in N, which is given in A. by the equation F(I,p,s;e) = FE;, where F is a
Cr2m=2=¢ function F, for any o > 0, of the form

F(I,¢,55¢) =1+ Oc2(e*"). (79)

ii. The torus T; contained in Ka can also be written as a graph of the variable I over
the angle variables (v, s):

T = {(Iv 2 S) S D:ﬁ, I = )\Ei<§07 S 5)}7
with
Ae(p,s;6) = B+ Ug(p, s;¢); (80)

where Ug(p, s;€) is a C"?™=27¢ function, for any o > 0, and Ug = Oz ('),

iii. These tori are O(e'*7)-closely spaced in terms of the variable I.

Proof: By equations (56) and (57) in Theorem 3.11, in one connected component of
the non-resonant region D!, the Hamiltonian (23) expressed in the averaged variables

(B, ¢, s) has the following expression

2 ~ —
km(Ba ¢a S;E) = % + EZm(Ba E) + 5m+1Rm(Ba ¢a 8;5)7 (81)

where 52”"‘(15’; ) is a polynomial of degree m in e, whose coefficient in terms of ¢
of order ¢ + 1, for ¢ = 0,...,m — 1, is a C"~2 function and is Qg (e?H1-al+20),
for £ = 0,...,n — 2q. Moreover, e™"*'R™(B,¢,s;e) is a C"?™ function, which is
Ope (e =e+2m) for £ = 0,...,n — 2m.

Our next step is to apply KAM Theorem 3.22 to the Hamiltonian (81), which is of
the form (78), for Koy = B2/2+¢Z™(B, ¢) and K, = e™ R™(B, ¢, s;¢) and 27-periodic
in  and s, so that kg = 1. Assuming that n > 2m + 6, it satisfies properties (i) and (ii)
withng=n—-2m —1, 3=1—p, for any o > 0, § = e™*'=9" and M independent of
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. Therefore we can apply KAM Theorem 3.22 and we conclude that the non-resonant
region D contains KAM tori given by

B = BZ + \I’Z(gb, S;E),

where W, is a C"~?™~27¢ function, for any ¢ > 0, and |¥;|.. < glmtl=an)/2 = Thege tori
are O(e(m+1=em)/2)_closely spaced in terms of the averaged variable B.

For a fixed value of ¢ <« 1, we have that em*1=en)/2 < 10 where n =
1/2(m — 1 — an) is positive by hypotheses m > 2 and o < 1/n for n > 2m + 6.

After applying KAM Theorem to Hamiltonian (81), we can go back to the original
variables (I,¢,s). Using that the change (J,¢,s) — (B, ¢,s) is e~ ?_close to the
identity in the C* sense for £ =0,...,n — 2m by Theorem 3.11 and (I, p, s) — (J, @, s)
is e-close to the identity in the C"~! sense by equation (22), the invariant tori obtained
in the region D] are given by

I=1,+Uflp,s;¢e)

where the function U; verifies the same properties as ¥;, and they are O(e!*")-closely
spaced in terms of the variable I. We get the results claimed for E; = I;. O

3.3.83. Resonant region In this section, we analyze Hamiltonian (23) in the resonant
region up to order m D" defined in (50).

We will perform an accurate study in this resonant region D;* and we will estimate
the size of the gaps created in the foliation of primary KAM tori. We will see that this
size depends on the order j of the resonance, for 1 < 7 < m, and on the size of the
harmonic associated to the corresponding resonance. According to this, we define two
types of regions: the small gaps regions Dgg where the size of the gap is smaller than ¢
and the big gaps regions Dpg where the size of the gap is bigger or equal than e.

We will work in one connected component of the resonant domain D]" which,
according to (50), is of the form

{(J, ©, S) € [—lo/k’o — Lkm —lo/k‘o + Lko] X T2}, (82)

for some —lg/ko € Rj \ (R1U---UR;_1), for 1 < j < m, where Ly, = L/|ko|, with
L = Ce* and o < 1/n, as required in Theorem 3.11.

By formulas (56) and (58) of Theorem 3.11, in component (82), Hamiltonian (23)
expressed in the averaged variables (B, ¢, s), can be written as

1 ~ ) _
km(B, ¢, s;6) = 582 +eZ™(B;g) + UM (koo + ls; €) + €™ R™(B, ¢, s; €),
= 2" (B, ¢, s;¢) + "R (B, ¢, 53 ¢), (83)
where Z™(B; ) and U0 (koo + lys; €) are polynomials of degree m — 1 and m — j in ¢,
respectively, and U (ko) + lys; €) is a trigonometric polynomial in 6 = ko + lys.
Forq =0, ..., m—1, the coefficient of order g+1 in € of eZ™ is a C" 24 function which

is Ope(e1+12+20)) for ¢ = 0,...,n — 2q. The function e?U*o0(9: £), for 6 = ko + lys,
satisfies

TR (50) | % 7267 (g, )| T+, (84)
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for ¢ =0,...,n—2(j — 1) and |(ko, lp)| = max(|kol|, |lo])-

Moreover, e™1R™ is a C"~?™ function which is Ope (€™ T1=+2m) for f =0...n—
2m.

From expression (83) it is clear that the integrable part Z™ is like a pendulum. The
integrable pendulum has rotational and librational orbits as well as separatrices, which
separate these two types of motion. It is straightforward to see that the size of the gap,
created by the separatrix loop, associated to the resonance —ly/ko € R;\R1U---UR;_1,
in terms of the J variables, can be bounded from above by v/2¢7/2 ‘U,’fno’lo(-; £) (1:(/)2

From expression (84), we have that the size of the gap for a resonance —ly/kg of
order j is

O (U202 (kg 1y)| 20 -1)/2) (85)

Expression (85) shows that the gaps form a heterogeneous sea since their size
depends on the order j > 1 of the resonance and the size of the harmonic |(ko, )|
Among them, the biggest gaps are those of order j = 1 and harmonic |(ko,lp)| < Mpg,
where Mpe = ¢~ 9)/" was introduced in Theorem 2.1 and satisfies Mg > M, where
M is the order of truncation. Indeed, in the particular case of a resonance —ly/ko of
order 1 (j = 1), the size of the gap is

O(e'|(ko, lo)| "), (86)

so that for any v > 0, the resonances of order 1 such that |(ko,ly)| > Mpg = e~/
create gaps of size O(¢'77/2), that is, smaller than ¢.

On the other hand, we know that resonances —ly/ko of order greater than 1 satisfy
Mgpi < |(ko,lp)| < mM (see Remark 3.5). Hence, according to (85) the size of the gap
created by a resonance —ly/ko or order j, for j =2 ..., m is

O(UH (ot (1L0)/m2G-1))/2)

Using the condition a < 1/n, with r > n > 2m and m > 2, the size of the gap is
O(g(j+1_4a(j_1))/2).

For j > 2 the size of the gaps is smaller than %", for n = (1 — 4a)/2. Notice that
1 > 0 thanks to the condition on a.

As we already said, we will distinguish between two types of resonant regions
depending whether the size of the gaps created in the foliation of primary KAM tori are
bigger or smaller than the size € of the heteroclinic jumps provided by the scattering
map (17).

e Resonant regions with big gaps Dgg. Gaps of size of order equal or greater
than ¢ are created in the foliation of primary invariant tori. According to (86)
they correspond to resonances —ly/kq of order 1 with ged(ko,ly) = 1, satisfying
|(ko,lo)| < Mpg, where Mpg = ¢4/ for 1/(r/6—1) < v < 1/16. See definition
(21).
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e Resonant regions with small gaps Dsg. Gaps between primary tori are smaller
than . They correspond to the resonant regions of resonances —ly/kq of order 1
such that |(ko,ly)| > Mpq, and resonances of order greater or equal than 2 (which
also satisty |(ko,lo)| > Mpg, see Remark 3.5).

Remark 3.25. We would like to emphasize that our result about resonances is remarkably
different from the one obtained in [DLS06a], where it was considered the case of a
perturbation A with a finite number of harmonics. In that case there was a uniform size
for the gaps created by the resonances. For instance, the gaps created by the resonances

/2 and Ce, respectively. In our case we have a heterogeneous

of order 1 and 2 were C¢
sea of gaps of different sizes. Moreover, in our case the resonances that create big gaps
are just the resonances of order 1 up to some order Mpg, whereas in [DLS06a], both

resonances of order 1 and 2 created big gaps.

3.83.4. Resonant regions with small gaps In this section, we will study the resonant
regions with small gaps Dsg, which correspond to resonances —ly/ ko such that |(ko, ly)| >
Mpgq, where Mpg was introduced in Theorem 2.1, of order j greater or equal than 1.

We will work in one connected component, and we will apply directly Theorem 3.22
to Hamiltonian (83) in order to prove that this component is covered by primary tori
which are O(e'*)-closely spaced, for some 1 > 0.

Going back to the original variables (I, ¢, s) using the changes given by Theorem
3.11 and equation (22), we obtain the following result about the existence of invariant
primary KAM tori of Hamiltonian (1):

Proposition 3.26 (Invariant tori in the small gaps region). Assume that m > 2,
n>2m+6 andr > (n—2)m+2. Choose any 0 <n <1/2min(v—-6(1+v)/r,m—1—
a(6+2m)), forv > 1/(r/6—1). Then, for e small enough, in any connected component
of Dsqa, which is of the form (82) for some —ly/ky € RIE™ with |(ko,lo)] > Mpa and
Ly, = L/|ko| with L = Ce® and o < 1/n, as required in Theorem 3.11, there ezists a
finite set of values E; such that:

i. For any E; there exists a torus T; invariant by the flow of Hamiltonian (1) contained
in A, which is given in A. by the equation F(I,p,s;e) = FE;, where F is a
Cn—2m=2=¢ function, for any o > 0, of the form

F(I,p,88) =1+ Oc2('17). (87)
it. The torus I; can be written as a graph of the variable I over the angle variables
(0, 8):
T, ={(1,¢,s) € Dsa; L = Ag, (¢, 53€)},
with

Ap(p, si€) = B+ Up(p, s;¢€) (83)
where Ug is a C"*™=27¢ function, for any 0 > 0, and Ug = Opz(e'17).

iii. These tori are O(e')-closely spaced in terms of the variable I.
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Proof: By Theorem 3.11, in any connected component of Dgg, Hamiltonian (23)
expressed in the averaged variables (B, ¢, s) has the expression (83).

Hamiltonian (83) is of the form (78), with Ko(B;e) = 1B% + eZ™(B; ), which is a
Cr=2m+2 function and

Ki(B,¢,s;e) = el (U (kop + lys; €) + ™ R™(B, ¢, 55€)), (89)

which is a C"72™ function and 27-periodic in both angle variables ¢ and s.

Our aim is to apply KAM Theorem 3.22. It is clear that |K{(-;¢)] > M > 0, for
M independent of e. We now will see that K in (89) satisfies |K(-, -, s;€)|cs < 6, for
§ = &2t for n > 0.

Recall from Theorem 3.11 that U*olo(kop + lys; ) is a polynomial in e of degree
m — j and a trigonometric polynomial in 8 = kq¢ + lys, which has the following bound
with respect to 6

TR (5 8)|erp < 772207 (Ko, lo) |20, (90)
and therefore

|7 UR (5 8) |t sy = €770 (o, lo) | 72U (91)
for £=0,...,n —2m. Moreover, ™' R™ is a C"~>™ function with a bounded C’ norm
up to £ =n — 2m given by

e R e < gmtl—a(t+2m) (92)

Hence, from the estimates for the C* norm of functions /U in (91) and e™*+!R™
in (92) with ¢ = 6, one gets

K (- 552)lco = 920070k, )| 77420146 . gmt-l6ram

for any 1 < j < m. Taking into account that |(ko,lo)| > Mpg = ¢~0*¥)/" and that the
worse estimate comes from j = 1, one gets

4v. _
K1 (-, 58)|eo < ge™ 770 gmttmalGam) — g2bm g g2,

Y

where 71 = v —6(1+v)/r and 7, = m — 1 — a(6 + 2m) are both positive. Indeed, by
hypotheses m > 2 and a < 1/n < 1/(2m + 6), we have 1 > 0 and 7; > 0 is equivalent
tov>1/(r/6—1).

So, for any n < 1/2min(ny,n,) we have |Ki(-, -, s;€)|¢s < €727 and we can apply
KAM Theorem 3.22 with ng = 5, 3 = 1—p, for any o > 0, § = €227 and M independent
of . Therefore, we conclude that for a constant C'(kg) = cte because kg = 1, regions
Dgg contain KAM tori given by

B =B+ Vi(¢,s;¢),
where U,(¢, s;€) is a C*~¢ function, for any ¢ > 0, and
|\I/i|cg j 51"‘77.

These tori are O(g11")-closely spaced in terms of the variable B.
As in the non-resonant regions we can go back to the original variables (I, ¢, s).
Using that the change (J,,s) — (B, ¢,s) is e'=**+2)_close to the identity in the C*
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sense for £ = 0,...,n — 2m by Theorem 3.11 and (I, ¢, s) — (J, ¢, s) is e-close to the
identity in the C"~! sense by equation (22), the invariant tori obtained in the region D™
are given by

I=1,+Ulp,s;¢e)

where the function U; verifies the same properties as ¥;, and they are O(g'*7)-closely
spaced in terms of the variable I. We get the results claimed for F; = I;. O

Remark 3.27. Notice that invariant tori in the small gaps region Dgg are given by a
certain function F' in (87) that, as in the case of non-resonant regions (see (79)), is of
the form

F(I> ¥, S; 8) =1+ Oc: (51+n)’ (93)

for some n > 0.

3.3.5. Resonant regions with big gaps In this section, we will see that the resonant
regions with big gaps Dpg which correspond to resonances of order 1 such that
|(ko,lo)| < Mpg are covered with invariant objects (either primary tori or secondary
tori) which are O(e!*)-closely spaced in terms of the action variable I, for some 7 > 0.

To that end, we will apply Theorem 3.22 to Hamiltonian (81) as we did in the
previous cases. The main difference is that in this case the integrable Hamiltonian is
not written down into action angle variables, so we will need to perform a change of
coordinates before applying KAM theorem. Furthermore, we will perform two useful
changes of coordinates, which are not symplectic but conformally symplectic.

Finally, going back to the original variables (I, ¢, s) using the changes given by
Theorem 3.11 and equation (22), we obtain the following result about the existence of
invariant tori of Hamiltonian (1):

Theorem 3.28 (Invariant tori in the big gaps region). Assume that m > 10, n > 2m+6
and r > (n — 2)m + 2. Assume that the function U (koo + lys;0) in Hamiltonian
(83) has a global mazimum which is non degenerate (this assumption corresponds to
the hypothesis H3’ on (ko,ly) in Theorem 2.1). Choose any 0 < n < v/2 and assume
v < 1/16.

Then, for e small enough, in any connected component of Dgq, which is of the form
(82), for some —ly/kqy of order 1 such that |(ko,ly)| < My, Lk, = L/|ko| with L = Ce®
and a < 1/n, as required in Theorem 3.11, there exists a finite set of values F; in some
range of energies —e|(ko,lo)|™" " < E < L? such that:

i. For any E; there exist invariant objects by the flow of Hamiltonian (1) contained
in A., which are given in A. by the equation F(I,,s;e) = E;, where F is a C*7¢
function, for any o > 0, of the form

(kol +1p)? 27 27 ko,
F(I,p,s¢) = f(l + ekih(kol + lo;€)) + ekiU; " (ko + los; €)

+ Opa (k| (ko, o) | 7"/2e3/%M), (94)
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where h satisfies (106). For values of E; > 0, equation F = E; consists of two
invariant objects that are primary KAM tori 7—5; whereas for E; < 0 consists of an
invariant object which is a secondary KAM torus Tg,. In this case we denote TEf
each of the components of

TEi N {(Ia @, ‘9) € DBG?P S k0¢+l03 S 27T—p},

for some 0 < p < 2m.

ii. There exists p > 0, such that the two primary KAM tori (components of the
secondary tori) TEf contained in A, can be written as graphs of the variable I over
the angle variables (v, s):

T, ={(L,¢,5) € [lo/ko = Liy, —lo/ko + L,] X [p,2m — p] x T; I =X, (¢, 5:¢)},

where

Nl 536) =~ 2 VLl0,F) + Ol ), (95)
for p <0 =kop+lps <21 — p, where

Vo(z, E) = (1 +eb)l(0, E) + eV (£(6, E)), (96)

U6, E) = \J2(E — ek3UL™ (6:)) and D satisfies (118).
ii. These invariant tori are O(e'*")-closely spaced in terms of the variable I and

O(3%0 (Ko, Io)|7/>TY) in terms of energies E;.

Remark 3.29. In Remark 3.12 we already pointed out that the function U*- (kqp+1ys; 0)
given explicitly in (59) is the function U (§) for § = kgp + lys in hypothesis H3 on
(ko,lp) in Theorem 2.1.

3.3.6. Proof of Theorem 3.28 The proof of this theorem is organized in three parts.
Invariant tori given by the averaged Hamiltonian
By Theorem 3.11, in any connected component of the resonant domain Dy, which

is of the form (82), Hamiltonian (23) expressed in the averaged variables (B, ¢, s) is of
the form (83) with j = 1, so it can be written as
km(B, ¢, s;6) = %B2 +eZ™(B;e) + UM (koo + lys; ) + €™ R™(B, ¢, 5; €)

= 7"™(B, ¢, s;€) + ™ R™(B, ¢, 5;¢€), (97)
on the domain

{(B,$,s) € R x T% |B+1ly/ko| < Ly, }, (98)

where | Ly, — Ly,| < ctee.

In this domain, eZ™(B;e) is a C"™"2"*2 function in the variable B and it is a
polynomial of degree m in e, whose coefficient of order ¢ + 1, forg=1,...,m —1is a
C"~2 function and O (e7+!1=2+20) for ¢ = 0,...,n — 2q, so that Z™ has a bounded
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norm up to £ = n—2m+2. Its main term Z™(B;0) is equal to ho0(0,0, B;0) by Remark
3.12.

Moreover U (kod+1ys; €) is a polynomial of degree m—1 in ¢ and a trigonometric
polynomial in 6 = ko + lys, satisfying eUk0(0; ) = Ope(g|(ko, lo)| "), for £ =0, ..., n.
Its main term Ukolo(0;0) is given in expression (60) in Remark 3.12.

Finally, ™' R™ is a C"~?™ function in the variables (B, ¢,s) with a bounded C*

norm up to £ = n — 2m, which is
}Em-i—lRm(_; E) ‘CZ < 5m+1—a(€+2m)‘ (99)

By the hypothesis in Theorem 3.28, the function U*-%(6,0) (the first order term
in € of the function U*(f ¢)) has a global maximum which is non-degenerate and
this implies that the integrable part Z™ of the Hamiltonian (97) is like an integrable
pendulum.

As it has been done in Section 8.5.2 in [DLS06a], we perform two useful changes of
coordinates which are not symplectic but conformally symplectic. The first one depends
on the time s and the resonance (ko,ly) and is given by:

b=rko(B+ly/ko), 6=kop+lps, s=s, (100)
hence the system of equations verified by (b, 0, s) is also Hamiltonian of Hamiltonian:

K(b,0,s6) = K°(b;e) + eV (0;e) + ™ Kb, 0, 5;¢), (101)
with

Kbe)  =b%/2+ekiZ™(—lo/ko + b/kos €),

V(g;e) = kUp(6;¢), (102)

K*(b,0,s;¢) = kg R™(—lo/ko + b/ ko, H_TOZOS, s;€).

Note that K is of class C"~2™*2 with a bounded C* norm up to £ = n—2m+2 and V is
analytic because it is a trigonometric polynomial in # and a polynomial of degree m — 1
in e. K!is a function of class C"~?™ with a bounded C’ norm up to ¢ = n — 2m, which
is 27ko-periodic in # and 27-periodic in s. Notice that V is 2m-periodic in 6, whereas
K is 2mky-periodic in 6.

The integrable part K°(b;e) + eV (0;¢) of the Hamiltonian (101) is a one degree of

freedom Hamiltonian close to a pendulum-like Hamiltonian
2

b _ b?
bl +¢eV(0;0) = Bl + ek2Uk0l0 (9 0),

where Ukolo(6:0) is given in (60). By hypothesis H3” on (ko,ly) this pendulum-like
Hamiltonian has a hyperbolic saddle at (0,6;) and by the implicit function theorem
the whole integrable Hamiltonian K°(b;¢) + £V (#;¢) has also a saddle at (b(¢), 61 (¢)).
Since Z™(B;0) = h(0, 0, B; 0) does not depend on ¢, the function b(¢) is of class Cr—2m+1
in ¢ and of the form b(e) = O(|ko|e) whereas 0;(¢) is analytic in ¢ and of the form
61(c) =60, + O(e).
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To make the analysis of this system easier we perform a second change of variables,
which depends on ¢ and consists of the following translation

y=b—10(), z=0-0:(g), s=s, (103)

in such a way that the integrable part of the Hamiltonian expressed in these new
variables has a saddle point at (0,0) and the energy of the saddle and the separatrices
is 0. More precisely, we obtain the C"~?™ Hamiltonian with respect to (y,z,s) with a
bounded C* norm up to £ =n — 2m

K(y,z,s;6) = hO(y;e) + eU(x; ) + ™S (y, , s5¢) (104)

which consists of an integrable part corresponding to the terms up to order ™, which
is the following C"~?™*2 function with a bounded C* norm up to £ = n — 2m + 2,

Ko(y, z;6) = h'(y; €) + U (w3 ¢), (105)
and a perturbation e™*1S(y, z, s; €), which is a C"~?™ function with a bounded C* norm
up to £ =n — 2m.

The function h°(y;e) in the integrable part K is a C"2™2 function in y with a
bounded C* norm up to £ =n — 2m + 2 of the form

2 2 _
W(y:€) = Thly:e) = (1 + ekihly:e)), (106)
for some C"~2™ function in (y, €), E(y; ¢), with a bounded C* norm up to £ = n — 2m in
y. The function U in K is given by

Ulw;e) = k(U (x + 01 (e); ) — Uy (0u(e); 2)), (107)
and it satisfies
€U €)ler = elkol|(ko, lo) ™" (108)
for { =0,...n.
We also notice that the following conditions are satisfied,
10:2) = 5056 = 0,0(0:2) = 5 0:9) =0, 5 5(0:2) <0

as well as that = 0 is a global maximum of U.
The perturbation term ™1 S(y, z, s;¢) is given by

S(y,$,876):k§Rm( l_O_'_y+b(5)7$+91(5)_l0878;6)

ko ko o
and by equation (99) it can be bounded in the variables (y, x) by
‘gm—HS(-, s; 5)‘@ =< ‘k0‘2—56m+1—a(é+2m) (109>

for ¢ =0,...,n—2m.
Since we will want to apply some of the results in [DLS06al, it will be convenient for
us to have K written in another way adapted to the notation in [DLS06a]. Motivated
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by the size e|ko|?|(ko,lo)|™" of U estimated in formula (108), we introduce here the
parameter v € R, 2 > v > 1, depending on (ko, ly) and &, such that

&7 = elko|*| (Ko, o)| ", (110)

in such a way that eU(;¢) = Oce(e?), for £ =0, ..., n.
Notice that v = 1 for small values of (ko,lo), that is |(ko,lp)| ~ 1, and in general
1 <~y <2+ v for |(ko,lo)| ~e7¢, for any 0 < p < (1 +v)/r, where 0 < v < 1/16.
With this choice of v, we will denote Kj the one degree of freedom Cr—2m+2

Hamiltonian in (y, x)

Ko(y, w;e) = h'(y;) + U (w3 2), (111)
where

U (z;¢) = elU(x;€), (112)

with 24+ v >~y > 1 and U(-;e) = Ope(1), for £ =0,...,n.
The energy level Ky(y,z;¢) = 0 consists of the saddle (0,0) and its separatrices.
The Hamiltonian K(y,z, s;¢) introduced in (104) is 2mwkg-periodic in x and 27-
periodic in s and is defined in the domain Dy, given by

Dy, ={(y,2,5) € R x R/(2mkoZ) x T, |y| < L}, (113)

where L = kqgLy,, whereas the integrable part Ky(y,z;¢) in (111) is 27-periodic in z
and independent of s, therefore the region Dy, can be seen as kg copies of the region

D ={(y,z,s) e Rx T? |y| < L}.

This effect is colloquially described as saying that the resonance —ly/ko has kg eyes. As
ko increases, these eyes form long necklaces.
The region D (and also Dy, ) is filled by the energy surfaces of the Hamiltonian K,

T8 ={(y,x,8) € [-L,L] x T* : Ko(y,z;¢) = E}

which are invariant under the flow of Hamiltonian K.

As we already said, the energy surface 7 corresponding to £ = 0 consists of the
saddle (0,0) and its separatrices forming a separatrix loop. Therefore, this separatrix
loop 7 separates two types of topological invariant objects. The energy surfaces
corresponding to the values £ > 0 are primary tori and the ones corresponding to
the the values £ < 0 are called secondary tori, which are tori of different topology than
the primary ones because they are contractible to points. Secondary tori cover all the
region inside the separatrix loop 7. In the next section we will discuss the persistence
of primary and secondary tori when we add the perturbation term.

KAM Theorem

In this section, we will show that many of the invariant tori 72 of the Hamiltonian
Ko(y,z;¢) in (111), inside the region Dy, given in (113), both primary and secondary,
survive when we add the perturbation term e™1S(y, x, s; €) to consider the Hamiltonian
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K given in equation (104). Moreover, we will estimate the number of steps of averaging
m required to get invariant tori with a distance of O(¢'*") between them, for some
n > 0, in terms of the original variables (I, ¢, s).

To establish this we will write the Hamiltonian (111) into action-angle variables
and apply KAM Theorem 3.22. Since the unperturbed Hamiltonian Ky(y,z;e) is
a pendulum, we can not define global action-angle variables because the change of
coordinates becomes singular on the separatrix. Therefore, we will define different
action-angle variables inside and outside the separatrix and we will exclude a thin
neighborhood around it.

We will find convenient to consider different regions in the domain Dy, in terms of
the values of the energy E, in which the behavior of the tori is different.

Recall that tori 72 in Dy, are given approximately by the energy surfaces of
Hamiltonian K, that is

KO(yvx;g) = E7

and we will see that excluding an small interval they can be seen as a graph of the action
variable y over the angle variables (z, s).
Introducing 6 = €7, we consider the foliation given by the level sets

WO (y: ) + 6U (z;¢) = E, (114)
where hO(y; ) is of the form (106) and U(-;e) = Ope(1) for £ = 0,. .., n satisfies also

that on x = 0 there is a non-degenerate global maximum of U(x;e), which verifies
—c<U(;e)<0and U(+;¢e) ~ —ax? as x — 0, with a > 0.

Since h%(y;e) + 06U (x;¢) =~ y; + 6U(x;€), the main term in the solution of (114) is

) = +0(z, E), (115)

where

U, B) = \/2(E — 60 (2;)). (116)

Writing y in (114) as a function of (115), we can apply the implicit function theorem
to equation (114) and we get a solution y = Y. (z, FE) given by

Vi(z, E) = £(1 + eb)l(z, E) + ey ({(x, E)), (117)
where
i. b= O(|kole) and independent of 8. Moreover, V. (0) = V'.(0) = 0.

ii. €Yy is a C"~2™*2 function and

‘55& ol

j |k0‘67 8:0717
CS(IE())

< |koleE; "2 2<s<n—2m+2, (118)
CS(IE())

where Zg, := {(2,E),z € T, E > E; > 0}.

‘95?1 o/




Geography of resonances and Arnold diffusion 59

This result is stated explicitly in Lemma 8.34 in [DLS06a]. For more details and a
rigorous proof we refer the reader to it.

From expression (116) it is clear that the size of the energy determines the dominant
terms in ((z, E). Thus, if £ > § = & the tori 78 are rather flat because the term

5“*(7(:6; e) is very small compared with E, whereas if F < &7, the term \/ E — 5“/(7(% 0)
and therefore the size of y oscillates between E and €7 and it has the effect of bending
the tori up to the point that they are bunched near the critical point (see Figure 1).

Dy

)

Figure 1. Schematic representation for the bending effect

Hence Dy, will be divided in three regions in a similar way as in [DLS06a]: Dy is
the region far from the separatrix, D, close to the separatrix but outside the region
bounded by the separatrix loop and Dj, close to the separatrix but inside the separatrix
loop, in the following way:

Ds ={(y,x,5) € Dy, : Ko(y,;¢) = E,&” < E < L?} (119)
D, =A{(y,z,s) € Dy, : Ko(y,z;6) = F,e’ < F <&} (120)
Din = {(y,.ﬁ(:,5> S Dko : KO(y7x;€) = G7 _E’Y S G S _85} (121>

where 1 <+ <24 v asin (110) and 3 is arbitrary provided that 3 > v (see Figure 1).

Theorem 3.30 establishes the existence of primary tori in D¢UD, and secondary tori
in D;, at a certain distance between them that depends on the number m of averaging
steps and close to the level sets of the averaged Hamiltonian Ky(y, z;¢).

Theorem 3.30 (KAM Theorem in the big gaps region). Consider the C"~*™ reduced
Hamiltonian K (y, x, s;€) given in (104) inside the region Dy, defined in (113). Consider
B > v, with v as in (110) and assume that r > (n — 2)m + 2, n > 2m + 6 and
m > 14(8 — v) + 3v/2. Then, for |e| small enough, one has:
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1. Primary tori far from resonance. There exists a set of values By < --- < Ej,,
verifying €7 < E; < L? ~ ¢ and o < 1/n, such that
(a) The frequencies w(E;) are Diophantine numbers of constant type and Markov
constant cte Ei_l/4aw | ko).
(b) For any value E;, there exist two primary invariant tori TEf of Hamiltonian
(104) contained in Ds.
(¢) The motion of the tori TEf is Ct-conjugated to a rigid translation of frequencies
(w(E), 1).
(d) This tori can be written as
T, ={(y,z,5) € Dy, K, (y,z, s;¢) = Ey,y > 0}
T, ={(y,2,8) € Dy, K, (y, 2, 8;¢) = Ej,y < 0}
where K. (y,,s;¢) is a C*~¢ function, for any o > 0, given by

Kg,(y,z,s;¢) = Ko(y, z;€) + Oc2 (6 Ez'1/4|k0|) (122)

(e) D C UiB(ng,gwE;/ﬂkd), where
B(TE:'tvé) = {(y,x,s) S Dk07 ‘Ko(y,l’,c?) - E| < 5}
2. Primary tori close to resonance. There exists a set of values Fy < --- < Fy,
verifying e’ < F; < &7, such that

m+1—a(64+2m)
2

a) The frequencies w(F;) are Diophantine numbers of constant type and Markov
Y
m+1—a(6+2m)—~/2+6
constant ctee™ 73 kol
b) For any value F}, there exist two primary invariant tori T= of Hamiltonian
Y Y F;
(104) contained in D,.
¢) The motion of the tori T~ is C'-conjugated to a rigid translation of frequencies
F;
(W(F),1).
(d) This tori can be written as

T ={(y,x,s) € Do, Kp,(y,x,s;¢) = F;,y > 0}
Tr, = {(y.%,5) € Do, Kp,(y, v, 5:¢) = F,y < 0}

where Kr,(y,x,s;€) is a C*~2 function, for any o > 0, given by
m+1—a(6+2m)+~/2+14y _7
Kr(y, . si€) = Ko(y, z;¢) + Oc: (8 2 F; Ikol) (123)
(e) D, C U, B(’TF{F,&tmHW(MQQH)M/QHOW F|ko|), where
3(7575) = {(yvst) € Dkoa |K0(y,x;€) - E| < 5}

3. Secondary tori close to resonance. There exists a set of values G; < --- < G,
verifying —7 < G; < —€P, such that

(a) The frequencies w(G;) are Diophantine numbers of constant type and Markov
m—+1—a(64+2m)—~/246
constant cte g™ |G| 73| kol

or any value G, there exist a secondary invariant torus 75 of Hamiltonian
b) F lue G;, th st dary invariant torus I of Hamiltoni
(104) contained in Dy,, contractible to the set

{(0,a,s),a € R,s € R/(2rkoZ)} C D;y,
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(¢c) The motion on the torus Tg, is C'-conjugated to a rigid translation of
frequencies (w(G;),1).
(d) This torus can be written as
To, = {(y,x,s) € Din, K¢, (y, x, s;¢) = G }
where Kg,(y, x,s;€) is a C*™2 function, for any o > 0, given by
Ka,(y,@,5:) = Koly,032) + Oca (575G i) (124)

m+1—a(6+2m)+~/2+10
(¢) Din C U, B(7g; ¢ s |Gl kol).

The following Corollary makes more explicit the assertions about the proximity of
these tori as a function of m, and it also gives properties of the KAM tori when expressed
as graphs of the action y in terms of the angle variables (z, s).

Corollary 3.31. Consider the C"=*™ reduced Hamiltonian K (y,x,s;e) given in (104)
inside the region Dy, defined in (113). Consider f =~v/2+1+v/2, with1 <~y <2+v
as in (110) and v < 1/16. Assume that r > (n —2)m + 2, n > 2m + 6 and m > 10.
Then, the tori obtained in Theorem 3.30 verify:

1. For any value E;, the primary tori TEii can be written as graphs of the action y over
the angles (x,s):
Ti = {(y,2,5) € Dy,y = fi.(z,5¢)}.
2. For any value F;, the primary tori Tﬁf can be written as graphs of the action y over
the angles (x,s):
Tﬁf ={(y,z,s) € Do,y = ffﬁ(m, s;e)}.
3. There exists py > 0 such that for any 0 < py < p < 7, and for any value G;, each
of the components of

ko—1

To, 0 {(ya,s) v LY, L= | J[2nl+p.2m(l+1) g,

1=0
that we will denote by ’TGj:’p, can be written as a graph of the action y over the angles
(x,s):
75" ={(y,v,5) € Diyw € I,y = f5,(x,5:2)}

4. All these functions f, = f* are at least of class C* with respect to (x,s), and,
denoting by D the derivatives with respect to x and s, forv = FE;, i = 1,...,lg,
v=F,i=1,...)lp, andv=G;,i=1,... lg, they verify:

(a) There exists a function Y(x, E) given explicitly in (117) such that:
|fo = V(@ 0)|er = [kole!t/? (125)

(b) IDf,| =2, |D*f,| < &/,
(c) For any two consecutive values v and T we have:

v — 3] < [kole”,
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and

vV—0
|fv - f6|cl = ‘ /2 | = |k0|€1+u/2-

Proof of Theorem 3.30
The proof follows the strategy established in [DLS06a], with the same scaling in

the domains D, and D;,. The main difference is that we will perform a sequence of
scalings in the far domain Dy, whereas in [DLS06a] there was no scaling in this region.
This sequence of scalings in Dy will reduce the number of averaging steps m needed to
get tori close enough in the region Dy, and therefore the required differentiability r.
We will first give a detailed proof of part 1) of this Theorem. Notice that in Dy
defined in (119), the energy E ranges from &7 to L? ~ £2*. Hence, we consider a value
of E, let us say Ej, in the interval [¢7,£?*] and a small neighborhood around it of the
form [c, By, cpFy] C [€7,€%*], where c,, ¢, are constants independent of e and Fj, such

that ¢, < 1 and ¢, > 1. Thus, we introduce the following domain contained in Dy:
Dg, ={(y,z,s) € Dy : Ko(y,x;¢) = E, c, B < E<c,E}. (126)
By the equation of Ky in (111) and the expression of h° in (106), the main term in ¥ is

given in (116). Therefore, in D, the coordinate y is of size O(v/E;) and it is natural to
perform the scaling

y=VEY, (127)

which transforms the Hamiltonian system of Hamiltonian K (y,z,s;e) given in (104),
which is C"=2™ with respect to the variables (y,z,s) with a bounded C* norm up to
¢ = n — 2m, into a Hamiltonian system of C"~?™ Hamiltonian with respect to (Y, z, s)
with a bounded C* norm up to £ = n — 2m,

K(Y,2,5:/Er,e) = \/%’C(\/EYJ, 5;¢)
l
= VEKo(Y, ;B e) +

gmt

\/ES(\/EY, z,s;€), (128)

with

1
’CO(K RV El,a?) = EKO(V El}/, ZL’;€)
Y2~ Y~
= Sh(VEYe) + %U(:c;a), (129)

where h(y;e) = 14 O(|ko|?¢) is given in (106) and, consequently, Ko is a CT—2m+2

function with respect to (Y, ) with a bounded C* norm up to £ = n — 2m + 2, because

h(y; ) is C"~?m*? with respect to y with a bounded C* norm up to £ = n — 2m + 2.
The scaling (127) transforms the domain Dpg, in (126) into

D={(Y,2,s) € R x R/21koZ x T : Ko(Y,2: /B, ) = E/E}, coE; < E < ,E}

={(Y,z,5) e RxR/27koZ x T : Ko(Y, 25/ Ej ) =€, co < €<} (130)

Next we will define the action-angle variables (A, 1) associated to the Hamiltonian

Ko(Y, z;\/E}, €) in the domain D. Note that the Hamiltonian (Y, x, s; v/ Ey, €) is 2mko-

periodic in x and 2m-periodic in s, whereas Ko(Y, x; v/ E},€) is 2m-periodic in x and
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independent of s. Therefore, the domain D is nothing else but kg copies of the domain
D* x T, where

D*={(Y,x) e RxT:Koy(Y,2;/Ep,e) =¢, coa <e<cp}. (131)
Notice that, by expression (129) for Ky, the equation
]CO(}/? WY E17€> =€

has the same form as equation (114) with 6 = &7/F; and it defines two functions
Y = Yi(z,e) on D*, given in (117), which are of the form

Vi(z, €)= ﬂ:\/2 (e - %ﬁ(:@ 5)) (1 + Ocn-2m+2(|kole)).

l

Since, by construction of U (r;e), on x = 0 there is a global maximum such that
—c < U(z;e) <0, in the domain D* we have
v &

6/-\./
0<c, <e<e——U(x;e) <e+c— < ¢+ cte,
S e Ez( ) < +El_b+

where we have used E; > 7 and therefore ¢, < Vi (z,e) < ¢+cte and Yy is Ocn-2m+2(1),
for some constants ¢, and ¢,.
We consider in D* the action angle variables

27
4= [
21 Jo (132)
7

Y = WT z,e),

where 7(z, €) is the time along the orbit of the Hamiltonian KCo(Y, z; v/ E}, €) with energy
e given by
OV

T(z,€) = i W(u,e)du. (133)

We have chosen the origin of time at x = 0 and with this choice T'(e) = 7(27,e) is the
period of the periodic orbit.

From expression (132) it is obvious that A satisfies ¢, < A < ¢, and that A is
Ocn-2m+3(1).

The action-angle variables (A, ) introduced in (132) have already been studied in
Proposition 8.35 of [DLS06a] for the case when they become singular, that is when the
domain D* depends on . In our case, we can adapt the result in Proposition 8.35 of
[DLS06a] for the domain D* not depending on €. We obtain that we can express the
integrable Hamiltonian /F;Ko(Y, z; v/Ej, €) in (129) into action-angle variables (A, 1))
in the domain D* and the change of coordinates is away from the singularity in this
domain. More precisely, there exists a C"~2™*2 change of variables in D*

X:D* — D*
(4,¢) — (Y,2)
given in (132) with D** = {(A,¢) : ¢, < A <&, ¢ € T} = [¢,, &) X T and ¢,, ¢, suitable
constants independent of € and Ej, such that:

(134)
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i Ko(X(A,9);VE,€) = G(A; VE, ).

i, |X <1, <1, 0<ny<n-2m+2.

-1
cno (D**) X }cno (D*)
=1

1. |g|c3(D**) <1 and ’g” D)

where the constants in above inequalities do not depend on ¢ and FE.
Now, we consider the Hamiltonian K in (128) expressed in action-angle variables,

K(A, %, 5,V Eiye) = VEG(A; VEL €) + —=S5(A, 4,5,/ Er,e),  (135)

where K =K o X and S = So X.

The Hamiltonian (135) is of the form (78) with K, = /EG(A;v/E;,¢) and
K, = €m+1El_1/2§(A,w, s; vV Ep, ) and 2mkg-periodic in ).

The functions G and S are C™~2"*2 and C"~2™ with bounded C’ norms up to
¢ =n—2m+2 and ¢ = n—2m in the variables (A, 1), respectively. Since by hypotheses
of Theorem 3.30 we have that r > n > 2m+6, G and S have a bounded C® norm in the
variables (A, ). Therefore, using Faa-di Bruno formula (C.3) and the bound for the C°
norm in the variables (y,x) for €S in expression (109) jointly with the bounds for
the change of coordinates X’ in item ii) we have that, for any s € T,

gm—i-l

VE

m+1 _

S('? S; \/Ev 8)

£
VE

where Di* = [¢,, ) x R/2mkoZ. Moreover, by item iii) in this proof we have that
=\ E.

"e.
VE|G'(VEL)|, =

Therefore, we can apply KAM Theorem 3.22 to Hamiltonian (135) with ng = 5,
B=1—o0, forany 9> 0,8 = §(c) = |ko| AE; /2emt1i=al6+2m) and M = M(e) = cte VE,
and we obtain:

< ko\_A‘ El—1/2 gmt1—a(6+2m)

Y

co(D)

1. There exist a set of values A;, such that the Hamiltonian IC o X’ has invariant tori
given by

Z:{(Auwvs) EDZ; XT:A:Al—i_Al(va; \/E,E)}

where A; are C*~¢ functions in the variables (¢, s), for any ¢ > 0 and
A VB2

2. The motion of these tori is C?>~°-conjugate to a rigid translation of frequencies

< ‘ko‘El—3/4€(m+1—a(6+2m))/2_
C2(R/27koZxT)

(w(A;), 1), where w(A4,;) is a Diophantine number of constant type and Markov
constant cte [ko| By emt1-a(6+2m)/2
3. The union of neighborhoods of size |ko| E; */*e(m+1-a(6+2m)/2 of these tori cover all

the region Dy x T.

In the variables (Y,z,s) = (X(A,1),s), the torus 7; satisfies Ko(Y, z;VEj,€) =
G(A + A(Y, s;VEL €); VE, €), so that, introducing G(A;; v/E,€) = e and using the
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estimates in items (ii) and (iii) in this proof as well as Faa-Di Bruno formulae, one
obtains that the tori are given by

Ko(Y,2;7/E,€) = G(A;; VEy, ) + +Oc (|9\c3 Al }X_l};)
— et O (|ko|El—3/45(m+1—oz(6+2m))/2) (136)

Going back to the variables (y, x, s) performing the scaling y = v/E;Y and using
the expression for Ky given in (129) one obtains that the tori are given by

1/4 m+1—a(6+2m)
2

Ko(y, 7€) = E; + O (|k0|E- €7> ,

where E; = Eje;.

By compactness of Dy, the covering {int(Dg,)}32, of Dy admits a finite subcovering
Dy = Ui]\io int(Dp,), and we get the claimed results in part 1 of Theorem 3.30.

The proof of parts 2) and 3) of this Theorem follows as in [DLS08]. The only
difference is that we introduce a sequence of domains as we did in this proof in the far
region and we perform adequate scalings which allow us to get better estimates for the
functions describing the searched tori. More precisely, consider the region D, (the case
for Dy, is analogous) and introduce the domain

DFl = {(y,x,s) €D, : Ko(y,l’;é?) = F7 co 1 < F < Cbﬂ},

analogous to (126) in part 1). Since the energy F; < €7 in D, (see (120)), from the
expression for the main term of y given by /(x, F) in (116), the coordinate y ranges
from \/F] to €7/2. Hence we perform the scaling y = 7/2Y and we proceed as in Lemma
8.36 in [DLS06a]. We obtain that the original system is transformed into a Hamiltonian
system of C"~*™ Hamiltonian with respect to (Y, s) of the form

K(Y,z,5,67% e) = 2K (Y, ;672 &) + ™28 (V%Y 2, 51 ¢),
with
Y2 _
Ko(Y,z;67% ¢) = S MV EY;€) + Ula;e)

where h(y;e) = 1 4 O(|ko|%) is given in (106). The Hamiltonian is defined now on the
domain

D ={(Y,z,s) € Rx R/21koZ x T : Ko(Y,2;67?) = F/F,, F, < F < F;}
= {(Y,z,5) € R X R/21koZ x T : Ko(Y, x;67?) = e, CF /e <e < F /)

Next, we define the action angle variables in the domain D by formulas (132). The

only change is that we need to take into account that instead of expression (8.77) in
[DLS06a] we have

F F
ca—l <e—Ulx;e) Scb—l—i-cgcte,
eV e

and by (109) the perturbation e™*'=7/25(7/2Y, z, s;7/?) can be bounded in the C°
norm in the variables (Y, z) by e=7/2gmt1-a6+2m) |14,
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Therefore we can apply Proposition 8.38 in [DLS06a] and proceed as in the proof
of parts 2) and 3) of Theorem 8.30 in [DLS06a] replacing in the estimates in terms of
£ in (2.1), equation (8.50) and (2.5), &7 by &7, e™*+! by gm1-a6+2m)| k1= and 27 by
Fie™7, and multiplying by the constant Cy, = cte |ko|*> of KAM Theorem 3.22, to obtain
the estimates in 2.(a), equation (123) and 2.(e). Finally, by compactness of D,, we get
the claimed results. We skip the proof of these two parts and we refer the reader to
Section 8.5.4 in [DLS06a] for it. O

Proof of Corollary 3.31. It is totally analogous to the proof of corollary 8.31 in
[DLS06a] and it follows from Theorem 3.30 just applying the implicit function theorem.

We apply Theorem 3.30, with m > 10 and § = v/2+ 14 v/2, where 1 <y < 2+4v
and v < 1/16. From these conditions it follows that § > v and m > 14(8 — 7) + 3v/2
and therefore, we obtain that the invariant tori in the domains Dy, D, and Dy, are given
by the implicit equations (122), (123) and (124), which are of the form

Ko(y,z,s;¢) = E+6g(y, v, s, E;€) (137)
with |g|.. < cte and

m+1l—a m)

E:Ei,ézé’:‘ = 2(6+2 Ell/4‘]f0‘,

E=F, =" oot (138)
mt1—a(6+2m)+y/

B =G0 =" G

respectively.
Equation (137) is equivalent to equation

M(y,x,s,t;0,e) =y — Ve(x,t) =0,

where t = E + 0g(y,xz,s, E;e) and Yi(z,t) is given in equation (117). The above
equation has been studied in full detail in Lemma 8.39 of [DLS06a]. It is not difficult
to check that one has

0_M - 1‘ < cteés_“’ﬂ,

y

which is a bound analogous to (8.95) in Lemma 8.39 in [DLS06al, where the factor &”
comes directly from the expression (111)of K. So, as long as 6 ~7/? < §, < 1, for some

constant &y independent of £, we can apply the implicit function Theorem in order to
get the invariant tori of items 1,2 and 3 written as graphs of the action y over the angles
(z,s) as

y=fi(2,s¢)
where v = E;, I}, G;, respectively and

fE(x,s76) = Vi, v) + Opr (5e7/?).

Let us check first that condition de=7/? < 1 is fulfilled. Notice, first, that by
the choice m > 10 and 8 = /2 + 1 + v/2, where v < 1/16, E; < £2* and
F;,G; > P, one obtains in the three cases of (138), that || < |ko|e®, which clearly
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implies 6¢77/2 < |ko|e™™/? < 6, for some constant &, < 1 since, by expression (110),
|ko| < e=(H)/m < e=1 Thus, we obtain results in items 1), 2), 3) and

[fo = (@, 0)|er <8772 2 [kole® 7/ = [kole" 72,

as claimed in 4a). In an analogous way one gets 4b).
Finally, from results le), 2e) and 3e) in Theorem 3.30 and definitions of D¢, D, and
Dy, given in (119), (120) and (121) we have

|E; — Epp) = ™5 BV 4 YY) kol
m+1—a(64+2m)+~/24+10y _ _

F,— Fiy| <¢ : (F7° 4+ F33) kol

|Gi_Gi+1| jg (‘Gi|_5+|Gi+1‘_5)‘k0‘

and taking into account that Ey ~ Fj, ~ &7 and Fy ~ G, ~ 8 we get

m+1—a(6+2m)+~/2+10y
2

m+1—a(6+2m)+~/2

|Ey — F| = ¢ 2 |ko|
|Fy — G| = (85_'_€m+17a(6+2m)2+w/2710(ﬁ7-y))

| Kol

Since f = v/2+ 1+ v/2, m > 10, all these exponents are bigger than [ as claimed
in item 4c). The last estimate in item 4c) follows from the inequalities above and the
following bounds

Ofe 0D fr
oF oF

analogous to (8.91) given by Lemma 8.39 in [DLS06a]. O

Remark 3.32. In the case considered in [DLS06a], where the perturbation h in (1) was
assumed to be a trigonometric polynomial in the angular variables (¢, t), there exist

< e/

< 5—’7/27 '

a finite number of resonances so L can be chosen independently of €, that is @ = 0.
Moreover « is simply replaced by the values j = 1,2 in [DLS06a] corresponding to
resonances of order 1 and 2, respectively. In this case, Corollary 3.31 only requires
m > 9 and r = n > 24 since there is no need of truncation process, so that Hamiltonian
in (1) only needs to be C?. This improves substantially the regularity required in
[DLS064a], since Hamiltonian (1) was assumed to be C% because m was chosen m = 26.

Invariant tori in the original variables

Theorem 3.30 gives KAM tori, both primary and secondary, in the variables (y, z, s).
From equations (122), (123) and (124) in Theorem 3.30, we know that these tori are
given approximately by the level sets of the Hamiltonian Ky(y, z;¢) in (111).

We can write them in the original variables (I, ¢, s) using the change of coordinates
given by Theorem 3.11 and changes (22), (100) and (103). More precisely, we have that
the relation with the original variables is given by

Yy = k‘o]—i— lo + OC2(|]€0|51—40¢)’ T = k0¢+ lOS + OC2(|kO|51_4a),

whose inverse in terms of the I variable can be written in the form

lo 1

[=-"24— -
]{70 + k0y+<-(y,x7876)7
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where ( is Oz (e!74).
Using expression (105) and (106) these invariant objects are given by the level sets
of a C*~¢ function F, for any ¢ > 0, which has the form

1 2 ~ ~
M(l + ekgh(koI + lg; €)) + U (0;¢)

+ Oc2 (|k‘0|357/2+1+y/2)> (139)

where 6 = ko + lps. By the definition of ~ in (110) jointly with U and U in (112) and
(107), respectively, we get the expression (94) given in Theorem 3.28.

F(I,p,s;¢) =

Moreover, from items (1), (2) and (3), together with the estimates in item (4a) in
Corollary 3.31 we have that KAM tori can be written as graphs in the variables (y, z, s)
of functions of the form

Y= flz?t(xv 5;6) = yﬂ:(va) + OCl(‘kO‘gH—n)’

Using the mentioned changes, we obtain that the tori inside the region Dgg, are given
in the original variables (1, ¢, s) by

[ 1
I = A%(@vsu‘g) = - + _y:t(evE) + OC0(61+17>
ko ko
with 6 = kop + los, where Y, is given (117).
Finally, from Corollary 3.31 we know that there exist invariant tori 7z, 7p of

energies F, E' such that
|E o El| _ O(|k0|5w/2+1+u/2) — O(|k‘0|2€3/2+'//2|(k30,l0)|_r/2)

and there exist also points (y1,z,s) € Tg and (y2, z, s) € Tg with

Y1 — 2| = Ocr (Jkole/?),

so in term of their I variables it follows that

9¢

1 1
I — L] < — |1 — Yo| + = a—y‘ ly1 — Yo

Kol Kol
< /2 |f|e g2

14v/2

A

€

and by the definition of v given in (110), we obtain the claimed results in item (iii) of
Theorem 3.28. O

3.4. Proof of Theorem 3.1

The proof of Theorem 3.1 follows directly from the results obtained in Propositions 3.24,
3.26 and Theorem 3.28.

Choosing n = 2m + 6 and assuming m > 10 and r > 2(m + 1)?, the hypotheses
on r, n and m in the mentioned Propositions and Theorem are satisfied. Moreover, the
choice n = min((m — 1 —an)/2,v/2 — 3(1 + v)/r) with 1/(r/6 — 1) < v < 1/16, fits
clearly with the assumptions on n in Propositions 3.24 and 3.26, and also with the one
in Theorem 3.28.
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By Propositions 3.24 and 3.26, the tori obtained in the non resonant region and in
the resonant region with small gaps are primary and they are given by the level sets of
the same function F' = I + Og2(e'1"), so they are flat up to Op2(e'™). Both regions
form the flat tori region. The explicit approximate expressions for the invariant tori are
given implicitly by the function (87) and as a graph of the action I over the variables
(,s) by (88), both functions in Proposition 3.26.

By hypotheses H3’, Theorem 3.28 provides a sequence of invariant KAM tori (both
primary and secondary) for the big gaps region. In a connected component of this
region of the form (82), these tori are given by the level sets of a function F' in (94)
and as a graph of the action I over the angle variables (¢, s), in (95). Moreover,
the distance between consecutive tori is O(¢!'™) in terms of the action variable and
O(3/2(ko, 1p)|~7/#*1) in terms of the energy. O

4. Construction of a transition chain

In the previous section, we have proved that in the NHIM A. there exists a discrete
foliation of invariant tori 7; (primary and secondary) with graphs at a distance
Oc1(e¥), for some > 0. We have also shown that these tori are close to being the
level sets of the averaged Hamiltonian, and we have given its first order perturbative
calculation for the flat tori region Dr and the big gaps region Dpg.

The goal of this section is to prove Proposition 4.1, which states that, assuming that
the non-degeneracy conditions H2”, H3” and H3”’ in Theorem 2.1 hold, there exists
transversality between the foliation of invariant tori in A. provided by Theorem 3.1 and
its image under the scattering map S. given in (20) and it is possible to construct a
transition chain.

Recall that, as we said in Section 2.3.4, by Lemma 10.4 in [DLS06a] two
submanifolds, like the invariant tori 7;, 7;;; of the NHIM /L, have a transverse
heteroclinic intersection provided they are transversal under the scattering map S. as
submanifolds of /L:

ST thy. Tops = Wit h Wi,

Hence, Proposition 4.1 provides a transition chain through applications of the
scattering map.

Proposition 4.1. Consider Hamiltonian (1) satisfying the hypotheses of Theorem 2.1.
Pick two KAM tori To. such that |I(xs) —IL| < et for some vy € T andn > 0 (these
tori exist thanks to Theorem 3.1). Then, there ezists a transition chain {’Z;}Z-N:(g), where
N(e) = CJe, in such a way that
1. The transition chain is obtained through applications of the scattering map. That
18,

S.(T5) g Topn.

13
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2. To=T, Tney =T,

Proof. The proof of Proposition 4.1 is postponed to Section 4.2 and is based on the
results in the following Section 4.1.

4.1. The scattering map and the transversality of heteroclinic intersections

The main result of this section is Lemma 4.2, stated below, which considers a foliation
Fr whose leaves are the level sets of a certain function F' and provides an expression
for the action of the scattering map S. on this foliation in terms of the Hamiltonian
function S. given in (19), generating its deformation. Moreover, it gives criteria to
establish transversality between the foliation Fr and its image under the scattering
map S..

Lemma 4.2. Consider the foliation Fr whose leaves LY are the level sets of a certain
function F':

Lg = {([>Q0>S) € ([—a[-i-) X ’]IQ,F([,QO,S;E) = E}v JONS (ElaE2)'

Let S. be the scattering map introduced in (17), and S. = Sy + S + O(e?) its
Hamiltonian function given in (19) with Sy = —L*, where L* is the reduced Poincaré
function introduced in (11). Then, S-(L%), the image sets of the leaves L% of Fr under
the scattering map S., satisfy Se(L%) = L§°591 and therefore the equation F oS! = E,
where the expression F o S=1 is given by

2

FoST = F—e{F,.8}+ S({{F.S}, So} —{F.&} +O(),  (140)
where {F,S;} = 0,F0;S; — 01F0,S; is the Poisson bracket of the functions F' and S;.
Moreover, the image of a leaf LY under the scattering map S. intersects another leaf
LE,, for some E', if and only if there exist x € L% such that F o S.(z) = E', where the

expression F o S, is given by
2

Fo S& I E{l a‘SO} 82 ({{1 a‘SO}?‘SO} {1 a‘Sl}) 0(83)‘ (141)
Assuming that
|{} 7} o S&‘_l}|
=~ 1>
| |2 Ce, (142)

where C' is a constant independent of € and E, the angle between the surfaces LY, and
S.(LL) at the intersection points is bounded from below by Ce. Therefore, foliations Fr
and Fp,g-1 intersect transversally.

Remark 4.3. For the case of a function F' which is Ogz(1), the scattering map increases
(decreases) the energy F by order e, provided that the first order term {F, £*} in (141)
satisfies

(F, L) 0.
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Remark 4.4. Using expression (140) and S = —L*, the condition for the transversality
of the foliations (142) reads out

{EAF L) +e/2(AF ({7 L7} L3} + {F AR S 1 1)) + O(e?)]

>C. 143
|V E|? - (143)
Notice that if F'is O¢2(1) the term € can be neglected and the condition reduces to
{F.A{F L}}]
——2>C. 144
|VF|? - (144)
Also notice that an equivalent condition to (142) is
[{F, F o S}
——— > (. 14
NEE 2 Ce (145)

Proof: In Section 2.3.2 we have shown that there exists a Hamiltonian function
S. generating the deformation of the scattering map S. and we have given its first
order perturbative computation in equation (19). Hence, taking into account that
S. =8y + &8 + O(£?), it is clear that (see [CH82] for instance) F o S. is given by

2

FoS. =F+e{F.8)+ %({{F, So}, o} + {F,S1)) + O3,

with Sy = —L*. The expression for F o S=! follows identically.

In order to show the transversality between the foliations Fr and Fp,q-1, we need
to obtain lower bounds for the angle of intersection. More precisely, the angle o between
the normal vectors to the tangent planes to the surfaces S.(LL) and L%, is given by

_|V(FoSY)YxVF|  |{F,FoS '}

C V(FSIHIVE]  [V(FoSY|[VE|

where F'oS=! is given in expression (140). From this expression one can see that sin(a)
is O(e) and condition (142) gives the required transversality. O

sin(«)

As we have argued in the previous section the tori in Ka have different behavior
depending whether they are close to or far from the separatrix. Thus, the tori in the
flat tori region and in the big gaps region far from the resonance are rather flat, whereas
they are bent in the big gaps region close to a resonance. The fact that the tori are
not flat has the consequence that the dominant effect of comparing a torus with the
image under the scattering map of another torus, will include some extra terms. For
this reason, we will divide the study in three cases: on the one hand, the flat tori region
and on the other hand the resonant region with big gaps, where we will distinguish
between far from and close to the resonance.

4.1.1. The flat tori region In Lemma 4.5, we apply Lemma 4.2 to the flat tori region
Dr. By Theorem 3.1, in one connected component of this region the invariant tori are
given by the leaves L% of a foliation Fr, where F' is of the form (87). Moreover they
can be written as a graph of the action I over the angle variables (¢, s): I = Ag(¢p, s;¢),
where Ag is given in (88).
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Lemma 4.5. Let us consider a foliation Fr contained in a connected component of
the flat tori region Dy, where the function F is of the form (87), so that the equation
F(1,p,s;¢e) = E defines a smooth surface given as a graph Ag(p, s;€), with Ag as in
(88).

Assume that hypothesis H2” is fulfilled. More precisely, the reduced Poincaré
function L* defined in (11) verifies, for any value of (I,p,s) € Hy N Dy that the
function

i 25 rh)
00
for 6 = ¢ — Is is positive (resp. negative) and non-constant for 8 on some set J; (see
(12)). Then the foliations Fr and Fros-1 intersect transversally.

More precisely, any surface S.(LL) intersects at some point the surface LE, for any
E'>0 (resp. E' <0), |E'—E| = O(e). The angle between the surfaces S.(L%) and L%,
at the intersection can be bounded from below by Ce, where C' is a constant independent
of € and E.

Proof: We will apply Lemma 4.2 with F(I,p,s;6) = I + Op2(e™) and I =
Me(I,,8,6) = E + Op2(e117) for some n > 0. We will see that provided hypothesis
H2” is fulfilled, condition (142) of Lemma 4.2 is satisfied.

We first apply the scattering map to the implicit surface

Ly, ={(I,¢,5) € Dp,F(I,p,s) = E},
and recall that S.(LY) intersects a leaf L, at a point (I,¢,s) € LL if FoS.(I,p,s;¢) =
E’, where, using expression (141), F o S, is given by
FoS.=FE—&{F L)+ O(?). (146)
with,
OL*OF  OF OL*

00 o " op o1

= —(1+ OCI(€1+77))88% + Ocr (e77)

{F>‘C*}: -

with 6 = ¢ — I's. Evaluating on I = E + Ogo (), equation (146) reads out

(FoS.)(I,p,s6)=FE+ 688% (E,o — Es)+ O(g"™).

By hypothesis H2” in Theorem 2.1 the scattering map increases for (I, ¢,s) €
H, N Dr (resp. decreases) the energy by order €. In particular, the surface S.(LZ%L)
intersects all surfaces L%, such that |E' — E| = O(e).

Moreover, in order to see that they intersect transversally we need to check that
condition (142) is satisfied. Notice that in this case, by Remark 4.4, condition (144)
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implies (142). Thus, we first compute

OF\? 0*L*
F{F LWV == L
wiren = (5) 5z

Since, by assumption, the function %(E,g) is non-constant for 6 in Jp, there
exists an interval Jg C Jj where
02L*
96?

>C >0,

and using
IVE| =1+ Oci(e"7),

we have that condition (142) is satisfied and the angle between the surfaces S.(LZ%)
and L%, at the intersection can be bounded from below by Ce, where C' is a constant
independent of € and F. U

Remark 4.6. By Theorem 3.1, two consecutive tori are, at most, at distance of O(g!*7),
for some 7 > 0, in terms of the I variable. Moreover, these tori are Qo (') close to
the level sets of the action I.

Hence, we conclude that the image under the scattering map of a torus 7; in the
flat tori region, given by I = I; + O(e'™) intersects transversally another torus of this
region given by I = I, + O(e'™) with |, — ;| = O(e):

S.(T) h T

4.1.2. Big gaps region In Lemma 4.7 we are going to apply Lemma 4.2 in one connected
component of the big gaps region Dpg. By Theorem 3.1, the invariant tori are given by
the leaves LE of a foliation Fr for a certain function F' of the form (94). Moreover, they
can be written as a graph of the action I over the angle variables (p, s): I = A5 (¢, s;¢),
with A% as in (95). Recall that in this foliation, the leaves with £ > 0 are primary
KAM tori whereas the leaves with £/ < 0 are secondary.

The dominant terms in F' and in the expressions )xfj of these tori depend on the
resonance —ly/ky and the distance to the separatrix, which is measured in terms of E.
Thus, on the one hand tori are bent when they approach the separatrix, that is, when
E — 0, and on the other hand tori are flatter when the size ¢|(ko,lo)|~"/" of the gap
decreases, which is controlled by k¢ and therefore by 7 (see (110) for a definition of 7).

In the following Lemma 4.7 we consider the different cases and we prove that
conditions H2”, H3” and H3”’ ensure the existence of a transversal intersection
between the foliation Fr and its image under the scattering map Fp 1.
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Lemma 4.7. Let us consider a connected component of the big gaps region Dgg defined
in (82). Recall from formula (94) together with expressions (110) and (112) that, in this
component, the function F defining the foliation is of the form

kol 4 1y)?
F(1, g, si0) = BT 00
where 0 = kop + lps, and for some 0 < p < w and some range of energies —e7 <
E < L?, the equation F(I,p,s;e) = E defines two smooth surfaces Lgi given as graphs
I = )5(p,s;¢€), with A5 given in (95) which are of the form

lo

Ao (p, s5¢) = ot yiw E) + Oco ('), (148)

(14 ek2h(kol + lo;€)) + U (0; ) + Opa([ko|?7/2H147), (147)

where

Vi(0, E) = £(1 + eb)l(0, E) + Y (0(0, E)), (149)

for p <0 =kop+los < 2m —p and (0, F) = \/Q(E — eU(6;0)) with U(6;¢) defined
in (112) and Yy satisfying (118).

Assume that hypothesis H2” is fulfilled, more precisely, that the reduced Poincaré
function L* verifies, for any value of (I,p,s) € Hy NDgq, that the function

54_>§y§i(1,§) (150)
06
for 6 = o — Is is positive (resp. nmegative) and non-constant for 6 e Jr
For |(ko, lo)| < e=V/" assume hypothesis H3” on (ko,lo) in Theorem 2.1, which is
that the function

kol oo (95 0) 24 ( o ) + 20 (6; 0) 2L (—_lo i)

ko 7 ko 062 ko 7 ko
2525 =l 6
962 ko 7 ko

For |(ko,lo)| ~ e~V we assume the following hypothesis, which is condition H3”’
on (ko, lo) in Theorem 2.1:

There exists a constant C', independent of E and €, and an interval J C jjlo/ko
such that given any E, e in this region and 6 € J,

0 —

(151)

18 non-constant.

2 x
(e
2(E —e7U(6;0)) 002 = ko ko
oLx, Iy 0 Ll 0
—&7 | koU koo (9; 0 2 )+ 20(6;0 —0,_} (152)
[ (6:0) 00 = ko’ k‘o) :075 902 = ko ko)

oL by 0 )8 Ll 0
00 ko ko' 062 © ko ko
Then, the foliations Fr and Fp -1 intersect transversally.

Lekoy/2(E — 2T (9;0) 2=

)M>C

More precisely, any surface S:(Ly~) intersects at some point the surface Lg’,_ for
any E' < E (resp. E' > E) such that |E' — E| < C|kole max(|E|'/2,e7/?). Analogously,
any surface S.(LE™) intersects at some point the surface Lg’f’ for any E' > E (resp.
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E' < E) such that |E' — E| < Clkole max(|E|'/2,€7/?). (In some cases, it is also
possible that a certain surface Se(Li~) intersects the surface L™ with E' such that
|E' — E| < C|ko|e max(|E|'/?,£7/2)).

The angle between the surfaces S-(L5™) and LE" at the intersection is bounded
from below by Ce, where C is a constant independent of € and E.

Remark 4.8. Lemma 10.16 in [DLS06a] gives a computable sufficient condition that
guarantees that hypothesis H3”” on (kq, ly) is verified independently of € and E. Indeed,
let

L Iy 0
ae = ~ R A
(©) 062 ko ko)
1 ~, oL ly 0 ~ L Iy, 0
b)) = — = ( koU'*olo(9; 0)—= (-2, — +2U0;O—~——0,—),
0 = - 3 (R0 D 12060 (-2

* 2 rx
2 90 ko ko™ pp2 ko ko

if there exist 01,0y and 63 in some interval J verifying

a(6y) () a(s)

b(6r) b(02) b(0s) | # O, (153)
c(0r) c(62) c(0s)

where

#) = a(9)?

0) = 2a(0)b(0) — c(0)? (154)
A0) = b(B)* — c(6)2T(6;0),

then there exists a constant C' and three intervals 6; € J; C J, ¢ = 1,2, 3 such that for

any 0 € J;

a(0)E + b(0)Y + c(0)ekor/ E — 7T (6;0)
E — U (6;0)

Zcu

which is hypothesis H3”” on (ko, lo).
Proof: We will apply Lemma 4.2 to the foliation Fr given by the function F' in (147).
We first apply the scattering map to the implicit surface
Lg = {(]73075) € ,DBG7F(I7§075;6) = E}7

and recall that S.(LY) intersects a leaf L, at a point (I,¢,s) € LL if FoS.(I,p,s;¢) =
E’, where, using expression (141) with Sy = —L£*, F o S. on L% is given by

(FoS.)(I,p,s6)=E—e{F,L"} + éj;({{F, LY LY+ {F,S)) + 0. (155)

Notice that the terms in expression (155) involve the derivatives of F on L%. Using
the expression for F' in (147) and the expression of the leaf Lg’i as a graph of I over
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the angle variables given in (148), we have that

or 7 kol +1p)?
5(17 @, s;€) = ko(kol + lo)(1 + ekgh(kol + lo;€)) + (Kol +lo)”

+ Ocl(|k0|357/2+1+n)

ek (koI + lo; €)

= £ kol(0, E) + O(|ko|*|l] + k') (156)
and
F -,
g—gp(l’ @Y, S; 8) = Eﬁ/koU ko.lo (9, 8) + Ocl(|]{30|387/2+1+77). (157)
Hence,
OF OL*  OF OL*
F LY== 9r
LY = —3ra, Tas a1
8£* l() 1 ZO
= Fkol(0, B)— (0,FE),p— [ -2+ —00,E
F R0 5o (32 4+ 0. E) o= (4 005 ) o)
+ O(|ko|*e| ] + kg™ + |kole"). (158)

Regarding the term of order €2 in the expression (155), we will see that among all
the terms in €2/2({{F, L*},L*} + {F,S,}) there is a dominant one. To that end we
notice first that all the terms that appear in the derivatives up to second order for F
with respect to (I, ¢, s) on L™ are O(|ko||(|, k3™), except

82

ol
Hence, in the expression {{F, £*}, £L*}+{F, S} on L™, all the terms are of order k22,
for some o > 0, except

PF (oL, ~\?
o (5 9) -

Therefore, using this feature and (158), the expression (155) for F o S, on Lg’i, is given
by

—72 = ko(1+ O(lko|*)). (159)

oL, ly 6
FoS.(I,p,s,e)=FE *+ ckol(0, F —, —
(Lpvsie) = B & chol6, B) = (—2, 1)
e (0Ll 0.\ > 2t0 | |t L|pp
- (=2~ 1
(S D) WG (60)
E + eMy(0;e) + O(kie*™2, kol el€)?),
where
oL, < 1oL, Iy 6 )
Mi(0;¢) =k +1/2(F —&WUHO + ek —(——,—) ] . 161
056) =l (=, 1) (V2B =000 + bz o= (2. D)) . (16D

Therefore, the size of the heteroclinic jumps provided by the scattering map is
determined by the size of the term M4 in (161).

In order to check the transversality of the heteroclinic intersections we use condition
(142), which involves, in any case, the computation of the Poisson bracket {F, {F, L*}}
and the gradient of F' (see formula (143)).



Geography of resonances and Arnold diffusion 7

From expressions (156) and (157) it follows that on L5™,

VF(I,p,s;€) = kol(0, E) + O(|ko[*c|l| + kje' T + |kole™)). (162)

On the other hand, the computation of {F,{F,L*}} involves several terms.
However, using the expression for {F,L£*} obtained in (158) and the expression and

estimates for the derivatives up to second order for F' with respect to (I, p, s) given in
(156)-(157)-(159), one can see that the dominant terms in {F, {F, £*}} involve

OF\' L' OF O°F 0L
ol 0p?  OJp OI? Oy

and therefore we have that on LL*

825* oLx

(9 E) — ko U0l (9, ) k2= = ~_(6,F)

{FAF. L} = ko0, E)°
+ O(Ik‘ol2lfl(€y+ [o[*e1€] + [ko[*e™*™)). (163)

In the expression (161) there appear two quantities that can be comparable or not
depending on ko and E. Notice first that [{(-, E)| = max(E"/2,&7/?), with 1 < v < 2+,
for some v > 0. In consequence, when the size of the energy is big (|E| > &7),
we have ((0; E) = O(E'Y?) and therefore the term involving (0, E) in expression
(161) dominates. On the other hand, if the energy is small, that is |EF| is smaller
than or comparable to £7/2, then £(6; E) = O(7/?), which by expression (110) is also
O(|ko|et*¥/?), for some v > 0. In this case we, the dominant term in expression (161)
will depend on the size of k.

Hence, we choose p such that 0 < p < v and we distinguish two cases: the case
when tori are close to the resonance, which corresponds to small values of the energy
(—e7 < E < ¢#) and the case when they are reasonably far from a resonance, which
corresponds to greater values of the energy (¢# < F < L?).

Far from the resonance: ¢* < F < 2.
The case far from a resonance is analogous to the flat tori region, studied in the
previous section, because in this case

00, F) = \/2 E—eU(6;¢)) \/2E@/1— U(6;e)

= V2E(1+0(M)).

Consequently, since v2E > v/2e"/2? and e/? > £7/2 > |ky|e'/?, the expression (160) can
be written as

FoS.(I,p,s;¢) :E:takov2E882 (

lo 0
k ko
Therefore, by the hypothesis H2” on —(I 6’) we have that image of L™ under

the scattering map, for E large, intersects all surfaces Lg’,i such that |E' — E| =
O(elkol | EI'?).
In order to prove the transversality of intersections, we need to check condition

) T Okl B2+ <] B)).

(144). Using that the term involving ¢(0, E) is the dominant one in expression (163) for
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{F,{F,L*}} and the expression (162) for VF, condition (144) for the transversality of
the intersections is
0*L*
062
which is clearly satisfied by the hypothesis on H2” on 25 (I 9)

>C >0,

Close to the resonance: —¢7" < F < ¢H,

The case close to a resonance is more technical because the size of the energy is
now comparable to the term U and therefore ((-, E) = O(£7/2). Hence, in expression
(161) there appear two quantities that can be comparable or not depending on ky. On

the one hand, there is \/ 2(E — 70U (6;0)), which is related to the size of the gap and the

éaaﬁa (—,i—%, k%), which is related to the size of the heteroclinic jumps

provided by the scattering map S.. Hence we distinguish three situations depending on
]{502

i. If €7/2 < koe, that is |(ko,lo)| = €Y7 (see definition for v in (110)) we have that
the expression (160) reduces to

* 2
FoS.(I,p,s6)=FE+ — k:Q(&&% (—l—o,ﬁ)) + O(k3e*™),

other one there is kg

ko ko
for any o > 0. So, tori are essentially flat and this is equivalent to the flat tori case.
Hence, condition H2” assures that the foliations intersect transversally.
ii. If koe < €7/2, that is |(ko,lo)| < e7*/" (see definition for v in (110)), we have that
the expression (160) reduces to
~ oLr b 0
FoS.(I,p,s76) =E+eko\/2(E —eU(0;0))— + O(kge?).  (164)
90 \ ko ko
This is the case when the size of the gaps in the foliation of primary tori is bigger

than the size of the heteroclinic jumps provided by the scattering map. Hence, if
we consider the surface Lg’_, by hypothesis H2” we have that

el /2E - oT(8:0) 2% (—l—o, ﬂ)

00 ko~ ko
is a negative function, and therefore by equation (164) S(L% ™) intersects surfaces
LY with B’ < E (resp. E' > E) such that |E' — E| < |ko|e'™/2. An analogous
result is obtained for Lo with E' > E (resp. E' < E).

iii. If €72 ~ koe, which is the case when |(ko,lo)| ~ €/ we have that the terms

\/Q(E —7U(6;0)) and %5k0%(—£—%, k%) in the expression (161) are comparable.

This case is the hardest to study because the size of the gap has the same order than

the heteroclinic jumps. This causes that there are different geometries for S.(L5™)
that could happen depending on the numerical values of the leading coefficients.
We focus in the case of S.(L57) and the function (150) positive. The case for
Sa(Lg’Jr) and the function (150) negative is analogous. Hence, by hypothesis H2”
the main term M _ in F given in (161) can have different signs depending on the
size of {(6;¢). According to that, we distinguish the following cases:
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(a) The first case is when

2B — T (6;0)) + ehy

oL o 6
2 o0 kO kO cl

This case corresponds to points in Lg’_ that are Op2(£219)-close to homoclinic

140

jumps S.(LE7) th LE~. They are not good for diffusion.
(b) The second case is when

2B — T (6;0)) + ehy

100 1y 6 N
S (=2, )] > ette
207 ko o

This case corresponds to points in heteroclinic jumps Sa(Lg’_) M Lg’,_ and we

can distinguish two situations that can take place.
On the one hand, if

~ 10L"
—JﬂE—@Uwﬂ»>g%§ag,

which is the case when the heteroclinic jumps are smaller than
the gap, Sa(Lg’_) intersects surfaces Lg’,_ with £ < E and
|E' — E| < |kole'/2. Thus, for small values of energy E > 0, the scatter-
ing map will connect a surface with energy £ > 0 with a surface £’ < 0, which
corresponds to a heteroclinic connection of a primary tori with a secondary
one.

On the other hand, when

2B - 20(6:0)) < ehy

1ocLx
2 00
which is the case when the heteroclinic jumps are bigger than the gaps created

between primary tori, we obtain that S.(Lj ") will intersect the surfaces Lk~
with B/ > E (resp. E' < E) and |E' — E| =< |kole'*/2. In this case the
scattering map will connect two tori with positive energy, that is, two primary
tori, and cross the gap with just one application of the scattering map.

Once we have a heteroclinic connection that crosses the separatrix loop, we
can consider Se(L§’+), which corresponds to the upper branch of the level set
F(I,p,s;e) = E, E > 0. In this case, by hypothesis H2” in expression (160)
the main term M_ in F' given in (161) is always positive, so S.(Lo™) will intersect
surfaces L™ with B/ > F (resp. E' < E)and |E' — E| < |ko|e' /2.

Now, we want to check that the intersections for the cases (ii) and (iii) take
place transversally by means of condition (142). For the case described in item (ii)
in this proof, condition (144) implies condition (142). So, using expression (163) for
{F,{F,L£*}} and expression (162) for VF on L%, we have that the condition (142) is
satisfied provided that

2
j:1~ <2E8€ (_l_ojﬁ)
2(E —e7U(6;0)) 002~ ko ko
~, oL* l 0 - 825* l 0
—e kUko,lo 9’0 — __07_ _|_2U‘97O =~ __0,_:|>‘>C
[0 ( )09( ko ]fo) ( )06’2( ko ]fo) -
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By Lemma 10.10 in [DLS06a], hypothesis H3” on (kg,lp) implies the previous
condition and therefore the angle between the surfaces S.(L%) and L%, at the intersection
can be bounded from below by Ce, for some suitable constant independent of ¢.

For the particular case |(ko,lo)| ~ e~ V/"

condition (143). Using the expression (161) for the dominant term M in F it is not

described in item (iii), we need to check

difficult to see that the dominant term in the numerator of (142) involves the terms
OF\* 'L OF PR oLt | OF 0L L
ol | 0p?  Op OI? Oy 0l Jp 0p?

0L ~ OL* ~
= (kol + lo)*kg—=— 0,F WU’foloeakiﬁ 0,F
(ko 0) o (0,F) — (0, )ko 89( )

oL 0*L* ~
E
9 (0.B) 5 0

Using the expression for VF in (162), we have that the condition (142) is satisfied
provided that

+ (koI + lo) k2 (0, E)

2 x
SR )
2(E — U (6;0)) 002~ ko ko
, oL* ly 6 02 L* lo 6
—7 | kUMb (90 2 Z)+20(6;0 —0,—}
[ 002 (- D)+ 2000 (L

oL* oy 0 .0°L*, 1y 0
_ - (b YN\O4 >
:l:eko\/2 U0:0) 00 = ko’ ko) 002 ko' ko)>' “

for some constant C. By hypothesis H3”’ on (kg,ly) in Theorem 2.1 we know that

the previous condition is satisfied for 6 € J C J* Jko- Consequently, the angle
of intersection can be bounded again from below by Ce, for some suitable constant
independent of ¢. U

Remark 4.9. By Theorem 3.1 we know that the tori in a connected component of the big
gaps region are given by the expression I = )\E(cp, s;€), for B = E; and —&? < E; < L2,
with AE given in (95). Moreover, they satisfy

|E; — Eij] < |kole?*T < |ko| max(| E;|'/2,e7/2)

and they are O(e!*)-closely spaced, in terms of the I variable.

Hence, we conclude that the image under the scattering map of a torus 7;, S.(7;) in
the big gaps region, given by I = )\E (p, s;€), intersects transversally another torus 7;,;
of this region given by I = Az (I, ¢, s;€), with |Ejyy — E;| = O(7/2717) (equivalently
I —I| < eltm):

S(T) h T

4.2. Proof of Proposition 4.1

The proof is just a combination of the results obtained in Section 4.1.
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We start with a torus 7y, which is O('*")-close to the submanifold I = I_. Assume
that this torus belongs to the flat tori region with averaged energy Fy. The case when 7,
belongs to a big gaps region is analogous. Then, we apply Lemma 4.5 and Remark 4.6
and we get that S.(7p) intersects transversally all primary tori with averaged energy in
the mentioned interval (Ey — Ce, Ey 4+ Ce). We pick a primary KAM torus 7; provided
by Theorem 3.1 with energy FE; in the interval and we repeat the argument until we
reach a big gaps region. Assuming that we have applied it K times, we have that the
torus 7, has heteroclinic connections with all the tori whose energy lies in the interval
(Eo— KCe, Ey+ KCe), or equivalently, in the interval (I_ — K*Ce, I_+ K*C¢) in terms
of action variables.

When the domain (/- — K*Ce,I_ + K*Ce) x T? for which the torus 7y has a
heteroclinic connection overlaps with a big gaps region [—lo/ko — Li,, —lo/ko+ L, X T2
we use Lemma 4.7 and Remark 4.9 to show that we can cross the gap created by the
resonance —ly/kg just connecting either a primary KAM torus with a secondary one and
again with a primary one or two primary KAM tori. Hence, we can construct a piece of
chain that starts in 7y and reaches all the way to 7;, where 7; is a primary KAM torus
whose equation is I = —ly/ko+ Ly, + O(e) and is contained again in the flat tori region.

Therefore, we can keep constructing a transition chain just repeating the procedure
stated before for the primary KAM torus 7; until we reach 7). O

5. Example

Consider the Hamiltonian
2 ]2
Hipa Lot = (B voosg—1) 4 becosaglet (109)

which is a generalization of the famous example introduced by V.I. Arnol’d in [Arn64].
This is the same Hamiltonian in the example discussed in [DLS06a], except that the
function g is chosen as a periodic function with an infinite number of harmonics in the
angles (¢, 1),

glp,t) = Z a cos(ky + 1t), (166)

(k,1)eN2

where, for simplicity, we have chosen ¢ to be an even function and with an explicit
formula for its Fourier coefficients, say ax; = p*r! and 0 < p,r < 1 real numbers to be
chosen small enough. Notice that

g(p,t) =

The Hamiltonian of one degree of freedom Pi(p,q) = + (p?/2 + cosq — 1) is the

standard pendulum when we choose the + sign, and its separatrix for positive p is given
by

1+ prcos(p+1t) — pcosp — rcost
(1 —2pcos + p?)(1 —2rcost +1r?)’

qo(t) = 4arctane™, po(t) = 2/cosht.
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An important feature of the Hamiltonian (165) is that the 3-dimensional NHIM
A={(0,0,1,¢,5): (I, p,5) € R xT?}

is preserved without any deformation for any ¢: p = ¢ =0 = p = ¢ = 0. However, in
contrast with the example in [Arn64], the perturbation does not vanish on A. Indeed,
the Hamiltonian (165) restricted to A takes the form I?/2 + eg(p,t). Hence, the 2-
dimensional whiskered tori

7}0 = {(0707[7 12 5) : (907 8) < Tz}

are not preserved for € # 0, and resonances (47) take place at I = —[/k for each
(k,1) € N?, ged(k,l) = 1. Therefore, we have a dense set of gaps of size O(e'/2, /ar))
centered at [ = —[/k and, among them the ones such that ,/az; = e1/2 give rise to
resonances with big gaps and the example (165) presents the large gap problem for
I <0.

Hence, for any finite range of I, [I_, I;] C R~ we will prove the existence of diffusing
orbits.

The Melnikov potential (9) of the Hamiltonian (165) is given by

Z Ap(I) cos(kp + Is),
(k,l)EN?
with
(kI +1)
sinh Z (K + 1) !
2
Next, we will see that for 0 < p < r < 1 we can find open sets of (I, ¢, s) €
[I_,I,] x T? such that the function 7 € R — L(I,p — IT,s — 7) has non-degenerate

Apa(I) =27 (167)

critical points at 7 = 7%(I, ¢, s) which verify the hypothesis H2’.

Recall that hypothesis H2’ deals with the existence of transverse intersections of
the stable and unstable manifolds of /L. Hence, the non-degenerate critical points of
the function 7 +— L(I,p — IT,s — T) give rise to transverse intersections.

In order to check hypothesis H2’, we will use the results in the example given
in Section 13 of [DLS06a] by means of the following argument. Assuming that p,r
are small enough, the function g(yp, s) is well approximated by its truncated first order
trigonometric polynomial gl=U(yp, s) = 1 + pcos ¢ + rcoss. More precisely,

g(p,s) = 1+ pcosp+rcoss+ Oxp, )
= g=U(p.5) + g% (g, 5).

Hence, as long as 0 < p,r < 1, if hypothesis H2’ is verified for the trigonometric
polynomial g/=(¢p, s), it will be also verified for the perturbation g(¢p, s).

Notice that the Fourier coefficients Aj;(I) are nothing else but the Fourier
coefficients aj; multiplied by a certain function depending on I that decreases
exponentially as |I| goes to infinity. Hence, arguing as we did for the perturbation
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Figure 2. Graph and level curves of the Melnikov potential LEYU(I, ¢, s) with
p =1/16, r = 1/8 and I = 0. In this case, Ago = 4, 4190 = 4p = 1/4 and
AO,l =4r = 1/2

g, we approximate the function L£(I,¢,s) by its first order trigonometric polynomial
LIS @, 8) = Ao + A1 o(I) cosp + Ag cos s, that is

L(I,p,8)= Ago+ A1o(I)cose+ Apicoss+ Oxp,r)
=L, @, 5) + LPN(T, 0, 5). (168)

Recall that we are looking for non-degenerate critical points of

L(T):=L(UI,p—IT,s—T)= Z A () cos(kp+1s —1(Ik+1)),(169)
(k,1)eN2
with Ay, (I) as in (167).
Using that the Melnikov function £ is well approximated by LIS, fixed (I, ¢, s),
we only need to study the evolution of £I=! along the straight lines

R:TeRw— (p—Ir,5s—7) €T? (170)

on the torus.

This study has already been performed in the example in Section 13 in [DLS06al,
where the reader can find more details. We just mention that since 0 < p < r, for any
fixed I, we have Ag; > A;o(I) > 0 and therefore the function (p,s) — LEU(T, ¢, s)
possesses exactly four non-degenerate critical points: a maximum at (0,0), a minimum
at (m, ) and two saddles at (0,7) and (,0) (see Figure 2). Around the two extremum
points, its level curves are closed (and indeed convex) curves which fill out a basin ending
at the level curve of one of the saddle points.



Geography of resonances and Arnold diffusion 84

Therefore, any straight line (170) that enters into some extremum basin is tangent
to one of the convex closed level curves, giving rise to a non-degenerate extremum of
7 €R— LIEU(I, p—1Is,5—7). So, degenerate extrema of 7 € R +— LISU(I, o —1Is,5—7)
can only exist for straight lines that never enter inside such extremum basins. It is clear
that this never happens for irrational values of I because it implies a dense straight
line (and infinite non-degenerate extrema for 7 € R + LISU(I o — Is, s — 7)). On the
other hand, the straight lines with rational slopes enter inside both extremum basins
at least twice, except for the slopes I = 0,£1. In these cases, one can check directly,
using that Ag; > A; (1) > 0, that the function 7 € R +— LISU(I, o — Is, s — 7) has one
non-degenerate maximum and one non-degenerate minimum in any interval of length
2.

When we take into account £>U in the Melnikov potential £ in (168), it is clear
that in the compact subset [I_,I;] x T2, as long as 0 < p,r < 1, the function
T € R~ L(I,p— IT,s — 1) has non-degenerate extrema, and for every I we can
find a smooth function 7 = 7*(I, ¢, s) defined in an open set of (¢, s) € T

Moreover, since L is periodic with respect to (¢, s) and non-constant with non-
degenerate extrema along any straight line, 0,L£*, where £* is given in (11), is also
periodic and non-constant and indeed changes sign. Therefore, for every I, there exists
a nonempty set J; where 0,£* > 0 (and a nonempty set J, where d,L* < 0), so
hypothesis H2” is fulfilled. Indeed the set of points where 0,L£* vanishes is a discrete
set.

Conditions H3’, H3” and H3”’ can also be checked in the example (166) at the
resonances I = —ly/ky.

If we consider I = —ly/ko for any (ko,lo) € N?, ky # 0 and ged(ko,lo) = 1, the
function U*o% in hypothesis H3 on (ko, lo) has the following expression

M
Ukolo () = Z Aty 1o COS(10) = gy 1, cOs(0) + Oq(p*0, r'0), (171)
=1

where 0 = kqop + [ys.

Therefore, #; = 0 and 6, = 7 are the unique critical points for the function U0+ (g).
Hence hypothesis H3’ on (ko, ly) is clearly verified.

Next, for I = —ly/ko we want to check hypothesis H3” on (kg,lp). This condition
requires to show that the function f in (13) is not constant. To that end, we will consider
two values of € and we will show that their images for this function are different. For
instance, notice that the function f in (13) takes the same values as U*% evaluated on
its critical points 6; and 6, as long as a;—g(], 0;/ko) # 0, for i = 1,2. Hence, hypothesis
H3” on (ko, ly) is clearly satisfied if the function U*-%0 has two extrema 6; taking different

values which satisfy a;;; (1,0;/ko) # 0, which is the case as can be checked just looking
at non-degenerate extrema of the function £. They give rise to non-degenerate extrema
of the function £*, which coincide with the ones of the function U*o:lo.

Similarly, we can check hypothesis H3”’ on (ko, o). In this case we need to show

that the determinant (153) given in Remark 4.8 does not vanish. It is clearly non-zero
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if we choose, for the two first columns, the two critical points 6; and 6, discussed above,

and for the third column 03 # 0,7, such that 82ﬁ( lo/ko,05/ko) = 0, but otherwise

U'kolo(03) # 0 and %fo (—lo/ko,05/ko) # 0. The existence of this point 05 is guaranteed

by the fact that if one considers the first order trigonometric polynomial of the reduced

Poincaré function £*=1 one can see that its critical points are always non-degenerate.
Hence, we apply Theorem (2.1) and we conclude that

Proposition 5.1. Given the Hamiltonian (165) with g as in (166), 0 < p <r < 1 and
[I_,I.] C R, for|e| < e*(p,r) there exist orbits following the mechanism described in
this paper and such that I(0) < I_, I(T) > I, for any T > 0.
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Appendix A. Double Fouries Series

Proposition A.1. Let f be a C" function with respect to (J,¢,s,e), r > 1 and 2m-
periodic with respect to (p, s). Then its Fourier coefficients fi,(J,€), (k,1) € Z?, satisfy,
fort=0,...,r

|f‘CT (A.l)

| fralee < O,
“ =k DI
where C' is a constant that depends only on r and £ and |(k,1)| = max(|k|, |{]).

Proof. From the expression for the Fourier coefficients of a function f
1 i(kop+ls
fulgie) = gz [ F0ps ) e s,

taking into account that f is C" in the variables (¢, s), we can integrate r = n +m
times by parts (n times with respect to ¢ and m times with respect to s) and express
the Fourier coefficient fy;(.J,¢), with (k,1) # (0,0) in the form

ka(J; E) — (_1)7“ 1 1 / 0 f(']a ®, S5 6) 6i(kgo+ls)d(pd87
T2

2m)2 (R DD
so that,
1 af nlm!|flo.r
rdler < [ |grasm | < TR
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for any 0 < n,m < r such that n + m = r, where ||, is the standard C* norm defined
in (2) and |-], ,, is the seminorm defined in (3). Therefore,

Nflor _ Y fler
Jrileo < — < .

e < TG = 10,0
where |(k,1)| = max(|k|, |I]).

Now, taking into account that D*f;;(J;e) is the Fourier coefficient of the function
8ef(J,gzz,s;a)
0

, which is a C"~* function, and using the same argument as before we have that

O = ONfler—e o O = O fler
(kD= = kDI

From the definition of | - |cc norm in (2) we have the estimate

|D£fk,z|co <

¢

0 (r — )| fler .
|fkl|Ce Z|D fkl|C Z ) ‘f|C C‘(]lf))c'v_w

1=0

where C'is a constant that only depends on £ and r, C' =r!+ (r — 1)+ ...+ (r — )
as we wanted to see. U
We consider the truncation of its Fourier series at order M in the following way:

(T, 856) = fIEM(J 0, 556) + fEPMI( T, 55¢),

where
f[SM}(J ©, S; 8 Z .fkl J E) 1(kgp+ls
(k,1)ez?,
|k|+|1I<M
and

f (J 0, ; 5 Z fkl J 6 1(k‘g0+ls

(k,l)ez?
|k|+|1|>M

Proposition A.2. Let f be of class C" with respect to (J, , s,€), r > 1 and 2w-periodic
with respect to (¢, s). The M-th order remainder f>M of the Fourier series of f is
bounded in the standard C* norm, for £ =0,...,r — 3 by
>M |fler
}f[ ]‘cf < CMT—(Z+2)’ (A2)
where C'is a constant that depends only on r and (.

Proof. The proof is very simple and follows from the estimate (A.1) for the Fourier
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coefficients of a C" function obtained in the previous propositon. More precisely,

‘fbM}‘Cz < Z |fk,l|cz

(k,1)€Z?,
||+ ]1]> M
< c Z |f|m
(k,l)ez?,
|k\+|l|>M
e
S ¢ Z At tr—Z
=M+l
< AC|fpr / o de
M
C
— 4 . MZ—T+2
r— g _ 2 ‘f|C )
where C' is a constant that depends only on r and /. O

Appendix B. Weighted norms

We consider functions u € 7y(Z x T?), where Z C R, introduced in (28), and we can
consider the different types of norms introduced in this paper: the standard C" norm
introduced in (2), the Fourier norm introduced in (29) and the Fourier norm with a
weight introduced in (30).

The equivalence relations between all these norms are given in the following
Lemmas:

Lemma B.1. The norms |-|oc and ||| defined in (2) and (29), respectively, are
equivalent and satisfy the following equivalence relation for u € 7y (T x T?) and
0< L <1,

Lulee < |Juller,p < CM?|ulce
where C' is a constant depending on (.

Proof. The first inequality is obvious using that L < 1. For the second one, using again
that L <1 we have

Diug | co Dy | co
|wk | cn. —ZLZ| kl|c Z | kl|c = |uk,|cn,

for 0 < n < £. Therefore, the result follows directly from the estimate (A.1) for the C*
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norm of the Fourier coefficients of a C" function u, for £ = 0,...,r. More precisely,

l m
||“||c€,L - 2226 Z ‘Uk,l|cn,L‘(kal)|m_n

m=0 n=0 (k,1)eZ?,
|k|+|l|<M

S Y

< e [(R O™
m=0 n=0 (k,1)eZ?,
K|+l <M
4 m B |U| ,
< Y3 N CplEiwor
m=0n=0  (kl)cz?,
k| HU<M
4 m B
< 222 >, Clile
m=0n=0  (kl)ez2,
||+l <M
S CM2 |U|Cg
as we wanted to prove. [

Lemma B.2. For the seminorm |-|;, ; defined in (2), one has that for all 0 < j <,
L ulje; < lullee (B.1)
Proof. Again, It follows directly from the fact that L < 1 and therefore,
", _.|Du
o3 3L

i=0
for 0 <n <j. O

Jil—J

Lj\u;tl

C"L,L'

Lemma B.3. For 0 < L <1, and 0 < ¢ <1 we have that for any u € Tp;(Z x T?) and
v € Tn(T x T?)

HUUHcf,L < ||“||cf,L HUHcf,L- (B.2)
Proof. Let us define

HUHnm: Z ‘uk,l

(k,0)eZ?,
|k|+|l|<M

C”,L‘(ka l)|m_n7

then,

l m
lulleep =D ) 2 [ullnm. (B.3)

m=0 n=0
The o — th Fourier coefficient of uv, where o € 72, is

(uv)y = Z Ua—Ug-

BEL?,|BI<N
la—g|<M
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Using the Leibniz rule for derivatives we have

1
|(uv)alen,L = Z S LD (uv)aleo

= 0

Z Z L ‘D Up— gvg‘co

1= 0 " BeZ2|BI<N
la—BI<M

Z > Z( )L’ D" g pleo L7 | D7 o

iz ' " Bez2,|B|<N §=0
la—BI<M

_ i 1D tapleo 5] D7vg|eo
—Z > ZLJ (i—j) !

1=0 BeZ2|B|<N j=0
la—B|I<M

_ i—g D" tapleo ;| D7vs]o
- 2 ZZLJ (i—j) !

B€72,|8|<N =0 j=0
la—B|I<M

< Z |ua—6|c",L |vg

BEL?,|BI<N
la—pg|<M

On the other hand, we have

o™ < (Jer = B[+ [B])™ ( ) oo = BI| B

=0

< max <|a|m-", 3 ( e ) o= B |8 )

IA

IN

cnL

=0
— maX(|a|m—n’ 2m—n|a _ ﬁ|m—n|/6|m—n)

Hence, using these two inequalities, we have that

fuvlnm =Y |(w)alen plaf™ ™
a€Z?,
|a|<M+N
S Z Z |uoc—ﬁ cn,L |'Uﬁ cr,L |a|m—n

a€Z?, BEZ?,|BIKN
|a|<M+N |a—B|I<M

< Z [Uolen 1 [Valen o™ ™" + [uq

enp o™ Jvo

cn,L
a€Z?,
|a|<M+N
+ Z |UQ_B|C",L |1)5|C"7L 2m_n|a _ﬁlm_n|ﬁ|m_n
BEL?,|B|<N
lo—B|<M
<27 S ualgn g [ 3 [oslen 18I
a€Z?, BeZ?
laj<M 1BI<M

= 2" [ullnmll 0]l n.m-

89
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Going back to the definition of |[uv||c. ; in (B.3), we have

4 m
luvllee, = D> 2% wvllnm

m=0 n=0

4 m
< 3522 ully 0]

m=0 n=0

V4 m
< Z Z 2€2Z||u||n,7n”v||n7m

m=0 n=0

IN

||u||cf,L ||U||C‘,L>

as claimed. O

Appendix C. Faa-di Bruno formula

Let g be a C*(U, V) function, with U C R and ¢g(U) C W C R and f be a C"(W,R)
function with 7,s > 0. Then f o g is a C'(U,R) function, where ¢t = min(r,s). By a
repeated application of the chain rule, one gets

D(fog)@)=) > cupnD"fl9(@)Dg(x) - DPg(x), (C.1)

k=1 j1+-+jp=L
for ¢ = 1,...,t, where ¢, .. j, are combinatorial coefficients. The formula (C.1) is
called Faa-di Bruno formula (see [LO99)).
From equation (C.1), it is easy to see that there exists a constant C}y depending on
t such that

1f 0 glee < Crlfloe lglbe - (C.2)

Since we are interested in multi-valued functions, we introduce now a generalized
bound. Thus, let us consider a function g in C*(U, V'), with U C R" and g(U) C W C R™
and a function f in C"(W,R) with r, s > 0. As before, fogis a C*(U,R) function, where
t = min(r, s). Similarly, we can get an expression for the derivatives of f o g, such that
fort =1,...,t,

V4
|f © g|ce < CZZ Z |f|ck |g|cj1 T |g|cjk ) (C'B)

k=1 jr+o =t
for ¢ =0,...,t, where C, is a constant depending on ¢. As before, we can consider the
following less precise but more compact bound,

f o glee < Celfles l9lee (C4)

for ¢ =1,...,t, where (Y is a constant depending on ¢.
For some other results related to this, we refer the reader to [LO99].
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In some cases, it will be more convenient to use another estimate for the |-|.

norm instead of the one obtained in (C.4). In formula (C.3) we can separate the term

corresponding to k£ = 1 in the following way

V4
[foglee <Co(Iflelalee +> D I Flerlglen - 1glen | -

k=2 ji1+-+jr=~L

for £=1,...,t and we can bound it in the |-|,, norm
1f © glee < Collfler 1glee + 1 Flee gleer), (C.5)

for ¢ =1,...,t, where Cy is a constant depending on .
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