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1. Introduction

We study the semiclassical asymptotic behavior of the spectral shift function and
of its derivative in magnetic scattering by two solenoidal fields in two dimensions
under the assumption that the total magnetic flux vanishes. The system has a
trajectory oscillating between the centers of two solenoidal fields. We place the
special emphasis on analysing how the trapping effect caused by the oscillating
trajectory is reflected in the semiclassical asymptotic formula.

We work in the two dimensional space R? with generic point = = (z1, )
throughout the entire discussion and write 0; for 9/0x;. We define A(z) by

A(x) = (—x2/|af?, 21/ |2]?) = (=02 log |z|, 01 log |]) . (1.1)
The potential A : R*> — R? defines the solenoidal field
V x A= (0} +03)log || = A log |z] = 27(x)

with center at the origin, and it is often called the Aharonov—Bohm potential in
physics literatures. A quantum particle moving in two solenoidal fields with centers
e+ is governed by the magnetic Schrodinger operator

)

Hy, = (—ihV — A)? = (—ihd; — a;)’, 0<h<1, (1.2)

j=1
where the potential A = (a1,as) : R*> — R® takes the form
A(z) = al(z —ey) —al(z —e_), er #e_.

The real number a € R is called the flux of the field 2rad(z). The operator H), for-
mally defined above is not necessarily essentially self-adjoint in C§° (R2 \ {ey, e_})

because of a strong singularity at er of A(z). We have to impose the boundary

condition
lim |u(x)| < oo (1.3)

|t—e+|—0



at center ey to obtain the self-adjoint realization (Friedrichs extension) in L? =
L%(R?). We denote by the same notation H), this self-adjoint realization.

The spectral shift function &,()) is defined by the Birman-Krein theory ([4, 28]).
Let Hy, = —h*A be the free Hamiltonian. The total flux of A(x) vanishes, and
the line integral / A(x) - dx = 0 along closed curves in the region {|z| > M} with

c

M > 1 large enough. This allows us to construct a smooth real function g(z) falling
at infinity such that A = Vg over the above region. Hence the original operator Hy,
is unitarily equivalent to

H,, = exp(—ig/h)Hy exp(ig/h) = (—ihV — (A — Vg))?

with potential A — Vg compactly supported, so that the difference between two
- -1
resolvents (Hy, — i)~ " and (H h— z) is of trace class. Then, by the Birman—Krein

theory, there exists a unique locally integrable function &,(A\) € L} .(R) such that
&n(A) vanishes away from the spectral support of Hj and satisfies the trace formula

Tr [f(ﬁh) HOh /f fh

for f € C3°(R), where the integration without the domain attached is taken over
the whole space. We often use this abbreviation throughout the discussion in the
sequel. We use the notation

(G — G = / (Gi(z,7) — Golz, 7)) dr

for two integral operators GG; with kernels G;(z,y). If Gi — G2 is of trace class,
then this coincides with the usual trace Tr [G; — G3]. However the above integral is
well defined even for G; — G5 not necessarily belonging to trace class. For example,

tr[Gy — Go] = 0 for Gy = f(Hy,) and Gy = f(Hy) with f € C°(R). According to
this notation, the trace formula takes the form

t[f(Hy) = f(Ho)] = [ FNGN) AN, f € CF(R), (1.4)

for the pair (Hop, Hy,). The function &,()\) is called the spectral shift function.

The function &, () with A > 0 is related to the scattering matrix Sj,()) at energy
A > 0 for the pair (Hop, Hy). Let Hj be as above. Then both the pairs (Hoy, Hp,)
and (H()h, Hh> define the same scattering matrix S;,(\) as a unitary operator acting

on L?(S1), S! being the unit circle. Since the perturbation A — Vg is of compact
support, Sp(\) takes the form Sy(\) = Id + T,(\) with operator Tj,(\) of trace
class, where Id denotes the identity operator. Hence det S;(A) is well defined and
is related to &,(\) through

det Sp(\) = exp(—2mi&L(N)).
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For this reason, &,()) is often called the scattering phase. The function &, () is also
known to be smooth over (0,00), and &, () is calculated as

& () = — (2mi) " Tr [Su(A)* (dSh(N)/dN)] (1.5)

by the well known formula (see [7, p.163] for example). The operator —iSy,(A)*S},(A)
is called the Eisenbud-Wigner time delay operator in physics literatures and its
trace describes the time delay for a monoenergetic beam at energy A (see [3] for the
physical background).

We introduce a basic cut—off function x € C'*°[0, 00) such that
0<x<1L  suppxcl0,2), x=1 on[0,1] (1.6)

The function x is often used without further references. We denote by E(\; H) the
spectral resolution associated with self-adjoint operator H = / AdE(X\; H). Then

both the operators x1 E'(A; Hop)xr and x1 E'(A; Hp)x 1, are of trace class for x,, =
x(Jz|/L), and hence we have

Tr [xr (f(Hy) — f(Hon)) xz] = /f(A)Tr Do (B'(X; Hy) — E'(A; Hon)) x1] dA.
This, together with (1.4), implies that

&) = — ng{)lo Tr [xz (E'(A; Hy) — E'(N; Ho)) xz) (1.7)

exists in D’(0, 00). We will prove in section 3 that the convergence makes meaning
pointwise as well as in the sense of distribution. The singularity at e, of potential
A(x) in (1.2) makes it difficult for us to control &, (A) through (1.5). The direct
representation (1.7) without using the scattering matrix is better to see the relation
between the semiclassical asymptotic behavior of €}, (A) and the trajectory oscillating
between two centers e_ and e,. The derivation of (1.7) relies on the idea due to
Bruneau and Petkov [5].

The asymptotic behavior as h — 0 of £,(A) and of &, (\) is described in terms of
the scattering amplitude by single solenoidal field, which has been explicitly calcu-
lated in the early works [1, 2, 20]. We consider the operator

H:I:h = (—th + ()4/\)2

under the boundary condition (1.3) at the origin. We denote by fip(w — 6;\) the
amplitude for the scattering from incident direction w € S! to final one @ at energy
A > 0 for the pair (Hop, Hip). We often identify w € S with the azimuth angle from
the positive x; axis. The scattering amplitude is known to have the representation

Fon = (2i/7)2 X"V 02 sin (£am /h) exp (i[£a/Rh](6 — w)) Fo(0 —w),  (1.8)



where the Gauss notation [«/h] denotes the greatest integer not exceeding a/h and
Fy(s) is defined by Fy(s) = €™ (1 — eis) for s # 0. In particular, the backward
amplitude takes the simple form

Fen(w — —w; A) = —(i/2m) 2N VARY2 (— 1) M gin (ar /)

and also the backward amplitude fi,(w — —w; A, ex) by the field £2rad(z — e4)
with center ey is shown to be represented as

fon(w — —w; A\ ex) = exp (iQh_l)\l/zei . w) fon(w — —w; A), (1.9)

where the notation - denotes the scalar product in two dimensions. We are going to
discuss the scattering by single field in some detail in section 5. We will prove the
above relation there. We note that the spectral shift function can not be necessarily
defined for the scattering by a single solenoidal field, because the Aharonov—Bohm
potential A(z) does not fall off rapidly at infinity. We are now in a position to
mention the two main theorems.

Theorem 1.1 Lete=-e, —e_ #0 and let ¢ = e/le| € S*. Write
fen(A) = fan(£é — Fé; A, eq)
and define
&\ h) = Fen(N) fon (MR = (i/2m)A~ 2 sin? (k) exp (i232[e| /1) ,
where k = a/h — [a/h]. Then & (\) obeys
&) = =N Re (&(A h) + O(RY*7%), h—0,

locally uniformly in X > 0 for any §, 0 < § < 1/3.

Theorem 1.2 Let k be as above. As h — 0, ,(N\) obeys
En(\) = k(1 — k) —2(2m) 2 A™2 sin? (kmr) cos (2)\1/2|e|/h) le|™'h + o(h)

locally uniformly in A > 0.

In quantum mechanics, a vector potential is known to have a direct significance
to particles moving in magnetic fields. This quantum phenomenon is called the
Aharonov-Bohm effect (A-B effect) ([2]). The leading term (1 — ) in the asymp-
totic formula of &,(\) seems to describe this quantum effect, while the second term
highly oscillating describes the trapping effect from trajectory oscillating between



two centers. We prove Theorem 1.1 in section 2 by reducing the proof to two ba-
sic lemmas after formulating the problem as the scattering by two solenoidal fields
with centers at large separation. The two lemmas are proved in sections 3, 4 and 5.
Theorem 1.2 is verified in section 6 by combining Theorem 1.1 with trace formula
(1.4). The method developed in the paper applies not only to the special case of
two solenoidal fields but also to the general case of a finite number of solenoidal
fields. We make only a brief comment on the possible extension without proofs in
the last section (section 7). The result heavily depends on the location of centers.
If, in particular, centers are placed in a collinear way, then the A-B effect is strongly
reflected in the asymptotic formula. We have studied the A-B effect in magnetic
scattering by two solenoidal fields through the semiclassical analysis for amplitudes
and total cross sections in the previous works [12, 24, 25]. The present paper is
thought of as a continuation of these works. We also refer to [22, 23| for related
subjects.

The spectral shift function is one of important physical quantities in scattering
theory, and it plays an important role in the study of the location of resonances in
various scattering problems. In his work [17], Melrose has studied how the location
of resonances is reflected in the asymptotic behavior at high energies of spectral
shift function in obstacle scattering through the trace formula (1.4). Since then, a
lot of studies have been made in this direction. We refer to [5, 6, 13, 18, 19, 21] and
references cited there for comprehensive information on related subjects. Among
them, the literature [21] by Sjostrand is an excellent survey on the relation between
the location of resonances near the real axis and classical trapped trajectories. The-
orem 1.1 suggests that & (\) remains bounded for Im A > —Mh with M > 1 fixed
arbitrarily. This implies that for any M > 1, there exists hy; such that A with
Im A > —Mh is not a resonance for 0 < h < hy;. It makes a complement to the re-
sult due to Martinez [16], which says that for any M > 1, there exists hj; such that
A with Im A > —Mhlog h™! is not a resonance for 0 < h < hy; in the nontrapping
energy range. The spectral shift function is also used for studying the integrated
density of states for random Schrédinger operators (see [26] and the references cited
there).

2. Reduction to main lemmas and proof of Theorem 1.1

In this section we prove Theorem 1.1 by reduction to two main lemmas (Lemmas
2.1 and 2.2) after restating the theorems in the previous section under the formu-
lation as the scattering by solenoidal fields with two centers at large separation.
We begin by introducing the standard notation in scattering theory. We denote by
Wi(H, K) the wave operator

Wi(H,K)=s— tliin exp(itH) exp(—itK) : L? — L*
and by S(H, K) the scattering operator
S(H,K) =W (H,Ky'W_(H,K) : L — L?
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for two given self-adjoint operators H and K acting on L?> = L*(R?). Let
0oz A\, w) = exp(iA2z-w), A>0, weS,

be the generalized eigenfunction of the free Hamiltonian Hy = —A. We define the
unitary mapping F : L? — L*(0,00) ® L*(S') by

(Fu) (\w) = 2_1/2(27r)_1/g50(x; A, wu(z) de = 2720\ 2w) (2.1)

and F}, by
(Fhu) (A w) = 2_1/2(27rh)_1/@0(x/h; A w)u(x) dr, (2.2)

where 4(§) is the Fourier transform of w.

Let Hj, be defined by (1.2). According to the results obtained by [10, section 7],
H;, admits the self-adjoint realization in L? with domain

D={ucL?: (—ihV — A)*uc L lim |u(z)| < oo},

|t—e+|—0

where (—ihV — A)?u is understood in D'(R* \ {e;,e_}). We know that H} has no
bound states and its spectrum is absolutely continuous. Moreover it has been shown
that the wave operator Wi (Hy, Hy,) exists and is asymptotically complete

Ran (W, (Hy, Hop,)) = Ran (W_(Hy, Hop)) = L.

Hence the scattering operator S(Hj, Hy,) : L? — L? can be defined as a unitary
operator. The mapping Fj, defined by (2.2) decomposes S(H},, Hyp) into the direct
integral

S(Hn, Hon) ~ FnS(Hp, Hop) F ~ /O @ Sp(\) d, (2.3)

where the fibre Sj,(\) : L*(S1) — L?(S') is called the scattering matrix at energy
A > 0 and it acts as

(Su(A)(Fru)(A, -)) (W) = (FnS(Ha, Hon)u) (A, w)

onu € L2

We denote by 7(z;w) the azimuth angle from w € S' to & = x/|z|. The
Aharonov—Bohm potential A(x) defined by (1.1) is related to (z;w) through the
relation

Ax) = (=aa/ |2, 21/ af?) = y(w:0). (2.4)
We define the two unitary operators
(U f) (@) =h7 f(h'2),  (Uaf)(2) = expligo(2)) f (2) (2.5)



acting on L?, where
90(2) = [a/By(z — dy3€) — [a/hy(z — d_3¢),  de = ex/h.
The function go(z) satisfies
Vgo = [a/h]A(x — dy) — [a/hlA(x —d_)

by (2.4), and exp(igo(x)) is well defined as a single valued function. Hence Hj, is
unitarily transformed to

Ky = (UUy)* Hy, (UL U,) = (—iV — By)?, (2.6)

where By(z) = kA(x — dy) — kA(x — d_) with Kk = a/h — [a/h]. The operator K,
defined above is self-adjoint with domain

D(Ky) ={ue L?: (—iV — By)?ue L? lim |u(z) < oo}

|zt—d+|—0

and enjoys the same spectral properties as Hj,. The mapping F' defined by (2.1)
decomposes the scattering operator S(Ky, Hy) for the pair (Hy, K ) into the direct
integral as in (2.3). We assert that

S(Kg4, Hy) = Uy S(Hy, Hpo)Us. (2.7)
To see this, we represent the propagators exp(—itHy) and exp(—itKy) as
exp(—itHy) = U exp(—it Hon)Uy, exp(—itKy) = (U Us)" exp(—it Hy,)UsUs.
Since go(x) in (2.5) falls off at infinity, we have
Wi (Ky, Hy) = (U Us)" W (Hy, Hon)Un,

and hence (2.7) follows. A simple computation yields F' = F,U;. This, together
with (2.7), implies that the pair (Ho, Ky) defines the same spectral shift function
&n(N) as (Hop, Hy). Thus Theorems 1.1 and 1.2 are reformulated as the asymptotic
behavior as the distance

jdl = |dy —d-| = |ex —e_|/h = [e]/h — o0

between centers d_ and d, of two solenoidal fields obtained from potential By(x)
goes to infinity.

Theorem 2.1 Let d = e/h be as above. Then
& (\) = 2(2r)? A sin? (k) sin (2)\1/2|d|) +O(|d| 73+, |d| — oo,
locally uniformly in X > 0 for any §, 0 < § < 1/3.
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Theorem 2.2 As |d| — oo, one has
(N = k(1 — k) — 2 (27) 2 X2 sin? (k) cos (2)\1/2|d|) ld|™ + o(]d| ™)

locally uniformly in A > 0.

The asymptotic behavior of the spectral shift function has been studied by
Kostrykin and Schrader [14, 15] in the case of scattering by potentials with two com-
pact supports at large separation. We make a brief review on the results obtained
in these works. They have considered the operator H; = Hy + V() + Va(z — d),
Hy = —A, with potentials V; rapidly falling off at infinity, V; being not necessarily
assumed to be compactly supported. In [14], they have shown that the spectral shift
function £(\, d) for the pair (Ho, Hy) obeys £(A, d) ~ & (N) + &(N), where &;()) is the
spectral shift function for the pair (Hy, H;) with H; = Hy+ V;. In the second work
[15], they have established the improved asymptotic formula with the second term,
which is described in terms of backward amplitudes as in Theorem 2.2. However the
situation is different in magnetic scattering, in particular, in two dimensions. This
comes from the fact that vector potentials corresponding to magnetic fields with
compact supports at large separation can not necessarily have separate support due
to the topological feature of dimension two.

We denote by R(z; H) = (H — z)™', Imz # 0, the resolvent of self-adjoint
operator H = / AdE(X; H). The derivative E'(\; H) is known to be represented by

the formula
E'(\ H) =dE(\ H)/d\ = (2mi) " (R(\ +140; H) — R(\ — i0; H)) , (2.8)

where R(A £10;H) = limR(A £ ig; H) as € | 0. By the principle of limiting
absorption, the boundary values

R(A = i0; Ky) = lim R(A & ie; Ky)

to the positive real axis exist as a bounded operator from L? to L% for s > 1/2 (see
10, section 7]), where L? = L?(R?) denotes the weighted L? space L? (RZ; (1’)236155)
with (z) = (14 |z|*)/2. By (1.7), we have

&) = — Jim Tr [xp (E'(\; Kq) — E'(X; Ho)) Xz

in D'(0,00), where x1, = x(|z|/L). We are now in a position to formulate two main
lemmas to which the proof of Theorem 2.1 is reduced. We complete the proof of the
theorem, accepting these lemmas as proved. We prove the first lemma in section 3
and the second one in sections 4 and 5.



Lemma 2.1 Let xo(x) =1 — x(|z|/M|d|) for M > 1 fized large enough. Then the
limat
Jim Tr [y xeo (B'(X; Ka) = E'(A; Ho)) XooX]

exists pointwise as well as in the sense of distribution, and it obeys the bound
O(|d|™) for any N > 1.

Lemma 2.2 Let xo(z) = x(|z|/M|d|) for M > 1 as in Lemma 2.1. Then

Tr [xo (E'(X; Ka) — E'(X; Ho)) xo] =
-9 (27r)_2 M 1sin? (km) sin (2>\1/2‘d]) + O(’d|_1/3+5)

locally uniformly in X > 0.

Proof of Theorem 2.1. Let xo and X be as in the lemmas above. We may assume
that x2 + x2 = 1. Then &, ()\) is decomposed into

—Tr [xo0 (E'(A\; Kq) — E'(A\; Hy)) xo] — nggo Tr [X£Xoo (E'(A; Ka) — E'(A; Ho)) XooXL] -

We apply Lemma 2.2 to the first term and Lemma 2.1 to the second one. If we take
account of the cyclic property of trace, then the theorem is obtained at once. O

3. Proof of Lemma 2.1

In this section we prove Lemma 2.1. We use the notation H(B) to denote the
magnetic Schrodinger operator

H(B) = (—iV — B)? (3.1)

with potential B(x) : R> — R*. We also denote by || |1: the trace norm of bounded
operators acting on L?. The proof of Lemma 2.1 uses the two lemmas below. The
first lemma has been already established as [10, Lemma 3.2] or [11, Theorem 4.1].
We prove Lemma 3.2 after completing the proof of Lemma 2.1.

Lemma 3.1 There exists k > 0 large enough such that
)™ R(A + 00 Kq) () =" = O(|d]*)

locally uniformly in X > 0.



Lemma 3.2 Let q(x) be a bounded function with support in {|z| < c|d|} for some
c> 1. Assume that qyy € C®(R*) has support in

{lg| > M |d], |z —w|<a}, Z=z/|lz|, M>1, 0<a<]l,

for w € S* and that |0'qy| = O(|z|™") as |z| — co. Then we can take M so large
that the following statements hold true :

(1) If py € CF(R?) has support in {A/B <€ <3N £-w> —1/2}, then
|aRO\ +i0; Kg)aups (D) ()| = O(ld|™)
for any N > 1.
(2) Ifp_ € C(R?) has support in {)\/3 <€ <3\ £-w< 1/2}, then
|aRO = i0; Ka)gup— (D2) ()| = O(ld| ™).

o (’3) [{’p| Ilel) C°°|(‘R2) is supported away from {\/2 < |[* < 2\} and satisfies
d'pl =0(&]™") as |€| — oo, then

laRO*i0; Ka)gup(D2) @) = O(ld|™).

Proof of Lemma 2.1. We set
T = Tr [X£Xeo (B'(A; Ka) — E'(A; Ho)) XooX1] -

According to notation (3.1), we write Ky = H(By). The total flux of the field defined
from B, vanishes, and hence there exists a smooth real function ¢ € C*(R?) such
that By = V( over {|z| > c|d|} for some ¢ > 0. We define

Ko = exp(i¢) Ho exp(—i¢) = H(V().
The operator Ky has smooth bounded coefficients and satisfies the relation
Tr [X£Xoo B (A Ho)XooX L) = Tt [X£Xoo B (A; Ko) Xoo X L]
and it follows from (2.8) that
Ty, = 77 Im (Tr [x£Xeo (R(A + 10; Kq) — R(A +i0; Ko)) XooX1]) -

We set
vo = 1 — x(|z[/cld]) (3.2)

with ¢ > 0 fixed above. Then K; = K, on the support of vg. We calculate
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and write
U()KO - KdUO = U()KO - K()UO = [Uo, Ko]

The coefficients of commutator [vg, K] are bounded uniformly in |d| and have sup-
port in {c|d| < |x| < 2¢|d|}. We take ¢y € C°(R?) such that gy = 1 there. Since
Xoo¥0 = Xoo for M > 1, we have the relation

Ty, = 7 m (Tr [[ve, Kol RO\ +i0; Ko) (xooxz)” RN +i0; Ka)go))

by the cyclic property of trace. Let ¢y and {py,p_,p} be as in Lemma 3.2 for some
w € S1. We write p_ for the operator p_(D,) and consider the trace

T ; =1Im (Tr [[Uo, Ko|R(A +i0; Ky) (XOOXL)Qp_qMR()\ +140; Kd)q()D )
If we write
(@) p-qur RO\ +10; K)o = (q0R(A — i0; Ka)gup—(2)™)",

then it follows from Lemmas 3.1 and 3.2 that the limit lim 7", exists as L. — oo and
obeys the bound O(|d|™). A similar result holds true for p,(D,) and p(D,). Thus
we can show Llim T = O(|d|™™) by dividing {|x| > M|d|} into a finite number of
conic regions. This completes the proof. O

Proof of Lemma 3.2. (1) Let Koy = H(V() be as above and let vy be defined by
(3.2). We may assume that quy = 0. Since voqys = qpr for M > 1, we have

qR(\ +10; Kg)qn = qR(N +i0; Kg)[vo, Ko] R(A + i0; Ko)qu-

We can take M > 1 so large that the free particle starting from supp gy with
momentum & € supp py at time ¢ = 0 never passes over supp Vg for t > 0. This
implies that

I[vo, Kol R(A + i0; Ko)arp- ()™ | = O(ld| ™).

Thus (1) follows from Lemma 3.1.

(2) This is verified in exactly the same way as (1). We have only to note that
the free particle starting from supp gp; with momentum & € suppp_ at time t =0
never passes over supp Vv for ¢ < 0, provided that M > 1 is taken large enough.

(3) This is also easy to prove. We use the calculus of pseudodifferential oper-
ators to construct the representation for the operator qR(\ £ i0; K)qpp in ques-
tion. The operator K, equals Ky = H(V() on the support of ¢, and the symbol
<|§|2 — /\> has the bounded inverse on the support of p. Moreover the supports of ¢
and qp; does not intersect with each other for M > 1. Thus the operator takes the
form

qR(\ £ i0; Kq)qup = qR(A +140; K4) Ry,

where Ry satisfies ||[(z) Ry||m = O(|d|™") for any N > 1. This, together with
Lemma 3.1, yields the desired result. O
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We make repeated use of the argument in the proof of Lemma 3.2 at many stages
in the course of the proof of Lemma 2.2 also.

4. Preliminary to proof of Lemma 2.2

The present and next sections are devoted to proving Lemma 2.2. As the first
step, we here prove the following lemma.

Lemma 4.1 Let qi(x) be defined by q+ = x(|z — dﬂ:|/|d’1/3)' Then
Tr[g= (E'(X; Ka) — E'(X; Ho)) g2] = O(|d|71/*+)

locally uniformly in A > 0.

We define the three Hamiltonians
Ky = H(£kAy) = (—iV T kAL, k=a/h—|a/h], (4.1)

and Hg = H(BA), where AL = A(x —dy). These operators are all self-adjoint under
boundary condition (1.3) at the center of the field. The lemma is obtained as an
immediate consequence of the two lemmas below.

Lemma 4.2 Let q,(z) be defined by g, = x(r/|d|?), r = |z|, for 0 <o < 1. Then

Tr (o (E'(X; Hg) — E'(X; Ho)) ¢o] = O(]d]™7).

Lemma 4.3 Let q+ be as in Lemma 4.1. Then

Tr g (E'(X; Ka) — B'(X; K4)) g2] = O(|d|71+°).

Proof of Lemma 4.1. We prove the lemma for ¢, only. The trace in question is
decomposed into the sum

Tr(qy (B'(N\; Ka) — E'"(\ K4)) q4] + Tr gy (BN Ky) — E'(A; Ho)) g -

We apply Lemma 4.3 to the first term and Lemma 4.2 with 0 = 1/3 to the second
one. Then the desired bound is obtained and the proof is complete. O

The proof of Lemma 4.2 uses the formulae of Bessel functions:

fj Ji(2)* =1, (4.2)

l=—o00

d/dz {22 (Ju(az)2 — M+1(az)Ju_1(az)>} =22J,(a2)? a>0, (4.3)
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L2 42 Jun(2)” =2u /0 Ju(2)?27dz, >0, (4.4)

=1
I /OO Ju(2)?27 M dz=1/2, p>0. (4.5)
0

We refer to [27, pages 31, 135, 152, 405] for (4.2), (4.3), (4.4) and (4.5), respectively.
Moreover, J,(z) is known to behave like

Ju(2) = (2/m2)"? (A,(2) cos (2 — (2 + 1)7/4) — By(2)sin (z — (2p+ 1)m/4))

as z — 0o, where A,(z) and B,(z) are asymptotically expanded as

N-1 N—-1
A, =1+ Z a;mz_zn + Oz, B, = 27t (Z bunz_Q” + O(Z_QN)> )
n=1 n=0

Lemma 4.4 Let q,(r) be as in Lemma 4.2. Define

er)=r 3 Juar?,  p=—p]

l=—00

for a >0 fized. Then
/O°° 4o (r)e(r) dr = /O°° 4o (F)r-dr + O(|d|~°).

Proof. If § = 0, then the relation follows immediately from (4.2). Assume that
0 < <1, andset p=1— 3. We make use of (4.4) to calculate e(r) as follows :

e(r) = (r/2) (Jg(CLT)2 +2 i Jg+l(ar)2> + rJg(ar)z/Q

=1

+ (r/2) (Jp(ar)2 + 2 Z JpH(ar)Q) + er(ar)2/2
=1
= Gr / Ja(®)27 dt + rJg(ar)2/2 + pr / T dt + 1, (ar)?/2.
0 0
We define
eg(r) = —pr /Oo Jg(t)zt_l dt + rJﬁ(ar)Q/Q, Ip=2 /OO ¢o(1)es(r) dr,
ar 0
and similarly for e,(r) and I,. Then e(r) = r + eg(r) +€,(r) by (4.5), and we have
/o qo(r)e(r)dr = /o Qo (r)rdr+ (Ig+1,) /2.

The integration by parts yields
Io=0 [y ([ gsPe at) drt (1= 8) [ qor)rdatardr. (4.6
0 ar 0
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(0.9]
Since |d|” < r < 2|d|” on the support of ¢/, such an integral as / q.(r)r~" cos ardr
0

decreases rapidly as |d| — oco. If we take account of the asymptotic form at infinity
of the Bessel function Js(t), then we see that the first integral on the right side of
(4.6) behaves like

| (/OO To(t)’t™! dt) dr = (1) [ g, () dr + O(1d| ).

To see the behavior of the second integral, we use (4.3). Then we have the relation

/o o (r)rds(ar)?dr = =2 / q (r Jg (ar)? — JBH(CLT)Jg_l(ar)) dr
again by partial integration. By the asymptotic formula, Jsiq(ar) takes the form
(2/mar)!? (£Agsi (ar) sin (ar — (28 + 1)7/4) % Bywi (ar) cos (ar — (26 + 1)7/4)),

and hence the integral obeys

/OOO qa(r)rJg(ar)2 dr = —(1/ma) /Ooo q. (r)rdr+ O(|d|™7).
Thus we have
I = (1/7a) (5= (1= 8)) [~ a,(r)rdr + O(d| ).

The other term I, with p = 1— 3 takes a similar asymptotic form. Hence the leading
term of the sum I3 + I, vanishes. This completes the proof. O

Proof of Lemma 4.2. The operator Hg admits the partial wave expansion
Hy= 3 @hg, ha=—0/0%r+ (i =1/4) /. p=]i=0],
l[=—00

where hg is self-adjoint in L?(0, 00) with boundary condition limr~'?|u(r)| < oo
as 7 — 0. Since the system of eigenfunctions

[}, a(nX) = (/2" L), haba = M
associated with hg is complete in L?(0, 00), we have

Tr (¢ E'(X\; Hg)go| = /OOO 4o (1)? ( i TJM()\l/QT)Z/2> dr

l=—00
On the other hand, it follows from (4.2) that

o0

Tr (¢ E'(\; Ho)qo) = /OOO 4 (1)? ( Z TJI()\I/QT)2/2) dr = /OOO 4 (1)*r/2dr.

l=—
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Hence the lemma follows from Lemma 4.4. O

The proof of Lemma 4.3 uses the following two lemmas. The first lemma is well
known by the principle of limiting absorption, and the second one has been verified
as [10, Lemma 3.3] or [11, Theorem 4.1].

Lemma 4.5 The operator
R(\+i0; Hg) : L? — L*,, s>1/2,

s bounded locally uniformly in X > 0.

Lemma 4.6 Let x+(x) be defined by x+ = x (\x — di]/]d\‘s) for 6 > 0 fized arbi-
trarily but small enough. Then there exists ¢ > 0 independent of & such that

e RO+ i0; Ka)xe || = O(d|™), - [[xeR( +i0; Ka)x |l = O(ld]~/*+),

where || || denotes the norm of bounded operators acting on L*.

Let § > 0 be fixed arbitrarily but small enough and let n € C*(R) be a real
periodic function with period 27 such that n has support in (¢,27 — €) and

n(s) =s on [2¢, 21 — 2] (4.7)
for € > 0 small enough. Then we define the function (4 (z) by
Cr = +rn(y(z —dy;£d)) on |z —de| >eld®, ¢ =0 on |z —ds| <eld’/2
and the operator K, by
Ki = exp(iCs) Ky exp(—ils) = H (£rAs + V(i) ,

where v(x;w) again denotes the azimuth angle from w € S to & = x/|z|. By (2.4),
V{4 = kA4 on

Dy = {x Do —dy] > eld)?, 26 <z —di;d) < 271 — 25} : (4.8)
and hence f(i = K, there. We set
we () =1—x (lr —ds| /M), M >1, (4.9)
and calculate

R\ +i0; Kg)ws — wsR(\ +i0; K2
= RO\ +i0; Ky) (we Ky — Kqwz) RO\ +i0; Ky)
= R\ +i0; Kz) (W 4+ Rz) RO\ +1i0; Ky), (4.10)
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where Wi = [wy, f(;] = wif(qc — IN(iji and Ry = (IN(:F — Kd) wy. The coefficients
of differential operator R, vanish over

{x e —dy| > M|d)°, 26 < y(x —dy;+d) < 27 — 25}.
Proof of Lemma 4.3. We prove the lemma for K, only. We consider the difference
g (RO +i0; Kg) = RO +i0; K4)) gy g = X2 = d|/]d]'?).
Since w_q, = q., it equals
¢ RO\ +140; Kg) (W_ + R_) RO\ +140; K, )qy

by (4.10). As stated above, the coefficients of R_ have support in a conic neigh-
borhood around direction —d with d_ as a vertex. We can take M > 1 so large
that )

lar RO+ i0; Kg)R-R(A +0; Ky )q4 || = O(jd|™").

This is shown by almost the same argument as in the proof of Lemma 3.2. Hence

Im (Tr [g+ (R(A +140; Kg) — R(A +10; K1) q+])
= Im (Tr [q+ (R()\ +140; Kq)W_R(X + 10; f~(+)) q+D + O(ld)]™™).

The three lemmas below completes the proof.

Lemma 4.7 Let x_ be as in Lemma 4.6 and let || ||lus denote the Hilbert-Schmidt
norm of bounded operators. Then

IX-R(A+10; Ho)qs s + [[x-VR(A +i0; Ho)gx[[us = O(|d|~/**).
Lemma 4.8 There exists ¢ > 0 such that
Ix- RO +140; K )y lus + [[x- VRO +i0; K )g [|us = O(|d|7/¢7).
Lemma 4.9 There exists ¢ > 0 such that
lg+ ROX +0; Kg)x—||us = O(|d|~/+).
Completion of proof of Lemma 4.5. By Lemmas 4.8 and 4.9, we have
Im (Tr g (RO\+i0; K))W_ RO\ +1i0; K1) g1 |) = O(|d]/*+?)

for some ¢ > 0. This completes the proof. O

Proof of Lemma 4.7. We denote by H(()l)(z) the Hankel function of first kind and
order zero. Then the kernel Gy(z,y; A) of R(A+ i0; Hy) is given by

Go(z,y; A) = (i/4)Hs" (A\V?x — y])
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and it behaves like
Gol,y: A) = (ie()/Am) exp(iA o = y)lo — o1 /2 (1+ 0w —y1™))  (411)

as |z — y| — oo, where ¢(\) = (2m)2e~"™/4\"Y4 If 1 € supp x— and y € supp ¢4,
then |z — y| > |d|/2. Hence the lemma is easily obtained. O

Proof of Lemma 4.8. Let (4 be as above. We define K, by
Ky = exp(iQy ) Ho exp(—iCy) = H (V(4).
The operator K coincides with K over the domain D, defined by (4.8). If we set
vi() =1=x (o —dy| /M|d]'?)
for M > 1, then y_v, = x_ and v,q, = 0, so that we have the relation
X-ROA+i0; K )qe = x- R\ +10; Ko) (Vi + Ry ) RO\ +10; Ky gy (4.12)

in almost the same way as used to derive (4.10), where Vy = [vy, Ko] and R, =

(f(o — K+) v;. We again follow the same argument as in the proof of Lemma 3.2
to obtain that

xR+ i0; Ko) R RO +i0; K gy | = O(ld] ™).
The coefficients of V. have support in {M|d|1/3/2 <lr—di| < 2M|d|1/3} and obeys
the bound O(|d|~/) there. Hence, by elliptic estimate, it follows from Lemma 4.5

that
[ViRO+i0; Ko)au]| = O(dI).

Thus (4.12), together with Lemma 4.7, completes the proof. O

Proof of Lemma 4.9. The proof is done in almost the same way as in the proof of
Lemma 4.8. We have the relation

¢ RO\ +i0; Kg)x— = g RO+ 10, K.) (W* + R*) R(A+40; K)x—.

Then the lemma follows from Lemmas 4.6 and 4.8. O

5. Completion of proof of Lemma 2.2

In this section we complete the proof of Lemma 2.2. Throughout the argument
in the section, 6 > 0 and ¢ > 0 are fixed arbitrarily but small enough. We define

Do = {|& — dz| > |d|"/*/2,
Dy = {|z — ds| > |d|'?,

(v —d)—d| <2,
(w—d_)—d| <e,

(x :\d+) + CZ’ < 2&?}
(z—dy)+ d <&} c D,

where (x :\di) = (r — dy)/|xr — d+|. The proof is completed by combining Lemma,
4.1 with the two lemmas below.
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Lemma 5.1 Assume that b € R? fulfills
b < 2M]d|, b—ds| > |d|"?/2,  bd Dy.
Define vy(x) = x (|x — b|/|d|5). Then
Tr [ty (E'(\s Ka) — E'(X Ho)) ] = O(|d| ™), N> 1,
uniformly in b.

Lemma 5.2 Let ¢y € C(‘)’O(RQ) be a real smooth function such that 1y has support
m Dy and g =1 on Dy. Then

Tr [t (B'(A; Ka) — E'(X; Ho)) o] =
-2 (277)_2 A1 sin? (km) sin (2)\1/2\d]) + O(’d’*1/3+5)

locally uniformly in A > 0.

Proof of Lemma 2.2.  We divide the region {|z| < 2M|d|} by cut off functions ¢, ¥,
and ¢y as in Lemmas 4.1, Lemmas 5.1 and 5.2, respectively. Then the lemma follows
from these lemmas. O

5.1. We shall prove Lemma 5.1. Let n € C*°(R) be as in (4.7). We define the
function ((x) by

G = rn(v(w = dy;by)) — mn(y(z —d_3b2)), be=(de —b)/|de —b],
on {\x —d_| > ald]‘s} N {\x —dy| > ald]‘s} and by ¢, = 0 on
{le—d_| <eldf/2} U{lx —di| <eld’/2} .
We also define the operator Ky by
Ko = exp(i¢y) Hyexp(—i(y) = H(V ().

By definition, Ky coincides with K4 on the outside of a conic neighborhood around
by with di as a vertex.

Proof of Lemma 5.1. We set

up(x) = 1= x (Jo = d_|/|d]°) = x (Jo — d.|/|d])
and calculate
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where Uy = [ug, Ko] and R = (Ko — Ky) ug. Since yug = 1, we have

Im (Tr [1hy (R(X 4405 Kgq) — R(A +i0; Hg)) ¥))
m (Tr [y (R(N +40; Kg) — R(A +i0; Ko)) 1))

=1 R
= Im (Tr [t (R(A +i0; Kq)Ug R(A + i0; Ko)) ¥]) 4+ O(ld| ™).

The last relation is obtained in the same way as in the proof of Lemma 3.2. We
decompose Uy into the sum
Up=Us+ U, Us=lus,Kol, us(r)=1-x|z—dl/ld]).
Then we further have
Im (Tr [ty (R(A +i0; Kg) — R(X +140; Ho)) ¢]) = I + I + O(|d| ™),

where

I = Im (Tr [ R(A + i0; Kg) UL R(A + i0; Ko)iy)) -
We evaluate I_ only. A similar argument applies to I, also. We define
wo(a) = 1= x (Jo = d_|/MIal) = x (Jo = do/MIF), M > 1,

and set Wy = [wo, Ko] = W_ + W, , where Wi = [wy, K] and wy is defined by (4.9).
We represent ¢, R(A + i0; K;)U_ by use of relation

woR(A +10; Ky) — R(A +140; Ko)wy = R(A +10; Ko) (Kowy — woKy) R(A +i0; Ky).
Since wo = Y and woU_ = 0 for M > 1, we have

We again repeat the same argument as in the proof of Lemma 3.2. Then we can
choose M so large that I_ takes the form

Im (Tr [ty R(\ + 30; Ko) Wi R(A +i0; Kg)U_R(\ +i0; Ko)y)) + O(|d| ™).
We assert that the kernel G4 (y, z) of the operator
Gy = U_R(\+i0; Ko)i R(A + i0; Ko) Wy

obeys the bound |G+ (y, z)| = O(|d|™"). Then, by the cyclic property of trace, the
lemma follows from Lemma 4.6. The kernel of R(\ + i0; Hy) takes the asymptotic
form (4.11). If |y — d_| < 2|d|° and |z — d| < 2M|d|° and if = € supp v, then

T —z y—x

Ve (Jo = 2] + [y —2])| = >c> 0.

o =2y~
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Hence a repeated use of partial integration proves the bound for G, (y, z). A similar
argument applies to G_(y, z) also. Thus the proof of the lemma is complete. O

5.2. We shall prove Lemma 5.2. We use the functions ug, u+ and wg, w4 with
the same meanings as ascribed in the proof of Lemma 5.1.
Proof of Lemma 5.2. 'The proof is divided into several steps. The auxiliary lemmas
used in the course of the proof are all verified after the completion of this lemma.

(1) We fix the notation. Let ¢y(x) be as in the lemma. We may assume that 12
takes the form ¢ = 1> + 12, where ¢+ has support in Dy N {|z — d<| < 2|d|/3}.
The trace in the lemma equals

7 Im (T [1ho (R(A 4 i0; Kq) — R(A +i0; Hp)) o))
and admits the decomposition
Tr [0 (E'(X; Ka) — E'(\; Ho)) tho] = 771 (W + W), (5.1)

where

Uy =Im (Tr [¢oo (R(A +0; Kq) — R(A +140; Hy)) 1h+]) .
Let (. be as in section 4. We set
Ko = exp(io) Ho exp(—i¢o) = H(V),  Co = ¢ + ¢y,
and define K again by
Ki = exp(iCs) Kz exp(—ils) = H(+rAr + V(s), Ki= H(+rAL).
We further write
Ro(\) = RIA+10; Kg), Ri(\) = R\ +1i0; K1), Rg(\) = R\ +i0; Ky).

(2) We analyse the behavior as |d| — oo of W_ only. We make use of the
relation ¥_uy = 1_ to calculate

Y (Ra(A) = Ro(N) ¥ = ¥r_Ra(\) (uoKo — Kaug) Ro(A)_.

Then we obtain
U_=J +J,+0(d™) (5.2)

in the same way as in the proof of Lemma 3.2, where
Je =T (Tr [ RyA\U=Ro(N¢o-] ), U = [us, Ko).

We make repeated use of the same argument as in the proof of Lemma 3.2 without
further references. We consider the operator 1_ Rd()\)U_ to analyse the behavior of
J_. Since

Ra(Muy — uy Ro(N) = Ra(A) (up K= = Kquy ) R-()
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and since Y_u, =_ and u+U_ = U_, we see that J_ takes the asymptotic form
J_=Tm (Tr - (Ro(A) + Ra(\VeR_(N)) U-Ro(\)¢-| ) + O(ld| ™),

where

Vo = [uy, K_]. (5.3)
Lemma 5.3 One has
fm (Tr [ R_(\U_Ro(\)¢-]) = O(ld| ™)
and || U_Ro(M\)Y? Ro(A\)W* |lus = O(|d|™), where Wy = [wy, K.
We represent V, R_(A)U_ by use of the relation
w_R_(A) = Ro(\w_ = Ro(A) (W* +w_ (Ko — K_)) R_()),
Since Viw_ =V, and U_w_ = 0, it follows from Lemma 5.3 that
J_ = Tm (Tr [~ Ra(\)Vi Re(\)W* R_(\TU_Ro(\)¢-| ) + O(ld] ™). (5.4)
We look at the operator ¢_ Ry(A\)Vy in (5.4). Since
woRa(A) = Ro(Mwo = Ro(A) (Kowo — woKa) Ra(\)
and since ¢¥_wy = ¥_ and wyV, = 0, we see again from Lemma 5.3 that
J- = TIm (Tr [¥- Ro(\) W5 Ra(\)Vy Re(\)W* R_(A)T_Ro(\)¢p-| ) + O(ld| ™).
Lemma 5.4 There exists ¢ > 0 such that
[W2 (Ra(X) = Re(N) V|| = O(d| 1)

We can easily show that
|- Ro W g = Ol 2+7), [V Ro() W2

_ —1/2426
o = OUd ) (5.5)

and H[?,Ro()\)w,H = O(|d|***¢). In fact, the first two bounds follow from the

asymptotic form (4.11) of the kernel Go(z, y; \) of R(A+i0; Hy), because the distance
between the supports of two functions ¥ _ and w, satisfies

dist (supp_,suppwy) > c|d|

for some ¢ > 0. The third bound is a consequence of the principle of limiting
absorption. Thus Lemmas 4.5 and 5.4, together with these bounds, imply that

Jo = Tm (Tr [~ Re(\W Ry (V4 Ro(NW” R_(AU_Ro(N—|) + O(|d| /)
for some ¢ > 0 independent of 9.

(3) We denote by (, ) the L? scalar product. The argument in this step is
based on the following two lemmas.
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Lemma 5.5 Let ¢o(z;w) = po(2; N\, w) = exp(iv Az - w) and let
c(\) = (2m)/2em /AN, (5.6)
be as in (4.11). Then
Vo Ro (W = (ie(3)/4m) d™2 (Vs (0T, 172 + O (4] +))
for some ¢ > 0, where Il acts as

(L) () = (s po(-s ) ol &) = ( [ (@)l ) dy ) olas )

on u(x), and the remainder Oys(|d|”) denotes an operator the Hilbert=Schmidt norm

of which obeys the bound O(|d|").

Lemma 5.6 Let I1y be as in Lemma 5.5. Then U_Ro(A\)2 Ry(\)W? takes the form
(Z')\*l/Z/Q) (ic()\)/47r) T,‘d’fl/Q ((UﬁeiCoﬂieﬂ'CoWi) + OHS(’d’fl/?ﬁcé))

for some ¢ > 0, where T4 = 74.(d) = /wi (taZ)Q dt.

By the cyclic property of trace, it follows from Lemma 5.5 that
J- = |d|”*Im (Te [To]) + O(|d|~H/2+<)

where

Ty = (ie(\)/47) U-Ro(\)> Ro(M W Ry (V. (€T ) W2 R_(N).
Since 7+(d) = O(|d|), Lemma 5.6 implies that

J_ = 27]\"Y20_|d| " Re (T [T1]) + O(|d|~/3+9)

where

Ty = (ie(\)/4m) (T e ) Wi Ry (WV (T e @) W2 R (W)U

(4)  We complete the proof of the lemma in this step. Let fi(w — ) denote
the amplitude for the scattering from incident direction w to final one 6 at energy
A by the solenoidal field £rd(x — dy).

Lemma 5.7 One has the relations

(ie(N)/47) (R-NT (5 =), W00 (5D) = f-(~d — d) + O(1d| ™),

A

(ie(N)/4m) (RO V0 d), W g0 —d)) = fo(d = —d) +O(la| ™)

22



By this lemma, we have
J_ =27\ |d| " Re (f-(—d — d) fo(d — —d)) + O(|d| /)

and similarly for J,. Thus we have

Wo = A7 |d] " Re (f-(=d — d)f+(d — —d)) + O(jd|1/*)
by (5.2). We also have

W, =A"%1,]|d"'Re (f_(—cZ —d)fi(d— _CZ)) +O(|d| V3,
Since

T_+T = /¢_ (td>2 dt + /¢+ (tci)2 dt = /¢0 (td)Q dt = |d| (1 + O(|d|_2/3)) 7
it follows from (5.1) that the trace in the lemma behaves like
7 ARe (f-(=d — d) f1(d — —d)) + O(|d|7/*+).
The amplitude is explicitly calculated as
fe(Ed — Fd) = —(i/2m)" 22X sin (k) exp (+i20%ds - d)

by (1.8) and (1.9) with h = 1. This yields the desired relation, and the proof of the
lemma is now complete. O

5.3. We prove Lemmas 5.3, 5.4, 5.5 and 5.6.

Proof of Lemma 5.3. We prove the first relation. It is easy to see that the
operator under consideration is of trace class. Since w_U_ = 0, we use the relation

w_R_(A) = Ro(\)w_ = Ro(A) (Kow- —w_K_) R_())

to obtain

YR (WU = ¢_Ro(\) (Kow_ —w_K_) R_(\)U_.
Hence the trace in the lemma obeys
Im (T [~ Ro(\)W* R_(\)U_-Ro(A\)eo_] ) + O(|d| ™).

If we take account of asymptotic form (4.11) of the kernel of R(\ + i0; Hy) and of
the cyclic property of trace, an argument similar to that used in the proof of Lemma
5.1 yields the bound O(|d|™) on the first term. The second relation is also verified
in a similar way. Thus the lemma is obtained. O

Proof of Lemma 5.4. Since

RN = u_Re () = Ra(N) (u- Ky = Kyu_) Re(V),
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we have
Wi (Ra(A) = Re(W) Vi = WERS(A) (V2 + (K = Ka) us) Re(WVs,

where V_ = [u_, fﬂr]. By elliptic estimate, the lemma follows from Lemma 4.6. O

Proof of Lemma 5.5. By definition,
Ro(N\) = exp(iCo) R(X + i0; Hy) exp(—ip).
The kernel Go(x, y; \) of R(A+1i0; Hy) obeys (4.11). If [x —d| < |d|° and |y —d_]| <

M]|d|’, then X
[z —yl = (x—y)-d+O(|ld]~*)

for some ¢ > 0, and hence we have
exp(ivA|z — y|) = exp(ivAz - d) exp(—ivAy - d) (14 O(|d]~+)) .

This yields the desired relation. O

Proof of Lemma 5.6. The proof uses the stationary phase method ([9, Theorem
7.7.5]). We write

U_Ro(\)Y2 Roy(NW7 = U_e R(\ + 40; Ho)b2 R(\ + i0; Hy)e "W
and analyse the behavior of the integral
1(y,2) = [ Goly 2 N (2)2Go(w; 5 2) da

when y € supp Vu_ and z € supp Vw,. To do this, we take di as d_ = (0,0) and
dy = (|d|,0), and we work in the coordinates x = (x1,23). If © € suppt_, then
|d|*?/c < x1 < 2|d|/3 and |x5| < ¢z for some ¢ > 0. We represent the integral as

I(y,z) = / [/ Go(y, z; NU_(2)*Go(z; 2; \) dao | day

and apply the stationary phase method to the integral in brackets after making
change of variable o = x15. We look at the phase function. If we take account of
asymptotic form (4.11), then we can write the phase function as follows:

N (ly = 2l + |z = 2[) = iX2 (2] + |2 = dy | = a1 — |d]]) + iAu(2, y, 2),
where v = v(xy, 29,y, 2) is defined by

v=(lr =yl = lz]) + (lz = 2| = |z = dy]) + 21 = |d]|.
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We further make change of variable x5 = 715 to see that the first term on the right
side takes the form iAY/2z,g(x1, s), where

1/2 _
glars) = (145%) " + o8 (Jz — dy| + oy — [dI])™"

with z = (z1,218). A simple computation shows that s = 0 is the only stationary
point, ¢'(z1,0) = 0, and

9" (x1,0) = 1+ 21/(Jd] — 1) = [d] /(|d]| — x2).

We get exp(iAY2z1g(z1,0)) = exp(iAY2z;) and

~1/2

(N2 (a1, 0)/2mi) " = ie(Nar ™ (1] = 1)/1d]) 7,

where ¢(A) is defined by (5.6). We also obtain
1/2 1/2
v(r1,0,y,2) = ((361 — 1)’ + y%) — 1z + ((:cl —z1)? + zg)
= —y1+ (21 — x) + O(|d[*).

We make use of (4.11) to calculate the leading term of the integral
1 /Go(y,x; Ny (2)2Go(z; 2 \) ds, @ = (z1,m118), |s| <ec.

Since (ic(\)/47)* = (i)\_l/Q/Q (47)~", we take account of all the above relations to
obtain that the integral behaves like

(i)\_1/2/2) (26()\)/471’) ‘d|_1/2¢_(l‘1, O)Qe—i)\l/leeMl/Zzl (1 + O(|d|—1/3+26)> '

Thus the proof is complete. O

5.4. Before proving Lemma 5.7, we begin by a quick review on the scattering
by a single solenoidal field without detailed proof. The amplitude is known to have
the explicit representation for such a scattering system. We refer to [1, 2, 20] for
the earlier works, as stated in section 1.

We consider the Schrodinger operator
Hy = H(BA) = (—iV - BA)?, 0< B <1,

which is self-adjoint under the boundary condition (1.3) at the origin and admits
the partial wave expansion

Hy=y @hp, hg=—02+ " —1/4)r7% p=|l-7

lez
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We denote by ¢4 (x; A\, w), Hgpyr = Apy, the outgoing eigenfunction with incident
direction w. According to the partial wave expansion, ¢, (x; A, w) is given by

or = > exp(—ipmr/2)exp (ily(z; —w)) J, (\/X|x|) :

lez

where v(x; w) again denotes the azimuth angle from w to & = x/|z|. If, in particular,
£ = 0, then this yields the well known expansion formula for the free eigenfunction
wo(z; A\, w) = ¢N*7w in terms of Bessel functions. The eigenfunction ¢, converges
to po(x; \,w) as |z| — oo along direction —w and it is decomposed as the sum

P+ = Spin(x; )\,W) + @Sc(x; )\,W),

where i, = exp (i8(y(z;w) — 7)) po(x; A, w) and

et + elo

, —pt A
Qe = — (sin (Br) /) /6“1/2”“:05“ <7€ ) dt e

with o(z;w) = y(z;w) — 7. We apply the stationary phase method to the integral
to see that ¢ takes the asymptotic form

Pse = go(w — &5 0) exp(iX[a])|2| ™2 + o(|2| %), Ja| — 00, & #w,
and hence ¢ (x; \,w) behaves like
py = PO@D=MINErw g — NN 2|72 (14 0(1))  (5.7)

as |z| — oo along direction & = z/|z|. The first term on the right side describes
the wave incident from direction w and the second one describes the wave scattered
into direction Z. The scattering amplitude gs(w — 6; A) is explicitly represented as

gslw — 6; X) = (2i/7)"/* X"V sin (Br) Fy(w — w_),

where Fy(6) is defined by Fy(6) = e/ (1 - ew) under the identification of § € S?
with the azimuth angle from the positive z; axis. We add a comment to the incident
wave @i, which takes a form different from the usual plane wave exp(iv/Az - w). The
modified factor ¢’?0(#)=) is due to the long-range property of the potential SA(z).
Since A(z) = Vy(z;w) by (2.4), B(y(z;w) — ) is represented as the integral

B(wsw) —m) = 8 [Al)-dy

along the line [ = {y =  + tw : t < 0}. Thus the modified factor may be interpreted
as the change of phase generated by the potential A to the free motion. We
represent gz(w — 6;\) in terms of R(E +1i0; Hg). The next lemma has been verified
as [10, Lemma 3.2].
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Lemma 5.8 Let u(x) = 1—x(|z|/|d|?) and let j(z;w) € C*(R* — R) be a smooth
function with support in a conic neighborhood around —w such that

Jaiw) = y(@sw) o {|a| > eld’, & +w| <e}
and "5 = O(|z|~™)). If 0 # w, then
gs(w — 6; 2) = (ic(N)/47) (R(A +i0; Hg)Q—po(w), Q1p0(8)) + O(|d|™™)
for any N >> 1, where we write po(w) for exp(iA\'2x - w) and

Q— = exp(zﬁj(x, w))[“? HO]v Q—i— = exp(zﬂj(x; _9>>[u7 HO]

We add some comments. If we denote by gg(w — ;A\, p) the amplitude for the
scattering by the field 27 36(x — p) with center p € R?, it is easily seen from (5.7)
that

gs(w — 0; X, p) = exp (—Mlﬂp- (0 — w)) gs(w — 05 A), (5.8)

because |r —p| = |z| —p- 0+ O(|z|™") as |x| — oo along direction §. We further
denote by g_g(w — ;) the scattering amplitude by the field —273d(x). The
operator H_g = H(—/A) is unitarily equivalent to

Hi_p = H((1 = B)A) = exp(iv(x)) H_s exp(~iv()),

where ~y(z) stands for the azimuth angle from the positive z; axis. Hence it follows
that
g—p(w — 0;X) = exp (—i(0 —w)) g1_p(w — G; \).

Thus Lemma 5.8 allows us to represent the amplitude g_g(w — 6; \) as

9-5 = (ic(\) /A7) (R(\+i0; H_5)Q—_po(w), Q00(0)) + O(ld| ™), (5.9)

where

Q- = exp(—ifj(z;w))[u, Hol, Q4 = exp(—iffj(x; —0))[u, Hol.
The same relation
g-p(w — 0: X, p) = exp (—iX?p- (0 — w)) g_s(w — 0:;\) (5.10)
as in (5.8) also remains true for the amplitude g_g(w — 6; A, p) in scattering by the
field —2736(x — p).

Proof of Lemma 5.7. According to the notation applied to Ky = H(+rkAy), 0 <
k < 1, we have

~

fo(=d—d)=g_(—d— d:)\,d_), fi(d— —d) = ge(d— —d;\,dy).
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We write

A_ = (ic(N)/4) (R-(NT_epo(—d), W_eCpo(d)) ,

Ay = (ic(N) /A7) (Re (N Vi po(d), Waepy(—d))

for the scalar products on the left side of the relations in the lemma. By definition,

U- = [Uﬂf(o] = exp(iCo) [u—, Ho] exp(—i(o), W = exp(iCo)[w-, Ho] exp(—iCo)

and R_(\) = exp(iC+)R(N 4 10; K_) exp(—i(y). We insert these relations into the
scalar product A_. We note that

Co— G+ == =K1 (7(55 —d_; —d)) )
where n € C*(R) is defined by (4.7). Thus ¢y — (4 equals —ky(z — d_; —d) in a
conic neighborhood around d with d_ as a vertex. If we make change of variables
from x — d_ to z, then it follows from (5.9) and (5.10) that
A- =g . (—d— d:\.d_)+O(|d™M). (5.11)
Recall Vy = [uy, K_] by (5.3). Since K_ = H(—rA_), we have
V= exp(iCy)[uy, K_]exp(—iCy) = exp(iCo)[us, Ho] exp(—iCo)

on |xr —d;| < |d|/2. This enables us to repeat the same argument as used to prove
(5.11), and we obtain

Ay = go(d — —d; X, dy) + O(|d| ™).
Thus the proof is complete. O
6. Proof of Theorem 1.2

In this section we prove Theorem 2.2 (and hence Theorem 1.2). The proof is
based on the two lemmas below. We prove the first lemma after completing the proof
of the theorem. The second lemma has been already established as [25, Theorem
1.5].

Lemma 6.1 Assume that f € C§°(R) is a smooth function such that f is supported
away from the origin and obeys f*(\) = O(|d|**) for some 0 < p < 1. Then

tr (f(Ka) — f(Ho)) = [supp f| x [[fllO(d] ™) + o(|d| ™),

where |supp f| denotes the size of supp f.
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Lemma 6.2 Assume that f € C3°(R) obeys f*®(\) = O(1) uniformly in d and that
1 (X) vanishes around the origin. Then

tr (f(Ka) — f(Ho)) = —k(1 = 5).f(0) + o(ld| ™),
where k = a/h — [a/h].

Proof of Theorem 2.2. We define
(A h) = =2 (2m) 2 A2 sin? (k) cos (202[d]) [e| ™!, |d] = le|/h.

Then it follows from Theorem 2.1 that ny(A; h)h and &, (A) have the same leading
term as |d| — oco. We fix £/ > 0 arbitrarily and take p, 2/3 < p < 1, close enough
to 1. Let g € C*°(R) be a smooth real function such that

0<g<1, g=0 on (—oo, E—2|d|"], g=1 on [E—|d|? ).

Then &,(E) is represented as

G(E) = [ gngmir+ [ g0a o dn

We apply Theorem 2.1 to the first integral on the right side to obtain that

/i 9()\)52()\) d\ = no(E;h)h + 0(|d|‘1),

On the other hand, the behavior of the second integral is controlled by the trace
formula. If weset f(A) = g(A)—1, then f'(A\) = ¢/(A) and f(A\) =0 for A > E—|d|™",
so that the integral equals /f’()\)fh()\) d\. We decompose f(A) into the sum f =

fi + fo, where f; € C3°(R) has support in (E — 2¢, E — |d|™") and f» € C*(R)
has support in (—oo, £ — ¢) for € > 0 fixed arbitrarily but small enough. We may
assume that g(\) obeys ¢)(\) = O(|d|*), and hence f; fulfills the assumption in
Lemma 6.1. Thus we have

/f{(A)fh(A) dX = tr (fi(Kq) = fi(Ho)) = € O(|d|™") + o(|d| ™).

Since &;,(A) vanishes for A < 0 and f»(0) = —1 at the origin, it follows from Lemma
6.2 that

/fé(A)fh(A) X\ = tr (f2(Ka) — f2(Ho)) = 5(1 — k) + o(|d|7").

Thus we sum up all the above integrals to obtain the desired asymptotic formula
and the proof is complete. O
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We proceed with proving Lemma 6.1 which remains unproved. To formulate the
auxiliary lemma, we consider a triplet {vg, v1,v2} of smooth real functions with the
following properties :

(v.0) wvj, Vu; and VV v; are bounded uniformly in d.

(v.1)  wovy = vy and vVyvy = vy.

(v.2) dist (supp vj, supp Vug) > co|d| for some ¢y > 0, j =0, 1.

(v.3) Vv, has support in a bounded domain {|d|/c < |z| < c|d|}, ¢ > 1.

These functions depend on d, but we skip the dependence. By (v.1), we have the
inclusion relations supp vy C suppv; C supp ve and

v1 =1 on suppuvy, v9 =1 on suppuvi.

We do not necessarily assume v; to be of compact support.

Lemma 6.3 Let {vg,v1,v2} be as above. Consider a self-adjoint operator
K = H(B) = (-iV — B)*.

Assume that the potential B satisfies B = Vg on suppuvy for some smooth real
function g defined over R*. Set Ky = H(Vg). Then

Jor (K =)' = (Ko = 2) ) wo| = [tm2[ ¥~ O(|d| ™)

for any N > 1.

Proof. We calculate v, ((K —2)7t— (Ko — z)_l) vy as
Ul(K — Z>_1 (UQKQ — KUQ) (Ko — Z)_lvo = Ul(K — Z)_l[?}g, Ko](Ko — Z)_l?)o.

By a simple calculus of pseudodifferential operators, it follows from (v.2) and (v.3)
that
[, Bl (Ko = 2) 0o |1 = =72 O(ld] ™).

This completes the proof. O

Proof of Lemma 6.1. The proof uses the Helffer—Sjostrand calculus for self-adjoint
operators ([8]). According to the calculus, we have

FED) = (i/2m) [ 0.F(2) (= 2)™ dz .

for f € Cg°(R) as in the lemma, where f € Cs°(C) is an almost analytic extension
of f such that f fulfills f = f on R and obeys

02 F(2) = Im 2|YO(ld™?),  m>1, (6.1)
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for any N > 1. We introduce a smooth nonnegative partition of unity
m
{w—7w+7wooaw1a"'7wm}a w%+w-2|-+wgo+zwlz:17
k=1

over R?, where m is independent of d and each function has the following property:
suppws C {|z — di| < 2¢|d|}, SUpPP Weo C {|z| > M|d|}

for 0 < ¢ < 1 small enough and M > 1 large enough, and
suppwy C {|z — bg| < €ld|}, dist (bx,suppwy) > €l|d|/2

for some b, € R?. We assert that

T [wy, (f(Ka) — f(Ho))wi] = O(ld|™), (6.2)
tr [woo (f(Ka) — f(Ho)) we] = O(|d|77)

for any N > 1 and that

Tr [wy (f(Ka) = f(Ho)) ws] = [supp f| x || fllcO(ld|™") + o(ld|™"). (6.4)

Then the lemma is obtained.

We begin by proving (6.2). To prove this, we note that K is represented as
Kd = H(Bd) = eXp(ng)Ho exp(—zgk)

for some real smooth function gy over the support of wy. In fact, the field V x By
has support only at two centers d_ and d, . If we denote by K, the operator on the
right side, then it follows from Lemma 6.3 that

Hwk ((Kd —2)7" = (Ko - 2)71) wkHTr = [fm 2| "7 O(|d| 7).
Since p < 1 strictly in (6.1) by assumption, the Helffer—Sjostrand formula implies

(6.2). A similar argument applies to (6.3) also.

The proof of (6.4) uses Lemma 4.1. We consider the + case only. We take
W, € C°(R?) in such a way that @ w, = w,. Then there exists a real smooth
function g_ such that

Kq = exp(ig-) Ky exp(—ig-)
over supp wy. We denote by I~(+ the operator on the right side. Then we have
Wy ((Kd —2)7 = (K - Z)_1> wy = wy (Kg = 2) 7y, KKy — 2) gy

Since w, vanishes over the support of Vw,, the operator on the right side further

equals o o
wi (K — 2) 7 s, K (Ky = 2) 7wy, K (K — 2)7hig
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We may assume that dist (supp Vw,,supp Vi, ) > c|d| for some ¢ > 0. We apply
Lemma 6.3 to (Vi) (K, — 2)~' (Vw, ) to obtain that

Tr (wy ((Ka—2)7" = (K —2) 7wy ) = Im 2|7V~ O(ld] 7).
Hence the Helffer-Sjostrand formula yields
Tr (wy (f(Ka) — f(Ho))wy) = Tr (wy (f(Ky) — f(Ho)) wy) +of|d] ™).
Since f is supported away from the origin, Lemma 4.2 with ¢ = 1 implies that
T (ws (B'\ K4) — B3 Ho)) wy) = O(1d] ™)

uniformly in A € supp f. Thus (6.4) is obtained and the proof is complete. O

7. Concluding remark: a finite number of solenoidal fields

We conclude the paper by making comments on the possible generalization to
the case of scattering by a finite number of solenoidal fields.

We consider the magnetic Schrodinger operator
Hy, = (—ihV — A)?, A= oAz —¢).
j=1

The potential A(x) defines the n solenoidal fields with flux «; € R and center
ej € R?, and the operator Hj, becomes self-adjoint under the boundary condition
(1.3) at each center e;. We assume that

j=1
Then the spectral shift function &,(\) at energy A > 0 is defined for the pair
(Hon, Hy). We denote by
Finlw — —w; A e;) = exp(i2h A %e; - w) fin(w — —w; \),
finleo — =i ) = —(i/2m) VI YARY2 (1) sin (g /)

the backward amplitude in the scattering by 2ma;6(z —e;) and by 27a;6(z), respec-
tively. For pair a = (j, k) with 1 < j < k < n, we define

€a<)\; h) = fjh(_éa - éa; )‘: ej)fkh(éa - _éa; )\7 ek)h_l
= exp(i2AY2|eq|/h) fin(—Ea = a; N) frn(éa — —€a; )R

in the same way as §(A; h) in Theorem 1.1, where é, = e,/|e,| with e, = e — ¢;.
The quantity &,(); h) is associated with the trajectory oscillating between e; and ey.
We also define 7,(\; h) by

Ne = —2 (2m) % (=1)la/PIFlow/h iy (cjm/h)sin (a7 /h) cos (2)\1/2|ea|/h> lea| ™t
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By definition, we have
Ma\i Wh = =7~ A" Re (€4(X; 1)) + O(h).
We make the following assumption on the location of centers : For any pair a = (j, k),
there are no other centers on the segment joining e; and ey. (7.2)

Under assumptions (7.1) and (7.2), we can establish

N=YmA-r) 24k Y (k) +olh)

a=(jk), 1<j<k<n

locally uniformly in A > 0, where x; = a;/h — [a;/h].

The situation is more delicate when (7.2) is violated. For example, such a case
occurs when centers are placed in a collinear way. We now assume that the three
centers ey, e and e are located along the x; axis with e; as a middle point. Then the
quantity 7,(A; h) associated with @ = (1,2) or (2,3) does not undergo any change,
but 7,(A; k) with b = (1, 3) requires a modification, because the magnetic potential
asA(x — e9) has a direct influence on the quantum particle going from e; to es or
from es to e; by the Aharonov—Bohm effect. If the particle goes from e; to es, then
we distinguish the trajectory [, passing over the upper half plane {5 > 0} from
[_ passing over the lower half plane {z5 < 0}. The change of phase caused by the
potential is given by the line integral

/1 ao\(y —es) - dy = /l aaVy(y — e3) - dy = Faam,
+ +

where y(z) again denotes the azimuth angle from the positive x; axis. Hence the
two kinds of trajectories give rises to the factor

(exp(—iagm/h) + exp(icgm/h)) /2 = cos(agm/h).

We have the same factor for the trajectory from es to e;. Thus the asymptotic
formula takes the form

23: (1—kj)/2+h (Z Na(X; R) + cos? (kam) mp(N; h)) o(h),

a#b

where b = (1,3). We have developed the asymptotic analysis for amplitudes in
scattering by a chain of solenoidal fields in the earlier work [11].

References

33



1]

[10]

[11]

[12]

[13]

[14]

[15]

G. N. Afanasiev, Topological Effects in Quantum Mechanics, Kluwer Aca-
demic Publishers (1999).

Y. Aharonov and D. Bohm, Significance of electromagnetic potential in the
quantum theory, Phys. Rev. 115 (1959), 485-491.

W. O. Amrein and K. B. Sinha, Time delay and resonances in potential scat-
tering, J. Phys. A 39 (2006), 9231-9254.

M. Sh. Birman and D. Yafaev, The spectral shift function, The papers of
M. G. Krein and their further development, St. Petersburg Math. J., 4 (1993),
833-870.

V. Bruneau and V. Petkov, Representation of the spectral shift function and
spectral asymptotics for trapping perturbations, Commun. Partial Differ.
Equations 26 (2001), 2081-2019.

M. Dimassi, Spectral shift function and resonances for slowly varying per-
turbations of periodic Schrodinger operators, J. Funct. Anal. 225 (2005),
193-228.

I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfad-
joint operators, Translations of Mathematical Monographs, Vol. 18, American
Mathematical Society, 1969.

B. Helffer and J. Sjostrand, Equation de Schrodinger avec champ magnétique
et équation de Harper, 118-197, Lec. Notes in Phys., 345, Springer, 1989.

L. Hormander, The Analysis of Linear Partial Differential Operators 1,
Springer Verlag, 1983.

H. T. Ito and H. Tamura, Aharonov—Bohm effect in scattering by point-like
magnetic fields at large separation, Ann. Henri Poincaré 2 (2001), 309-359.

H. T. Ito and H. Tamura, Aharonov—Bohm effect in scattering by a chain of
point-like magnetic fields, Asymptotic Analysis 34 (2003), 199-240.

H. T. Ito and H. Tamura, Semiclassical analysis for magnetic scattering by
two solenoidal fields, J. London Math. Soc. 74 (2006), 695-716.

A. Khochman, Resonances and spectral shift function for the semiclassical
Dirac operators, Rev. Math. Phys. 19 (2007), 1071-1115.

V. Kostrykin and R. Schrader, Cluster properties of one particle Schrédinger
operators, Rev. Math. Phys. 6 (1994), 833-853.

V. Kostrykin and R. Schrader, Cluster properties of one particle Schrédinger
operators, II, Rev. Math. Phys. 10 (1998), 627-683.

34



[16] A. Martinez, Resonance free domains for non globally analytic potentials,
Ann. Henri Poincaré 3 (2002), 739-756 ; Erratum Ann. Henri Poincaré 8
(2007), 1425-1431.

[17] R. Melrose, Weyl asymptotics for the phase in obstacle scattering, Commun.
Partial Differ. Equations 13 (1988), 1431-1439.

[18] S. Nakamura, Spectral shift function for trapping energies in the semi—classical
limit, Commun. Math. Phys. 208 (1999), 173-193.

[19] D. Robert, Relative time-delay for perturbations of elliptic operators and semi-
classical asymptotics, J. Funct. Anal. 126 (1994), 36-82.

[20] S. N. M. Ruijsenaars, The Aharonov—Bohm effect and scattering theory,
Ann. of Phys., 146 (1983), 1-34.

[21] J. Sjostrand, Quantum resonances and trapped trajectories, Long time be-
haviour of classical and quantum systems (Bologna, 1999), 33-61, Ser. Concr.
Appl. Math., 1, World Sci. Publ., River Edge, NJ, 2001.

[22] P. Stovicek, Scattering matrix for the two-solenoid Aharonov-Bohm effect,
Phys. Lett. A 161 (1991), 13-20.

[23] P. Stovicek, Scattering on two solenoids, Phys. Rev. A 48 (1993), 3987-3990.

[24] H. Tamura, Semiclassical analysis for magnetic scattering by two solenoidal
fields: total cross sections, Ann. Henri Poincaré 8 (2007), 1071-1114.

[25] H. Tamura, Time delay in scattering by potentials and by magnetic fields with
two supports at large separation, J. Func. Anal. 254 (2008), 1735-1775.

[26] 1. Veseli¢, Ezistence and Regularity Properties of the Integrated Density
of States of Random Schrodinger Operators, Lec. Notes in Math., 1917,
Springer, 2008.

[27] G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd edition,
Cambridge University Press, 1995.

[28] D. Yafaev, Scattering Theory : Some old and new problems, Lec. Notes in
Math., 1735, Springer, 2000.

35



