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Abstract

We study distributions of some functionals of space-periodic so-
lutions for the randomly perturbed 2D Navier-Stokes equation, and
of their limits when the viscosity goes to zero. The results obtained
give explicit information on distribution of the velocity field of space-
periodic turbulent 2D flows.

0 Introduction

We consider the 2D Navier-Stokes equation (NSE) under periodic boundary
conditions, perturbed by a random force:

v′τ − ε∆v + (v · ∇)v +∇p̃ = εa η̃(τ, x),

div v = 0, v = v(τ, x) ∈ R2, p̃ = p̃(τ, x), x ∈ T2 = R2/(l1Z× l2Z).

(0.1)

Here 0 < ε ¿ 1, the scaling exponent a is a real number and l1, l2 > 0.
We assume that a < 3

2
since a ≥ 3

2
corresponds to non-interesting equations

with small solutions(see [Kuk06a], Section 10.3). It is also assumed that∫
v dx ≡ ∫

η̃ dx ≡ 0 and that the force η̃ is a divergence-free Gaussian random
field, white in time and smooth in x. Under mild non-degeneracy assumption
on η̃ (see in Section 1) the Markov process which the equation defines in the
function space H,

H = {u(x) ∈ L2(T2;R2) | div u = 0,

∫

T2

u dx = 0} ,
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has a unique stationary measure. We are interested in asymptotic (as ε → 0)
properties of this measure and of the corresponding stationary solution. The
substitution

v = εbu , τ = ε−bt , ν = ε3/2−a ,

where b = a− 1/2, reduces eq. (0.1) to

u̇− ν∆u + (u · ∇)u +∇p =
√

ν η(t, x), div u = 0, (0.2)

where u̇ = u′t and η(t) = εb/2η̃(ε−bt) is a new random field, distributed as η̃
(see [Kuk06a]). Below we study eq. (0.2).

Let µν be the unique stationary measure for (0.2) and uν(t) ∈ H be
the corresponding stationary solution, i.e., Duν(t) ≡ µν (here and below D
signifies the distribution of a random variable). Comparing to other equa-
tions (0.1), the equation (0.2) has the special advantage: when ν → 0 along
a subsequence {νj}, stationary solution uνj

converges in distribution to a
stationary process U(t) ∈ H, formed by solutions of the Euler equation

u̇(t, x) + (u · ∇)u +∇p = 0 , div u = 0 . (0.3)

Accordingly, µνj
⇀ µ0, where µ0 = DU(0) is an invariant measure for (0.3)

(see below Theorem 1.1). The solution U is called the Eulerian limit. This is
a random process of order one since E|∇xU(t, ·)|2H equals to an explicit non-
zero constant. The goal of this paper is to study properties of the measure µ0

since they are responsible for asymptotic properties of solutions for equation
(0.1).

The first main difficulty in this study is to rule out the possibility that
with a positive probability the energy E(uν) of the process uν , equal to
1
2

∫ |uν(t, x)|2 dx, becomes very small with ν (and that the energy of the
Eulerian limit vanishes with a positive probability). In Section 2 we show
that this is not the case and that

P{E(uν) < δ} ≤ Cδ1/4, ∀ δ > 0, (0.4)

for each ν. To prove the estimate we develop further some ideas, exploited in
[KP08] in a similar situation. Namely, we construct a new process ũν ∈ H,
coupled to the process uν , such that E(ũν(τ)) = E(uν(τν−1)) and ũν satisfies
an Ito equation, independent from ν. Next we use Krylov’s result [Kry87] on
distribution of Ito integrals to estimate Dũν(τ) and recover (0.4).
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In Section 3 we use (0.4) to prove that the distribution of energy of the
Eulerian limit U has a density against the Lebesgue measure, i.e.

DE(U) = e(x) dx, e ∈ L1(R+).

The functionals Φf (u(·)) =
∫

f(rot u(x)) dx are integrals of motion for the
Euler equation. An analogy with the averaging theory for finite-dimensional
stochastic equations (e.g., see [FW03]) suggests that their distributions be-
have well when ν → 0. Accordingly, in Section 4 we study the distributions
of vector-valued random variables

Φf (uν(t)) =
(
Φf1(uν(t), . . . , Φfm(uν(t)

) ∈ Rm ,

and of Φf (U(t)). Assuming that the functions fj are analytic, linearly inde-
pendent and satisfy certain restriction on growth, we show that the distribu-
tion of Φf (U(t)) has a density against the Lebesgue measure:

D(
ΦfU(t)

)
= pf (x) dx′ , pf ∈ L1(Rm).

To prove this result we show that the measures DΦfuν(t) are absolutely
continuous with respect to the Lebesgue measure, uniformly in ν. The proof
crucially uses (0.4) as well as obtained in [Kuk06b] uniform in ν bounds on
exponential moments of the random variables rot(uν(t, x)).

Since m is arbitrary, then this result implies that the measure µ0 is gen-
uinely infinite dimensional in the sense that any compact set of finite Haus-
dorff dimension has zero µ0-measure.

Other equations. The results and the methods of this work apply to other
PDE of the form

〈Hamiltonian equation〉+ ν〈dissipation〉 =
√

ν 〈random force〉 , (0.5)

provided that the corresponding Hamiltonian PDE has at least two ‘good’
integrals of motion. In particular, they apply to the randomly forced complex
Ginzburg-Landau equation

u̇− (ν + i)∆u + i|u|2u =
√

ν η(t, x), dim x ≤ 4, (0.6)

supplemented with the odd periodic boundary conditions. The correspond-
ing Hamiltonian PDE is the NLS equation, having two ‘good’ integrals: the
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Hamiltonian H and the total number of particles E = 1
2

∫ |u|2 dx. Eq. (0.6)
was considered in [KS04], where it was proved that for stationary in time
solutions uν of (0.6) an inviscid limit V (t) (as ν → 0 along a subsequence)
exists and possesses properties, similar to those, stated in Theorem 1.1. The
methods of this work allow to prove that the random variable E(uν(t)) sat-
isfies (0.4) uniformly in ν > 0, that H(uν(t)) meets similar estimates and
that V is distributed in such a way that D(

H(V (t))
)

and D(
E(V (t))

)
are

absolutely continuous with respect to the Lebesgue measure.
If dim x = 1, then the NLS equation is integrable and the inviscid limit V

may be analysed further, using the methods, developed in [KP08] to study
the damped/driven KdV equation (which is another example of the system
(0.5)).

Certainly our methods as well apply to some finite-dimensional systems
of the form (0.5). In particular – to Galerkin approximations for the 3D NSE
under periodic boundary conditions, perturbed by a random force, similar to
(1.2). It is easy to establish for that system analogies of results in Sections 1-
3. More interesting example is given by system (0.5), where the Hamiltonian
equation is the Euler equation for a rotating solid body [Arn89]. This sys-
tem can be cautiously regarded as a finite-dimensional model for (0.1); see
Appendix.1

1 Preliminaries

Using the Leray projector Π : L2(T2;R2) → H we rewrite eq. (0.2) as the
equation for u(t) = u(t, ·) ∈ H:

u̇ + νA(u) + B(u) =
√

ν η(t). (1.1)

Here A(u) = −Π∆u and B(u) = Π(u · ∇)u. We denote by ‖ · ‖ and by (·, ·)
the L2-norm and scalar product in H. Let (es, s ∈ Z2 \ {0}) be the standard
trigonometric basis of this space:

es(x) =
f

(
s1

2π
l1

x1 + s2
2π
l2

x2

)
√

1
2

(
l2
l1
s2
1 + l1

l2
s2
2

)
[−s2/l2

s1/l1

]
,

1We are thankful to V. V. Kozlov and members of his seminar in MSU for drawing our
attention to this equation.
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where f = sin or f = cos, depending whether s1 +s2δs1,0 > 0 or s1 +s2δs1,0 <
0. Then ‖es‖ = 1 and

Aes = λses, λs = (2π)2
(
(s1/l1)

2 + (s2/l2)
2
)
, ∀ s .

The force η is assumed to be a Gaussian random field, white in time and
smooth in x:

η =
d

dt
ζ(t, x), ζ =

∑

s∈Z2\{0}
bsβs(t)es(x) , (1.2)

where {bs} is a set of real constants, satisfying

bs = b−s 6= 0 ∀ s,
∑

|s|2b2
s < ∞ ,

and {βs(t)} are standard independent Wiener processes.
This equation is known to have a unique stationary measure µν .

2 This
is a probability Borel measure in the space H which attracts distributions
of all solutions for (1.1) as t → ∞ (e.g., see in [Kuk06a]). Let uν(t, x) be a
corresponding stationary solution, i.e.

Duν(t) ≡ µν .

Apart from being stationary in t, this solution is known to be stationary
(=homogeneous) in x.

For any l ≥ 0 we denote by Hl, l ≥ 0, the Sobolev space H ∩H l(T2;R2),
given the norm

‖u‖l =
( ∫ (

(−∆)l/2u(x)
)2

dx
)1/2

(1.3)

(so ‖u‖0 = ‖u‖). A straightforward application of Ito’s formula to ‖uν(t)‖2

and ‖uν(t)‖2
1 implies that

E ‖uν(t)‖2
1 ≡

1

2
B0 , E‖uν(t)‖2

2 ≡
1

2
B1 , (1.4)

where for l ∈ R we denote Bl =
∑ |s|2lb2

s (note that B0, B1 < ∞ by assump-
tion); e.g. see in [Kuk06a].

2If T2 is a square torus R2/(lZ2), then by the results of [HM06] the stationary measure
µν is unique if bs 6= 0 for |s| ≤ N , where N is a ν-independent constant. Accordingly,
if T2 is a square torus, then Theorems 1.1 and 2.1 below remain true under this weaker
assumption on the numbers bs. But our arguments in Sections 3, 4 use essentially that all
coefficients bs are non-zero.
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The theorem below describes what happen to the stationary solutions
uν(t, x) as ν → 0. For the theorem’s proof see [Kuk06a] (there the result
is stated for the square torus R2/(2πZ2), but the proof does not use this
assumption).

Theorem 1.1. Any sequence ν̃j → 0 contains a subsequence νj → 0 such
that

Duνj
(·) ⇀ DU(·) in P(

C(0,∞;H1)
)
. (1.5)

The limiting process U(t) ∈ H1, U(t) = U(t, x), is stationary in t and in x.
Moreover,

1)a) every its trajectory U(t, x) is such that

U(·) ∈ L2 loc(0,∞;H2), U̇(·) ∈ L1 loc(0∞;H1) .

b) It satisfies the free Euler equation (0.3), so µ0 = D(U(0)) is an invari-
ant measure for (0.3),

c) ‖U(t)‖0 and ‖U(t)‖1 are time-independent quantities. If g is a bounded
continuous function, then

∫
T2 g(rot U(t, x)) dx also is a time-independent

quantity.
2) For each t ≥ 0 we have E‖U(t)‖2

1 = 1
2
B0, E‖U(t)‖2

2 ≤ 1
2
B1 and

E exp
(
σ‖U(t)‖2

1

) ≤ C for some σ > 0, C ≥ 1.

Amplification. If B2 < ∞, then the convergence (1.5) holds in the space
P(C(0,∞;Hκ)), for any κ < 2.

See [Kuk06a], Remark 10.4.
Due to 1b), the measure µ0 = DU(0) is invariant for the Euler equation.

By 2) it is supported by the space H2 and is not a δ-measure at the origin.
The process U is called the Eulerian limit for the stationary solutions uν of
(1.1). Note that apriori the process U and the measure µ0 depend on the
sequence νj.

Since ‖u‖2
1 ≤ ‖u‖0‖u‖2 and E ‖u‖2

1 ≤ (E‖u‖2
0)

1/2(E‖u‖2
1)

1/2, then (1.4)
implies that

1

2
B2

0B
−1
1 ≤ E‖uν(t)‖2

0 ≤
1

2
B1 (1.6)

for all ν. That is, the characteristic size of the solution uν remains ∼ 1 when
ν → 0. Since the characteristic space-scale also is ∼ 1, then the Reynolds
number of uν grows as ν−1 when ν decays to zero. Hence, Theorem 1.1
describes a transition to turbulence for space-periodic 2D flows, stationary
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in time. Recall that eq. (0.2) is the only 2D NSE (0.1), having a limit of order
one as ν → 0 (cf. [Kuk06a], Section 10.3). Thus the various Eulerian limits
as in Theorem 1.1 with different coefficients {bs} (corresponding to different
spectra of the applied random forces) describe all possible 2D space-periodic
stationary turbulent flows.

Our goal is to study further properties of the Eulerian limits.

2 Estimate for energy of solutions

2.1 The result

The energy Eν(t) = 1
2
‖uν(t)‖2

0 of a stationary solution uν , ν ∈ (0, 1], is a
stationary process. It satisfies the relations

1

4
B2

0B
−1
1 ≤ EEν(t) =

1

4
B0 , E exp(σEν(t)) ≤ C , (2.1)

where σ,C > 0 are independent from ν (see (1.6) and [Kuk06a], Section 4.3).
The energy E0(t) of the Eulerian limit U also meets (2.1).

Let {|b̃j|, j ∈ N} be the rearrangement of the numbers {|bs|, s ∈ Z2 \ 0}
in decreasing order: |b̃1| ≥ |b̃2| ≥ . . . .

Theorem 2.1. Assume that B2 < ∞. Then there exists a constant C > 0,
depending only on B1 and |b̃2|, such that

P{Eν(t) < δ} ≤ Cδ1/4, (2.2)

uniformly in ν ∈ (0, 1].

Due to the convergence (1.5), the energy E0(t) = 1
2
‖U(t)‖2 of the Eulerian

limit also satisfies (2.2).
Introducing the fast time τ = tν−1 we get for u(τ) = u(τ, x) the equation

du(τ) = (−Au− ν−1B(u))dτ +
∑

s

bses dβs(τ) , (2.3)

where {βs(τ) =
√

ν βs(ντ), s ∈ Z2\0}, are new standard independent Wiener
processes.
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2.2 Beginning of proof

The proof goes in five steps. We start with a geometrical lemma which is
used below in the heart of the construction.

Let us denote by S the sphere {u ∈ H | ‖u‖0 = 1}. Let {ej, j ≥ 1}, be
the basis {es, s ∈ Z2 \ {0}}, re-parameterised by natural numbers in such a
way that ej = es(j), where λs(j) ≥ λs(i) if j ≥ i.

Lemma 2.2. There exists δ > 0 with the following property. Let v0, ṽ0 be
any two points in S. Then for (v, ṽ) ∈ S × S such that

‖v − v0‖0 < δ, ‖ṽ − ṽ0‖0 < δ (2.4)

there exists an unitary operator U(v,ṽ) = U
(v0,ṽ0)
(v,ṽ) of the space H, satisfying

i) U is an operator-valued Lipschitz function of v and ṽ with a Lipschitz
constant ≤ 2;

ii) U(v,ṽ)(ṽ) = v;
iii) there exists a unitary vector η = η(v, ṽ) in the plane span {e1, e2} such

that the vector U(v,ṽ)(η) makes with this plane an angle ≤ π/4. Accordingly,

max
i,j∈{1,2}

∣∣(U(v,ṽ)ei, ej)
∣∣ ≥ c∗, (2.5)

where c∗ > 0 is an absolute constant.

Proof. Let us start with the following observation:
There exists δ > 0 such that for any v0 ∈ S and v1 ∈ {v ∈ S | ‖v −

v0‖0 < δ} there exists an unitary transformation Wv1,v0 of the space H with
the following property: Wv0,v0 = id, Wv1,v0(v0) = v1 and W is a Lipschitz
function of v1 and v0 with a Lipschitz constant ≤ 2.

To prove the assertion let us denote by A the linear space of bounded
anti self-adjoint operators in H (given the operator norm), and consider the
map

A× S → S, (A, v) 7→ eAv .

Note that the differential of this map in A, evaluated at A = 0, v = v0, is the
map A′ 7→ A′v0, which sends A to the space Tv0S = {v ∈ H | (v, v0) = 0} and
admits a right inverse operator of unit norm. So the assertion with W = eA,
where A satisfies the equation eAv0 = v1, follows from the implicit function
theorem.
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To prove the lemma we choose unit vectors η0, η̃0 ∈ span {e1, e2} such
that (v0, η0) = 0 and (ṽ0, η̃0) = 0. Next we choose an unitary transformation
U , such that U(ṽ0) = v0 and U(η̃0) = η0. For vectors v, ṽ, satisfying (2.4),
denote U(ṽ) = ξ̃. Then ‖ξ̃ − v0‖0 < δ. Let Wv,ξ̃ be the operator from the
assertion above. We set Uv,ṽ = Wv,ξ̃ ◦ U . This operator obviously satisfies i)

and ii). Since ‖Uv,ṽ(η̃0)− η0‖0 ≤ Cδ, then choosing δ < C−12−1/2 we achieve
iii) with η = η̃0.

Remark. Let j1 and j2 be any two different natural numbers. The same
arguments as above prove existence of an unitary operator U , satisfying i),
ii) and such that maxi∈{1,2}, j∈{j1,j2}

∣∣(Uei, ej)
∣∣ ≥ c∗ .

For any (v0, ṽ0) ∈ S × S let Oδ(v0, ṽ0) ⊂ S × S be the open domain,
formed by all pairs (v, ṽ), satisfying (2.4). Let O1,O2, . . . be a countable
system of domains Oδ/2(vj, ṽj) =: Oj, j ≥ 1, which cover S × S. We call
(vj, ṽj) the centre of a domain Oj.

Consider the mapping

S × S → N, (v, ṽ) 7→ n(v, ṽ) = min{j | (v, ṽ) ∈ Oj} . (2.6)

It is measurable with respect to the Borel sigma-algebras. Finally, for j =
1, 2, . . . and (v, ṽ) ∈ Oj we define the operators

U j
v,ṽ = U

(vj ,ṽj)
v,ṽ .

2.3 Step 1: equation for ũ(t)

Till the end of Section 2 for any u ∈ H we will denote

v = v(u) = u/‖u‖0 if u 6= 0 and v = e1 if u = 0. (2.7)

Let us fix any T0 > 0. We start to construct a process ũ(τ), 0 ≤ τ ≤
T0, with continuous trajectories, satisfying ‖ũ(τ)‖0 ≡ ‖u(τ)‖0. The process
will be constructed as a solution of a stochastic equation, in terms of some
stopping times 0 = τ0 ≤ τ1 < τ2 < . . . .

We set τ0 = 0 and define a random variable n0 = n(v(0), v(0)) ∈ N
(see (2.6)). Let us consider the following stochastic equation for u(τ) =
(u(τ), ũ(τ)) ∈ H ×H:

du(τ) = (−Au− ν−1B(u))dτ +
∑

s

bses dβs(τ), (2.8)
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dũ(τ) = −U∗
uAudτ +

∑
s

U∗
ubses dβs(τ). (2.9)

Here U∗
u is the adjoint to the unitary operator Uu = U

n0(ω)
v,ṽ , where v = v(u)

and ṽ = v(ũ), see (2.7). Let us fix any γ ∈ (0, 1] and define the stopping
times

Tγ = inf{τ ∈ [0, T0] | ‖u(τ)‖0 ∧ ‖ũ(τ)‖0 ≤ γ or ‖u(τ)‖2 ≥ γ−1} ,

τ1 = inf{τ ∈ [0, T0] | u(τ) /∈ Oδ(vn0 , ṽn0)} ∧ Tγ .

Here and in similar situations below inf ∅ = T0, and (vn0 , ṽn0) is the centre
of the domain On0 .

For 0 ≤ τ ≤ τ1 the operator Uu is a Lipschitz function of u since ‖u‖0 ≥ γ
and ‖ũ‖0 ≥ γ. As ‖u(τ)‖2 ≤ γ−1 for τ ≤ Tγ, then it is not hard to see that
the system (2.8),(2.9), supplemented with the initial condition

u(0) = (u(0), u(0)), (2.10)

has a unique strong solution u(τ), 0 ≤ τ ≤ τ1, satisfying

E sup
0≤τ≤τ1

‖ũ(τ)‖2
0 ≤ C(T0, ν, γ). (2.11)

Next we set n1 = n(v(τ1), ṽ(τ1)) and for τ ≥ τ1 re-define the operator Uu

in (2.9) as U
n1(ω)
v,ṽ (as before, v = v(u(τ)) and ṽ = v(ũ(τ))). We set

τ2 = inf{τ ∈ [τ1, T0] | u(τ) /∈ Oδ(vn1 , ṽn1)} ∧ Tγ,

where (vn1 , ṽn1) is the centre of On1 , and consider the system (2.8), (2.9) for
τ1 ≤ τ ≤ τ2 with the initial condition at τ1, obtained by continuity. The
system has a unique strong solution and (2.11) holds with τ1 replaced by τ2.
Iterating this construction we obtain stopping times τ0 ≤ τ1 ≤ τ2 ≤ . . . , the
operator Uu(τ), piecewise constant in τ and discontinuous at points τ = τj, as
well as a strong solution u(τ) of (2.8)-(2.10), defined for 0 ≤ τ < limj→∞ τj ≤
Tγ, and satisfying (2.11) with τ1 replaced by any τj. Clearly τj < τj+1, unless
τj = τj+1 = Tγ.

2.4 Step 2: growth of stopping times τj

For any τ ≥ 0 and N ≥ 1 let us write ũ(τ ∧ TN) as

ũ(τ ∧ TN) =
(
u(0)−

∫ τ∧TN

0

U∗A(u) dθ
)

+

∫ τ∧TN

0

∑
s

bsU
∗es dβs

=: ũ1(τ) + ũ2(τ) .
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Since ‖u‖2 ≤ γ−1, then the process ũ1(τ) ∈ H is Lipschitz in τ . A straight-
forward application of the Kolmogorov criterion implies that the process
ũ2(τ) ∈ H a.s. satisfies the Hölder condition with the exponent 1/3. So the
process ũ(τ ∧ TN) is a.s. Hölder. The process u(τ ∧ TN) is Hölder as well, so

‖u(
(τj + ∆) ∧ TN ; ω)− u(τj; ω)‖0 ≤ K(ω)∆1/3

(K(ω) is independent from N). Since ‖u(τj+1)−u(τj)‖0 ≥ δ
2

unless τj+1 = Tγ,
then |τj+1 − τj| ≥ (δ/2K(ω))3 or τj+1 = Tγ. As τj ≤ Tγ ≤ T0, then

τj = Tγ for j ≥ j(γ; ω) , (2.12)

where j(γ) < ∞ a.s.
For any 0 < γ ≤ 1 we have constructed a process u(τ) = (u(τ), ũ(τ)), τ ∈

[0, Tγ], satisfying (2.8)-(2.10), where the operator Uu is a piecewise constant
function of τ .

2.5 Step 3: ‖ũ(τ)‖0 ≡ ‖u(τ)‖0 for τ ≤ Tγ

For j = 0, 1, . . . we will prove the following assertion:

if ‖ũ(τj)‖0 = ‖ u(τj)‖0 a.s., then

‖ũ(τ)‖0 = ‖ u(τ)‖0 for τj ≤ τ ≤ τj+1, a.s.
(2.13)

Since ũ(τ0) = u(τ0), then (2.12) and (2.13) would imply that

‖ũ(τ)‖0 = ‖ u(τ)‖0 ∀ 0 ≤ τ ≤ Tγ , (2.14)

for any γ > 0.
To prove (2.13) we consider (following Lemma 7.1 in [KP08]) the quan-

tities E(τ) = 1
2
‖u(τ)‖2

0 and Ẽ(τ) = 1
2
‖ũ(τ)‖2

0. Due to Ito’s formula we
have

dE = (u,−Au) dτ +
1

2
B0dτ + (u,

∑
s

bses dβs(τ))

and

dẼ =(ũ,−U∗Au) dτ +
1

2

∑
b2
s|U∗es|2dτ + (ũ,

∑
s

bs(U
∗es) dβs(τ))

=
‖ũ‖0

‖u‖0

(u,−Au) dτ +
1

2
B0dτ +

‖ũ‖0

‖u‖0

(u,
∑

s

bses dβs(τ)) .
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Therefore,

d(E − Ẽ)2 =2(E − Ẽ)
‖u‖0 − ‖ũ‖0

‖u‖0

(u,−Au) dτ

(‖u‖0 − ‖ũ‖0

‖u‖0

)2 ∑
s

b2
s(u, es)

2dτ +Mτ ,

where Mτ stands for the corresponding stochastic integral.
For 0 ≤ τ ≤ Tγ let us denote J(τ) = (E − Ẽ)2

(
(τ ∨ τi) ∧ τi+1

)
. Then

d

dτ
EJ(τ) =2E

(
(E − Ẽ)

‖u‖0 − ‖ũ‖0

‖u‖0

(u− Au)Iτi≤τ≤τi+1

)

+E
((‖u‖0 − ‖ũ‖0

‖u‖0

)2 ∑
b2
s(u, es)

2Iτi≤τ≤τi+1

)
.

Since ‖u‖0 − ‖ũ‖0 = 2(E−Ẽ)
‖u‖0+‖ũ‖0 and |(u,−Au)| ≤ γ−2, ‖u‖0, ‖ũ‖0 ≥ γ, then

d
dτ

EJ(τ) ≤ CγEJ(τ). As J(0) = 0, then EJ(τ) ≡ 0 and (2.13) is established.
Accordingly (2.14) also is proved.

2.6 Step 4: limit γ → 0

Since B2 < ∞, then u(τ) satisfies the γ-independent estimate

E sup
0≤τ≤T0

‖u(τ)‖2 ≤ C(T0, ν)

(see [Kuk06a], Section 4.3). Accordingly

P
{

sup
0≤τ≤T0

‖u(τ)‖2 ≤ γ−1
} → 1 as γ → 0. (2.15)

Denote by û(τ) the two-vector (u1(τ), u2(τ)), where u(τ) =
∑

uj(τ)ej

(we recall that e1, e2, . . . are the basis vectors es, re-parameterised by natural
numbers). Then

ûj(τ) = uj(0) +

∫ τ

0

Fjds + bjβj(s), j = 1, 2,

where Fj is the j-th component of the drift in (2.3). Since û is a stationary
process, then P{û(0) = 0} = 0 (this follows, say, from Krylov’s result, used
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in the next subsection). Setting FR
j = Fj ∧ R, we denote by ûR(τ) ∈ R4 the

process

ûR
j (τ) = uj(0) +

∫ τ

0

FR
j ds + bjβj(s), j = 1, 2.

By the Girsanov theorem, distribution of the process ûR(τ), 0 ≤ τ ≤ T0, is
absolutely continuous with respect to the process (b1β1, b2β2) + û(0). There-
fore

P{ min
0≤τ≤T0

|ûR(τ)| = 0} = 0 , (2.16)

for any R. Since max0≤τ≤T0 |ûR(τ) − û(τ)| → 0 as R → ∞ in probability,
then the process û(τ) also satisfies (2.16). Jointly with (2.15) this implies
that

P{Tγ = T0} → 1 as γ → 0 ,

and we derive from (2.14) the relation

‖ũ(τ)‖0 = ‖u(τ)‖0 ∀ 0 ≤ τ ≤ T0, a.s.

2.7 Step 5: end of proof

The advantage of the process ũ compare to u is that it satisfies the ν-
independent Ito equation (2.9). Let us consider the first two components
of the process:

dũj = −(
U∗

u,ũ(τ)A(u)
)

j
dτ +

∞∑

l=1

(
U∗

u,ũ(τ)
)

jl
bl dβl(τ) , (2.17)

where j = 1, 2. Denoting aj(τ) =
∑∞

l=1

(
U∗

jlbl

)2
=

∑∞
l=1

(
Uljbl

)2
and using

(2.5) we find that a.s.

C ≥ a1(τ) + a2(τ) ≥ c > 0 ∀ τ , (2.18)

where C = 2
√

B0 and c depends only on |b1| ∧ |b2|. Due to (1.4) for each
τ ≥ 0 we have E|U∗A(u(τ))|j ≤

√
B1/2. This bound and the first estimate

in (2.18) imply that Lemma 5.1 from [Kry87] applies to the Ito equation
(2.17) uniformly in ν if we choose the lemma’s parameters as follows:

d = 1, γ = 1, As = s, rs = 1, cs = 1, yt = t, ϕt = t. (2.19)

13



Taking in the lemma for f(t, x) the characteristic function of the segment
[−δ, δ], we get

E

∫ γR

0

e−taj(τ)1/2I{|ũj(τ)|≤δ} dτ ≤ C
√

δ , j = 1, 2,

where γR ≤ 1 is the first exit time ≤ 1 of the process ũj from the segment
[−R,R]. Sending R to ∞ we get that

E

∫ 1

0

aj(τ)1/2I{|ũj(τ)|≤δ} dτ ≤ C1

√
δ , j = 1, 2 , (2.20)

uniformly in ν.
For c as in (2.18) and any fixed τ let us consider the event Qτ

1 = {a1(τ) ≥
1
2
c}. Denote by Qτ

2 its complement. Then

a1(τ) ≥ 1

2
c on Qτ

1 and a2(τ) ≥ 1

2
c on Qτ

2. (2.21)

Let us set
Qτ = {|ũ1(τ)|+ |ũ2(τ)| ≤ δ}.

Then

P(Qτ ) = E(IQτ IQτ
1

+ IQτ IQτ
2
) ≤ E(I{|ũ1(τ)|≤δ}IQτ

1
+ I{|ũ2(τ)|≤δ}IQτ

2
).

By (2.21) the r.h.s. is bounded by
√

2

c
E

(
I{|ũ1(τ)|≤δ}

√
a1 + I{|ũ2(τ)|≤δ}

√
a2

)
.

Jointly with (2.20) the obtained inequality shows that
∫ 1

0

P(Qτ ) dτ ≤ C2

√
δ.

Since

P{‖u(τ)‖0 ≤ δ

2
} = P{‖ũ(τ)‖0 ≤ δ

2
} ≤ P(Qτ ) ,

where the l.h.s. is independent from τ , then

P{‖u(τ)‖0 ≤ δ

2
} ≤ C2

√
δ

for any δ > 0. This relation implies (2.2).
The constant C in (2.2), as well as all other constants in this section,

depend only on B1 and |b1| ∧ |b2|. Using the Remark in Section 2.2 we may
replace |b1| ∧ |b2| by |b̃1| ∧ |b̃2|. This completes the theorem’s proof.
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3 Distribution of energy

Again, let uν(τ) be a stationary solution of (1.1), written in the form (2.3),
let Eν(τ) be its energy and E0(τ) = 1

2
‖U(τ)‖2

0 be the energy of the Eulerian
limit.

Theorem 3.1. For any R > 0 let Q ⊂ [−R, R] be a Borel set. Then

P{Eν(τ) ∈ Q} ≤ pR(|Q|) (3.1)

uniformly in ν ∈ (0, 1], where pR(t) → 0 as t → 0

In particular, the measures D(Eν(τ)) are absolutely continuous with re-
spect to the Lebesgue measure. Since D(Eνj

) ⇀ D(E0(τ)), then E0(τ) sat-
isfies (3.1) for any open set Q ⊂ [−R,R]. Accordingly, P{E0(τ) ∈ Q} = 0 if
|Q| = 0 since the Lebesgue measure is regular. We got

Corollary 3.2. The measure D(E0(τ)) is absolutely continuous with respect
to the Lebesgue measure.

Proof of the theorem. For any δ > 0 let us consider the set

O = O(δ) = {u ∈ H2 | ‖u‖2 ≤ δ−
1
4 , ‖u‖0 ≥ δ}

Writing u = uν as u =
∑

uses, we set uI =
∑

|s|≤N uses and uII = u−uI . For

any u ∈ O we have ‖uII‖2
0 ≤ N−4‖uII‖2

2 ≤ δ−
1
2 N−2. So ‖uI‖2

0 ≥ δ2−δ−
1
2 N−4.

Choosing N = N(δ) =
[
21/4δ−5/8

]
we achieve

‖uI‖2
0 ≥

1

2
δ2 ∀u ∈ O.

The stationary process E(uν(τ)) satisfies the Ito equation

dE =
(− ‖u(τ)‖2

1 +
1

2
B0

)
dτ +

∑
bsus(τ) dβs(τ)

(see in Section (2.5)). The diffusion coefficient a(τ) satisfies

a(τ) =
∑

b2
s|us(τ)|2 ≥ b2

N‖uI(τ)‖2
0,

where bN = min|s|≤N |bs| > 0. So,

a(τ) ≥ 1

2
b2
Nδ2 if u(τ) ∈ O. (3.2)
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Besides,

E|a(τ)| ≤ maxs b2
s

2
B0 , E

∣∣− ‖u(τ)‖2
1 +

1

2
B0

∣∣ ≤ B0 ,

(see (1.4)).
Let Q ⊂ [−R, R] be a Borel set and f be its indicator function. Applying

the Krylov lemma with the same choices of parameters as in (2.19), passing
to the limit as R → ∞ as in Section 2.7 and taking into account that E(τ)
is a stationary process, we get that

E
(
a(τ)1/2f(E(τ)

) ≤ C|Q|1/2, (3.3)

uniformly in ν > 0. Due to (1.4) and (2.2),

P{u(τ) 6∈ O} ≤ 1

2
B1

√
δ + C

√
δ.

Jointly with (3.2) and (3.3) this estimate implies that

P(Eν(τ) ∈ Q) = Ef(E(τ)) ≤ C(|Q|1/2b−1
N δ−1) + C1

√
δ ∀ 0 < δ ≤ 1,

where N = N(δ). Now (3.1) follows.

4 Distributions of functionals of vorticity

In his section we assume that B6 < ∞. The vorticity ζ = rot u(t, x) of a
solution u for (1.1), written in the fast time τ = νt, satisfies the equation

ζ ′τ −∆ζ + ν−1(u · ∇)ζ = ξ(τ, x). (4.1)

Here ξ = d
dt

∑
s∈Z2\{0} βs(τ)ϕs(x) and

ϕs = rot es =
λsf

(
s1

2π
l1

x1 + s2
2π
l2

x2

)

π ·
√

2
(

l2
l1
s2
1 + l1

l2
s2
2

)

for any s, where f = cos or f = − sin, depending whether s1 + s2δs1,0 > 0 or
not. We will study eq. (4.1) in Sobolev spaces

H l = {ζ ∈ H l(T2) |
∫

ζ dx = 0}, l ≥ 0,
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given the norms ‖ · ‖l, defined as in (1.3).
Let us fix m ∈ N and choose any m analytic functions f1(ζ), . . . , fm(ζ),

linear independent modulo constant functions.3 We assume that the func-
tions fj(ζ), . . . , f ′′′j (ζ), 1 ≤ j ≤ m, have at most a polynomial growth as
|ζ| → ∞ and that

f ′′j (ζ) ≥ −C ∀ j, ∀ζ
(for example, each fj(ζ) is a trigonometric polynomial, or a polynomial of
an even degree with a positive leading coefficient). Consider the map

F : H l → Rm, ζ 7→ (F1(ζ), . . . , Fm(ζ)),

Fj =

∫

T2

fj(ζ(x)) dx,

where 0 < l < 1. Since for any P < ∞ we have H l ⊂ LP (T2) if l is sufficiently
close to 1, then choosing a suitable l = l(F ) we achieve that the map F is
C2-smooth. Let us fix this l. We have

dF (ζ)(ξ) =
( ∫

f ′1(ζ(x))ξ(x) dx, . . . ,

∫
f ′m(ζ(x))ξ(x) dx

)
.

Lemma 4.1. If ζ 6≡ 0, then the rank of dF (ζ) is m.

Proof. Assume that the rank is < m. Then there exists number C1, . . . , Cm,
not all equal to zero, such that∫

(C1f
′
1(ζ) + · · ·+ Cmf ′m(ζ))ξ dx = 0 ∀ ξ ∈ H l. (4.2)

Denote P (ζ) = C1f
′
1(ζ) + · · · + Cmf ′m(ζ). This is a non-constant analytic

function. Due to (4.2), P (ζ(x)) = const. Denote this constant C∗. Then the
connected set ζ(T2) lies in the discrete set P−1(C∗). So ζ(T2) is a point, i.e.
ζ(x) ≡ const. Since

∫
ζ dx = 0, then ζ(x) ≡ 0.

Now let ζ(t) = rot uν(t), where uν is a stationary solution of (1.1). Ap-
plying Ito’s formula to the process F (ζ(τ)) ∈ Rm and using that Fj is an
integral of motion for the Euler equation, we get that

dFj(τ) =
( ∫

f ′j(ζ(τ, x))∆ζ(τ, x) dx +
1

2

∑
s

b2
s

∫
f ′′j(ζ(τ, x))ϕ2

s(x) dx)
)
dτ

+
∑

s

bs

( ∫
f ′j(ζ(τ, x))ϕs(x) dx

)
dβs(τ).

3I.e., C1f1(ζ) + · · ·+ Cmfm(ζ) 6=const, unless C1 = · · · = Cm = 0.
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Since bs ≡ b−s and ϕ2
s + ϕ2

−s ≡ |s|2/2π2, then

dFj(τ) =
( ∫

f ′′j(ζ)(−|∇xζ|2 +
1

4π
B1) dx

)
dτ

+
∑

s

bs

( ∫
f ′j(ζ(τ, x))ϕs(x) dx

)
dβs(τ)

:= Hj(ζ(τ)) dτ +
∑

s

hjs(ζ(τ)) dβs(τ) .

Ito’s formula applies since under our assumptions all moments of the random
variables ζ(τ, x) and |∇xζ(τ, x)| are finite (see [Kuk06a], Section 4.3). Using
that Fj(τ) is a stationary process, we get from the last relation that EHj = 0,
i.e.

E

∫
f ′′j(ζ(τ, x))|∇xζ(τ, x)|2 dx =

B1

4π
E

∫
f ′′j(ζ(τ, x)) dx. (4.3)

Since B6 < ∞ then all moments of random variables |ζ(τ, x)| are bounded
uniformly in ν ∈ (0, 1], see [Kuk06b] and (10.11) in [Kuk06a]. As the random
field ζ is stationary in τ and in x, then the r.h.s. of (4.3) is bounded uniformly
in ν. Using the assumption f

′′
j ≥ −C we find that

∣∣f ′′j |∇xζ|2
∣∣ ≤ f

′′
j |∇xζ|2 + 2C|∇xζ|2.

Since

E

∫
|∇xζ(τ, x)|2dx = E‖uν(τ)‖2

2 =
1

2
B1,

then we get that
E|Hj(ζ(τ))| ≤ Cj < ∞ (4.4)

uniformly in ν (and for all τ).
Consider the diffusion matrix a(ζ(τ)), ajl(ζ) =

∑
s hjs(ζ)hls(ζ). Clearly

E tr(ajl)(ζ(τ)) ≤ C, (4.5)

uniformly in ν. Let us denote D(ζ) = det ajl(ζ) ≥ 0. Noting that hjs(ζ) =
bs(dF (ζ))js, we obtain from Lemma 4.1

Lemma 4.2. The function D is continuous on H l and D > 0 outside the
origin.
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Now we regard (4.1) as an equation in H1 and set

Oδ = {ζ ∈ H1 | ‖ζ‖1 ≤ δ−1, ‖ζ‖l ≥ δ} .

Since H1 b H l, then D ≥ c(δ) > 0 everywhere in Oδ.
Estimates (4.4), (4.5) allow to apply Krylov’s lemma with p = d = m to

the stationary process F (ζν(τ)) ∈ Rm, uniformly in ν. Choosing there for f
the characteristic function of a Borel set Q ⊂ {|z| ≤ R}, we find that

P{F (ζν(τ)) ∈ Q} ≤ P{ζν(τ) /∈ Oδ}+ c(δ)−1/(m+1)CR|Q|1/(m+1) (4.6)

(cf. the arguments in Section 3). Since ‖ζ‖1 = ‖u‖2 and ‖ζ‖l ≥ ‖ζ‖0 ≥ ‖u‖0

for ζ = rot u, then due to (1.4) and (2.2) the first term in the r.h.s. of (4.6)
goes to zero with δ uniformly in ν, and we get that

P{F (ζν(τ)) ∈ Q} ≤ pR(|Q|) , pR(t) → 0 as t → 0 , (4.7)

uniformly in ν. Evoking Amplification to Theorem 1.1 we derive from (4.7)
that the vorticity ζ0 of the Eulerian limit U satisfies (4.7), if Q is an open
subset of BR. We have got

Theorem 4.3. If B6 < ∞, then the distribution of the stationary solution
for the 2D NSE, written in terms of vorticity (4.1), satisfies (4.7) uniformly
in ν. The vorticity ζ0 of the Eulerian limit U is distributed in such a way
that the law of F (ζ0(τ)) is absolutely continuous with respect to the Lebesgue
measure in Rm.

Corollary 4.4. Let X b H∩C1(T2;R2) be a compact set of finite Hausdorff
dimension. Then µ0(X) = 0.

Proof. Denote the Hausdorff dimension of X by d and choose any m > d.
Then (F ◦ rot)(X) is a subset of Rm of positive codimension. So its measure
with respect to D(f(ζ0(t)) equals zero. Since D(f(ζ0(t)) = (F ◦ rot) ◦ µ0,
then µ0(X) = 0.

5 Appendix: rotation of solid body

The Euler equation for a freely rotating solid body, written in terms of its
momentum M ∈ R3, is

Ṁ + [M,A−1M ] = 0, (5.1)
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where A is the operator of inertia and [·, ·] is the vector product. The corre-
sponding damped/driven equation (0.5) is

Ṁ + [M,A−1M ] + νM =
√

ν η(t) , (5.2)

where the random force is η(t) = d
dt

∑3
j=1 bjβj(t)ej with non-zero bj’s, and

{e1, e2, e3} is the eigenbasis of the operator A−1. Let us denote by 0 < λ1 ≤
λ2 ≤ λ3 the eigenvalues, corresponding to the eigenvectors ej’s.

Eq. (5.2) has a unique stationary measure. Let Mν(t) be a corresponding
stationary solution. An inviscid limit, similar to that in Theorem 1.1, holds:

DMνj
(·) ⇀ DM0(·) as νj → 0 , (5.3)

where M0(t) ∈ R3 is a stationary process, formed by solutions of (5.1). The
Euler equation has two quadratic integrals of motion: H1(M) = 1

2
|M |2 and

H2(M) = 1
2
(A−1M, M). Distributions of the random variables H1(Mν(t))

and H2(Mν(t)), 0 ≤ ν ≤ 1, satisfy direct analogies of the assertions in
Sections 2, 3.

To analyse further the processes Mν with ν ¿ 1 and the inviscid limit
M0, we note that a.e. non-empty level set of the vector-integral H = (H1, H2)
is formed by two periodic trajectories of (5.1) (see [Arn89]). Denote them
S±(H1,H2). It is easy to see that the conditional probabilities for Mν(t) to

belong to S+
(H1,H2) or to S−(H1,H2) are equal. Since the dynamics, defined by

(5.1) on each set S±(H1,H2) obviously is ergodic with respect to a corresponding

invariant measure ν±(H1,H2),
4 then the methods of [FW98, FW03, KP08] apply

to the process

Hνj(τ) = H(Mνj
(τ)) ∈ K = {(h1, h2) ∈ R2 | 0 ≤ λ1h1 ≤ h2 ≤ λ3h1},

where τ = νjt. They allow to prove that a limiting (as νj → 0) process H0(τ)
exists and is a stationary solution of an SDE, obtained from the Ito equation
for H(M(τ)) by the usual stochastic averaging with respect to the ergodic
measures ν±(H1,H2) on the curves S±(H1,H2). This is a stochastic equation in K.

Assume that the matrix A−1 is non-degenerate:

0 < λ1 < λ2 < λ3. (5.4)

4the density of the measure ν±(H1,H2)
against the Lebesgue measure on the curve S±(H1,H2)

is inverse-proportional to velocity of the trajectory.
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Then the diffusion matrix for the averaged equation is non-degenerate outside
∂K and the ray {h2 = λ2h1, h1 ≥ 0}. The process H0 is a stationary solution
of the averaged equation such that

• it has finite quadratic exponential moments (cf. (2.1),

• its marginal distribution D(H0(0)) is absolutely continuous with re-
spect to the Lebesgue measure on K.

We claim that under the non-degeneracy assumption (5.4) the averaged equa-
tion has a unique stationary measure θ, satisfying the two properties above.
Accordingly

D(H(M0(0)) = θ

and

D(M0(0)) =
∑

α∈{+,−}

∫

R2

πανα
(H1,H2) θ(dH1 dH2), (5.5)

where π+ = π− = 1/2. Cf. Theorem 6.6 in [KP08]. In particular, the con-
vergence (5.3) holds as ν → 0 (i.e., the limit does not depend on a sequence
νj → 0).

The representation (5.5) for the measure D(M0(0)) is called its disinte-
gration with respect to the map H : R3 → R2. It may be obtained indepen-
dently from the arguments above (see references in [Kuk07]). The role of the
arguments is to represent the measure θ in terms of the averaged equation.

The measure µ0 = DU(0), corresponding to the Eulerian limit U (Theo-
rem 1.1) also admits a disintegration, similar to (5.5), but with much more
complicated ingredients, see [Kuk07]. The main difficulty to study this disin-
tegration (and the measure µ0 itself) comes from the fact that, in difference
with the sets {H = const}, the iso-integral sets for the Euler equation

{U | E(U) = const,

∫
f
(
rot(U(x))

)
dx = const ∀f}, (5.6)

and the Eulerian dynamics on them are understood very poorly. In par-
ticular, nothing is known about the measures on the sets (5.6) which enter
the disintegration for the Eulerian limit. Still an analogy with eq. (5.2) and
with the damped/driven KdV equation allows us in [Kuk07] to conjecture an
averaging procedure of the Whitham type to find the measures, involved in
the disintegration of µ0.
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